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ABSTRACT. - We describe singularities of Coo vector fields, mainly
in ~3, in the neighbourhood of a given « generalized » direction (this is :
the image of a Coo germ y : ([R + , 0) - (~3, 0) with y’(o) ~ 0). It is a local
study. One of the major results is : if X is a germ in 0 E f~ 3 of a C~° vector
field and if X is not infinitely flat along a direction D then there exists a
cone of finite contact around D in which four specific situations can occur.
In three of these situations D is formally invariant under X (with formally
we mean : up to the level of formal Taylor series) and there exists a Coo
one-dimensional invariant manifold having infinite contact with D. In
particular, we obtain that the existence of a formally invariant direction D
always implies the existence of a « real life » invariant direction having
infinite contact with D, provided that X is not infinitely flat along D.
Using the blowing up method for singularities of vector fields we reduce
a singularity always to either a « flow box » or to a singularity with nonzero
I-jet and with a formally invariant direction. Finally we give topological
models for the obtained situations.

I would like to thank Freddy Dumortier for suggesting me the problem
and for his valuable help.

RESUME. - Nous decrivons les singularites de champs de vecteurs Cx
dans [R3 au voisinage d’une « direction » donnee, c’est-a-dire de l’image
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2 ?. BONCKAERT

m germe 03B3 : (R+, 0) - (R3, 0), avec 03B3’(0) ~ 0. C’est une étude locale.
>us montrons en particulier que si X est le germe a l’origine d’un champ C"
;i X n’est pas plat dans une direction D, alors il existe un cone de contact
~rdre fini autour de D ou quatre situations distinctes peuvent se produire.
ms trois d’entre elles, D est formellement invariant par X et il existe
e courbe invariante C~ presentant un contact d’ordre infini avec D.
, utilisant la methode de blow-up pour les singularites de champs de
~teurs, nous reduisons toutes les singularites soit a un « flow box »,
t a une singularite au 1-jet non trivial possedant une direction for-
llement invariante. Enfin, nous fournissons des modeles topologiques
ur les diverses situations obtenues.

Je remercie Freddy Dumortier pour m’avoir suggere ce probleme et
ur son aide.

I. INTRODUCTION, PRELIMINARIES AND STATEMENT
OF THE MAIN RESULT

§ 1. Elementary definitions and useful theorems.

(1.1) DEFINITION. - Let X be a vector field on ~n. We say that X
s a singularity in p E f~n if X(p) = 0.
If we only investigate local properties of a singularity in p, it is no res-
ction to put p in 0, the origin.

( 1. 2) DEFINITION. - Two vector fields X and Y on tR" are called germ-
uivalent in 0 if there is a neighbourhood U of 0 on which they coincide,

( 1. 3) DEFINITION. - The set of all vector fields on [?" which are germ-
uivalent with X (in 0) is called the germ of X (in 0). In the same way we
n define germs in 0 of functions, diffeomorphism,...
The germ in 0 of a set A ci {?" is the germ in 0 of its characteristic func-
>n A germ will often be confused with a representative of it if this
without danger.

( 1. 4) NOTATION. - Gn denotes the set of all germs in 0 of ex vector
lds X on ~n with X(0) = 0.

( 1. 5) DEFINITION. - Let X, X and Y are called k-jet
uivalent if their derivatives in 0 up to, and including, order k are equal:
X(0) = D’Y(0), Vi, 0  i  k.
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113VECTOR FIELDS ON !R 3

(1.6) DEFINITION. - The set of all Y E Gn which are k-jet equivalent
with X E G" is called the k-jet of X and denoted It is important to
observe that the k-th order Taylor approximation of X in 0 belongs to

we often will make no distinction between these two objects. In
fact there is a 1 - 1 correspondence between k-jets and vector fields X
on [Rn with X(0) = 0 and with polynomial component functions of degree  k.

(1.7) NOTATION We can take the inverse
limit of the sets Ji for the mappings nlk : J? - - jkX(0) (1 > k).

(1.8) DEFINITION. - This inverse limit is denoted J; its elements
are called oo-jets; the oo-jet corresponding to is denoted 
Elements of J~ can be regarded as n-tupels of formal power series in n
variables; also j~X(0) represents the Taylor series of X at 0.

In the same way we define jets of functions, diffeomorphisms...

(1.9) DEFINITION. - X E Gn is said to have flatness k if = 0

and 1 X(0) ~ 0.

( 1.10) DEFINITION. - Let X, Y E Gn. X and Y are said to be Cr conju-
gate (r E N u { 00, cv }, r > 1) if for some (and hence for all) represen-
tatives X and Y of X resp. Y there are open neighbourhoods U and V
of 0 in Rn and a C7 diffeomorphism 03C6 : U ~ V such that Vx E U :

X(x) = ifi( 03C6(x)).
We also write: ~~X = Y in this case.

(1.11) DEFINITION. - Let X, Y E Gn. X and Y are said to be Cr equi-
valent (r E N u { ~, 03C9}) if for some (and hence for all) representatives X
and Y of X resp. Y there are open neighbourhoods U and V of 0 in fR"
and a Cr diffeomorphism h : U ~ V which maps integral curves of X
to integral curves of Y preserving the « sense » but not necessarily the para-
metrization ; more precisely : if p E U and [0, t ]) c U, t > 0, then
there is some t’ > 0 such that [0, t’ ]) = h( [0, t ])). and q,v
denote the flow of X resp. Y). Time preserving Cr-equivalence is called Cr
conjugacy and coincides with definition 1.10 for r > 1.
With C° diffeomorphism we mean a homeomorphism.

(1.12) THEOREM (Borel) [Di, Na]. - For all T e J) there exists an X E Gn
such that T = j~X(0). (Or: j x : Gn ~ J) is surjective.). 0

(1 . 13) DEFINITION. - A generalized direction in of or shortly a direction,is a C’-difieomorphic image of the germ in 0 E of a halfline with end-
point 0. The diffeomorphism is assumed to preserve 0.
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14 P. BONCKAERT

( 1.14) DEFINITION. - A germ in 0 of a set K m [Rm+ 1 is called a C‘
~olid) cone of contact k, l > k, if there exists a germ of a Cj function h :
[0, oo [, 0) - (~0) with jkh(o) = 0, ~+1~(0) ~ 0 and a germ of a C"
iffeomorphism 03C6: (!Rm + 1, 0) - (Rm+ 1, 0) such that

K is called a cone of contact k around the direction D = 4>( { x [0, 00 [)
The intersection of a C7 diffeomorphic image of a hyperplane, passing
through D, with K is called a Crm-dimensional subcone of K (0  r  1).

(1.15) PROPERTY. - If D is a direction in [?", then there exists a germ
of a map y : ([0, oo [, 0) - (~", 0) with y’(0) # 0 such that the image
of y is D. Conversely, if y : ( [0, oo [, 0) - (~ 0) is Coo and if y’(0) # 0,
then the image of y is a direction.

Proof 2014 Easy. D

(1. 16) DEFINITION. - For XEGn and D a direction we say that X is non-
flat along D if for some (and hence for all) Coo germ }’ : ( [0, CfJ [0) ~ 
with y’(0) # 0 and image D we have. y)(0) ~ 0. In the other case
we say that X is flat along D.

(1.17) DEFINITION. - We say that X E Gn satisfies a ojasiewicz ine-
quality if there exist k~N and C, 03B4 E ]0, 00 [ such that

(1.18) PROPERTY. - If X E Gn satisfies a Zojasiewicz inequality then X
s non-flat along every direction.

( 1.19) CONVENTION. - We write (x, z) for an element of [Rm x;
or a vector field X on ~m we write X = (Xx, Xz).

( 1. 20) DEFINITION. - We say that X E Gm + 1 leaves the z-axis {0 }m x R

formally invariant if for all (0) = O. This is the same as saying

does not contain pure z-terms.
A direction D = ~( { x [0, oo D is formally invariant under X E Gm+ 1

f ~ * 1 X leaves the z-axis formally invariant.

( 1. 21 ) THEOREM (Normal Form Theorem, Poincare and Dulac). - Let
(E Gn and let Xi be the linear vector field on [?" such 
Let, for H~ denote the vector space of those vector fields on !?"

vhose coefficient functions are homogeneous polynomials of degree h.

Denote [X 1, - ]h : H - Hh : Y --~ [X 1, Y ] and let Bh - Im ( [X 1, - ]h ).
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115VECTOR FIELDS ON [R~

Choose for each h > 2 an arbitrary supplementary space Gh for Bh in H~
(that is: Hh - Bh 0 Gh).
Then there exists a germ of a C~ diffeomorphism 03C6:(Rn, 0) - 

such that ~,~X has an oo jet of the form

where gh E h = 2, 3, ....

Application (to be used later on).

Let X E G3 with j1X(0) = ax~ ~x, a 0. If the z-axis 012 x is formallyLet X E 03 with ( ) O. If the 0}2  R is formally

invariant under X, then there exists a diffeomorphism r~ : ([R3, 0) - ([R3, o)
such that = X’ has an ~ jet of the form

,

Proof [Ta ]. Suppose, by induction, that for i E N, i > 1, one can write
X = X + g2 + ... + gi-1 + R1-1 with the gh~Gh and with ji-1Ri-1(0)=0.
We can write Rl -1 - gi + b; with gi E Gi, jiRi(o) = 0. Take an
Y E Hi with [Xi, Y] = bi.
Taking §; = ~Y(., 2014 1 ) (the time -1 mapping of Y) one can check that

(4)d*(X) == X 1 + g2 + ... + gi + Ri:
Since ji-1 = ji-1 Id (0) we can apply the theorem of Borel (for

diffeomorphisms) to obtain the desired diffeomorphism 03C6.

Proof of the application. For = ax ~ ~ it follows from a strai g ht-
ax

forward calculation that for all p, q, r 

Vol. 3, n° 2-1986.



16 P. BONCKAERT

We see that for each h > 2 the linear map [X 1, - ]h has a diagonal
natrix with respect to the basis

Hence Im [X 1, - Ker [Xi, -~ = Hh.
A basis for Ker [Xi, 2014 ] h is obviously

So, applying the normal form theorem, we have for 4>*X = X’ an oo jet
of the form

It suffices to prove that § can be chosen in such a way that it formally
preserves the z-axis. Because then X’ also leaves the z-axis formally inva-

riant, and hence the - component cannot contain pure z-terms.

Take any Y’ E Hi with [X 1, Y’ == bi. If we separate the pure zi terms of
o a

the 
- 

and 
- components 

of Y’, we can write it in the form:

where Y E HI has no pure zi terms in its ~ and a components. We have
ax ~y

. d
But as bi and [Xi, Y] don’t contain pure z1 terms in their 2014 component,
necessarily A = 0. So bi = [Xl’ Y ]. ax

As ~1 = ~ -1) (the time -1 mapping of Y) we obtain the result. 0
In chapter IV we will make extensively use of the following result.

( 1. 22) THEOREM (Brouwer, Leray-Schauder-Tychonoff fixed point theo-
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117VECTOR FIELDS ON [R~

rem) [Sm]. - Let E be a locally convex topological vector space, K a
nonvoid compact convex subset of E, f any continuous map of K into K.
Then f admits at least one fixed point in K, that is : a point x E K with

/(.Y) = ~.

§ 2. The main result.

One can pose the following question: suppose that a (generalized)
direction D is formally invariant under a germ X E G3 (by formally we
mean : up to the level of oo jets, or equivalently : up to the level of formal
Taylor series); does there exist a Coo invariant one-dimensional manifold
having oo contact with D ? The answer is yes, provided X is non-flat along D.
This is one of the major ingredients of the following theorem.

Let us emphasize that the results of this theorem are stated in terms
of germs in 0 E f~3.

(2 .1 ) THEOREM. - Let X E G3 and let D be a direction. If X is non-flat
along D, then there exists a Coo cone K of finite contact around D such that
one of the following situations occurs:

I. all the orbits of X hitting K enter K and leave K, except (of course)
{(0.0.0)~

II. D is formally invariant under X ; there exists a direction D’ in K,
having ~ contact with D, which is invariant under X; if we arrange (by
changing the sign of X if necessary) that the orbit of X in D’ tends to 0
then either

A the only orbit of X in K tending to 0 is contained in D’ ; all the other
orbits of X starting in K leave K ;

B. all the orbits of X in K tend to 0 ; if we add 0 to such an orbit, we
obtain a direction which has oo contact with D ;

C. there exists a unique C° 2-dimensional subcone S of K such that

i ) S is invariant under X ;
ii) all the orbits starting in S tend to 0; if we add 0 to such an orbit,

we obtain a direction which has oo contact with D;
iii ) all the orbits of X starting in KBS leave K.

Always assuming that along the invariant directions the orbits tend to 0
for t -~ oo, we find in cases II. A and II. C a unique model up to C° equi-
valence and in case II. B even up to C° conjugacy.
The proof of this theorem will be given in chapters IV and V.

(2.2) PICTURES of the situations occuring in the theorem.
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118 ’. BONCKAERT

(2.3) REMARK. - Perhaps in some cases the claimed results in (2.1)
re not evident at first sight. 0 a 1 0
Take for example the linear vector field X=x~x +y ~y + -z2014 and

) = z-axis. All the orbits tend to 0 in negative time and have parabolic
ontact with the z-axis. Nevertheless one can find a cone of finite contact
wo in this case) such that alle the orbits leave it, except of course the
ne contained in the z-axis. This example indicates in which way the main
leorem must be considered: once an orbit leaves the cone, we have no
irther information about its future, which may be for example to tend
) zero or even to re-enter the cone.

(2.4) REMARK. - One can formulate and prove an analogon of theo-
m (2 .1 ) in dimension 2, this time of course without situation II. C. On
1e other hand it is not yet clear to me how to generalize the theorem
) arbitrary dimensions; more specifically one could ask: does a formally
mariant direction always hide a « real life » invariant direction? The
mie question can be posed for diffeomorphisms.
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119VECTOR FIELDS ON I~3

II. PREPARATORY CALCULATIONS
CONCERNING BLOWING UP OF VECTOR FIELDS

Although the blowing up method for singularities of vector fields is
a known technique [Ta, Dul, Du2, D.R.R., Go ] we recall it here because
it is of fundamental importance in the sequel. Especially for blowing up
in a direction some specific calculations will be elaborated in full detail.
Roughly spoken, blowing up a vector field is : write it down in spherical

coordinates and divide the result as much as possible by a power of r
(= Euclidean norm of x) such that one can take the limit for r - 0.

§ 1. One spherical blowing up.

(1.1) NOTATIONS. - We denote, for m~N :
1m -+- 1

So in fact with 03A6 we introduced on Rm + 1 ) ( 0 } a sort of spherical coor-
dinates.

(1.3) PROPOSITION 
with X(0) = 0.
Then there is a Cp -1 field X on Sm x R such that in each q e S"" x 

C,(X(~)) = (or : ~~X = X). D
If X has flatness k, that is, = 0 and ~+iX(0) ~ 0, then for the

following vector field
- 1 -

we can take the limit tor r - 0 and we obtain a vector held ot class 

on S"’ which we still denote X.

( 1. 4) DEFINITION. - X is called the vector field obtained by blowing
up X (once) and diriding bij ~.

Vol. 3, n° 2-1986.



120 ?. BONCKAERT

X restricted to Sm x { 0} is a vector field tangent to Sm x {0}. The
study of this vector field sometimes gives information on the asymptotic
behavior of the orbits when they tend to 0 [Go ].

§ 2. One directional blowing up.

In high dimensions the explicit calculations for spherical blowing up
quickly become complicated. If we restrict our attention to one open half-
sphere of S’" we use the better computable directional blowing-up. We can
assume that the half-sphere has (0, 0, ..., 0,1) as « north-pole ».

Let us replace x R by E where E is an arbitrary normed vector-
space. We do this because later on we shall use this form and after all the
construction remains the same.

(2.1) CONSTRUCTION.

A point of E will be denoted (x, z). With « the z-axis » we mean
{ 0 } x R. Let, for n E N, be the following map : T": E x R - E x ~:
(x, z) ~ z). Similarly to proposition (1. 3) one proves

(2 .1.1 ) PROPOSITION. - Let X be a CP vector field 
with X(0) = 0. Then there is a Cp-1 vector field X~ 1 on E such that

in each q E E x ~ : X(~’ 1 (q)) (or: X). Again if jkX(0) = 0
and jk+1X(0) ~ 0, we devide X 1 by we denote the resulting vector field

X1 = and again we can take the limit for z - 0 to obtain a 
z

vectorfield on E still denoted XB

(2.1.2) DEFINITION. - X1 is called the vectorfield obtained by blowing
up X (once) in the z-direction and dividing by zk. Like in § 1, E x ~ 0 ~ is
invariant under XB so we can consider the restriction 

(2.2) RELATION BETWEEN DIRECTIONAL AND SPHERICAL BLOWING UP IN THE
[R m+ 1 CASE.

Let denote the « upper hemisphere », that is :

insider the bijection F : ST x R - Rm+ 1: i

ne immediately checks that ~ _ ~ 1 o F.
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121VECTOR FIELDS ON 

Hence X ~Sm X ~ and X1 are C~’ conjugated : FX = X1.

If we denote F(xl , ... , Z, r) = ... , xrn, r  = (X 1, ... , Xm, Z) then,

As 1 k is an everywhere positive function, the orbits
( 1 + ... + 

ofX~ and F~X coincide. They also have the same orientation.

(2.3) CALCULATIONS CONCERNING ONE DIRECTIONAL BLOWING UP.

(2 . 3 .1 ) GENERAL FORMULAS. - If X is a vector field on E x [R we
write X = (Xx, X~ ).

It is an easy calculation to see that X if only if

/~ ,

and thus

rrom now on we assume X to be 

(2 . 3 . 2) 1HE 00 JET OF X 
1 

IN U (CASE {Rm + 1). - Let us indicate here
some (usual) multiindex abbreviations.

m

For

then we denote

We write the oo jet ot X in U down as

if X has flatness k in 0.

Vol. 3,~2-1986.



122 BONCKAERT

’or the oo jet of X1 in 0 we write

Jsing (2 . 3 .1 ) and calculating straightforward we find :

i) a" - ,...,03B1m) for 1  i  m 1 _ x

ii) = for 1  i  m 0 

iii) ~ = for 0  a I  n;
i i ), ii), iii ) we may take the right hand side zero whenever it is undefined.

(2. 3 . 3) REMARK. - In particular in (iii) we see that for each 
nd for each a with |03B1| = n : c: = 0. This expresses the fact that the z = 0

yperplane is invariant under X1 or equivalently that the - componentf X 1 does not contain pure xa terms. 
~

§ 3. Successive directional blowing ups.

~ .1) Construction.

Let X1 be obtained by blowing up X in the z-direction and dividing by zk.
Suppose that X 1 has again a singularity say in (a, 0) E E x { 0 } and that
~ 1 (a~ 0) = ~)_~ 0.
Then we can blow up X 1 in (a, 0) in the z-direction in the following
itural sense. Denote T : E x R - E x (x, z) - (x - a, z) ; since T*X i
is a singularity of flatness p in 0, we can consider the vector field T*X1
stained by blowing up T*X1 in the z-direction and dividing by zp.

(3.1.1) DEFINITION. - T*X1 is called the vector field obtained by
owing up X twice in the z-direction first in (0,0) then in (a, 0) and dividing
’st by z~ then by zP; we denote it X2. _

Of course X2 depends on the choice of the singularity of Xl. In this way,
~ can of course go on with the construction and define successively X"
I blowing up in some singularity. Obviously Xn depends on the
oice of the singularities in which we blow up. Let us formalize the idea
ving a prescribed sequence of singularities in which must be blown up.

(3 .1. 2) DEFINITION. - Let X be a Coo vector field on E with

;0) = 0. A directed sequence of successive blowing ups of X is a sequence
triples (X~, (xn, 0), u { such that

i ) X° = X and (xo, 0) = (0, 0) ;

Annales de l’Institut Henri Poineare - Analyse non linéaire



123VECTOR FIELDS ON ~3

ii ) 0 _ n  N : Xn has a singularity ot flatness kn m (xn, U) and 
is obtained by blowing up X" in (xn, 0) and dividing by zkn.

(3.1.3) DEFINITION. - A directed sequence of successive blowing ups
of X where dn, 0  n  N : (xn, 0) = (0,0) will for brevity be called a

sequence of blowing ups in 0 of X (in the z-direction). Such a sequence is
henceforth denoted by (Xn, 0, kn)o  n  N.

(3 .1. 4) REMARK. - Further on we will show that there exists a 1-1

correspondence between directed sequences of successive blowing ups
and N - 1 jets of directions (N = oo included).

(3.2) Calculations concerning successive directional blowing-ups.

We will give explicit formulas only for a sequence of blowing ups in 0.
As we have already announced this is, at least for our purposes, no restric-
tion. In this case we can define X~ in one step :

(3.2.1) LEMMA. 2014 Let Xn be obtained by a sequence of blowing ups
in 0 of X as defined in (3.1).

Then Xn == , ..,2014 Xn where Xn has the property 
= X(03A8n(p)),

~p~E x R.
Proof - Straightforward. D

(3.2.2) REMARK. - We see that properties of xn in a cylinder-shaped
neighbourhood x [0, oo [ are transformed, by ~’n, to simular

proporties of X in a cone of contact n -1 around { x [0, oo [. It is

in this sense that we will obtain the results in the main theorem (1.2.1).

(3 . 2 . 3 ) FORMULAS. 2014 Just like in (2 . 3 .1 ) for X = (Xx, Xz) we have
_ /1 1 ~~ B 

.

Further on we will need the following result.

(3 . 2 . 4) LEMMA. - Let X be a Cx vector field on E x R. If X is non-flat
along {OE} x [0, oo [ and if { x ~ is formally invariant, then there
exists a Q E fvl and a C x function y: E with y(o, 0) ~ 0 such that
the R-component of XQ + is of the form z). (XQ + 1 is the vector field
obtained by blowing up X Q + 1 times in 0, in the z-direction without
dividing by a power of z.)

Vol. 3, n° 2-1986.



124 P. BONCKAERT

Proof - Put X==(Xx, As, by our assumptions, the map z -~ z)
has a nonzero jet, there exists a Q~N and C" maps Ao, Ai , ... , AQ :
E ~ ~ with Ao(0) = Al (0) == ... == A 1(0) - 0 and AQ(0) ~ 0 such that
we can write 

Xz(x, z) = Ao(x) + zA1(x) + ... + + + 

The ~-component of XQ+ 1 is 
More explicitely : 

III. REDUCTION OF A SINGULARITY
TO A SINGULARITY WITH NONZERO 1-JET
BY SUCCESSIVE DIRECTIONAL BLOWING UPS

When blowing up a singularity of flatness k one might hope that the
atness of the resulting vector field in a singularity is not strictly bigger
ian k. Up to one type of singularities, this will in fact be the case.
If we consider a sequence of blowing ups (Xn, 0, we will see,

Iso for that exceptional type of singularities, that after at most one step
ve flatness kn becomes decreasing (perhaps constant). In fact, a vector
eld which is the « blown up » of another one cannot be of that exceptional
Ipe (mentioned above).
Next we will prove that if the sequence kn does not decrease to zero, then

ie vector field is flat along the z-axis.
Let us start by showing that, up to a Coo change of coordinates, it is
o restriction to assume that a directed sequence consists of blowing ups
long the z-axis.

§ 1. Definitions and properties of directed sequences.

( 1.1 ) PROPOSITION. - Let N~N u { ~} and suppose that 0),
is a directed sequence of successive blowing ups of 

[hen there exists a C’ change of coordinates ~ : (p~m+ 1, 0) - 1, 0)
ich that in the new coordinates this sequence is ( ~,~(X)n, (0, 0), kn)o ~ ~  ~;.

Proof - We define inductively some transformations 
on 

1 
as follows.
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125VECTOR FIELDS ON !R 3

Put

Suppose that ai, ’Ii are defined tor 1  witn n + 1  m. We

denote (~+i,0)e!R" the singularity of ( ~n),~(X)n+ 1 corresponding
to (.Yn+i, 0) in the new coordinates induced by ~n’ Put

1 1 / B /-- 2014n~’ 1 - - ’B

If qn : 1 
- ~mT 1 : (x, z) - (znx, z) denotes the « blowing up map »,

observe that ’Pn 0 Tn = 03B1n o 03A8n, 1  n  N.

If Y E G~~ ~ can be blown up n + 1 times in (0,0) and if ~n + 1 must be
blown up in a singularity (an + 1, 0) then :

. ~~ . ~ . ~ ~~ .  , ,

(the z component is not alterea by 1 n + 1 nor by so must

be blown up in (0, 0).
Applying the foregoing observation to we obtain that

1 )~c( 1 (which is ( ~n + 1 ) must be blown up in (0, 0). For
’-- (0) SO

. I . I i.,~ /~.....

r or nmte ØN -1 is tne aesirea ~).
For N = oo we can, by (1), consider the inverse limit of the ~", and theo-

rem (I .1.12) of Borel together with the inverse function theorem [Di ] gives
the desired ~. D

( 1. 2) COROLLARY. - For each directed sequence (xn, 0), 
there exists a C~ change of coordinates (x, z) == z’) and a direction
D = ~ -1 (z-axis) such that if we blow up ~ * 1 X successively in 0 then points
corresponding to (x, z) = (0, 0) like in the proof of ( 1.1 ), are precisely
(x’, z’) == 0). Conversely, given a direction D = ~ -1 (z-axis), there
exists a sequence ~ as above. Moreover, D is unique up to N -1-jet equi-
valence. In other words : there is a 1-1 correspondence between directed
sequences and N -1 jets of directions. So we can speak of a sequence of
blowing ups along a direction.
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If we blow up X successively along the z-axis it is of course possible
hat after some finite time there is no singularity any more in (0, 0). Let us
~rmalize this as follows.

( 1. 3) DEFINITION. - 0, is called a maximal directed sequence
>f blowing ups along the z-axis if either

i) N = oo 
_

ii) N EN 

Property. Such a sequence always exists.

( 1. 4) PROPOSITION. - If (X",0,~)o~N is a maximal directed sequence
vith N E N, then there exists a cone K of contact N - 2 around the z-axis
,uch that all orbits inside K enter K and leave K after a finite time.

Proof - As X~’~(O) 5~ 0, we can construct a cylinder shaped neigh-
bourhood of 0 in [Rm x [0, oo [ of_the form C= {(~  R,
: E [o, b [ } such that all orbits of XN - 1 inside C enter C and leave C after
1 finite time. Then

Let K be the germ in 0 of this set. D
So from now on we will consider infinite sequences of blowing ups.

Let us indicate what it means for X that a maximal directed sequence of

blowing ups of it along the z-axis is infinite.

(1. 5) PROPOSITION. - Let be a maximal directed

sequence of blowing ups of X along the z-axis. The following statements
are equivalent :

i) N 
ii) the z-axis is formally invariant under X (see definition (1.1.20)).

Proof - i) ==> ii). Let us write down the oo jets as follows

Ve must prove that afo = 0 for all K > ko + 1 and i E 
he formula in (II.2.3.2) ii) we find that for all K > ko + 1 and
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1,....m}:  
i 

== aki,0 and turther by induction on n we get,
using the same formula, for all n = ato.

Suppose, by contradiction, that aKi,0 ~ 0. Then -k0-1 ~ 0 so

k 1 + 1  K - ko - 1 (remember the choise of k in definition (II . 3 .1. 2))
2 ; further by induction 

with always, as it should be, 0  K - ko - ... - kn _ 1 - n.
Certainly sooner or later 0 = K - ko - ... - kn _ 1 - n for some n.

m

But then X"(0) = ~ 0, contradicting N = oo.

ii) ~ i ). Let us use the same notations. We have 0, for all
K > ko + 1 and 1, ...,~1}. The formula (11.2.3.2) gives imme-
diately ai,0 = 0 for all n and f ~{ 1, ...,m} whence = 0, dn and
the result. 0

§ 2. Reduction to a singularity with nonzero 1-jet.

The main purpose of this section is to prove the following :

(2 .1 ) THEOREM. - If is a maximal directed sequence
of blowing ups of X E Gm+ 1 along the z-axis { 0 }m x [0, oo [ and if X is
non-flat along the z-axis then there exists a N~N such that has
flatness zero 
The proof of this theorem will be a consequence of the following pro-

positions (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8). D

(2 . 2) PROPOSITION. - Let X E Gm + 1 have flatness k. If X 1 has flatness
n ~

As = U we only have to look at the a1 x 1 and the 1,
0 ~ x ~  k + 1, 1  i  m. Out of (11.2.3.2) Üi) we obtain for each n
with 1 _ n  k and a with = n -1: 0 = 1g = ci ~ ~ ~ ~ " ~ ~=c~ ~so~~ ~ =0,
for each x with 0 ~ | 03B1|  k. (2)
From (I I . 2 . 3 . 2) i ) we get for each n with 1  n  k + 1 and a with

x = n and 1  xl :

But by (2) above those c’s are zero. Consequently == 0 for each oc with
0  ~ x ( _ k + 1 and 1  xi.
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In the same way, using (11.2.3.2) ii), we obtain that all the coefficients
in jk+ iX(0) vanish except possibly c~ ~ 1 with = k + 1. D

(2 . 3) PROPOSITION. - If and if X~ 1 has flatness k, then X‘
has flatness  k.

Proof - Suppose that jk+ 1X2(4) = 0. Then proposition (2.2) would
imply that _

By our assumptions one of the ( = k + 1, must be different
from zero. But this is impossible because of the remark (II. 2.3.3) (inva-
riance of the z = 0 hyperplane). Q

(2.4) PROPOSITION. - If XEGm+1 has flatness k and 
then X 1 has flatness k + 1.

Proof - We must show that ~+2X~(0) 5~ 0. From proposition (2.2)
and from jk+1 X1(0) = 0 we get

Because X has flatness k, there exists an a with |03B1| = k + 1 and # 0.
Using (II . 2 . 3 . 2) iii ) we observe that

-k+2 - ~+2+~-~-1 _ 1 
.

D

(2 . 5) COROLLARY. - If if is a directed

sequence of blowing ups in 0 of X in the z-direction (N u { oc }) and
if X has flatness k then either.

i ) X has flatness smaller than or equal to k and for all n with 0  11  N -1 I
the flatness of Xn + is smaller than or equal to the flatness of Xn ;

ii) X 1 has flatness k + 1 and for all n with 1 - n  N - 1 the flatness
of is smaller than or equal to the flatness of X~.

(2 . 6) PROPOSITION. - Let X E Gm + 1. Suppose that there exists an

integer k > 1 and an infinite directed sequence (Xn, 0, of blowing
ups in 0 of X in the z direction such that Vn X~ has flatness k and at each

step we divide by zk.
Denote i: R ~ Rm+1:z - (0, ..., 0, z).
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Proof - Let us write again X for its formal part. Then jk- i(X)(0,..., 0, z)
is formally determined by

, 2014t~_2014 "

We use the notations as in (II.2.3.2) and obtain
00 n

Hence the terms playing a role in o i)(O) are
1

we look at what these terms give when blowmg up as In tne proposition.
We use qn:(Rm+1 ~ and

the formula in (II.3 .2) which becomes here
m

For the 2014 component we obtain
C,Y,

’ 

~ ~--i
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a
nd for the - component we have

~ irst look at (4). If this construction is possible for each n E N then c~ = 0

Thus the second EE in (3) vanishes. For the same reasons as just men-
tioned we must have = 0 for all N >- k + 1,0  z m, 0 - ~ _ 

Th is means 1 (X) o f)(0) = 0. 0

(2 . 7) PROPOSITION. - Let be non-flat along the z-axis.
Let xn be obtained from X by n successive blowing ups in 0 in the z direction.
Then X~ is non-flat along the z-axis.

Proof - Let ~n : ~m + 1 ~ ~m + 1 ; (x 1 ~ ... , .xm ~ Z) -~ ..., z)
Je the blowing up mapping leading to X~.
Then for some analytic function Gn we have and X o ~I’n= ~~ o X".

Denote i : [0, oo [ ~- p~m + 1: z - (0, ... , 0, z).
Suppose that j~(Xn o f)(0) = 0.
Then j~(Xn 0 f)(0) = 0 and hence j~(X 0 0 f)(0) = 0.
But i = i. This would imply that j~(X o i )(0) = 0, contradicting

3ur assumptions. D

(2 . 8) PROPOSITION. - Suppose that X E Gm+ 1 is non-flat along the
z-axis. Then it impossible that there exists an infinite directed sequence

of blowing ups in 0 of X in the z-direction with Vn > 1: kn > 1.

Proof - Suppose that there exists such a sequence. Then there exist
integers k > 1 and N > 1 such that Vn > 0 : XN + n has flatness k.
Hence proposition (2 . 6) o ~)(0) = 0 contradicting pro-

position (2.7). D
This completes the proof of theorem (2 .1).

IV. TREATMENT OF ALL THE FLATNESS ZERO CASES
AND PROOF OF THE MAIN THEOREM,
WITH EXCEPTION OF THE C° RESULTS

We study germs in 0 of vectorfields which

i ) leave the [R~ x { 0 } hyperplane invariant
ii) leave the z-axis { formally invariant
iii ) have a nonzero 1-jet.
(Sometimes we will only consider the case m = 2.)
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The 1-jet of such a vector field has a matrix of the form
rA AI

with A E f~’~ " m and where Cô has the same meaning as m (11.2. 3 . 2).
Such vector fields appear as a result of the reduction by successive blowing

up in part III. Even if the 1-jet is nonzero, we will sometimes blow up
the vector field some more times in order to obtain situations like in the
main theorem (1.2.1); also in some cases the proof of the existence of the Cx
1-dimensional invariant manifold is made easier by making extra blowing
ups.
We must show that all possibilities for C6 and A (both not simultaneously

zero) lead to a situation as in the main theorem (I .2.1).
We first distinguish in § 1 the case 0. This turns out to be fairly easy.

If C6 = 0, (§ 2) we restrict ourselves to the case m = 2. The possibilities are :
i ) A is hyperbolic : see (2 .1)
ii) A has eigenvalues ( « the rotation case » ) :

see (2. 2) 
.

iii ) A has eigenvalues a, 0, a E tRB { 0 }: see (2 . 3)
iv) both eigenvalues of A are zero : see (2 . 4).

§ 1. The eigenvalues in the z-direction is nonzero.

( 1.1 ) PROPOSITION. - Suppose that satisfies :

i ) the z-axis { is formally invariant under X
ii) 0 (see the notations of (11.2.3.2) or above).
Then

a) there exists a Coo germ h : ([0, oo [, 0) -~ 0) whose graph (germ)
{ (h(z), z) E Rm  R I z E [0, oo [} is invariant under X and with j~h(0) = 0 ;

b) supposing c10  0 change the sign of X if necessary there exists a cone
K of finite contact around the z-direction x [0, oo [ such that the only
orbit of X in K tending to 0 is contained in {(h(z), Z)E ~m ze [0, oo [} ;
all the other orbits starting in K leave K after a finite amount of time.

Proof - If we use the formulas in (II.3.2.3) (with of course
ko = ki 1 - ... = kn-1 = 0) we find that for all n > 1 the 1-jet of X’~ has
a matrix of the form

() l

Notice that 5. is an eigenvalue of A if and only if is an eigenvalue
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Hence for large n, X~ is a hyperbolic saddle for which we can apply
the (un-) stable manifold theorem (see for example [H.P.S., Ke ]) to obtain
the results. D

(1.2) REMARK. - The methods we develop further on for the more
delicate situations would also work here; the calculations would even
be much simpler here.

( 1. 3) REMARK. - In ( 1.1 ) we may replace ~ by any Banach space.

§ 2. The eigenvalue in the z-direction is zero.

From now on we work in ~3, thus: m = 2.

(2.1) THE HYPERBOLIC CASE.

(2.1.1) PROPOSITION. - Suppose X E G3 satisfies

i ) the z-axis is formally invariant under X
3 8

ii) by  a, b > 0

iii ) X is non-flat along the z-axis.
Then there exists a cone K of finite contact around the z-axis, a unique

C°2-dimensional subcone S of K and a COO germ h : ( [0, oo [, 0) - (fF~2, 0)
such that j~(0) = 0 and :

a) S is invariant under X
b) the graph of h, ~ (h(z), z) z E [0, oo [ }, is invariant under X and lies in S
c) in K we have situation II. C of the main theorem (1.2.1).

8
Proof - By lemma (II.3.2.4) we may assume that the - component

of X is of the form zQy(x, y, z) with y(0, 0, 0) # 0 and Q > 2.
We may, and do, assume that y(0, 0, 0) > 0, because if not, replace X

by - X which is of the same type.
If we use the center manifold theory such as in [H.P.S., Ke ] we obtain

the existence of a unique center-unstable-manifold.
Although it is general not necessarily CX, here we can use the uniqueness

of the center-unstable manifold as well as the fact that X is non flat along
the z-axis to obtain that the center-unstable manifold is in this case,
as follows.

For each In E N there exists a C7" center-unstable manifold Wm defined
on some neighbourhood Um of 0 ; we can take care that U m + 1 c Um for all

By uniqueness of the center-unstable manifold we have
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1 
= If we take U 1 small enough then the following

holds for fixed m.

Since ~(0,0,0) > 0 and since a > 0 there is a T > 0 such that

(4)x denotes the flow of X). So Ui 1 n Wi is a Cm manifold.
But as m is arbitrary, we obtain that U 1 n Wi is C ~.
The behavior of X restricted to this center-unstable manifold can be

found in full detail in [D.R.R. ]. D

(2.1.2) REMARK. - The methods to obtain invariant manifolds, deve-
lopped further on for the more delicate cases, could also be applied here.

(2 .1. 3) PROPOSITION. - Let E be a Banach space, X a Coo vector field
defined on a neighbourhood U of 0 E E with X(0) = 0. Suppose that

i ) the z-axis is formally invariant under X ;
ii) E x { 0 } is invariant for X and D(X IE x is a hyperbolic contrac-

tion or expansion, that is : the spectrum of this linear operator is contained
in a subset of C of the form { z 
for some i~ e R, h > 0 ;

iii ) X is non flat along the z-axis.
iv ) X is bounded on U together with all its derivatives.

Then there exists a cone K of finite contact around the z-axis and a C ~

germ h : ( [0, cxJ [, 0) - (E, 0) with

a) the graph of h, ~ (h(z), z) z E [0, oo [ }, is invariant under X
b) in K we have situation II. A or II. B of the main theorem (1.2.1).

Proof - Let us write X = (Xx, XZ).
By lemma (II . 3 . 2 . 4) we may assume that XZ is of the form :

’2014 ~- ~ , A,/ ~ ,

with 7(0, 0) # 0 and Q >_ 2.
There exist A e Lc(E, E) and B: (E x ~, 0) - (Lc(E, E), 0) and Rx:

(E x R, 0) - (E, 0) such that

and such that (up to changing the sign of X).
i ) the spectrum of A lies in { Re z  r  0}
ii ) B and Rx are Cx germs; especially B(O,O) = 0
iii) 0) = 0.

This because the z-axis is formally invariant. We also may assume that R x
is x flat along E x { 0 } because if not, blow up once.
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The existence of the invariant graph follows from the center manifold
theory. Its smoothness follows from the fact that y(0, 0) # 0. If y(0, 0) > 0
then we have situation II. A and if y(0, 0)  0 then we have situation II. B;
this can be proved by standard techniques like in [D.R.R. ] or like further
on in the more delicate cases. D

(2.2) THE ROTATION CASE.

We study germs in 0 of vector fields on R3 which leave the z-axis R2
formally invariant and for which the 1-jet has eigenvalues - 0

(/. E fRB { 0 } ). Such a vector field is completely non-hyperbolic, so here
the « classical » theorems about invariant manifolds as in [Ke, H.P.S. ] are
not applicable. First of all, such a vector field has, up to a linear change of
coordinates preserving x {0} and {0}2 x R, a 1-jet of the form

In [B.D.] ] we obtained the following result :

(2. 2 .1) PROPOSITION. - Suppose X E G3 satisfies

i ) the z-axis { 0}2 is formally invariant under X
/ x x 1

iii) A is non nai along me z-axis

then

a) there exists a Coo germ h : ( [0, oo [, 0) - (~2, 0) whose graph (germ)
{ (h(z), z) e [0, oo [} is invariant under X and with jooh(O) = 0

b) there exists a cone K of finite contact around { 0}2 x [0, oo [ such that
in K we have situation II. A or II. B of the main theorem (1.2.1).

(2.3) ONLY ONE NONZERO EIGENVALUE.

Here we will meet all situations II. A, II. B, II. C of the main theorem.
In situation II. C we will have to construct invariant surfaces. Sometimes
we could make use of the classical center manifold theory, but for other cases,
where the requested invariant manifold is not a stable, center-stable, center,
center-unstable or unstable manifold, we will have to apply our own
methods. But if we set up the whole machinery anyway it can effortlessly
be applied to the « classical » cases.
The methods to obtain smooth invariant manifolds developped in this

section, can also be used to obtain the results in (2.1) and (2.2).
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Up to a linear change of coordinates preserving (~2 x ~ 0 ~ and { O}2 x R,
we may assume that the 1-jet is of the form

(2 . 3 .1) PROPOSITION. - Suppose X E G3 satisfies

i ) the z-axis is formally invariant under X
a

ii) = ax a ~ 0
iii ) X is non-flat along the z-axis

then there exists a cone K of finite contact around the z-axis and a Coo

germ h : ([0, oo [, 0) - (~2, 0) with /~(0) = 0 such that

a) the graph (germ) ~ (h(z), z) z E [0, oo [} is invariant under X

b) in K we have situation II. A or II. B or II. C of the main theorem (1.2.1).

Proof. - We may assume that has the form as in (I.1.21).
Because X is non-flat along the z-axis, we can apply lemma (II.3.2.4)

and hence we assume that there exists a Q e N such that the ~ component
of X is of the form oz

with fl/(0, 0, 0) # O.
So X can be written as follows:

where

i) fl~~~ 0) == 0

ii) 0, o) ~ 0
i) S , is a vector field which is oo flat along the z = 0 plane and with

c
zero -,--component (we absorbed it in 7; we also assumed at least one

c~

blowing up)
it;) Q > 2.
We only pay attention to the upper half space [R2 x [0, oo [. If we blow
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up X n times, without dividing by a power of z of course since the 1-jet
is nonzero, then we get

;=)

for some S~ which is oo flat along the z = 0 plane.
Because y(0, 0, 0) ~ 0 we can assume that X", denoted again X, has the

following expression (new fl , y, ... ) provided that n is big enough :

~-) /,(0,0,0)=0
it) /(0, 0,0) = ~ ~ 0

P E { 1, ..., Q - 1} ~
ic) is (X) flat along the z == 0 plane and has zero - component.
V) y(0,0,0)=c~0. ~

Furthermore, in order to make the calculations a bit simpler, we divide X
1

by 1 + - The resulting vector field, again denoted X, is of the form
a

/ - ,

(new f; ... ) :

where f, y, S x satisfy the same properties (ff) to (v) as above. The foregoing
manipulation is not essential.

If we look back to the expression for X~ hereabove, we see that in case
P = Q - 1 we may assume that b. c  0 provided n is chosen big enough.
So up to a change of the sign of X the four following situations can occur :

I. 

II. 

III. 
IV. 
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Here we already announce that I will lead to situation II. B of the main
theorem, II to situation II. A, III to situation II. C and IV to II. C. We
treat each case separately. We will refer to some lemmas which will be
proved after this proposition.

In order to detect invariant graphs for X we consider the graph trans-
formation defined by the time one mapping of X (precise definitions will
follow). Roughly spoken this is: take a graph of a map (x, y) = h(z) and
transform it by the time one mapping of X.

First we modify X, without modifying its germ in (0,0,0), with a Coo

« bump » function r : [0, oo [ - [0,1 ], where i(u) = 1 on 0, - and z(u) = 0
on [1, oo [ as follows. - -
For all 8 > 0 we define

/ 7X

Then XG has the same germ in 0 as X can be defined on a neighbourhood
of the form [0,00[, with B(0~)== { (x, y) E (x, }.
Moreover the z)| z ~ 8 } is invariant under - X~. We can modify X
to XG in such a way that the (new) f, y satisfy satisfy inequalities like

~ - r,__ -. ~B ~ ~ - A

on some neighbourhood B(o, ,u) x [o, oo [, where al, a2, bl, b2 can be
chosen independent of E (for this reason we don’t attach an index E to f or y).

Let us show that the « fiatness condition » of the term 03C4(z ) S x (x, y, z)E
is independent of E, that is : for all r, S E N there exist b > 0 and > 0
such that for all E > 0 and for all (x, y, z) E B(o, ~) x [o, 3] :

1 ,. i i v , ,

Let in tact r, W e have :
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There exists a ð > 0 such that for all p E ~ 0, ..., r + s ~ and all i E { 0, ..., s }
there exists a constant Li,p > 0 such that on B(o, /1) x [o, ~ ] :

, - ~ -- ,

Furthermore for all j e fil there exists a K~ > 0 such that for all Me [0, oo [:
I T~(M)) ~ K~ . Hence for all z  6:

and for all z ~ ~: 1 - £ ) = 0 so the problem is trivial there.
The time one mapping of xE can be written down as :

z) = (1 + y, z))y, z + y, z)) + y, z)
where

i) is oo-flat along [R2 x { 0 } and the flatness condition is indepen-
dent of 8

ii ) has zero z-component (we absorbed its z-component in g) ;
iii ) there exist constants b2 and a neighbourhood

independent of ~, such that on V:

We write Fe = (Fx,e, Fy,e, We will show in lemma (2.3.5) that there
exist 03B41 1 > 0 and 03B4 E ]0, 5i [ such that if h : [0,5] ] - [R2 satisfies h(0) = 0
and for all ze [0~]: [ h’(z) ( [  1 then Z : [0, 5] ] - z - z)
is a diffeomorphism onto (at least) [0, ðl]. 

Let z(Z) denote the inverse. We define, for 0  8  61, the following
function spaces :

F?,. = ~ h [0, ð] -+ [R2 is Cm, h( [~~ ~ ]) c B(0, 1, h ~ - o
and for all ze [a,3]: h(z) = 0}

[0,5] ] - [R2 is Cm, h(0) = 0 and for all z E [s,5]: ~(z)==0}
II [  for all i E ~ 0, ..., m ~ ~ .

Define H = as H(Z) = z(Z)), z(Z))) if Ze[0, ð1] ]
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ana = U lI L E 1 E is a wen defined map iium into tsE-

provided 8 is small and Fg is continuous for the C"" topology.
From lemma (2.3.6) we will obtain that for all m > 1 there exists an

E > 0 such that c Fm.
Let Fm be the closure of F7 in for the topology. Each Dth

for h E Fm and Lipschitz function with a Lipschitz
constant independent of h ; this is still true for h E Fm.
The space Fm is hence compact for the topology, as a consequence

of a theorem of Ascoli-Arzela [Di ].
F~ is also convex.
As F is continuous on =~ F~ for the topology, we still have

Fr.
Hence it follows from the Leray-Schauder-Tychonov fixed point theo-

rem (1.1.22) that F has at least one fixed point in F~.
We hence obtain for each m an Em > 0 and a C"" map hm: [0, 6 ] - [R2

with jmhm(0) = 0 whose graph is invariant under 
Because hm(z) = 0 on [~m, 03B4 ] and because lim z) = (0, 0, 0)

uniformly in z (see the estimates on g) we obtain that hm is ceo outside 0.
In lemma (2 . 3 . 7) we will prove that if h : [0, 5 ] - B(0, p) is C1 on [0, 5]

and COO on ]0, 5] ] and if the graph of h is invariant under then h is ceo
on [0,5] and jh(O) = 0.
Hence hm will be So we can consider for example F~ and hi. As a

matter of fact we want hl to be invariant under XE1. To see this, observe
that for all t E [0, 1 ] : ~xEl((0, £5), t) lies on the z-axis denotes the
flow of Xe1) since ~1  5i; for all t’ > 0 we write t’ = n + t where t E [0,1 ]
and n we have

I ~~~ C~B tB t / t ///1 C*B B B B

nence me grapn 01 ni is invariant under 03C6x~1(., J tor an t’ > u.
Finally in lemma (2 . 3 . 8) we show that in some neighbourhood of(0,0,0)

all orbits tend to (0,0,0) and that those outside [R2 x { 0 } (in the blown
up situation) are graphs of maps h satisfying the hypothesis of lemma
(2.3.7).
Hence we are in situation II. B of the main theorem (1.2.1).

Here the graph transformation can be defined as follows. The time one
mapping of X is again of the form

where is oo tlat along the z = U plane and has a zero z-component.
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This time there exist constants and a neighbourhood V of
(0, 0, 0) such that on V we have

~ ~- ../~ .. ~.~ ~ " , n

Here we take the function spaces
I" - - _ _ _ - ., _ --~-

Denote F = (Fx, Fy, 
If 8 > 0 is sufficiently small and if h E then the map

is a diffeomorphism onto (at least) [0, e]. To prove this, remark first that
for small z:

~m ~ ~ ~ . ~ D20141/7/ B B . / rtB

because we can estimate the first order derivatives of g and h by constants
independent of h E F~. Second observe that for small s:

Denote z the inverse of Z ; put H = I1 h where H(Z) = (Fx(h(z), z), Fy(h(z), z)).
Again :
i ) r : Fm - B~ is well defined if 8 is small and r is continuous for

the C"’ topology
ii ) for all m > 1 there exists an 8 > 0 such that c proof see

lemma (2. 3. 9) hereafter 
_

iii ) r has a fixed point in Fm (the closure of Fm for the topology).
In order to prove that hQ is Cx we will show in lemma_(2.3.10) that

there exist > 0 such that ~Z, is a sequence in B(0, p) x [0, s]
with lim y,, z; ) == (0, 0, 0) and y,, z,) = (xi-1, Yi- 1, for i ~ 1

then this sequence must lie on the graph on hQ.
This implies that for all m > Q there exists an ~’m > 0 with ~’m ~ min { 8m, 8Q }

such that h,~ and hQ coincide on [0, s~ ]. As a consequence of the movement
of F in the z-direction (see the estimates on g above) we see that hQ is C7"
on [0, GQ] ] and that = 0. Hence hQ is Cy and jx h(0) = 0.
Because of the unicity of hQ. in the sense of lemma (2.3.10), we see as

follows that the graph of hQ is also invariant under X. Let q ~ N/{0}.
Then, by similar arguments as above, we find an E E ]0, 8Q [ and a C x map h :
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[0, I ] --- fR2 with jx h(o) = 0 whose graph is invariant under 03C6x(1 q,.)

(the time 1 q mapping of X). Take z E [0, ~]. Then the sequence

must. by lemma (? . 3 . 10), lie on the graph of 
, (l )So h ] 

== hQ z ] . Hence the graph of hQ is invariant under ,

for each q. Thus under X.. q /

Finally from lemma (2 . 3 .11) it will follow that we are in situation II. A
of the main theorem.

Case I I I : P  Q - 1, ~  0, b > 0, c > 0.

Let us first search for an invariant surface tangent to the yz-plane.
This will be a so-called center manifold. If we would apply the « classical »
center manifold theorem, we would obtain for each r the existence of
a C7 center manifold : see for example [Car, Gu, H.P.S., Ke, M.M. ]. But
we will show that in this particular case the center manifold is Coo, at least
in a blown up situation. Further we will show that the orbits starting in
some neighbourhood of 0, but starting outside the invariant surface,
will leave the neighbourhood. The behavior of X restricted to this invariant
2-dimensional manifold tangent to the yz-plane is well known and is as
follows: there exists an invariant direction D’ having oo contact with
the z-axis ; all the orbits starting in the invariant surface tend to 0 in negative
time and have oo contact with D’.
So we will be in situation II. C of the main theorem.
But let us now come to the proof of all this. First we prove the existence

of the invariant ex surface.
For reasons which will become clear later in the lemmas we first perform

a rescaling of the z-axis as follows. We want in fact that P > 2.
Let R : [R2 x ]0, oo [ - [R2 x ]0, oc [: (x, y, u) - (x, y. u2).
We have that R*X’ == X if and only if for
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Here in particular :

Let us write again z instead 01 M, A instead 01 X .
We obtain again a vector field of the form (new P, Q,f, ...).

~ ~ ~

with this time P > 2 and still P  Q - 1.
Let us already remark here that such a rescaling will have no influence

on our result, since it is our aim to construct an invariant graph of a Coo
function z) with for all y: jxh(y, 0)=0: it is easy to show that then

~==/!(~~/M) is also a C x function of (x, u) oo-flat along the y-axis. Also
all the other results we shall obtain are preserved by this rescaling.
The time one mapping of X can be written as

F(x, y, z) = (eax, (1 + z))y, z + zQg(x, y, z)) + z)

where a(0, 0, 0) > 0, g(0, 0, 0) > 0, Roo is oo flat along the z = 0 plane and R ~
has zero z-component.
There exist constants al, a2, bi, b2 and a neighbourhood V of (0, 0, 0)

such that on V:
n / n *~ > ’7 *~ n-

We look for a Ceo invariant graph of the form
,. ~.. , , ... I , , - , ,- ,

The  > 0 will be rechosen some times for our purposes. If , 3 > 0
are small then VÓ,Jl:= [- /1, p ] x [-~/~] ] x [0,5] ci V and c V.

Let us define some function spaces for ~ ~ 3 : 

Let us write F = (Fx, Fy, and FI = Fx, F2 = (Fy, F,). We would like
that the surface determined by ( y, z) - F(h( y, z), y, z) is again the graph
of some function. For that purpose we shall prove in lemma (2.3.12)
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that for small /1, 8 > 0 and h~F10,~ the map (Y, Z) : [- , ]  [0, sj J - 

( y, z) - F2(h( y, z), y, z) is a diffeomorphism onto (at least) [ - /1, ~c ] x [0,8].
In that case we can take the inverse of (Y, Z), and denote it ( y, z). So ( y, z)
is defined on (at least) [ - ~c, ~c ] x 
We put H = rh where

H is defined on (at least) [ - /1, /1] ] x [0, e]. So, for 8 small, r is a map
defined on and takes values in B~.
Moreover r is continuous for the em topology.
As Fm c for small 8, r is defined and continuous on In lemma

(2. 3 .13) we shall prove that there exists a (fixed) ~ > 0 such that for each
> 1, there exists an 8 > 0 such that c Fm.

From this fact, from the theorem of Ascoli-Arzela and from the Leray-
Schauder-Tychonoff fixed point theorem (I.1.22) we derive, in an ana-
loguous way as in case I, that for all m E N there exists an 8m > 0 and a C"" map
hm : [- , ]  [0,~m ] - R with jmhm(y, 0) = o for all YE [ - ,  ] whose graph
is invariant under F. In lemma (2. 3 .14) we shall show that there exists 0
such that if (xi, yi, is a sequence in [ -,u, ,u] x [ - /1, /1] x [0, 8] with

and F(x;, yi, 1 ) then this
sequence must lie on the graph of hQ. Again this uniqueness of the inva-
riant graph and the movement in the z-direction (see the estimates on g)
imply that hQ is in fact ceo and that its graph is invariant under the vector
field X. Also j~hQ(y, 0) = 0 for all y E [ - ,u, ].
Next we consider the restriction of X to this invariant C°° 2-dimensional

manifold obtained above (always restricted to the upper half space).
This 2-dimensional situation is treated in full detail in [D.R.R. ], and

is hence omitted.

Finally, from the expression of X we can now easily show that we are
in situation II. C of the main theorem (1.2.1).

Here we also look first tor an invariant surface, this time tangent to
the xz-plane and passing through the x-axis.

In contrast with case III this surface is not a center manifold. But never-
theless we will prove that we are in situation II. C of the main theorem,
that is: the orbits starting outside the invariant surface and starting in
some small neighbourhood of 0 leave this neighbourhood, on the other
hand the orbits in the invariant surface just mentioned tend to 0 in negative
time and have Jo contact with the z-axis.
One can observe in the sequel that in this case it is crucial that the xz-plane

is formally invariant, thanks to the normal form.
If this were not the case, our method wouldn’t work.
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The time one mapping F of X has the same form as in case III with this
time (x(0, 0, 0)  0 and g(0, 0, 0) > 0.
Hence there exists constants al, a2, bl, b2 and a neighbourhood V such

that on V :
17 

If /1, ð > 0 are small then V J-l,ð ~== [- /1, /1] ] x [ - ] x [0, (5] c V and
F(V,,,) c V.
We define for E  3 :

Again:

i ) for small 8 we can define the graph transformation r on see

lemma (2. 3.15) here after.
ii ) - B~ is continuous for the Cm topology;
iii ) there exists a (fixed) ,u > 0 such that for each m E >- 1, there

exists an 8 > 0 such that Fm : see lemma (2 . 3 .16) ;
iv) applying the theorems of Ascoli-Arzela and of Leray-Schauder-

Tychonoff yields for all m the existence of an 8m and a C"’ map hm :
[2014~,~] ] x [o, Em ] ~ R with = 0 for all x E [ - ~c, ,u ] whose

graph is invariant under F;
v) the uniqueness in the sense of lemma (2.3.17), and the movement

of F in the z-direction (see the estimates on g) imply that hQ is in fact Cx
and invariant under the vector field X. 0) = 0, for all x E [ 2014 ~ ,u] ;

vi ) the results of [D.R.R.] ] concerning the behavior of X restricted to
the invariant surface together with lemma (2.3.18) hereafter imply that
we are in situation II. C of the main theorem. D

Lernmas used in the proof of proposition (2 . 3 . .1 ), case I.

(? . 3 . 5) LEMMA. 2014 There exist 6 > 0 and a 1 E ]0,5[ [ such that if h :

[0, 6 ] - B(0, p) satisfies h(0) = 0 and !! 1 on [0, 5] then for all 8 > 0
the map

v. 1 _ FTD . -, . 17 / L/ ~B - B

is a diffeomorphism onto at least [0, 03B41J
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Put ð1 1 = 5 + Further Z’(z) > 1 + QzQ-1b1 + 0(zQ) >_ 1 for small ð
(independent of h). D 2

(2 . 3 . 6) LEMMA. - For each 1, there exists an 8 E ]0,~i[ [
such that c Fm.

Proof - Let h E Fm and put H = reh. For z = z(Z) and (x, y) = h(z)
we have

since a2  0 and P  Q - 1 and a  0.

Suppose, by induction on i, . that II  for all

j E ~0, 1, ... , 2014 1 }. Let us abbreviate h(z) := (h(z),z ) and F1 :=(Fx~E, 
and F2 :== 

_ _

We differentiate the equality times and obtain for

the left hand side, using the higher order chain rule [A.R., Ya ] :

where C10) is some « universal summation over ...,7~ WIth tne

properties jl + ... + jk = i and jp > 1 for all /?e { 1, ...,~c}. Let us

isolate the term with k = i in the summation :

:> (F2 :> h))(z) = :> h)~Z)~ ..., 
i- 1

There exist C x functions Ak, k E ~ 0,1, ..., i - 1 }, such that we can write

D’(H ç (F2 0 ~))(’) = DIH(FZ(h(Z))) - (D(F2 ç ..., h)(z))
;- 1
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For the right hand side we get

Intermezzo:

SUBLEMMA. - If E is a normed space, if L : E ~ E is an invertible

continuous linear map and if B : E is a continuous i-linear map then
I I -r.. " - I - /T T ’I. I 1 1 1 T - ~ 1 II 7

where B (L, ..., L) is tne i-linear map aennea oy

~’roof : 2014 Ubvious./.
If we apply this in the equality

Let us make an estimate tor each term or tactor separately
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As we already saw in lemma (2 . 3 . 5) : ,

Remark that this 0 symbol, as well as the ones following, are independent

= 1») because of the induction hypothesis ; this 0-symbol is
independent of h since we can bound the II ..., Dih(z), by a
constant independent of h E F;’.

In each term ot this summation we have j1 + ... + 1k = 2.

So there must be 1, 2, ... , k ~ with jp  f - 1. Hence, except for
the case that ji 1 = j2 = ... = jk = 1 and k = i, each term contains a
factor Dkh(z) with k E {0,1, ...,f - 1 }; such a term is 1 ~)_
Suppose that ji = j2 = ... = jk = 1 and k = i. We can write

as a sum of terms containing Dh(z) as a factor, except the terms ot the torm

which is if we replace (x, y) by h(z)

w e nave :

So if we write h = (h 1, h2) we get, since (x, y) must be replaced by h(z) :

~ ( DF’Oh(z)) - h~i~(z) ~ ~ _ ~ ~ (1 + ~~x~ Y~ 
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e) Finally
We end at :

il1 i I

because P  Q - 1 and a2  0. D

(2 . 3 . 7) LEMMA . - If h : [0,5] ] - B(o, ,u) is invariant under if

h(0) = 0, if  + 00 and if h is on ]0, ð] ] then h is C x

on [0,5] = 0.

Proof - For all Z E ]0, ð] ] we consider the sequence 
The invariance of the graph of h implies that we can write

for all i E N, with in particular zo(z) = z.
If Za E ]o, ~ ] and zb = zl(za) then each z E ]0, zb ] is of the form zi(z)

for some z E 
In order to prove the lemma it hence suffices to show the following:

for all j, s there exist za E ]0, 5 ] and > 0 such that for all zo E [Zb, za ]
and all i 

II ~~/1)/-/- B B II ---- v /-/- 

we can abbreviate this by writing = Let us write

shortly zi = Let j, se ~J.
From the recurrence formula

tor all i > 1 and from the estimates on F~m we derive the existence of za > U
and B 1 > 0 such that if then for all i >_ 1 :

lor small za since a  u.

Applying this successively we get
~-1 1
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On the other hand

," I I I

If

then for 

(remember : P  Q - 1 ).
Thus in that case

II 1 / B ) )

Choosing

we have for 

We can find a constant Ls such that for all ze [zb, za]: ~n(z)~ ~ Ls. So
for all f = 

~~

t-1

From + ~2~ ~) we derive 2014~~~~ ~ " so

t-i 1
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We obtain :

for all i E Thus the case j = 0 is done.
Now by induction on j we prove that = for all s e We

differentiate the equality

j times (where h(z) _ (h(z), z)). Proceeding for that like in the proof of
lemma (2 . 3 6) we find for the left hand side :
- ~ !!’B . ~ _._ _. _.. __

where Ak is some ceo function; it is important to observe that Ak is linear
with respect to the variable For the right hand side we get :

where the terms in the last summation never contain Since
 + oo we see that

I ir. i_m _ ’B I - i ~ 1 I AI - 0 - 1 B

For the other terms we proceed exactly like in the proof of lemma (2. 3. 6)
but collect the terms containing which a priori might be unbounded ;
those terms contain a factor which is, by the induction hypothesis, an

for any N E fil.
Also

- - _ n v . T’Bo v _ i v v

So we find that tor all 

Choose N = Q + s ; then we can find constants al  0 and B j > 0 such that
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This estimate is of identical type as the one we started from when solving
the case j = 0. Now we may go on exactly in the same way in order to
obtain the desired result. D

(2 . 3 . 8). LEMMA. - There exists a neighbourhood V of (0,0,0) such that
all orbits in V tend to (0,0,0) and those outside 1R2 x { 0 } are graphs
of maps h satisfying the hypothesis of lemma (2. 3 . 7).

Proof - By means of the obtained Coo invariant graph f (h(z), z) z E [0, ð] ] ~
we define the Ceo coordinate change

.... _ -

Put X = G*X and write X = Xy, Since X leaves the inva-
riant we observe that

From the expression of X we calculate that, for the standard inner product
on [R2:

- - -

Because G does not alter oo jets in (0, 0, 0) we can write for X :
~ "- -~ ...... -"’" _n ~.- -. -. ~ . ~  .20141

Let us write again (x, y, z) instead of (x, y, z). Since /(0, 0, 0) = b  0

and since a  0, we can find a neighbourhood V of (0, 0, 0) and a constant
c > 0 such that on V :

~ ^- ...... _ ~......-

From this the result is easily derived. D

Lemmas used in the proof of proposition (2 . 3 . .1 ), case II.

(2. 3 . 9) LEMMA. - For each > 1, there exists an 8 > 0 such
that c F§l’.

Proof The differences with the proof of lemma (2 . 3 . 6) are :

for b) :

Vol. 3. n° 2-1986.



152 P. BONCKAERT

for e) :

(2.3.10) LEMMA. - There exist ~,~ > 0 such that if is a

sequence in B(0,~) x [0, £ ] with lim j~, zi) = (0, 0,0) and
. 

then this sequence must lie on the graph of 

Proof - With the CQ coordinate change

we obtain for F = (Fx, Fy, FZ) := G*F that

for some a 2  0 on some neighbourhood of(0,0,0).
Denote the transformed sequence (Xi, yi, Zi)iEN.
We have II ( x_i,  ( xi + 1, Yi + ~ ) I I if 8 is small. So then for all i :

1 1 1  .. ~ _ II l 1 ~ 0 form -~ oo.

Thus Xi = Yf = 0, that is: the sequence lies on the z-axis, which is the
transformed of the graph of hQ by G. D

(2 . 3 .11 ) LEMMA. - There exists a neighbourhood V of (0,0,0) on
which all orbits of X starting outside the invariant graph leave V for
t - - oo.

Proof - Precisely like in lemma (2.3.8) we obtain for some B > 0
and on some neighbourhood V:

~ rom this we see that the function V : ~3 -+ [R: (x, y, z) -~ ~(x, y) ~ ~ 2
s a Lyapunov function for X in the region z > 0, whence the result. D

emma used in the proof of proposition (2 . 3 .1 ), case III.

(2 . 3 .12) LEMMA. - For small /1,8> 0 and h E the map (Y, Z) :
- , ]  [0,8] ] - R2 : (y, z) - F2(h( y, z), y, z) is a diffeomorphism onto
at least) [2014~,~] ] x [0, 8].
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F’2~~ Y~ Z)~ Y~ z) _ « 1 + Y~ z)~ Y~ + Y~ Z)~ Y~ z)) + Y~ z)~ Y~ Z)

where Roo is 00 flat along the z-plane and has zero z-component.
So, in a short notation :

~ - ..,. T.~ ~ _... ~-- D- 1 D ~ ........ D"", W

We have: D(Y,Z)(0,0) = Identity. Because of the inverse function theo-
rem and because for all h E [[ D h(y,  1 there exist > 0 such
that for all h E the map (Y, Z) is a diffeomorphism on [2014~,~] x [0, a].

Put Roc = 0). If 8 is small enough we have for all y E [- ~c, /1] :
C 17 ~~ m ~B ~~ P

and tor all ze ~U, 8j:
~i t ...Pwi~ I ~ . .. -- B .. n

As (Y,z~[2014~~j J x is simply connected, ims impnes t

(2 . 3 .13) LEMMA. - There exists a J1 > U such that tor all 1

there exists an 8 > 0 such that c 

Proof - We choose ~ such that lemma (2. 3 .12) holds.

Let h E F~, H = rh. For i = 0 and ( y, z) = ( y, z)(Y, Z) we have:
) T r’""7"B. II II n7 i B )) . AI nDB

Suppose, by induction on i, that

lUl 1, ... ~ 2014 1- J tlllU 1 =2014 1. A ’ LJ1

brevity put

and put also Fi 1 = Fx, f’2 = It we differentiate the equality
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H F2 0 h = i times then we obtain in the same way as in lemma

(2.3.6) that

We estimate as follows :

a) From the expression for h)( y, z) = D(Y, Z)( y, z) obtained

lemma (2.3.12) we see that we can write

where Mh( y, z) is some matrix with M~(0,0) = 0 ; this because Q -1 > P > 2 :
see the rescaling construction.
Moreover we can choose > 0 such that for all m E m > 1, all

and all ( y, z) E [ - ,u, ,u ] x [0, e]:

Then

because of the induction hypothesis and because of the uniform bounds
on the llAk(h( y> Z» ..., > y> z) II.

1

because here the same reasoning as in lemma (2. 3. 6) applies and because
here in particular

for each q E ~0, ...,~ }
d ) From
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we obtain

e) r many :

ii s is small we nave ior an t E l u, ... , m j :
~~a . I I n/-11; -

Hence

(2 . 3 .14) LEMMA. - If E is small and if (xt, y~, is a sequence in

[2014~,/~] ] x [- /1, /1] ] x [0,8] ] with lim (~,Zf) = (0, 0) and
T2014’/ - v / B/’~~B v

Proof. - Similar to the proof of lemma (2.3.10) with this time the coor-
dinate change

r ~- 20142014 TT 20142014 ~~Yl7 7~

Lemmas used in the proof of proposition (2.3.1), case IV.

(2 . 3 .15) LEMMA . - For sufficiently small 8 > 0 and for h E the map

is a diffeomorphism onto at least [2014 ~ /1] ] x [0, 8].

Proof - We have (X, z)(x, z + h(x, z), z)) + R ~(x, z), z)
so, in a short notation :

As [[ 1 for remark that the last matrix is an 

independent of h.
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We have: D(X, Z)(0,0) = 
e a 0 . Because of the foregoing remark

and the inverse function theorem there exist small > 0 independent
on such that (X, Z) [ X is a diffeomorphism.
For all x E [- /1, /1]: 8 + EQg(x, h(x, 8),8) > 8 if ~ is small because of

the estimates on g on V.
Also for all ze [0, s] and 8 small + h(,u, z), z) > /1 and

~(- /1) + h( - ~c, z), z)  - ,u.
Hence, since (X, Z)( [ - ,u, ~c ] x [0,6]) is simply connected,

(2.3.16) LEMMA. - There exists a J1 > 0 such that for each 

m > 1, there exists an 8 > 0 such that c 

Proof - Copying the scheme of lemma (2. 3. 6) this time one has :

We put F = (Fx, Fy, F )~ Fi = Fy~ FZ = F~).

a) We can write :

hence

b) and c) : the same
d ) here :

so

for small z since  0 and bi > 0. D
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~~ . ~ .1 i ~ J LEMMA. - 11 8 is Small ana 11 yi, IS a sequence ill

[ - p, /1] ] x [0, s ] with lim (Y~~ z,) = (0, 0) and F(x;, y~~ z,)=(~-i, y~~ Z-~)

(i > 1) then this sequence must lie on the graph of hQ.
Proof - Analogous to the proof of lemma (2.3.10). 0

(2. 3 .18) LEMMA. - There exists a neighbourhood V of (0,0,0) on
which all orbits of X starting outside the invariant surface leave V for
t - - DC.

Proof - After the coordinate change

- r -

we obtain a vector field X := GX whose y and z components are of the
form (write again x, y, z instead of x, y, z) :

, . D ~.. ,

wnerc j anu u.

Take a bounded neighbourhood V of(0,0,0) and constants a2, b 1, b2 > 0
such that on V :

v ~l  - 

Now the lemma easily follows. D
This completes the proof of proposition (2.3. 1).

(2.4) ALL THE EIGENVALUES ARE ZERO.

Here we will meet all situations II. A, II. B, II. C of the main theorem.
Since we work with germs X of flatness zero, that is: 0, and

since the z-axis must be formally invariant under X, we can assume, up
to a linear change of coordinates preserving [R2 x {0} and {0}2 x [R,

that the 1-jet is y~ ; equivalently: the matrix A introduced in the first
c.~

lines of this chapter IV is:
fo it

ana Co = u.
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We will try to reduce, in some sense, this case to one of the previous
cases in propositions ( 1.1 ), (2 .1.1 ), (2 .1. 3), (2 . 2 .1 ) and (2 . 3 .1 ). With
« reducing » we mean : to deform the vector field by means of (sometimes
degenerate) coordinate changes which do not alter the nature of results
such as for example « having oo contact », « being a cone of finite contact »,
etc. In fact all the cited cases will occur.

(2 . 4 .1 ) PROPOSITION. - Suppose X E G3 satisfies

i ) the z-axis { 0 } 2 x [R is formally invariant under X

ii) 

Üi) X is non-flat along the z-axis
then

a) there exists a Ceo germ h:([0,oo[,0) - [R2 whose graph (germ)
{ (h(z), z) z E [0, oc [} is invariant under X and with j~(0) = 0

b) there exists a cone K of finite contact around { 0}2 x [0, oo [ such that
in K we have situation II. A, II. B or II. C of the main theorem.

Proof - Applying lemma (11.3.2.4) we may assume that the z-compo-
nent of X is of the form

0 0 0 0. Since j1 X (0) = y~ ~x we can write X in the f 11 win form :with y(0, 0, 0) ~ 0. = y 2014 
we can write X m the following form :

where fi, f 2, gi, g2, hi, h2, y and S~ are Cx germs and

vi ) S, is a germ of a vector field with zero 2014 -component and which
is oo flat along [R2 x { 0 }. a z

Let me explain this a little bit. First we collected all terms linear in x
and y ; property ii ) together with vi ) reflects that the z-axis is formally
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invariant; property iii) simply means that hl and h2 don’t contain terms
linear in x and y; property vi) indicates that we « absorbed » the 

~ 
. 

’

terms of the - component of X in y.
cz

Allthough it is not crucial, we can spare some ink and calculations if
we observe that we may assume 0. Because if not, we replace X by

this germ is Ceo equivalent with X by means of the identity map. We want
to put the matrix

r~/-B i i

in a more handy form by means of a coordinate change.
Let T = fl + g2 denote the trace of this matrix. This trace will play an

important role in the sequel.
If we put

r 1 n 1

then one easily checks that

Note, by the way, that 1 (f1 - g2)2 + g 1 is 1 times the discriminant of
4 4

the characteristic equation of M. All this suggests the following coordinate
change :

/ 1 ~

As
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we obtain from a straight forward calculation that the new vector field
in a point (x, y’, z) = ~(x, y, z) can be written in the following from :

where hl, h2, y, S ~ satisfy analogous properties as ii), iii), iv) and vi) above.
For brevity we write

~ ~

Then we can write down ~,~X in the form (new h2) :

For reasons which will become clear in a moment we perform a rescaling
z = u~ of the z-axis, just like in the proof of proposition (2. 3. 1) case III,
by means of the map

Remember that we always restrict our attention to the upper halfspace.
Calculating straightforward we find that R*X’ = if and only if

Let us simplify the notations by writing again X, y, z, h2, Q, y, S x instead
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of respectively X’, y’, u, h1o R, h2 o R, 2Q - 1, 1 2 o R, S x a R ; let us also
put v(u) = T(u2~. Then we obtain something of the form:

_ , ~. , _

where, for the sake of clearness, the following properties hold :
- ’" ..... ,.. ~ -... /1""’Io.’B. ..

v) Q > 2 a
vi) S~ is a vector field with zero --component and which is oo flat

along ~2 x {0 }. 
a z

Let me explain why it is no restriction to assume that

We can perform a blowing up idea similar to the one in the proof 01 pro-
position (1.1) as follows. Blowing up X n times gives a vector field of the

form
r /i 1 ~

for some h2, Sx satisfying similar properties as ii ), iii ) and ri) above.

The fact that y(0, 0, 0) # 0 should explain our assumption 0,

which we take for granted from now on. So there exist ..., Q - 1}
and such that
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~ ~ ~ 
~

The « strongest » term in the expression of X is of course y- . We wantC/~L

to « weaken » it with respect to the other entries in the matrix

This situation is comparable with the problem : diminish the entries « 1 »
emerging in the Jordan normal form of a square matrix. Inspiring ourselves
on this, we consider for each P~N the coordinate change

P will be chosen in a moment, according to the occuring cases. In fact ap
is a sort of partial blowing up. 

we have

For our vector field here this gives :

for some satisfying property u~) above.
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Intermezzo.

Let me indicate here why it was necessary to rescale the z-axis. Take the
example :

rr. l

Since the only allowed choices for P are here P = 0 and P = 1, we cannot
weaken the entry « 1 » without creating a similar problem. However after
the rescaling we have

rA 11

and by taking P = 1 we are lead to the matrix

End of the intermezzo.
We distinguish the cases = 0 and 0.

Case jP1g(0) = 0.

Choose P = Pi. We distinguish Pi  Q - 1 and Pi = Q - 1.

Subcase Pi  Q - 1.

Here we have (write again x, y, z instead of x, y’, z)

Since = 0 we may write that
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We devide the vector field 03B1P*X by zP. We can write :
_ 2014 /, B 2014t ~

1
In order to get rid of the possible unboundedness of the terms P hl(x, yzP, z)

1 z

and 
2P h2(x, yzP, z) it suffices to blow up the latter vector field 2P times

z

(without dividing of course); indeed: thanks to the property iii) above we
have

, , P... í"B./II ...11")...

if we blow up 2P times, the formulas in (II . 3 . 2. 3) imply that there appears
a factor z2P. 1

This blowing up construction does not alter the 1-jet in 0 of 
This 1-jet is : ~

i, B , . ~

Since a 1 # 0, we clearly have a vector field satisfying the assumptions
of proposition (2.1.3). The conclusions of proposition (2.1.3) remain
valid for our original vector field because of the following reasons :

a) 03B1-1P 1( { (h(z), z) z E ]0, oo [ } ) u { (0,0,0) } is the germ of the graph
of a map oo tangent to the z-axis in 0, as well as

b) if we have a cone K of the form

then 03B1-1P 
1 transforms it into

r I

This set contains the cone
__ . , . _ _1
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rn wnicn we nave or ui the mam theorem accoramg
to the case;

finally the rescaling R transforms this last cone into
f/.~ .. -B2014m)2 .. rn - - r I 7 . 7 / IB. B. ’") D ,

Subcase P1 = Q - 1.

With a same construction as in the subcase above we obtain a vector

field with this time a 2014- component After
z ( ~ Y~ ) 

oz 
p ’Y( ~ Y

blowing up 2P times (in order to get rid of unbounded terms) we obtain
a vector field satisfying the assumptions of proposition (1.1).
We can conclude just like in the subcase above.

Case jP 1 g(o) ~ 0.

There exist P2 E ~ 1, ..., and ~2 ~ 0 such that
_i _2~ - ~2Po . I ~/_2Po+2B

Choose P = P2 . We distinguish three subcases : P2  Pi 1  Q - 1,
or 

Subcase P2  P1 ~ Q - 1.

We have
B . ~ i 

1

w e aeviae inis vector neia oy z- ana obtain :

1 c

Agam we can get nd ot the unboundedness ot some terms by blowing up
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2P times, just like above. Denote the result of this blowing up construction
by Y.
The 1-jet of Y is -, ’"’

If a2  0, then the eigenvalues are I and 0. Hence
we can apply proposition (2 . 2 .1) to obtain the situations II. A or II. B

of the main theorem. The same remarks a) and b) in « case jplg(O) = 0 »
hold.

If a2 > 0, then the eigenvalues are a2 , - ~/~2, 0. So up to a linear
change of coordinates preserving ~2 x { 0 } and {0}2 Y satisfies
the assumptions of proposition (2 .1.1 ). Blowing down this situation,
we still have a Cx cone K of finite contact and a 2-dimensional C° subcone S
like in situation II. C of the main theorem. Next contains 4 C x
cone K’ of finite contact just like in the foregoing case; observe also that 03B1-1P1

preserves the property «having 00 contact with the z-axis » ; S’ := ag 
is a C° 2-dimensional subcone of K’ ; the rescaling R also preserves the
property « having oc contact with the z-axis in 0 » ; R(K’) contains a C’~
cone of finite contact and R(S’) is a C° 2-dimensional subcone of R(K’).
All this shows that, for our original vector field, we are in situation II. C
of the main theorem.

Subcase P2 = Pi  Q - 1.

We have 
~ , , ,

Dividing this vector field by zP we obtain :
r i ,,--, -
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mow tms up zr times to get na 01 ine unoounaea terms, i ne resuitmg
vector field has a 1-jet

/1 v-_, / 1 B ~

Since the trace of the matrix

is a1(~ u) we nave ai least one nonzero eigenvalue. rience we can apply,
according to the case, propositions (2 .1.1 ), (2 .1. 3), (2 . 2 .1 ) or (2 . 3 .1 ).
Next we can conclude just like in the previous subcase.

Subcase P2 = P1 = Q - 1.

With a same construction as above we obtain a vector field 1 (Xp*X
~ z 

P

with a 
2014- component zy(x, yzP, z).

So we can apply proposition (1.1). D

§ 3 . Proof of the main theorem (1.2.1) with exception
of the C° result.

This is merely a summary of all the foregoing.
Take a maximal directed sequence of blowing ups of X along D (defi-

nition III.1.3). If this sequence is finite, then apply proposition (III.1.4)
to obtain situation I. If this sequence is infinite, then, using proposition
(III. 1.5), D is formally invariant under X. Theorem (111.2.1) implies that,
after a finite number of blowing ups, we are led to a vector field (germ) of
flatness zero. Now the theorem follows from propositions (1.1), (2.1.1),
(2 .1. 3), (2 . 2 .1 ), (2 . 3 .1 ) and (2 . 4 .1 ), since these contain all the possible
cases of flatness zero and since we assume that X is non-flat along D. D

V. PROOF OF THE C° RESULT
IN THE MAIN THEOREM (1.2.1)

§ 1. Definitions and notations.

We want to provide « universal models » for the situations II. A, II. B
and I I . C obtained in the main theorem (1.2.1). For that purpose we
introduce :
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( 1.1 ) DEFINITION. - The following germs of vector fields

are called the standard models for situation II. A resp. II. B resp. II. C of
the main theorem (I . 2 .1 ).

( 1. 2) DEFINITION. - The germ of the set

is called the standard cone around the z-axis.

§ 2. The C° result.

Let us state here in a more precise way the assertation announced in
the main theorem (I.2.1).

(2 1) PROPOSITION. - Let X E G3, let D be a direction such that X
leaves D formally invariant and such that X is non-flat along D.
Then there exists a cone K of finite contact around D, a C° cone K’

containing K such that the germ X K’ is C° equivalent with either K~
or SB KS or Sc Ks, according to the fact that X is in situation II . A resp. II. B
resp. II. C of the main theorem (1 . 2 . I).
Moreover in situation II. B we have C° conjugacy.

Proof - We may assume that D is the z-axis (see part III for comments
on this).
From part IV we know that, after a finite number of blowing ups, after

possibly a rescaling of the z-axis, after possibly a partial blowing up and
after putting in normal form, we are always lead to a vector field Y of one
of the following types : (change the sign of X if necessary; with « flat terms »
we mean terms Jo flat along the z = 0 plane)

1) the eigenvalue of Y along the z-axis is  0 and the restriction of Y
to the z = 0 plane is a hyperbolic expansion;
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with a>0, b>0, /i(0,0,0) ==~(0,0,0) = 0, y(0,0,0)  0 ;
3) the restriction of Y to the z = 0 plane is a hyperbolic expansion

and the z-component of Y is z) with y(0, 0, 0)  0, Q > 2 ;
4) the restriction of Y to the z = 0 plane is a hyperbolic contraction

and the z-component of Y is z) with y(0, 0, 0)  0, Q > 2 ;
/ ~ ~B

with f(O,O) = 0, g(0, 0, 0) > 0, y(0, 0, 0)  0 ;
6) Y has the same form as in 5 but with this time g(0, 0, 0)  0 ;

7) Y y, z)y 2014 y, z) 2014 + flat terms with a > 0,) 
3~ 

+~ .f ( ~ Y~ + y( ~ +

/(0,0,0)>0~(0,0,0)0;
8) Y has the same form as in 7 with this time a  0, f (0, 0, 0)  0,

7(0,0,0)0;
9) Y has the same form as in 7 with this time a  0, f(O, 0, 0) > 0,

1’(0, 0, 0)  0 ; 

10) Y = y, z)x ~ ~x + + y,z) ~ ~z + flat terms with

j(O, 0, 0)  0, a > 0, y(0, 0, 0)  0 (nota bene : we have interchanged the
role of x and y compared with the situation in proposition (IV. 2 . 3 .1 )).
One has the following table :

Note that the operations (blowing up, rescaling, etc.) are homeomor-
phisms of [R2 x ]0, oc [ with the property that a sequence tending to the
= - 0 plane is transformed into a sequence tending to the z = 0 plane.
Vol. 3, n° 2-1986.
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Roughly spoken, the idea is to construct in the origin a local C° equi-
valence with the corresponding standard model blown up
once. Moreover we take care that the homeomorphism, realizing the C° equi-
valence, transforms sequences tending to the z = 0 plane into sequences
tending to the z = 0 plane. When returning back the whole way this will
assure the continuity in (0, 0, 0) of the desired C° equivalence for our ori-
ginal vector field X. We assume that for each considered situation there
has been blown up at least once.

Situation II . A.

We blow up once the standard model SA and get

This blowing up transforms the standard cone KsB{ 0 } into the (full)
cylinder { (x, y, z) x2 + y2 - 1, z > 0 }.
- By flattening out just like in lemmas (IV. 2. 3. 8), (IV. 2 . 3 .10) we can

assume that the z-axis is invariant under Y.
We can find a small cylinder := B(0, ~c) x ]0, 5 ] around the z-axis

such that { (x, y) I X2 + y2 - ,u2 ~ x ]0, 5] ] is transversal to the orbits of Y:
for types 1 and 3 this is clear from the hyperbolicity (provided decent
coordinates are chosen) ; for types 5 and 7 we’ consider the function

G(x, y, z) = x2 + y2 and observe that for type 5:

( VG(x, y, z), Y(x, y, z) ~ ==2(x~ + y, z) + flat terms and for type 7 :

 VG(x, y, z), Y(x, y, z) > == 2ax2 + f(.r, ~.7, + flat terms ;

in both cases we have  VG(x, y, z), Y(x, y, z) > > 0 on V/l-,ð provided ~
and 6 are small; hence the orbits of Y are transversal to the level surfaces
of G in 

Moreover, if 6 is small, then the orbits in are also transversal to
the planes z = zo, 0  03B4. Now it is easy to construct a C° equivalence
between Y |V ,03B4 and SA |{x2+y2~ 1 and 0z~03B4}; the homeomorphism h can be
chosen such that

To see this we proceed as follows. Take the homeomorphism
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Extend n to as follows: u then its positive
orbit for Y intersects {(x,y, z) |x2 + y2 = /12, 0  z  5} a first time in
a point, say, y 1, define yo, zo) to be the intersection of the

N

negative orbit of z1) for SA with the plane z = Zo; finally define
0, 20) = (0, 0, zo) for 0  zo  ð.

Situation 77. B.

We blow up the standard model SB and get
N ~ 

1 nis vector neia is transversal to tne nanspnere.
1-1 _ 7 ~v ., ,1 -v-2 _J ,,2 , I -2 _ A no...

1x . - I v-2 ....L ,,2 ....L ’7~ 2014 ~~ ~~,

transversal 10 me orons 01 Y : ior type 4 tms ciear from the hyperbolicity
and from y(0,0,0)  0 (provided decent coordinates are chosen) ; for

types 6 and 8 we consider the function G(x, y, z) = x2 + y2 + z2 and
observe that for type 6:

~, .. ~BB _ 1_ w ,.,.B I ’)....0+ 1...~~.... _B

m both cases ( VCJ(x, y, z), Y(x, y, z) >  U on a small set

~~ /~~ / ~t100 ~~ ... , "’B

Consider the homeomorphism
. -- -- .. . 

2 
..

Extend h to Vð as follows. Let and 03C6B denote the flows of Y resp. SB’
For each (x, y, z) E Va there exists a t >_ 0 such that ~y(2014~ (x, y, z)) ~ Hi.
We force the conjugacy to be true on Va by defining

LI - - - - -B B JL /. 1_l 1 /~ l__ __ _B111 B

we cnecK me required property ior yi, oe a sequence m v03B4

tending to the z = 0 plane (that is : lim zl = 0). Let (ti denote the sequence

of « times » such that ~(2014f~ y~ Suppose by contradiction
that the z-components of a subsequence would stay
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I M > 0 for some constant M. This implies that sup tik  + Hence
~6~

ie z-components of ~y(2014~ (x~k, ylk, tend to zero. A contradiction.

o we have a decent conjugacy h between and

.’he preimage h 1( ~ (x, y, z) + y2  1 and z > 0}) still contains a

ylinder around the z-axis in Va. Returning this situation the whole way
~ack to our original vector field X this gives us the desired cones and
onjugacy.

ituation II . C.

We blow up the standard model Sc and get

Hence in the region z  1 the level surfaces of g are transversal to the

orbits of Sc.
Take 0  b~  1. Take a2 > 0 so small that the intersections of the

level surface G-1( - ~2) with the planes y = a2 and y = - a2 are circles C2
resp. D2 inside the region z  1. See figure 2 from now on.

FIG. 2. - Sketch of the first octant.
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We also consider the level surface G ~(1); this is a two-leaved hyper-
boloid. Next we consider the surface obtained by letting flow all the points
of the circle C2 until they hit the level surface G - l( 1 ). We do the same
thing for the circle D2. In this way we enclosed in x ]0, x [ a region R2.
By flattening out we may assume that the y = 0 plane is invariant under Y.
We want to make an analogous construction as above for Y. We have

for type 2:

and for type 9:

ana tor type 1 U :

/ K7/U/,, .. _B

So for all three types we can find a neighbourhood W of (0, 0, 0) such that
in V := W n ([R2 x ]0, t [ ) :

we want to make a miniature version of the construction for Sc.
For small 5i > 0 we can make the following construction inside V.

Consider the level surface G - 1( - ð 1)’ The intersections of it with the planes
~ 5i 

v = and y = -03B42 03B12 are circles Ci resp. Di. Consider also the

surface obtained by letting flow all the points of the circle C i until they

hit the level surface G-1(03B41 03B42). We do the same thing for the circle Di.
In this way we enclosed a region Ri in V.
Now we try to make an equivalence between and Sc First we

define the homeomorphism
r ç: ~ Î

Second we extend h to R as follows. Require that a level surface 
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(a1 e 2014 5i, 2014 ) is mapped onto the level surface , for

(x, y, z) E Ri lying in a level surface we consider the point y 1, Z1)
where the negative integral curve of Y through (x, y, z) hits for the first
time the level surface G"~(2014 5i); we define h(x, y, z) to be the intersection

of G-1 (03B42 03B41 ai with the positive integral curve of Sc through yB zl .

We check the required property for h. Suppose that (xi, yi, is a

sequence in Ri with lim zi = 0.

Let (xI , y1i, z1i) be the point where the negative integral curve of Y through
hits for the first time the level surface G’~(2014 ~i). Since the

sequence (xl, yl, tends to the y = 0 plane, we get that yi, 
tends to the z = 0 plane. D

(2 . 2) REMARK. - We have used some ideas comparable to those in
[Cam ] .

VI. SOME EXAMPLES, COUNTEREXAMPLES
AND SOME QUESTIONS

§ 1. A counterexample and some questions.

One might pose the question whether every germ in 0 E [R3 of a Cx
vector field satisfying a ojasiewicz inequality (see definition I.1.17)
possesses a one-dimensional invariant manifold, or equivalently,
whether it possesses an integral curve tending to 0 (in positive or negative
time) in a Ceo way (by tending to 0 in a Cr way we mean : if we add the origin
to the integral curve, we obtain a C~ invariant manifold). The answer is no.
We give an example of a germ for which no integral curve can tend to zero
in a C2 way; the germ has nonzero 1-jet.

(1.1) ) EXAMPLE. - Let X = + + x2 ~ ~z. Observe that X satis-
fies a ojasiewicz inequality. No orbit of X can tend to 0 in a C2 way.

Proof - a) Blow up X in the x-direction:

Observe that
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has just one singularity in (0, 0). Blow up X in the x-direction :

, -, ,

Observe that

nas no singularities.

h) Blow up X in the y-direction :
~

Observe that

has 11U sing

c) Blow up X in the z-direction :

,

Observe that

~~~-~ 

Now we are able to describe the vector field X on S2 obtained

by blowing up X spherically (see for example II. § 1 or [Ta, Du2 ] for defi-
nition and construction).
The only singularities of X IS2 x {0} are (1, 0, 0) and ( - 1,0,0). If an orbit 81 1

of X tends to 0 in a C2 way, then X must have an orbit 82 which tends in
a C~ 1 way to ( 1, 0, 0) or ( -1, 0, 0) since these are the only singularities on
S2 x { 0 }. If we blow up X in (1, 0, 0) or ( - 1,0,0) we don’t have a sin-
gularities any more, except in the « corner » : see figure 3.

This contradicts the fact that 82 tends C1 to (1, 0, 0) or ( -1, 0, 0). Q

( 1. 2) REMARK. - The vector field X in example ( 1.1 ) must have an
orbit in the first octant (.v, y, ~) E [R3 I x >_ 0, y >- 0, z > 0 } tending to 0
in a C° way. One can see this as follows.

Denote Vl = {(x, y, z) E [R3 (x = 0 or y = 0 or z = 0) and x > 0 and
r > 0 and z > 0 and x+y+z 1} and V2 == { (x, y, z) e ~ ! jc > 0

and y > 0 and z > 0 }. V3 is the first octant. See figure 4.
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FIG. 3. - Blow up X in (1,0, 0).

FIG. 4.

Each point of vl B ~ 0} enters the first octant V3 and never leaves it for

t - +00. This follows immediately from the expression of X. Consider
the function G(x, y, z) = x + y + z. Since

 VG(,r, y, z), X(x, y, z) ) = y + z + x2
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the positive orbit of a point of V1 B { 0 } intersects V2 once. Conversely,
consider the negative orbit { L,) f  0 } of a point r E V~. Put

£ . T/,.B _ -v- I ..~- 1 - n

.-........- """"’4.""""’’’’’’------ ‘,.~, .. ~ J L --, ..&#x26;. s...1..~,..__J -.---...... ---"’’’’’’’’’0 ---- --------------- 
~_.

If T(u) _ - ’JJ, then necessarily lim u) = 0. If T(v) > - ex) then

r) leaves V3 in negative time in some point, say,
’B1 i n t ~ - r.- 1,; , 

a point v E V2 to the point of Vi where the negative orbit through v hits Vi
or to 0 if lim v) = 0. Certainly ViB { 0 } since the positive
orbit of each point of V1B{ 0 } hits V2. Since V2 is compact and since V1B{ 0 }
is not compact, necessarily h(V2) = V1. Hence there must be a point in V2
tending to 0 for t - - 00.

(1 . 3) QUESTIONS. - I don’t know whether this vector field X possesses
an orbit tending in a C~ 1 way to 0.

I generalize this question : does there exist a germ in 0 E [R3 of a Cx
vector field satisfying a xojasiewicz inequality without an orbit tending
to 0 in a C° way? in a C~ I way? (in positive or negative time).

§ 2 . Examples of vector fields having a Coo
one dimensional invariant manifold.

A very general observation from the chapters III and IV is :

(2.1) CONSEQUENCE OF THE PROOF OF THE MAIN THEOREM. If X E G3
leaves a direction D formally invariant (that is: invariant by the oc jet)
and if X is non-flat along D then there exists a C x one-dimensional invariant
manifold x tangent to D. D

If we consider germs in 0 E [R3 of vector fields satisfying a Mojasiewicz
inequality, it hence suffices to look for conditions which guarentee the
existence of a formally invariant direction. In general it may be a difficult
task to investigate whether a given vector field has a formally invariant
direction. Some tools for this can be : apply the normal form theorem (which
we will do in some examples hereafter); or: try to blow up the vector field
until you find a singularity having a formally invariant direction by the
normal form theorem. An important result in this sense is :

(2.2) THEOREM [B. D. ]. - If X E G3 satisfies a ojasiewicz inequality
and if A := DX(0) has eigenvalues 0, i i~. - i i ( i E (1~ B ~ 0 } ) then X has a C x

3. n ~-1 y~b.
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one-dimensional invariant manifold D tangent in 0 to the rotation axis
of etA, t # 0. Moreover there exists a cone of finite contact around D in
which we have situation II. A or II. B of the main theorem (1.2.1).

In the same spirit we can apply the normal form theorem to other types
of singularities with nonzero 1-jet. For many cases the result is well known,
but let us list them for the sake of completeness :

(2 . 3) MORE EXAMPLES. - Let X e G, Xi = DX(0).
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Proof. 2014 Denote
_ _ . 

(~ ~ 1

where A, are real constants (zero is allowed). Put

r~ _ rv i

where h > 2 (see formulation of normal form theorem (I. 1 21 )). Let us
also denote, for h >_ 2, 0  j  h, 0  i _ j :

i ms is a oasis ior n .

After a trivial calculation one finds that

T I B

where

So D has a diagonal matrix with respect to this basis.
On Hh we put the standard inner product with respect to this basis.
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For example 1 we see that O? c002 ~ 0. so e002 ~ Im D. Take

as complementary space (Im D)1; an element of (Im D)1 cannot

contain the terms e001 = zh 2014 nor e002 = zh 2014 since
3.B’ ~y

Hence in the normal form the z-axis is formally invariant.
For example 2 the same reasoning applies; for example 5 we see that

ehn3 E Im D and we can follow an analoguous reasoning. A similar
method works for examples 3, 4, 6.
Next we calculate that

so S 1 has a matrix of the form

where A is an upper triangle matrix with zero diagonal elements (so A
is nilpotent). Then one easily calculates that S 1 must be nilpotent.
So for examples 7, 8, 9 we can write

where D is semi-simple and Si is nilpotent.
The fact that Im D c Im [X 1 - ]~ implies, in the same way as above,

the results claimed in examples 7, 8 and 9.
Concerning example 10 we find that the matrix of S2 is of the form

where B is an upper triangle matrix with zero diagonal elements. So 83
has a matrix

r .. - vi /~ ~)

and one easily calculates that S3 must be nilpotent.
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As [X 1, - ]~ = D + S3 again 1m D c 1m [7(1, - Jh and the same

reasoning as above can be made.
For examples 11 and 12 we find that

, ~ ’B

so e001, e002~ Im [Xi, 2014 ]h and we can reason like before. D

(? . 4) REMARK. - In case j1X(0) = 0 there is, as far as I know, very
little known on normal forms. But as already said, blowing up may sometimes
help. This is the case for a C x gradient vector field X = grad f : F. Takens
showed me, using a blowing up argument, that 0 then X has
a ex invariant manifold, in all (finite) dimensions.

In example (1.1) 0 was not an isolated zero of the first nonvanishing jet.
Even the assumption that 0 is an isolated zero of the first nonvanishing jet
(which implies that the radial eigenvalue in a singularity of X IS2 x {0} is

nonzero) is not enough to have an invariant direction :

(2.5) EXAMPLE. - Let

Observe that 0 is an isolated zero of J2X(0). No orbit of X can tend to 0
in a C2 way

Proof - a) Blow up X in the x-direction :
i a ~ ,

i

nas just one singularity m (U, UJ.
Blow up Xx in the x-direction :

and observe that

has no singularities.
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b) Blow up X in the y-direction :

and observe that

has no singularities.
c) Blow up X in the z-direction :

~

nd observe that

has no singularities.
Now we can conclude just like in example (1.1). D

(2.6) .REMARK. This example has orbits tending to 0 in a C~ way.
This can be seen from the expression is a hyperbolic expansion.

(2. 7) SOME FINAL REMARKS. - a) Concerning the main theorem (1.2.1):
when X is analytic, it is not necessary that (one of) the obtained invariant
manifold(s) is also analytic, as was pointed out to me by the referee: for

X = x - + (y - z2 a + z"2014 all the invariant directions tangent to( Y ~ 
OZ 

g

the z-axis have an oo jet in 0 of the form

b) Concerning proposition (V . 2 .1) about C° equivalence with standard
models: I presume (but cannot prove) that « C° equivalence » can be
replaced by « C° conjugacy ».
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