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ABSTRACT. - Let X be a real Banach space and I a function on X such
that I == P + ~ X ~ (- oo, + oo ] convex,

proper and lower semicontinuous. A point U E X is said to be critical if
+ Do and C’(M), ~ - ~ ) + ~r(u) >__ 0 b’v E X. The paper

contains a number of existence theorems for critical points of functions
of the above mentioned type. Critical levels of saddle type are characterized

by minimax principles. The results are applied to variational inequalities
and variational equations with single- and multivalued operators, which
arise from studying certain elliptic boundary value problems.

RESUME. - Soit X un espace de Banach et I une fonction sur X de la
forme I = C + 03C8, où 03A6 est C1 et 03C8 est convexe s. c. i., pouvant prendre la
valeur + oo. On définit une notion naturelle de point critique, et l’on
demontre des theoremes d’existence par des methodes de minimax, du
type Liusternik-Schnivelman. On applique ces resultats a des equations
et inéquations variationnelles de type elliptique.

Minimax principles. Liusternik-Schnivelman theory, convex functions,
critical points. Ekeland’s variational principle.
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A. SZULKIN

TRODUCTION

The purpose of this paper is to generalize some minimax methods in
ritical point theory to a class of functions which are not necessarily con-
inuous. Let X be a real Banach space. Recall that for a continuously
ifferentiable function 03A6 : X ~ R a point u E X is said to be critical if

>’(u) = 0. The corresponding number ~(u) is called a critical value. It is
ell known that local maxima and minima are critical points. If 03A6 satisfies
ome appropriate compactness conditions (usually of Palais-Smale type),
ne may also find other critical points by minimaxing 03A6 over certain
milies of subsets of X. More precisely, if r is such a family, one can give
ufficient conditions in order that the value

e critical. For an account of recent results in critical point theory for
r 1 functions by minimax methods the reader is referred to [20 ] [21 ] [24 ].
Very recently critical point theory has been generalized by Chang [8] ]

) locally Lipschitz continuous functions and by Struwe [26] ] [27] ] to

mctions which are of class C 1 with respect to certain families of subspaces
f X. In this paper we present another generalization.
Let X be a real Banach space and convex

)wer semicontinuous function. The set D(~) == { M EX:  + oo ~
; called the effective domain of Denote by X* the dual of X and by ~ , ~
1e duality pairing between X* and X. For the set

; called the subdifferential of ~r at u [3, ~ II . 2 ]. We shall consider functions
== I> + jJ with C E C 1 (X, [R) and ~ as above. A point u E is said to

Ie critical if - ~’(u) E or equivalently, if u satisfies the inequality

nequalities of this type arise in a number of problems of physics [12 ].
In [10] ] [11 ] Dias and Hernandez invoked results from critical point

heory for C~ 1 functions in order to study eigenvalue problems ~,u E 
or X a Hilbert space and 03C8 as above. They used the fact that the operator
d has a single-valued inverse which is of gradient type. Unfortuna-
ely, this approach does not seem to give results we want to obtain.
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79WNIMAX PRINCIPLES

u is easy Lo see proposition  i j that local minima are critical points
of I. In order to be able to obtain other critical points we need a compact-
ness condition (which is introduced in Section 1 ) and a deformation result.
For C~ 1 functions the required deformation is effected by moving along
integral lines of a pseudogradient vector field [21, Theorem 1. 9; 24, Theo-
rem 1.1 ]. In the case of functions which are only lower semicontinuous
such a construction does not seem to be readily available, mainly because
a noncritical value c may be « semicritical » in the sense that there may
exist a critical point u with I(u)  c and a sequence un ~ U with I(un) - c.

In Proposition 2. 3 we obtain a result which in a sense is a weak version
of the usual deformation theorem. Our deformation (denoted by as) has
the inconvenient property that I(as(u)) may increase for some u. The proofs
of existence of nonminimum critical points (which become rather technical
because of that) are effected by combining Proposition 2. 3 with Ekeland’s
variational principle. The idea of using Ekeland’s principle to obtain
critical points other than local minima (actually, to prove the Mountain
Pass Theorem), may be found in [2] ] [6 ].
The paper is organized as follows : Section 1 contains preliminary mate-

rial. In particular, we introduce a compactness condition and recall
Ekeland’s variational principle. In Section 2 we prove a deformation
result and in Section 3 we show that the Mountain Pass Theorem of Ambro-
setti and Rabinowitz [1] ] [21] ] [24] and some related results [22] ] [23 ] [24 ]
remain valid for functions satisfying our assumptions. Section 4 is devoted
to generalizations of results of Clark [9] ] [21 ] [24] ] and Ambrosetti and
Rabinowitz [1 ] [21 ] [24] ] concerning the existence of multiple critical

points for even functions. In Section 5 we apply abstract results of Sections 3
and 4 to elliptic boundary value problems. Our examples include varia-
tional inequalities and variational equations with single- and multivalued
operators.

After completing this paper I have been informed by I. Ekeland that
for lower semicontinuous functions I : X ~ ( - oo, + ~ ] having the
property that I(u) + c II U 112 is convex for some c > 0, there is a regulariza-
tion procedure due to J. M. Lasry [28, Lemma 7 ], which associates with I
a family lic of functions such that ~ I(u) Vu E X 0
and IE E C1(X, ~). Furthermore,  I(u) Vu E X, IE and I have the same
critical points and Ie satisfies the Palais-Smale condition whenever I satis-
fies a condition of similar type (cf. (PS)’ below). Note that for such I our
Theorem 4.3 is an easy consequence of the above-mentioned result of
Clark:  I(u), I satisfies the hypotheses of Clark’s theorem and has
therefore at least k pairs of nontrivial critical points; hence so does I.
Note also that in some of the applications to boundary value problems in
Section 5 (Theorem 5.1 and Theorem 5.8 with subsequent corollaries)
I( u) 112 will not be convex for any c > 0.
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A. SZULKIN

PRELIMINARIES

Let X be a real Banach space and I a function on X satisfying the fol-
owing hypothesis :

A point u E X is said to be a critical point of I if u E and if it satisfies
:he inequality

Note that X can be replaced by in (1). A number c such that

f -1(c) contains a critical point will be called a critical value. We shall use
the following notation:

1.1. PROPOSITION. - If I satisfies (H), each local minimum is necessarily
critical point of I.

Proof - Let u be a local minimum of 1. Using convexity of 03C8, it follows
lat for all small t > 0,

Dividing by t and letting t - 0 we obtain ( 1 ). 0
We shall assume that I satisfies the following compactness condition of

Palais-Smale type :

where ~n -~ 0, then possesses a convergent subsequence.
Condition (PS) can also be formulated as follows :

:~n -~ 0, then possesses a convergent subsequence.

1. 2. PROPOSITION. - Conditions (PS) and (PS’) are equivalent.
Observe that (3) expresses the fact that 03A6’(un) E or equiva-

Annales de l’Institut Henri Poincaré - Analyse non linéaire



81MINIMAX PRINCIPLES

lenny, tnat zn E + in this notation tne similarity to (a version

of) the usual Palais-Smale condition becomes more transparent. Observe
also that if 03C8 = 0, then I E C1 and our definition of critical point as well as
our condition (PS) coincide with the usual ones.

In order to prove Proposition 1.2 we need an additional result. In what
follows we shall use the same symbol ~ ~ to denote the norms in X and X*.

1. 3. LEMMA. - Let X be a real Banach space and /:X -~ ( - 
a 1. s. c. convex function with x(0) = 0. If

l B - I I H I B_~ ~ ~~

mere exists a z~X 
° 

such that jjz )j ~ 1 diiu

/ B -~ / B B / ~T

Il is well Known that ~ is bounded below oy an amne luncnon, 1. e.,

/(x) ~ ( z, x ~ - ~3 for some Z E X* and [3, Proposition 11.2.1].
The lemma asserts that under our assumptions we can choose z with norm
_ 1 

Proof of lemma. The proof was suggested to us by P. O. Lindberg.
In the space X x ~ define

A f / ,,B II II - , ) . 1 - f i .B ~B~-.~ 1

It is easy to verify that A and B are convex (in fact, B is the epigraph of x)
and A is open. Moreover, A n B because Consequently,
there exists a hyperplane separating A and B, i. e., we can find a, f3 E ~
and B1,1 E X* such that

Since (0, 0) E A n = 0. Taking t in the first of these inequa-
lities gives

( w ~: > I X

It follows that a > 0 and ~ w’ II  a. If a = 0, then Bv = 0 and there is no
hyperplane. So f:J.. > 0. Set z = w/03B1 and t = x{x) in the second of the above
inequalities. Then ))  1 and  z, x ~  t = z(x). D

Proof of Proposition 1.2. It suffices to prove that (2) and (3) are equi-
valent and it is clear that (3) implies (2). So suppose that (2) is satisfied.
If Gn  0, we may take 2n = 0. If En > 0, let x = L - un and
I( x ) == « 4Y’(u~), x ~ + i/r(x + un) - Then (2) reads

, , , I I I I , , ~_ ...

S’ol. 3. n° 2-1986.



82 A. SZULKIN

according to Lemma 1.3 there is a with ~ ~ ~ 1 and

~) ~  ~n~ >. Setting zn = gives

Hence (3) is satisfied and zn - 0 because En - 0. D

1.4. PROPOSITION. - Suppose that I satisfies (H) and (PS) and let (un)
~e a sequence verifying the hypotheses of (PS). If u is an accumulation
)oint of (un), then u E K~. In particular, K~ is a compact set.

Proof - We may assume that un - u. Passing to the limit in (2) and
Lsing the fact that lim > we obtain (1). Hence u E K. Moreover,
ince inequality (1) cannot be strict for v = u, lim Conse-

uently, I(un) - I(u) = c and u E Kc.
If (un) c K~, then I(un) = c and (2) is satisfied with Gn = 0. It follows

hat a subsequence of (un) converges to some u E X. By the first part of the
reposition, u E K~. Hence K~ is compact. D

1.5. REMARK. - Suppose that 03C8 is the indicator function of a non-

mpty closed convex sex K, i. e., = 0 if u E [K and + 00 other-
wise. Then u is a critical point of I if and only if u E K and

Furthermore, I satisfies (PS) if and only if each sequence (un) c K such
that - and

where zn ~ 0, has a convergent subsequence.
We shall make repeated use of the following variational principle of

Ekeland.

1. 6. PROPOSITION. [13, p. 444 and 456]. - Let (Z, d) be a complete
metric space and n:Z -~ ( - 00, + (fJ] a proper 1. s. c. function bounded
below. Given 6, ). > 0 and x E Z with

here exists a point v E Z such that

~n easy consequence of this result is the following

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



83MINIMAX PRINCIPLES

1. 7. THEOREM. - If I is bounded below and satisfies (H) and (PS), then

~ 2014 

U a 

Proof - Let (wn) be a sequence satisfying c + I/n. By Propo-
sition 1.6 with 6 = 1/n and ~, = 1, we find another sequence, (un), such
that I(un)  c + 1/n and

= t1 - t)un + tv, fe(U, 1 ). Since 03C8 is convex,

Dividing oy r ana lefting t - u we obtain

So by (PS) and Proposition 1.4, (un) possesses a subsequence converging
to D

2. EXISTENCE OF DEFORMATIONS

2.1. LEMMA. - Suppose that I satisfies (H) and (PS) and let N be a
neighbourhood of Kc. Then for each e > 0 there exists an ~ E (0, e) such that
if u0 ~ N and c - E _- I(uo) _ c + ~, then

tor some va E X.

Proof - If the conclusion is false, there exists a sequence (un) ci X - N
such that I(u") - c and

So by (PS) and Proposition 1. 4, a subsequence of (un) converges to u e K~.
This, however, is impossible because for any n and N is a neigh-
bourhood of K~. [I]

2.2. LEMMA. - Suppose that I satisfies (H) and (PS). Let N be a neigh-
bourhood of K~ and G a positive number such that (4) holds. Then for

Vol. 3, n° 2-1986.



84 A. SZULKIN

ach N there exists a vo E X and an open neighbourhood Uo
f uo with the following properties:

Furthermore, if uo E K, vo == uo, otherwise vo, Uo and a number 5o > 0
can be chosen so that 03BD0 ~ Uo and

Proof - Assume first uo E K. Then uo satisfies (1), i. e.,

[t follows that if Uo is a sufficiently small neighbourhood of uo,

So (5) with vo = uo is satisfied. By Lemma 2.1, u E N whenever u E K
md c 2014 8 ~ I(u) _ c + B. Hence I(uo)  c - B. If I(u)  c 2014 e in a neigh-
bourhood of uo, Uo may be chosen in this neighbourhood and condition (6)
is empty. If each neighbourhood of uo contains points with I(u) >__ c - E,
It follows from the continuity of C that ~(~) 2014 for some constant
i > 0 and all u sufficiently close to uo and such that I(u) >_ c - e. So if Uo
is small enough,

Suppose now that u0 ~ K and I(uo)  c - s. Since uo is not a solution
)f ( 1 ), there exists a Vo E X such that

so we may assume that ~o is arbitrarily close to ~o. As in the preceding
part of the proof, 2014 ~(~o) ~ ~ > 0 for all M close enough to Mo and
such that I(u) ~ c 2014 a. Using (7), this implies that if Uo and ~03BD0 - Mo !

are sufficiently small, then (03C8(03BD0)-03C8(u0))+(03C8(u0)-03C8(u))~-d-d=--d
and ~ ~

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Thus (6) is satisfied. Since uo, we may assume that Vo ft Uo. In order
to verify (5’) note that since the left-hand side of (7) is negative,

/ /f~/.. 1 .., ... B I , l,l.., B ,/,1... B ~ - 5B ii . - ’II 11 I

tor some do > u. using continuity 01 p ana 1. S. C. of 03C8 it loiiows tnat,
after shrinking Uo if necessary,

/ ~-~.~~ ’I. B.~/~B ’I. ’I. C" II it B I T T

The remaining case 01 u0 ~ K, c 2014 a is easy : by Lemma 2.1 we
find Vo such that (4) is satisfied. By continuity of 1>’ and I. s. c. of 03C8 there is
a neighbourhood Uo of uo, Uo, with the property that

B __ __ ~ n I./ B 1/ B - "’1 II II t I TT

Hence ana U
A family of mappings a(., s) = Q~(.) : W ~ X, 0 ~ ~ ~ s, s > 0, is said

to be a deformation if a E C(W x [0, s ], X) and ao = idw (the identity on W).

2.3. PROPOSITION. - Suppose that I satisfies (H) and (PS). Let N be a
neighbourhood of K~ and 8 a positive number. Then there exists an se(0, 8)
such that for each compact subset A of X - N with

xs : W 2014~ X, 0 ~ ~ ~ ~ having the following properties:
1111 II : ~ =W

/11B B

Furthermore, 11 Wo lS d closed sel duu w0 ~ = vv 

constructed so that

rrooJ. - Choose ~ ~ (0, B) so that Lemma z. z can oe applied, r or eacn

uo E A, let Uo be the set constructed in that lemma. If uo E K, we may assume
Uo is so small that Uo n Wo = 1J. The sets Uo cover A. Let be a
finite subcovering. Denote by u; and L’i the points corresponding to U~ in
the same way as uo and Vo correspond to Uo. We may assume that the
subcovering has the property that if io E J and ui~ E K, then the distance
from u~o to each U; with i # io is positive. Indeed, if this is not the case

Vol. 3, n° 2-1986.
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for some we choose a closed neighbourhood D of uIO such that D c Ulo,
D for i # io, and obtain a new covering by deleting D from all U;

with i # io (strictly speaking, we obtain a refinement of the subcovering
(Ui)ieJ).

Let p~ be a continuous function such that pi(u) > 0 Vu E Ui and p;(u) = 0

otherwise. Let = ~u~eV = Ui. Define the map-

pings as as follows. If uto E A n K and u E [ U;,

For all other u E V,

t is immediately seen that ao = id and (8) is satisfied. Note that if

and uio, then for all s _ ~ ~ u - ocs(u) will be the

,ame regardless which one of the formulas (13) and (14) we use. Conse-
luently, a~ is well defined and continuous for sufficiently small positive s.
Suppose that as(u) is given by (14) and set as(u) = u + sw. By Taylor’s

ormula,

where

Let 03B4 be a given number such that

(ði correspond to Ui in (5’)). Since A is compact, there exists a closed set W
containing A in its interior and an s > 0 such that

By (14),

[f s is sufficiently small, 0 ~ ~ ~ o-,(M) - u I I 1 ~ 1 for all u such that

iEJ

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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is given by (14). Using convexity of 03C8 and (15) it follows that
"

By (5), each term under the last summation sign is less than or equal to 
Hence

that

/ 1 ’*7’B Ti /~ BB ~-’ T/.B B ~~ ~ . I C~ ~ _ ~m ’~1 1 - T / ’B ........

a,mu

Suppose now that is given by (13). Then
/ .... . ~~ II )) 2014 1B . ft ! 2014 1

whenever s  p M~ 2014 u so. ~o tor such s (~) and (1U) tollow as m the
preceding case. If s > so, and

I(as(u)) = I(uio)  c - E. So (9) and (10) are satisfied for small s. (Note
that not only (9) and (10) but also (16) and (17) hold ; this will be useful in
the proof of Corollary 2 . 4.) To verify (12) recall that if as(u) is given by ( 13),
then u E Uio with u~o E K. Hence Uio n Wo = q5 and u ~ W n Wo.

1
It remains to prove ( 11). If sup I(Cts(u))  c 2014 -s, ( 11 ) is satisfied for all

-A 
~ 

2 1
s  1/4 because sup I(u) ? c. Suppose that sup I(Cts(u)) > c - - E. Set- 

ueA ueA 2

.. - A . T/..B ~ ~ - >

By (9), sup = sup whenever S is small (s  8/4). Using this
M~A ueB

and (10) it follows that

3. n° 2-1986.



88 A. SZULKIN

2 . 4. COROLLARY. - Assume that 0 and 03C8 are even. If A is symmetric
i.e., - A = A), as may be chosen to be odd.

Proof - We may assume that W is symmetric. Let

Then (~~ is odd and satisfies (8). Write = u + hs(u). By Taylor’s formula,

ince 03A6 is even and 03C8 even and convex,

Hence by Taylor’s formula again,

Using this and (16),  I(u) + s + 3~s __ I(u) + 2s for s small.

So 03B2s satisfies (9). In the same way one sees that (17) and (18) imply (10)
and (12). Finally, (11) follows upon observing that (19) remains true when-
ever (9) and (10) hold. D

3. MOUNTAIN PASS THEOREM

Let Z be a topological space and X a real Banach space. A mapping
f : Z --~ X is said to be bounded if the set f(Z) is bounded in X. Denote
by C(Z, X) the set of all continuous bounded mappings from Z to X, metrized
by

It is well known that C(Z, X) is a Banach space. Let I : X ~ ( - oo, + ~]
be a given function and define a new function IY : C(Z, X) ~ ( - oo, + ~ ]
by setting

nnales de l’Institut Henri Poincaré - Analyse non linéaire
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3.1. LEMMA. - Suppose that 1 : X ~ ( - + ~] J is 1. s. c. 1 nen

also the function n is l. s. c.

Proof Suppose that f Since I is 1. s. c., I( f (~ ))  lim inf I{In{z»
Vz E Z. Hence

rri rv - Ti r~ ’B’B ~ 1’_-- ’--1’ _____ T/ 1=- v -

boundary of B p(u) and let Bp = ~B03C1 = 

3.2. THEOREM (Mountain Pass Theorem). - Suppose that

I : X 2014~ ( - 30, + x ] is a function satisfying (H), (PS) and

~) 1(0) = 0 and there exist a, p > 0 such that I > a,
ii) I(e)  0 for some e ~ Bp.

Then I has a critical value c > a which may be characterized by

wnere 1 == ~ ~ LV, 1 J, jwj = = 

Proof - Since f( [0, 1 ]) n V fEr, c > a. Suppose that c is

not a critical value of I. Then N = ~ is a neighbourhood of K~. We may
therefore use Proposition 2. 3, with N = q5 and 8 = c, to obtain a number
E E (0, s). By the definition of c, Ic-~/4 is not path connected and 0 and e lie
in different path components, Wo and We.
We shall need an auxiliary family of mappings from [0, 1 ] to X (r is not

suitable for our purposes because as 0 f may not be in r when f is). Let

and

jiiicc 1 c. ii c, mere exists an j~ i sucn InaI

sup I( f(t))  c. Since f(0) can be joined to 0 and f(1) to e by paths
r~(o,ll

lying in there is agE r such that sup I( g(t))  c, contradicting the
definition of c. Hence c = c~. 

~

We claim that Fi 1 is a closed subset of C( [0, 1 ], X) (and in particular,
T1 1 is a complete metric space). To prove this, let be a sequence in
r1 such that fn  f . Denote f(0) = u, = Un, By 1. s. c. of I,

lim inf I(un)  c - ~/2. Since 03C8 is convex and 03A6 continuous, there
exist positive numbers ðn - 0 such that Vt E [0,1 ],

//~ , /1 ., , , ~ , , , , . /1 ., , , , ’B

anu

B’ 01. j. nU _’- i y~b.
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Therefore,

for all large n. So for such n the segment joining u,~ to u lies in Wo. In par-
ticular, u E Wo. Since also I(u)  c - s/2, u~W0 n Likewise,

Hence f E r1.
Since r1 is a complete metric space and IY(/) = sup I( f (t)) is 1. s. c.

t

(according to Lemma 3.1), we may use Proposition 1.6 with Z = rl,
5 = s and Å = 1 in order to obtain an f E r1 such that II(f)  c + 8 and

Let A = /([0,1 ]) and let as be the deformation given by Proposition 2. 3 (note
that II( f ) >_- ci 1 = c). Set g = as o /- For sufficiently small s, 

Indeed, if I(/(0)) e (c - s, c - E/2 ], then /(0)) ~ I(/(0)) ~ c - 8/2
by ( 10) and if I(/(0)) ~ c - s, f (o))  I(/(0)) + 2s  c - s/2 accord-
ing to (9). Hence Likewise, 
So 03B1so f E Since d( f , g) _ s according to (8), it follows from (11) and (21)
that 

- -’ ’ -’ X’ - %’ X ’ -

lhis contradiction shows that K~ 5~ ~. D

3 . 3. COROLLARY. - Suppose that I : X - (2014 n, + oo ] satisfies (H)
md (PS). If 0 is a local minimum of I and if I(e) _ 1(0) for some e ~ 0, then I has
l critical point different from 0 and e. In particular, if I has two local
ninima, then it has at least three critical points.

Proof - We may assume without loss of generality that 1(0) = 0. If
me can find a, p > 0 such that p and I the existence of a
;ritical point different from 0 and e follows from Theorem 3.2. Suppose
hat such a, p do not exist. Let r be a positive number such that
[Br > 0 and let 0  p  r. We shall use Proposition 1.6 with Z = Br,
I = 1/n2 and Â = n. Since inf I(u) = 0, there exist Wn E oBp,
~ E Br such that 

md

choosing ~ large enough we may assume that un E Br. Let v E X and
= (1 - t)un + tv. If t is small positive, z E Br. By (22) and the fact that 03C8 is

;onvex,

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Dividing by t and letting t - 0 we obtain

Since r is arbitrary, it follows from (PS) that after passing to a subsequence,
un - u E So u is a critical point and 0 # u # e. A similar argument
using Proposition 1.6 can be found in [14, Proposition 5 and 19, Theo-
rem 4 ].

If I has two local minima, uo and u i, we may assume without loss of
generality that uo = 0 and I(uo) = 0. By the first part of the corol-
lary, there exists a critical point u different from uo and ui. Since also uo
and ui 1 are critical (by Proposition 1.1), the proof is complete. 0

3.4. THEOREM (Generalized Mountain Pass Theorem). - Suppose
that I : X ~ (- oo, + oo ] satisfies (H) and (PS). Let X = Xi ~ X2,
where dim Xi 1  oo, and suppose that

i ) there are constants a, p > 0 such that I 
ii) there is a constant R > p and an I - 1, such that the

restriction of I to the boundary aQ of Q = (BR n Xi) re : 0 _ r  R }
is nonpositive. Then I has a critical value c > a which may be characterized
UJ

where

Proof - Assume for the moment that c > a. Suppose c is not a critical
value and apply Proposition 2.3 with N = ø and s = c to obtain an
a E (0, e). Denote by ~ the homotopy relation and let

and

Since c. If c 1  c, we find and f ~ 11 such that sup 1(f (x))  c.
~ 

xeQ

Since f id~Q in Ic-~/4 and Q is homeomorphic to a closed finite
dimensional Euclidean ball, idêQ can be extended to a mapping g : Q -~ X
such that sup I( g(x))  c (the existence of such an extension follows from

xeQ

general results in homotopy theory [16, Proposition 1.9.2]; one can also
construct g explicitly-see the proof of Lemma 4.5). This contradicts the
definition of c because ger. So c ~ 1 == c.

We claim that r1 is a closed subset of C(Q, X). Let be a sequence
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92 A. SZULKIN

in r1 such that fn - f. Since I is 1. s. c., I o c - s/2. Using the
argument of the proof of Theorem 3 . 2 (cf. (20)) and the fact that is
compact, one shows that for n large,

Hence f fn idðQ in 1,.~. So jF(=]TB.
The remaining part of the proof follows the last paragraph of the proof

of Theorem 3 . 2 (with some obvious changes : we set A = f (Q) instead of
f( [0, 1 ]) and observe that 03B1so f~03931 because 03B1s o f ~ f in Ic-,/2).
We still have to show that c > a. The argument can be’ found in [24, proof

of Theorem 4.1 ] but for the sake of completeness we include it here. Since
I it suffices to prove that for each fEr, f (Q) n lB~ n X2 ~ ~.
In other words, we must find an x E Q such that f (x) E n X2. Denote
by Pi and P2 the projections from X to X1 and X2 associated with the
decomposition For write 
with xi e Xi 1 and Define a mapping h : Y --~ Y by the formula

Since h lèQ = idaQ, it follows from the properties of Brouwer’s degree [25]
that

o 
-

(Q denotes the interior of Q in Y). Consequently, there exists an x E Q
such that Pi/M == 0 and = p. So f(x) e ~ n X2 as required.

D
3.5. THEOREM (Saddle Point Theorem). - Suppose that

satisfies (H) and (PS). Let X = Xl 0 X2, dim Xi  oo, and suppose that

i) there exist constants p > 0 and ai such that I ~
there is a constant a2 such that I ~x2 >__ a2.

Then I has a critical point c > which may be characterized by

Proof (outline). - It follows from a degree-theoretic argument [22, proof
of Theorem 1.2 ; 24, proof of Theorem 3.1] that f (D) n So c > x2.
By repeating the reasoning used in the proof of Theorem 3 . 4 (with D and cD
replacing Q and èQ) it can be shown that K~ ~ ~. Q
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4. CRITICAL POINTS OF EVEN FUNCTIONS

Let X be a real Banach space and E the collection of all symmetric subsets
of X 2014 {0 } which are closed in X. A nonempty set A E ~ is said to have
genus k (denoted y(A) = k) if k is the smallest integer with the property
that there exists an odd continuous mapping h : A ~ [R~2014{0}.If such
an integer does not exist, y(A) = For the empty set /> we define y(~) = 0.
Properties of genus are summarized below. Denote by d(u, A) the distance
from u to the set A and let

1~T ! /AB B C.2014~-~/. AB~-?1 >

4 . 1. PROPOSITION. - Let A, 

i ) If there exists an odd continuous mapping f : A ~ B, then

;,(A)  yr(B).
i i ) If A c B, then y(A) _ y(B).
iii) y(A u B)  y(A) + y(B).
ir) If y(B)  00, y(A - B) ~ y(A) - y(B).
r) If A is homeomorphic to by an odd homeomorphism, y(A) = k.

If A is compact, then y(A)  oo and = y(A) for all suffi-

ciently small 5 > 0.
fii) If U c [Rk is an open, bounded and symmetric neighbourhood of 0,

then y(cU) = k.
Proofs and a more detailed discussion of the notion of genus can be found

e. g. in [21 ] [24 ].
Let L be the collection of all nonempty closed and bounded subsets

of X. In ~ we introduce the Hausdorff metric dist [18, § 15, VII ], given by
dist (A, B) = max { sup d(a, B), sup d(b, A) } .

aEA beB

The space dist) is complete [18, § 29, IV ]. Denote by r the subcollection
of ~ consisting of all nonempty compact symmetric subsets of X and let

r~ - ~./AB~~-~ 1

~c~ is me ciosure m 1 ). It is easy to verily that closed in ll’, so (l, dist)
and dist) are complete metric spaces.

4 . 2. LEMMA. - If A E and ;~(A) >_ j.

Proof - Let (An) be a sequence in rj such that A~ 2014~ A, 0 ~ An and
/’(AJ~. By (uf) of Proposition 4.1, there is a ~>0 such that y(A)=~’(N~(A)).
Since An  A, An C for almost all n. So j  ;~{Na{A)) _ ~ {A).

D
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Observe that if I == 1> + # satisfies (H) and ~, ~ are even, then C’(0) = 0
id is a (global) minimum of ~. So u = 0 is necessarily a critical point
~I.

4.3. THEOREM. - Suppose that I : ~ ~ ( - oo, + oo ] satisfies (H)
id (PS), 1(0) = 0 and ~, ~r are even. Define

[f - ex)  Cj  0 for j = 1, ..., k, then I has at least k distinct pairs of
ontrivial critical points.

Proof - Given j, 1 ~ j  k, suppose that ~ == ... = Cj+p == c for

;ome p > 0. Note that 0 ~ K~ because c  0. We shall show that

~(K~) ~ ~ + 1. Arguing indirectly, assume y(K~)  p. Let p > 0 be such
hat Define

Then II is a function on and II is I. s. c. by an argument similar to that
of Lemma 3 .1 (note that Vu E A there is a sequence un - u with un E AJ.
Let N = and E = min { 1, p, - c}. Apply Proposition 2. 3 to

obtain an ~  8. Choose Ai e rj+ p such that H(Ai)  c + E2. Since

c+~2~c+~0, 0~A1 and it follows from Lemma 4.2 that 
Let A2 == N2p(KJ. Then n(A2) ~ c + £2 and, according to (iv) of
Proposition 4.1, y(A2) >_ y(A1) - >_ j + p - p = j. By Propo-
sition 1. 6 with 6 = 8~ and À = 1/e, there is an with

nd

Since s  p and A E I’, and c. A satisfies therefore
:he hypotheses of Proposition 2. 3 and Corollary 2.4 and we obtain an
:)dd deformation as : A ~ X. Since c + E2  0, 0 ~ A and y(A) >__ j. Let
B = as(A) with s small. Then y(B) ? y(A) >__ j according to (i) of Propo-
;ition 4.1. So B E rj. By (8), dist (A, B)  s. It follows therefore from (23)
nd ( 11 ) that

This is the desired contradiction.
We have shown that > p + 1. In particular, y(Kc) > 1, so each K~~

has at least two points, u~ and - This gives the required number of
critical points if all C j are distinct. If they are not, p > 0 for some j. Hence

2 and K~l is an infinite set. D
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4.4. THEOREM. - Suppose that I : X ~ ( - oo, + oo] ] satisfies (H)
and (PS), 1(0) = 0 and 1>, jJ are even. Assume also that

i ) there exists a subspace Xl of X of finite codimension and numbers a,
p > 0 such that I 

ii) there is a finite dimensional subspace XZ of X, dim X2 > codim Xb
such that I(u) - - 00 as II u II [ - oo, u E X2.
Then I has at least dim X2 - codim Xi distinct pairs of nontrivial critical
points.

Proof - Assume that I has no critical points in for some d > 0

(otherwise there are infinitely many critical points and there is nothing to
prove). Set m = codim = dim X2, Q = BR n X2, where R > p is
chosen so that I d. Define for 1 -- j _ k

f is odd and in by an odd homotopy ~,
A~ = {/(Q 2014 V) : f e 3’, V is open in Q and symmetric, V n 6’Q == ~

and for each Y c V such that Y E E, y(Y) _ k - j ~ ,
A~ = {A ci X : A is compact, symmetric and for each open set U ~ A

there is an Ao E A J such that Ao c U }
and

p . - inf 

Since Q~j and j ~ 03C6 for j = 1, ..., k. It is easy to see that

A~ is a closed subset of ~ (and therefore a complete metric space). Indeed,
suppose An E 1~~ and An  A. Let U be an arbitrary open set containing A.
Then U ~ An for almost all n and, since An E there exists an Ao E Aj
such that Ao c U. Hence A e A~.

In order to continue the proof we need two results which we state sepa-
rately.

4.5. LEMMA. For m + 1 _ j _ k, Cj > 

Proof - Suppose c~  a. Then An Xi n for some A E Aj.
Since X - (Xi n is an open set containing A, we can first find an
A o = f (Q - V) E A~ which does not intersect Xi n and then V
such that Y E L, y(Y) _ k ’- j and Xi n ~B03C1 = 03C6. Let F( y, t),
y E cQ, 0 -_ t  1, be an odd homotopy joining to in I _d. Define

1

y 1 == - 2 Y and‘ 

r 1
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lere ( y, s) E oQ x [0, R ] are polar coordinates of x E Q. Since s) E 1-~

s >_ - 1 R and I > 0, W ) n 3(1 n ~B03C1 = 03C6. Now we

e a standard argument (see e. g. [24, Proposition 6 .11 ]). Let W be the
mponent of f~ 1(Bp) containing the origin. For x E aQ, fl(x) = x ~ Bp.
I W n SQ and consequently, W is open and bounded in X2. According
(vii) of Proposition 4.1, k. Set C= Then C ~ ~W and

=) = k. Furthermore, by (iv) of Proposition 4.1,

-let X = X1 (B X1 and denote by P the projection from X to X1 along Xi.
;ince fi(Q - Y1) n X1 n ~B03C1 = 03C6 and fi(C - Yi) c ~B03C1,

Ience Z~E and by (i) of Proposition 4.1, y(Z) >_ y(C - Yl) >_ j. On the
~ther hand, dim Xi 1 == m  j, so y(Z)  j. D

o

Denote by N~(Z) the interior of Na(Z) in X.

4 . 6. LEMMA. - The sets A3 have the following properties :
0 
ii) If A E A~, W is a closed and symmetric set containing A in its interior

W -~ X an odd mapping such that by an odd
omotopy, then 

iii) If is compact, y(Z) _ p and I z > - d, then there exists a
> 0 such that for each A - 

Proof - i) Let A E Aj+ 1 and choose an open set U ~ A. There exists
a Ao = f (Q - such that Ao c U. For each Y c V such that
e E, y(Y)  k - (7 + 1)  k - j. So A0~’j and A E Aj.
ii) Let U > a(A) be open. Let Wi be an open set such that A c Wi c W
nd a(Wi) c U. Since A E A~, there is an Ao = f(Q - such that

.o m Wi. Extend a to an odd mapping S : W ~ X. Since
c W n 1-~ ~ ~ f f idèQ in 1-d. Consequently, S 0 f E ~.

urthermore, 5 o/(Q - V) = a o f (Q - V) == a(Ao) m a(W1) m U, so

JAO) E A J and a(A) E A~.
iii) By vi) of Proposition 4.1, we may choose a 6 > 0 such that

0 0 0

:Nð(Z)) = y(Z). Denote Zo = and Zo = Let U ~ A - Zo
o

e open and set Uo = U ~ Zo. Then A c Uo. Since there is an

.o 
= f (Q - Ao c Uo. Note that

nee I z > - d and X - I -d is an open set, I Izo > - d provided 6 is sufficiently
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small. It follows that f-1(ZO) n ~Q = ~ because I Consequently,
the set V u f -1(Zo) is open in Q, symmetric and does not intersect cQ.
Furthermore, if Y m V u and there exist Yi, Y2 ~ 03A3
such that Y = Y1 ~ Y2 and V, Y 2 m f -1(Zo) (e. g., Y1 = { x ~ Y :

Q - V) > d(x, Q - and Y2 is obtained by reversing the inequa-
lity). Since y(Y, )  k - ( j + p). By i)-iii) of Proposition 4 .1,
;’Y~ >  1 (Zo)) c ~p and Y(Y)  y(Yi ) + ~~’(YZ)  k - (.J +,p) +P = k -j.
Now it follows from (24) that Ao - Zo E Since Ao - Zo c U and

o

U was chosen arbitrarily, A - Zo E A~. D

Proof of Theorem 4. 4 continued. By Lemma 4. 5 and i) of Lemma 4. 6,

Suppose that C j == ... = == c for some j, m + 1  j  k, and p > 0.
Since c > 0, 0 ~ Kc. We complete the proof by demonstrating that

+ 1. To obtain a contradiction, assume y(Kc)  p. Choose

p > 0 so that = y(Kc). Let N = and a = min { 1, p }.
Let a  E be the number given by Proposition 2. 3. Recall that 11~ is a

complete metric space and Il(A) = sup I(u). There exists an A e Aj+ p such

that c + ~~. Let A2 = A 1 - If p is sufficiently small, it
follows from iii) of Lemma 4. 6 that A2 E A~. According to Proposition 1. 6
(with 5 = E2 and À = 1/[;), we can find an A E A~ such that

and

B.

Since 8  p, A n ~. Moreover, c  c  c + E. So

according to Proposition 2. 3 and Corollary 2.4, there exists an odd defor-
mation 03B1s : W ~ X satisfying (8)-(12). Let B = with s small. It
follows from (12) (with Wo = I_d) that as satisfies the hypotheses of ii)
of Lemma 4. 6. Hence B E Aj. Using (8), (11) and (25) we obtain

4.7. REMARK. - The minimax characterization of critical values
obtained in the proof of Theorem 4.4 is not fully satisfactory because it
depends on the a priori assumption that the function I does not have
critical values below a certain level.
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4. 8. COROLLARY. - Suppose that the hypotheses of Theorem 4.4 are
atisfied with ii) replaced by -

ii’) for any positive integer k there is a k-dimensional subspace X2 of X
uch that I(u) - - oo as I - oo, u E X2.
Then I has infinitely many distinct pairs of nontrivial critical points.

Proof - Obvious. 0

5. APPLICATIONS

Throughout this section we assume that Q c ~ is a bounded domain
vith smooth boundary r. Hm(S2) = H~‘ and H~(Q) = Hõ are the usual
)obolev spaces of real-valued functions in Q. In Hm we shall use the inner

)roduct (u, v) = Omv + uv)dx, and in Ho, (u, v) = 

rhe corresponding norm will be denoted by ~ !!. Standard results in
>obolev spaces, in a form suitable for our purposes, can be found in [21 ] [24 ]
md in references given there. Let p* be the critical exponent for the Sobolev
mbedding Hm c~ LP. Recall that 

# 

-

nd the embedding is compact if p  p*.
We shall employ some results from the theory of maximal monotone

operators [3 ] [4 ]. A mapping A from X to X* is said to be a multivalued
perator if it maps each u E X onto an element Au E 2x*. The domain of A
; defined by D(A) = { u EX: }. A is called monotone if

nd maximal monotone if it admits no proper monotone extension, i. e.,
there is no monotone operator B such the graph of B properly contains
ie graph of A. The subdifferential of a proper convex I. s. c. function
: X -~ ( - oo, + oJ ] is maximal monotone [3, Theorem 11.2.1].
Below we shall show in a number of examples how the results of Sec-
ons 3 and 4 can be applied to boundary value problems for semilinear
liptic operators. For simplicity, we choose the linear part of the operator
) be - A + const. or ( - 0)m + const. It will, however, be clear from the
roofs that other uniformly elliptic operators which induce symmetric
linear forms and have reasonably smooth coefficients could be chosen
; well. We also prefer to work with nonlinearities not explicitly depending
a x E Q, although more general results could easily be obtained. In Theo-
>ms 5.1, 5. 8 and Corollaries 5.9, 5.10 we could also replace u 
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by a more general odd function satisfying suitable superlinearity conditions
at 0 and [1, (p3) - (ps) on p. 362-363, see also 21, 24 ].
Our first example is concerned with a variational inequality on a convex

set K c HÖ.

Then the variational inequality
~ ~

has a nontrivial solution (in addition to the trivial one u = 0).
T - rh -t- lit 

and 03C8 the indicator function of K. It is easy to verify that Ce C with 1>’
given by

r r r

So I satisfies (H) and u is a solution of the variational inequality if and
only if u is a critical point of I, i. e., if u E 0~ and

l.~i/ ~ ,-....... A ~ ~ n/

We shall show that I satisfies (PS). Choose a constant d E p -1, 1 J Let
(un) be a sequence in K such that ~ c E R, E" ~ 0 and

Set L, = Then (~’(un), un) ? - E,~ ~ ~ ~- Since ~(un)  c + 1 for almost
all n,
... " " _ _, , "s ., , ,
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1ce d > p - B p > 2 and (d - 0 a. e. in Q, there exists an R > 0
~h that the integrand is positive for un > R. Hence

lere C is a constant. So the sequence (un) is bounded. Denote

(u) = 03A6(u) - 1 2~ u 2. Using standard results in Sobolev spaces we see
at after passing to a subsequence, un - M weakly, ~un~ - a and
(~J -~ 0~(M) strongly (because is compact as p  p*). It follows
)m (26) with v = u that

’assing to the limit we obtain ) ) [ u [ [ 2 - a 2 ? 0, i. e., lim II Thus

M strongly.
In order to obtain a nontrivial critical point we shall use Theorem 3.2.

et u~K - 10 }. It is easy to see that I(tu) - - oo as t - oo. So hypo-
hesis ii) is satisfied. To verify i), suppose that no a, p > 0 with I 
xist. This implies that we can find a sequence (un) in K such that un ~ 0
md 112/11. Let zn = Un II. Then

assume after passing to a subsequence that z~ - z weakly in Hõ and

trongly in L2. If z = 0, lim inf ~-2 ~ 2 -. 
So z ~ 0. But then

gzdx  0 and consequently, un ~-2 ~ +00. This contradiction
Q

hows that f) is satisfied for some 03B1, p > 0. D
Consider now a functional I = I> + ~ :1H[~ 2014~ (2014 00, + 00] ] with

bserve that = RA. Denote by 03BBj the j-th eigenvalue of - A in HÕ
)unted according to its multiplicity) and by ej a corresponding eigen-
action chosen so that (ei, ej) = 03B4ij (Kronecker’s b).

5 . 2. THEOREM. - Suppose that 03BBk  03BB  Then I has at least k
;tinct pairs of nontrivial critical points.
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Proof - It is easy to see that I satisfies (H). To verify (PS), let I(un) - c,

En - 0 and

/ ~ **T B / ~~~ ~/B B. , . , , ~ f~.~ !...., , ----1

First we show that the sequence is bounded. Suppose - 30,
let r~ = and assume after passing to a subsequence that zn - z
weakly in HÕ and strongly in L2. Since

After dividing and taking limits we obtain

r r

Since qJ was chosen arbitrarily, the left-hand side is equal to zero for all
~p E HÕ. This contradicts the fact that z ~= 0 and ~, is not an eigenvalue. So
the sequence (un) is bounded. We may therefore assume that un - u
weakly in H§, strongly in L2 and !! - a. Set r in (27). Then

Letting n - 30 and using the fact that lim inf |~un|dx~|~u|dx, we

.n ~Q

obtain a = lim ~M~ ~ ~ K I. Hence un - M strongly in H~.
We shall show that f) and ii) of Theorem 4.4 are satisfied. Suppose that

no ~, p > 0 such that I ~p ~ a exist. We may then find a sequence (M~)
such that un - 0 and I(M~) ~ ~M~ ~/~. Let zn = Mn!!. It follows that

, r , ~

After passing to a subsequence, z~ - f weakly in HÕ, strongly in L~.

Now it is easy to see that lim inf I(un)~ u - -’ >_ 1 if z = 0 and

lim = + x 0. So i ) is satisfied with Xi 1 = RÕ.
Voi. 3. n° 2-1986.
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rhere C is a constant. Since ~. > i~~k, I(u) ~ - oo I ~ oo, U E X2.
ow it follows from Theorem 4 . 4 that I has at least dim X2 - codim 
airs of nontrivial critical points. 0

5 . 3. COROLLARY. - If  ~.  1, there exist at least k distinct pairs
f nontrivial solutions of the inequality

Proof - Extend # to a functional : L2 ~ ( - oo, + oo ] by setting
(u) = 03C8(u) for U E HÕ and (u) = + o0 otherwise. Since D() = D(03C8),
u E HÕ is a critical point of I if and only if

)r equivalently, if E On the other hand, according to [5, Theo-
em 15 ], a u E if and only if u satisfies (28). So the result follows from
rheorem 5.2. D
Let F and G be two functions satisfying the following assumptions.

~ : R - [0, + oo ] is even, 1. s. c., convex and F(0) = 0; G : (l~ ~ f~ is

~ven, of class Cl, G(0) = 0, G’(t) = g(t) and I g(t) _ Ci + C2 Vt 

vhere 2  p  p* and c1, c2 are positive constants. Let I be a functional
)n Hõ such that I == I> + # and

otherwise.
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Denote the j-th eigenvalue of ( - 0)m in Hõ (counted according to
its multiplicity) and by ej a corresponding eigenfunction satisfying
(ei, e~) = 

5.4. THEOREM. - Suppose that lim inf(F(r) 2014 > 2014 -~i andpp ( ( ) ~ ))/ 
2 

1

lim sup (F(t) - G(t))jt2  - 1 2 03BBk Then I has at least k distinct pairs of

nontrivial critical points.

Proof - We employ Theorem 4 . 3. It follows from the growth restriction
on g that C is of class C1 and from [3, Proposition II . 2 . 8 ] that # is I. s. c.
and convex. So (H) is satisfied. Now we proceed to verify (PS). Choose

R > 0 and I  À1 such that (F(t) - G(t))/t2 ~ - 1 2 03BB for I t > R. Then

Since 03BB  I(u) ~ + oo as [ - oJ. It follows that if I(u") - 
is a bounded sequence. We may therefore assume that un ~ u weakly,

a. e. in Q, ~’(M) strongly and [[ a. Set v = M in (2). Then

Passing to the limit and using Fatou’s lemma, we see as in the proof of
Theorem 5.2 that un  u strongly.
We complete the proof by demonstrating that

satisfies - JJ  c~  0 for 1 _ j __ k. Since C is weakly continuous,
+ oo, I is bounded below. Thus c~ > 2014 oo.

Let

Then because y(A) = j according to v) of Proposition 4.1. Choose

r > 0 and 03BB > 03BBk so that F t - G(r))/t2 ~ - 1 203BB as |t| _ r. Let p in the
Vol. 3, n° 2-1986.
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;finition of A be so small that !! u r whenever Me A. Then

It follows that t  0. Q

5 . 5. COROLLARY . Let F be as above and let rn = 1. Denote the sub-

differential ofF by and let )~ E ~. Suppose that lim inf F t t2 > 1 ~, -- i~Y .~ pp ( )/ 
2 

( ~ )

and lim F(t)/t2 - 0. If It. > a k, the boundary value problem

as at least k distinct pairs of nontrivial solutions u e H~ n H~.

Proo6 2014 Let = 1 203BBt2. Then F and G satisfy the hypotheses of
’heorem 5 . 4, so that I has k pairs of nontrivial critical points. Extend § to

functional 03C8 : L2 ~ ( - oo, + oo ] by setting = 03C8(u) if 

(u) = + oo otherwise. Then u is a critical point of I if and only 
ince is equivalent to u e H~ n H~ and Du + f(u) a. e.

i Q [3, Proposition II. 3 . 8 ], the result follows. D

5 . 6. COROLLARY. 2014 Let f(t) and g(t) be two odd C 1 functions on R
ch that f(0) = g(0) = 0, f is nondecreasing. g(t)| ~ Ci + c2|t |p-1 for
~me ~e[2,~) and lim inf ( f ’(t) - g’(t)) > - i 1. If r(0)-~(0)-~ the

oundary value problem

Las at least k distinct pairs of nontrivial solutions u such that uf (u) ELl.

Proof - Setting F(t) = f (s)ds and G(t) = it is easy to see

at F and G satisfy the hypotheses of Theorem 5.4. So I has k distinct
airs of nontrivial critical points. ( - oo, + oo] ] be given by

= if u E and == + oo otherwise. Set q = p/(p - 1).
ince g(u) E L~ whenever u E LP, u is a critical point of I if and only if
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Define an operator A : D(A) c Lq by Au =( - 0)mu + 
with

1-~/ A B f ..~.TT~ . l A 1m_ . ~ I ~/...1 .- TO ~.~/.B~ T 1 ) 1

It is easy to see from the definitions that A is monotone (cf. the proof of

Corollary IV. 3 in [7]) and A c (in the sense of graph inclusion). We
complete the proof by showing that A is maximal monotone. It will then
follow that A = so for each critical point u, g(u) = Au and, since u E D(A),

The equation Au + u = h has a solution u E D(A) for each h E L~ [7, Pro-
position IV. 2 and Remark IV .1 ]. Note that LP c Lq because p >_ 2. We
shall use an argument similar to that of [4, Proposition 2 . 2 ]. If A c B
with B monotone and if h E Bu, then Av + v = h + u for some v E D(A)
(because h + u E Lq). Consequently, and by mono-
tonocity of B, ( (h + u - v) - h, v - u~ ~ 0, where ( , ) denotes the
duality pairing between LR and LP. Hence u -
and h = Au. Since u was chosen arbitrarily, A = B and A is maximal
monotone. D

5 . 7. REMARK. 2014 If m = 1, the conclusion of Corollary 5 . 6 is essentially
contained in [21, Theorem 3 . 4 and 24, Theorem 5 . 23 ]. The proof given
there uses a truncation argument based on the maximum principle, so
it does not extend to the case of m > 1.

Let B : ~ -~ [0, + oo ] be an even, 1. s. c. and convex function with
subdifferential aB and let p E (2, p*). Suppose that B(0) = 0 and 03B2
and B satisfy the following growth restrictions : there is a constant c > 0
such that

and for some q E (2, p),
,..,.. ...

Consider the functional I = P H J. ~ (- oc, + ccj J with
. ~ r

It follows from (29) that D(B) = [R and if u E then also ku E for

any k E R. Note that B(t) = ,-1 f r. 1 _ r  p, satisfies the restrictions (29)
and (30).
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5.8. THEOREM. 2014 The functional I has infinitely many distinct pairs
f nontrivial critical points.

Proof. 2014 It is easy to see that I satisfies (H) (cf. [3, p. 63 ]). Let (un) be a
quence such that - c and (03A6’(un), 03BD-un)+03C8(03BD)-03C8(un)~-~n~03BD-un~( I
v e H~. Set v = un + tun, t > 0, divide by t and let t - 0. This gives

By Lebesgue’s monotone convergence theorem, we can take the limit
under the integral sign. It follows that

where wn(x) E a. e. on 1 ~. Multiplying (31 ) by - q -1 
1. and addmg It

to the inequality I(un)  c + 1 (which holds for almost all n) gives

Note that the first integral is nonnegative according to (30). Since
> p -1 and p > 2, the second integrand is positive for large I. We

can therefore find a constant C such that

t follows that the sequence is bounded. Using Fatou’s lemma in the
,ame way we did before we deduce that (un) possesses a convergent sub-
equence. Hence I satisfies (PS).
We complete the proof by showing that the hypotheses i) and ii’) of

orollary 4 . 8 are satisfied. Suppose 03BB03BBm and let X1= span {e1,...,em}.
f u E X m 1 2 II u ~2 - 1 203BB 03A9u2dx ~ 03B11 II u for some constant a > 0. It

ollows from a well known argument [1, proof of Lemma 3 . 3 ; 21, proof of

heorem 3.19] ] that II u |pdx = o( I u I I2) as u - 0. Hence we can find

~, p > 0 such that I > x. Finally, let k be an arbitrary positive
nteger, ..., linearly independent functions in C6- (Q) and

(2 = span { ~p 1, . - . , ~pk }. Note that = 0 Vu E X2. Since cB 1 n X~
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is compact, there is a constant a2 > 0 such that I v |pdx > (X2

bL E cB 1 n X2. Let u = tv, where t > 0 and v E ~B1 n X2. Then

Hence 1(u) - - oo as jj u II I - u E X2. [_]
Denote by the outward normal derivative.

5.9. COROLLARY. - In addition to the above hypotheses, suppose that
2  p  (2N - 2)/(N - 2) if N > 2 and 2  p  00 otherwise. Then the

boundary value problem
r . , t!n 20142014 0 - * -

has infinitely many distinct pairs of nontrivial solutions u E H2.

Proof be the extension of 03C8 to L2 defined by = gl(u) if
u E = + o0 otherwise. By Sobolev’s embedding theorem, each
element of H is in LP*. So Since p -1  N/{N - 2),
p*/(p - 1) > 2. Hence ~ u ~p-2u E L2. It follows that u is a critical point
of I if and only + M E a;fr(u). By [3, Proposition II . 2 . 9 or 5, Theo-
rem 12 ], ~(u) = - Du with u E H2 : - E a. e. on r }.
So each critical point of I is a solution of the boundary value problem.
Now the result follows from Theorem 5.8. D
Observe that the growth restrictions (29) and (30) were used only in

order to verify (PS). So if one removes them, the conclusions of Theo-
rem 5.8 and Corollary 5.9 remain true as long as (PS) is satisfied.

5.10. COROLLARY. - Suppose that the hypotheses of Theorem 5 . 8 and
Corollary 5.9, with possible exception of (29) and (30), are satisfied. If
the domain of B, D(B), is a proper subset of ~, the conclusions remain
true.

Proof - As we have already observed, we need only verify (PS). An
argument similar to that of [15, p. 75 ] shows that if

D=={reH~: 2014 the sense of distributions ~ ,
then H 1 == Hö 0 D and D is orthogonal to HÖ. (Given u E H 1, let v be the
minimizer of ! w 112 on the closed convex Then
(r, 7» = 0 d~p E HÖ. Thus v E D, u - v E HÖ and (v, u - v) = 0.) Since
D(B) is properly contained in R and B is even, there exists a constant a
such that M whenever u E Let u = u’ + u" with u’ E HÕ,
Vol. 3. n° 2-1986.
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D. It follows from the maximum principle [17, Theorem 11.5.5] ] that

~e have used the fact that sup u = I u for r smooth).
r

Let now (un) be a sequence satisfying the hypotheses of (PS). Write
== u§ + un with u§ E Hb., E D and set r = Un + t > 0. Then

~’(un), un) + + >_ - Ent II. Divide by t and let t - O.

nce + = and un ) = 0,

d E -1 ~ multiply the above inequality by - d and add

[(un)  c + 1. Then

e -_ a according to (32)  1, the integrand is
tive if un I >__ R and R is sufficiently large. Hence

the sequence (un) is bounded and a familiar argument shows that it

messes a strongly convergent subsequence. D
ote that Corollaries 5 . 9 and 5 .10 partially generalize a result of Ambro-
. and Rabinowitz [1, Theorem 3 . 32, see also 21, 24 ].
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