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ABSTRACT. - We derive a lower bound for the number of intersection

points of an exact Lagrangian embedding of a compact manifold into its
cotangent bundle with the zero section. To do this the intersection problem
is converted into the problem of finding solutions of a Hamiltonian system
satisfying canonical boundary conditions. The dynamical problem is then
solved by global variational methods on a Hilbert manifold.
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RESUME. - Soit M une variete differentiable, compacte et connexe,
T*M -~ M son fibre cotangent, 6 : M ~ T*M la section nulle, M -~ T*M
un plongement lagrangien. Cet article demontre que cp(M) n a(M) contient
du moins c(M) points, ou c(M) est la catégorie cohomologique de M.
Dans le cas M = Tn, tore à n dimensions, ce resultat avait ete conjecture
par Arnold et demontre par M. Chaperon.
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I. INTRODUCTION AND STATEMENT
OF THE MAIN RESULTS

I.1. Lagrangian embeddings and Hamiltonian systems.

Let M be a compact connected differentiable manifold and iM : T*M -~ M
its cotangent bundle. Denote by s : M -~ T*M the zero section and let
~ = s(M). On T*M there exists a unique 1-form ~,, called the Liouville-form,
such that for all 1-forms ~3 on M considered as maps M --~ T*M.
The associated 2-form is called the canonical symplectic form on
T*M. An immersion ~ : M -~ T*M is called « Lagrangian » if = 0.
If ~*~, is exact we call it « exact Lagrangian ».

DEFINITION 1. - A Lagrangian embedding ~ : M --~ T*M is called
« nice » if

(i)  is exact.
(ii ) There exists a differentiable [o, 1 ] x M ~ T*M such

that 03C6({0} x X) == X, 03C6(1, .) = 03C6 and 03C6(t, .) is a Lagrangian embedding
for all te [0, 1 ].

In order to give the statement of the main result we use the notion of
cohomological category.
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409LAGRANGIAN EMBEDDINGS

DEFINITION 2.. The cohomological category of a topological space X,
denoted by c(X) is the maximal number k such that there exists a ring R
and cohomology classes x. e R), n( j) &#x3E; l, for j = 1, ... , k - 1,
such that

If there exist arbitrarily long products of the above type one puts c(X) = co,
and if X = f~ one define -c(~) _ ©. :

The main result is the following :

THEOREM 1. - Let ~_ : M -~ T*M be a nice Lagrangian embedding.
Then n E contains at least c(M) points.

Let us state a theorem which implies Theorem 1. Denote by

a smooth- map with compact support and let h* = h*(t, .. ). We introduce
the associated (exact) Hamiltonian vectorfield Xt by

and study the time-dependent Hamiltonian system with boundary condi-
tions

We have

THEOREM 2. - Let h* be as described above. Then (HS) possesses at
least c(M) different solutions.
That Theorem 2 implies Theorem 1 was observed by M. Chaperon,

who proved Theorem 2 for the special case M = T", which has been conjec-
tured by Arnold [2]. The more general statement in Theorem 1 had been
conjectured by M. Chaperon [5 ]. In order to reduce Theorem 1 to Theo-
rem 2 we need the following lemma due to Chaperon ( [5, 0 . 4 . 2 Theorem
or (for the case M = Tn ) 6, Lemme 2 ]).

LEMMA. - Let ~ : M -~ T*M be a nice Lagrangian embedding. Then
there exists a smooth map h* : [o, 1 ] x with compact support,
such that the points in n E are in bijective correspondance to the
solutions of (HS), where Xt is the time-dependent Hamiltonian vector-
field associated to h*.

1 . 2. Sketch of the proof.

Following the ideas of M. Chaperon we reduce Theorem 1 to Theo-
rem 2. The problem to find solutions of (HS) is variational (the well-known
degenerate classical variational principle). In order to give a good varia-
tional formulation fix a Riemannian metric on M. Using the cano-
Vol. 2, n° 6-1985.



410 H. HOFER

nical map TM ---~ T*M : jc 2014~ ~ x, . ~ the symplectic structure on T*M
induces oneon TM. Therefore, without loss of generality, we may assume
that x = X t(x) is a Hamiltonian system on TM defined by a smooth map
with compact support, say h : [o, 1 ] x TM -~ [R.

Denote by A the Hilbert manifold consisting of absolutely continuous
curves q : [o, 1 ] --~ M with square-integrable derivatives. Moreover denote
by LA the vector bundle over A consisting of L2-sections along Hi-curves.
Let 7T : A be the canonical projection. Define a C1-map ’P x :
LA --~ f~ by

where q = The solutions of (HS) are exactly the critical points of ~’x .
is a bounded perturbation So one might expect that the behaviour

of is similar to that of ~I’ as far as critical points are concerned. The
first indication that this is true is the fact that 03A8 and 03A8~ satisfy the so-
called Palais-Smale condition. On the other hand 03A8 is of class Coo and
the linearisation at a critical point has an infinite positive and negative
Morse-index. This implies that passing a critical level one has to attach
infinite-dimensional cells which are invisible from the topological point
of view. Clearly this will cause some difficulties. This difficulty with Morse
theory or more generally with variational techniques for Hamiltonian
systems is of course not new and well-known. One should mention here
that in the framework of convex Hamiltonian systems a Morse theory,
due to I. Ekeland [21 ], exists, which however cannot be applied in our case.
Now let us have a look at ~F. Its critical points are exactly the constant

maps t -~ Om E TM, m E M, where Om denotes the zero-element in TmM.
In the following we shall identify M with the zero section in TM and TM
with the constant curves in LA. Define the sets

We have

Moreover ~(q) -~ -~ ~o and ~(- q) -~ - ~o as ~ q ~2 --~ + ~ . This

shows that we have a « hyperbolic structure ». A feature already clearly
exhibited m the seminal paper by Conley and Zehnder [7], where for
the first time a global problem of symplectic geometry on a manifold was
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solved by means of a classical variational principle in the loop space over
the manifold. This hyperbolic structure will be preserved under the per-
turbation 03B1~. The natural procedure to find critical points of 03C8~ would be to
apply the minus-gradient flow (which we assume to exist) LA x ~8 -~ LA :
(x, t) -~ x * t to the set S 2 and to show that the infinite-dimensional
intersection problem has a solution for every t &#x3E; 0. Then
the number c given by

would be a critical level, since the Palais-Smale condition holds. A more
sophisticated procedure, taking into account the size of the intersection,
would give at least c(M) critical points.
What we have just described will be in fact the underlying idea of our

procedure. However, there are several underlying difficulties. The study
of the intersection problem S2 * t n leads to a fixed point problem.
In order to show the existence of fixed points one needs topological tools,
which however are only applicable if some form of compactness is available
in the problem, for example if the- fixed point set is compact. Unfortunately,
this cannot be shown. The reason for this is the fact that the gradient of r:1oo
is not small as far as compactness is concerned: the vertical component
of the gradient will not be compact (in local coordinates). To avoid this
difficulty one approximates r:1oo by functionals an, which have in some sense
a compact gradient. This approximation will be carried out in III. 4 and IV.
Instead of one studies the functionals = ~I’ - an. The question of
course is how good is the behaviour of described by the behaviour
of the family of functionals (~n ). Here, an abstract critical point theorem
proved in chapter II. (Theorem 3) reduces the study of ~~ essentially to
the study of a single ‘~n. Having this abstract result we apply the procedure
outlined already for ’I’~ to the functional ~’n (for some n large). It turns

out that the corresponding intersection problem S2 * t n 0 can be
studied by converting it to a fixed point problem for a fibre-preserving
map in some infinite-dimensional vector-bundle over M, where the maps
in the fibres are compact. Hence the topological machinery is applicable.
In order to carry out the conversion intersection problem - fixed point
problem for a compact map, one derives a representation for the flow
associated to which relates it in some sense to the flow of the unperturbed
problem. The representation for the flow and some compactness estimates
will be derived in chapter V. Our procedure shows as in [7] quite clearly,
in fact in contrast to the coercive closed geodesic problem, that for the
variational problems for Hamiltonian systems only the topology of the
underlying manifold itself is reflected in the topology of the critical points.
It also shows that these can be found by studying the gradientflow in relation
to the hyperbolic flow of the unperturbed problem.

Vol. 2, n° 6-1985.
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13 Concluding remarks.

The first who employed global variational methods to solve global
problems in symplectic geometry were Conley and Zehnder [7], in their
astounding solution of Arnold’s Conjecture on the number of fixed points
for symplectic self-maps of Tori. Their method was adapted by M. Cha-
peron [5 ], to solve our Theorem 2 for the case M = Tn and to prove Theo-
rem 1 for Tn. Motivated by [7] Weinstein proved Theorem 2 for all compact
manifolds M, requireing however the C1-smallness of h* [19 ]. From that
point of view we find in fact not a new phenomenon, but we remove this
smallness-condition imposed by Weinstein. Other related results are

concerned with fixed point theorems for symplectic maps on compact
manifolds. For example, Fortune and Weinstein [12 ], show that a sym-
plectic map P"C homologous to the identity has at least n + 1
fixed points. Floer [Il ], recently proved that a symplectic map M -~ M
homologous to the identity, where M is a compact Kohler manifold with
a vanishing second homotopy group, Abelian Holonomy, and non-posi-
tive sectional curvature, has at least c(M) fixed points. Fortune and Wein-
stein extend Conley and Zehnder’s idea and lift the problem into an Eucli-
dean space invariant under symmetries. Then they use different methods
in the spirit of [4 ] [14-I S ]. Floer carries out a nonlinear variant of the Lia-
punov-Schmidt reduction. The obtained finite-dimensional problem is

then solved in the spirit of [7].
Now a few remarks concerning the method employed to solve Theo-

rem 2. The first who used the classical variational principle to study Hamil-
tonian systems in the large was P. Rabinowitz [20 ]. His ideas were later
on abstracted, extended and simplified (see for example [3 ] [4 ] [14 ] [l.~ ]).
Our approach here is motivated by the results in [3 ] [1 S ]. In fact, as in
this papers we attack the variational problem without carrying out a
finite-dimensional reduction, except at the very end where we have to
carry out some reduction-not in the variational problem, but-in the
fixed point problem representing the intersection problem for the sets Si 1
and S2. This is in contrast to the reductions which have been carried out
in [~] ] [7] ] [1I ].

II. AN ABSTRACT CRITICAL POINT THEOREM

We shall give an abstract result concerned with the behaviour of a
functional and certain approximations.

_ 

DEFINITION 3. - Let (L,(., .)) be a connected metrically complete

Annales de l’Institut Henri Poincaré - Analyse non lineaire
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Hilbert manifold and E C1(L, R). An N-family for is a sequence
of maps ’Pn : L -~ R, such that

(i ) E for all n 

{ii ) For all sequences L, xk --~ x, and i~ ~ 

nk ---~ + oo, we have Moreover, ~~(x) = 0 implies
0 and 0 implies ~~(x) = 0.

(iii) If for some sequences L, nk+ 1 &#x3E; nk, we have

[[ ([ -~ 0 and -~ d, then (xk) is precompact.
In the above definition of course ~Pn denotes the gradient and L is equipped

with the metric dL : L x L -~ f1~ derived from (., .) in the usual way.
Let (’Pn) be a N-family for and let 03B2 : R - tR be a smooth map such

that

. (~ is monotone decreasing (not necessarily strict).

. {3(s) = 1 for all s  1 and f3(s) = for all s &#x3E; 2.

We introduce vectorfields Gn : L ~ TL by

Clearly the Gn are smooth. Since )]  2 we have global existence
for the corresponding flows ~n : L x f~ -~ L defined by

In order to simplify the notation we shall write

Denote by CL the set consisting of all closed subsets of L.

DEFINITION 4. - The Lyusternik-Schnirelman category on L is a map

satisfying the following
(i ) cat ((9) = 0 .
(ii ) cat (D) = (k E ~I if there exist k open sets U 1, ..., Uk in L, each

contractible to a point in L, such that their union covers D, and D cannot
be covered by a collection of k -1 contractible (in L) open sets.

(iii) cat (D) == oo if there exists no finite open covering as above.
One calls cat (D) the Lyusternik-Schnirelman category of the set D in L.

We have the following result.

THEOREM 3. - Assume ~ ~ E C~(L, 0~) and (~’n ) is a Fl-family for ~’ x .
Suppose SI and S2 are closed subsets of L such that for some number d E R,
d&#x3E;O

Vol. 2, n° 6-1985.



414

for all n E Define maps in : CL -~ by (n E i~ )

and assume

for all n E N for some N Then has at least N critical points with
corresponding every levels in the interval [ - d, d ].

Index maps like the in were introduced by Benci [4], and in a weak
form by the author [14 ], to overcome the difficulties of the infinite Morse-
index.

Let us collect first some properties of cat and the index maps in. Let D,
E E CL.

. If D c E then cat (D)  cat (E).

. If H : [o, 1 ] x L -~ L is continuous and H(0, .) = Id and H(t, . )
is a homeomorphism for all t E [o, 1 ] then cat (H( ~ t ~ x D)) = cat (D)
for all t E [0, 1 ].

. If cat (D) &#x3E; 2 then D contains infinitely many points.

. If D is compact then cat (D) is finite and there exists an open neigh-
bourhood U of D such that cat (cl(U)) = cat (D).

. If D c E then in(D)  in(E).

. in(D u E)  in(D) + cat (E).

. in(D *n s) &#x3E; in(D) for all s E R + .

The above properties are trivial consequences of the definitions of cat
and in.
Now define for n E N andjE {1, ..., N ~.

Let us show

for all n E ~I. If D E CL and in(D) &#x3E; 1 we infer from the definition of the

category that D m Si 1 4= 0. This implies 
’

for all n E On the other hand since in(S2) &#x3E; N &#x3E; 1 we conclude for n E ~l

1, ... , N ~

Hence combining (3) and (4) and using the monotonicity of in we find (2).
Eventually dropping some of the and making some renumbering we
may assume that lim"~ + ~ c/n) ==: c~ exists for all j e { 1, ..., N }. Clearly
we must have
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We shall show the following

(6) If c~ == ... == for some k ~ ~ 0, ..., N - 1 ~ then the set

Cr ~P~(~) = 0, = c~ ~ has at least category k + 1 in L.
In particular this implies that the c~ are critical levels for ~’ x . Since

the (’~n) are a (~-family for ~F~ condition (iii) implies that Cr is compact.
Assume cat (Cr)  k. We shall prove (6) by deriving a contradiction. There
exists an open neighbourhood U of Cr such that cat (cl(U)) = cat (Cr).
Clearly if Cr == ~ we have U = ~. Define

and

Then cl(V) c U and dist (aU, V) &#x3E; p.
Next we shall show

(8) There exist so &#x3E; 0, T &#x3E; 0, and no &#x3E;- 1 such that ]) &#x3E; i for all

xeLBV with ’Pn(x) E ] provided n &#x3E; no or n = + ~o.

Arguing indirectly we find sequences (xe) c LBV, (ne) c ne  ne+ 1,
with

and

By (iii ) (xe) is precompact. Hence eventually taking a subsequence we
may assume xe ~ X E LB V. By (it) 03A8~(x) = cj and 03A8’~(x) = 0 giving a
contradiction. Hence (8) must hold for all natural numbers n &#x3E; no for

some no E Using (iii), eventually replacing so and T by smaller numbers,
we find that it also holds for n = + oo. Now fix s &#x3E; 0 such that

Following the arguments given in [22] ] one easily obtains

(10) For all x E LBU such that

Now we find n 1 &#x3E; no such that for all n &#x3E; n 1 and all 1, ... , N ~
we have

Vol. 2, n° 6-1985.
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is ’contained in = j, ... , ~ + k.
In fact { 12) follows immediately from (it) and (iii ). We find a set D E CL,

i"(D) ~ J -+ k
and 

- 

..

Define D = DBU. By the previous discussion we have using (10~

By the definition of in and this implies

On the other hand we infer

Hence

which contradicts (14). This proves (6). Now (6) implies the following:
If all the c~ are different we have N different critical levels and conse-

quently at least N different critical point. On the other hand, if two numbers
c~ and Cj,j =~= j’, coincide the corresponding critical set has at least category
two and therefore contains infinitely many critical points.

III. NOTATIONS AND PRELIMINARY RESULTS

In this chapter we shall introduce the Hilbert and Banach manifolds
which will be used in the proof of the main results. In general we shall
use the notation in Klingenberg’s closed geodesic book [16], we also
borrow some results from A. Floer [11 ], who was the first to study a related
variational problem in this general setting. Further we study certain fibre-
preserving maps in vectorbundles over spaces of curves. The main part,

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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however, will be the study of the behaviour of compact subsets of fibres
under ,transport. (for example, parallel transport). Finally; we introduce
a family of smoothing operators which make the compactness concept work.

III. l. The spaces of HI-curves and corresponding vectorbundles

We equip the compact-connected manifold M with a Riemannian metric
~ . , . ~ : TM and denote by TM, T.M -~ M the tangent
bundle. Moreover; we denote by exp : TM ~ M the exponential map
associated to the Riemannian metric on M. By . A we denote the
set H 1 [0,1 ], M) consisting of absolutely continuous curves q : [o, ~ ] --~ M
such that

We call E(q) the energy of q. Further let C be the Banach manifold
consisting of all continuous maps q : [0,1 ] -~ M. We equip C with the
metric

There is a standard metric on TM derived from ( . , . ) and the associated
Levi-Civita connection K, turning TM into a Riemannian manifold. Namely

For q E A we define

We equip TqA with the structure of a Hilbert space by defining the inner
product

Here Vx denotes the covariant derivative along the curve q associated
to K, which is almost everywhere defined. It is well-known that
TA = can be canonically identified with the tangent space of
A [16 ] [9 ]. Therefore the notation is justified. We have a canonical embed-
ding p : M -~ A by p(m)(t ) = m for all t E [o, 1 ]. To simplify notations
we shall write m for p(m) and M for p(M) if there is no danger of confusion.
We denote by B --~ M the pullback of the tangent bundle TA -~ A

viap. ~c~ possesses an important smooth sub-bundle ~cM : B° -~ M, where B°
is the kernel of the smooth fibre-preserving map over M defined by

Vol. 2, n° 6-1985.
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Here, of course, we consider B to be TA |M. The vector bundles 03C00M and 03C0M
possess smooth Riemannian metrics induced from the inner product
( . , . )~. We can equip TqA with a different inner product

Denoting by Lq the complection of TqA with respect to the norm ~.~
associated to (., .) we obtain a Hilbert space. It is well-known that

LA = carries in a natural way the structure of a smooth vector-

bundle over A and moreover ( . , . ) defines a smooth Riemannian metric
for the bundle 7r : A.
We introduce a continuous map ~ ~ ~ ~ ~ : TA - [? by

In the following we need several standard estimates (see [16 ])

for all x e TA. Moreover for all q E A we have the estimate

Denote A x A 2014~ R the metric induced by the Riemannian
metric ( . , . ’)A : TA +Q TA -~ By a result in [16] ] we have the estimate

Using the compactness of M the Ascoli-Arzela-Theorem can be applied
to conclude from (5) and (6) that the embedding (A, d~) c.~ (C, dc) is compact
Before we give some canonical charts for the manifolds just introduced
we state a simple interpolation inequality which will be very useful later on.

for all x E TA. The proof of (7) is very simple. Fix to E [o, 1 ] such that
~ Then

Integrating over [o, 1 ] gives (7).
To introduce local trivializations denote by eXPm: M the

restriction of the exponential map. For q E A we define expq by

This map is injective on an open neighbourhood V of O E TqA and can be
used to define the differentiable structure on A. Hence

Annales de l’Institut Henri Poincaré - Analyse non linéaire



419LAGRANGIAN EMBEDDINGS

is a diffeomorphism, where U is a suitable open neighbourhood in A.
In fact, we can take rather big neighbourhoods V. For example V can be
taken of the form { x E x(t ) E W for all t E [0, 1 ] }, where W is an open
neighbourhood of the zero-section of TM - M (see [16]). Note that by
the compact embedding C already finitely many of such « big »
neighbourhoods will cover a bounded set in A. -
For m E M and x e TmM let

denote the linearisation of expm at x. Then with expq as defined above we
define a map ~q by

where

Similar maps give the local trivializations of the tangent bundle of A.
In order to give local trivializations of ~M and ~cM let Vm c= TmM be an
open neighbourhood of zero in TmM such that expm : Vm --+ U establishes
a diffeomorphism for a suitable U c M.
Define

Clearly a local trivialization in ~M is given by

It is well-known that the bundle ~ : LA --~ A possesses a connection

K : TL --~ LA induced by the Levi-Civita connection K on LM [16 ] 1. 3 . 4.
Using K and n we can turn LA into a Hilbert manifold by defining

for a, b E TxLA. The metric dL : LA x LA -~ R induced by (.,. )L turns LA
into a complete metric space. Hence (LA, (.,. )L) is a metrically complete
Hilbert manifold. Recall the definition of the bundle ~cM : B° --~ M. Denote
by B~ for some p &#x3E; 0 the subset of B° consisting of all x E B° such that
II x I~n  p (again we consider B ~ TA ~~).
Vol. 2, n° 6-1985.
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LEMMA 1. - There exists p &#x3E; 0 such that the map

induces a diffeomorphism ofB~ onto an open neighbourhood of 
in A.

Proof - Fix Om E B°. We show that TmA is an iso-
morphism. In local co-ordinates we have with

the following representation of the local representative of ~

Here, of course, x TmoA. 
.

Since

we infer

Clearly this means that 0) establishes an isomorphism

Therefore, is a diffeomorphism for all m E M. By the inverse func-
tion theorem 03A6 establishes a diffeomorphism from an open neighbourhood
of 0,~ onto an open neighbourhood of p(m) for all m E M. By the compactness
of M we find p &#x3E; 0 and U c A open, Ao c U, such that the map

is onto and a local diffeomorphism. Therefore it is enough to show that ~ ~ B~
is injective in order to complete the proof of Lemma 1. By the previous dis-
cussion the number of points in B°)-1 (q) is finite for all q e U and constant.
The injectivity will follow if we can show that (~ ~ B°)-1(rr~)= ~ om ~.
Arguing indirectly assume for some x =~= 0~, x E B~

for all fe [0,1]. Then x(t) = x0 for [0.1] for some constant curve
~i

in B0. Since x0dt = 0m for some M we must have x0 = 0m. Hence

which implies m = m giving a contraction. 0
The vectorbundle B° -~ M will be crucial in the construction of

the intersection pairs.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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III.2. Covariant derivatives and curvature.

Denote by 6 : LA the smooth fibre preserving map defined by

It is well-known that 6 is the covariant derivative of the smooth section 3 :

~ -~ LA defined by

see [1 t5 ], Proposition 1.3.5.
Let G denote one of the bundles TA or LA over A. If ~ : A --~ G is a

smooth section and x E TqA we define the covariant derivative of ~ at q E A
in the direction of x by

where

Clearly we have

if ~ is a section of LA -~ A.
Since we consider T(TA) in a natural way as a subset of T(LA), for-

mula (4) remains valid for sections of TA - A. Now let G1 and G2 denote
bundles of type LA -~ A or TA --~ A and assume G2 is a fibre-
preserving map, we define the covariant derivative at q in the direction
x~Tq by

where ~ is a smooth section of A.
Denote by R : TM 0 TM TM the curvature tensor of

(M, (.,.)). For q E E TqA we define a map

LEMMA 2. - DX~ = R(x, q), where x E 
A proof can be found in [Il ].
Before we proceed further, let us note that if p 1 : G2 and p2 :

G2 --&#x3E; G3 are fibre-preserving maps, where the Gt are as before we must
have

Vol. 2, n° 6-1985.
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LEMMA 3. - For all 6 induces a surjective Fredholm operator
03B4q : Tq ~ Lq of index = dim (M). Moreover if S is a bounded
subset of A there exists a positive constant c = c(S) such that

for all xeTA Is such that x is (.,. )-orthogonal to kern (b~), where q = xx.

Proof - Arguing indirectly we find a sequence (xj c TA such that
qn = 03C0xn eS and

Since (qn) is bounded we may assume, without loss of generality that

where qo E C. Taking a chart centred at some q E A close to qo we have

for all n large enough. It is easy to see that ( ~~ ~" must be bounded.
Hence possesses a weakly convergent subsequence in This, of
course, implies that qo is, in fact, an element in A. Let q = qo. We have

Using the notation in [16 ], p. 7-22, (9) looks, in local co-ordinates, like

Since G(~") -~ G(0) = Id, D20q(~n) -~ 0 and -~ 0 uniformly
as n - + oo we obtain -

Since Tq is compactly embedded in Lq and ~ Xn = 1, we infer even-
tually taking a subsequence

Hence by (11) ~~ = 0. Therefore ’1 e kem = kern (V). On the other
hand, we know that

Using the standard L2-theory for ordinary differential equations we
find for all n~N a unique solution ~n on H1( [0, 1 ], TM), 
such that
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Let xn = Then 03B4xn = 0. Hence ( [ = const. Since j
is bounded we find that

in Hence eventually taking a subsequence of (ijn) we may assume

Taking the limit in (12) gives

By the uniqueness of solutions for given initial value we must have
j = r~. We have by our assumption

Hence in local co-ordinates

giving a contradiction. [j
Denote by A : LA --~ LA the fibre-preserving map defined by

LEMMA 4. - A is smooth.
The easy proof is left to the reader.
Denote by ) the norm of the operator A : LqA. By Lemma 3

the map

maps bounded sets into bounded sets. Denote by A* : LA -~ LA the
L-adjoint of A, i. e.

for all (x, y) E LA +Q LA. Clearly A* is smooth and [[ = II Aq ( ~.

LEMMA 5. - Let x E LqA and assume

for all y E TqA for some constant c independent of y. Then x E TqA.
This is an easy consequence of the H = W result of Serrin and Meyers [1 ].
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- 111.3. -Compactness and transport equations.

The compactness concept we shall introduce in this section is promted
by the corresponding theorem by M. Riesz in LP. The following results
provide the necessary background. Given q E A we denote by

for t, s E [o, i ] the parallel transport along q. Since q is of class H~ the
standard L2-theory of the Cauchy problem Vqx = 0 then shows uniqueness
and existence of We define a one parameter family of
fibre preserving maps Z(r) : LA -~ LA by

where x E TqA. Since [ ) and TqA is dense in LqA it determines
a unique map LA. Note that

for all T E [ - 1, 1 ] and all (x, y) E LA 0 LA. In fact we calculate assuming
that T &#x3E;_ 0

Moreover,

LEMMA 6. - For a bounded set S in Lq the following statements are
equivalent

(i ) S is precompact
(ii ) Given any E &#x3E; 0 there exists pe (0, 1 ] such that )[ Z(i)x - x II  E

for all x~S and 03C4|  p.

For the moment we shall postpone the proof. Later on we shall reduce
Lemma 6 to a standard result in LP-theory. Next we give a useful estimate
relating to the TqA-norm and the quantitative expression in (ii ).

LEMMA 7. - For all xETA we have the estimate
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Proof - Assume first t and t + r E [0, 1 ]. Since

we infer

Hence

Consequently

Hence with AT == { t E [0, 1]|t + 03C4 ~ [0, 1 ]} and BT == [0, 1 ]BAt we infer

This yields (4). D

and f3 : lR --+ [- 1,1] ] smooth. Denote by ~~, the

covariant derivative along the curve § in the bundle LA -~ A associated
to K. Consider the differential equation

We denote by C(si, so) : -~ the induced linear « transport

map ». Clearly we have the estimate

for the operator norm.
The following result is crucial.

Vol. 2, n° 6-1985.



426 H. HOFER

PROPOSITION 1. - Let 03C6 be as defined above. We have the following
estimate

for all x E all i E [ -1, 1 ], for a suitable constant M only depending
on (M,  . , . ~ ). Here s 1, so denotes the number

Proof - Define a map ~ : R x [o, 1 ] -~ M by ~(s, t ) == 
First we shall prove the Proposition under the additional assumption

that $ is smooth. Denote for to, tl E [o, 1 ] and so, sl E R by

the parallel transport along the path t -~ $(so, t ). Moreover denote by

the map induced by the differential equation ~~-~.,to)a = (3(s)a where ~’( . , to)
denotes the partial differential with respect to s. Clearly we have for 

Moreover we compute for and with the

abbreviations

the following

Denote by ~t and ~S the partial derivatives with respect to t and s, res-

pectively. We infer

Here R denotes the curvature tensor. Now using the variation of constant
formula we deduce
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Here

Now combining (10) and (12) yields

Now let x E Then

Now by the previous discussion we infer if [0, 1 ]

Here M -is ~a constant only depending on (M,  . , . ~ ) such that

Further we have used that parallel transport preserves the inner product
on M.
We introduce the abbreviation

Hence we have provided that t + i E j0, 1 ]

If t + i ~ [0, 1 ] we find simply
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combining (14) and (15) yields

Now applying Gronwall’s Lemma yields for a suitable constant M* only
depending on (M, ~ . , . ~ )

where

Now taking a suitable constant M large enough only depending on
(M, ~ . , . ~ ) we obtain

as claimed. Next we remove the assumption that the induced map
~ : ~ x [o, 1 ] -~ M is smooth. Assume we can show for given sl, so,

say s 1, the existence of a sequence of maps such that

for all se S1] and that moreover the induced maps 03C6n : [so, s1] x [0,1] ] ~ M
are smooth. Clearly so ] -~ [ ~, s 1, so ] as n - + oo. Moreover.
given we find (xn) a LA, xn E such that B

By the continuous parameter dependence theory we infer further that

C(s 1, where Cn is the family of linear maps corres-
ponding to Since for fixed i E [ -1, 1 ]Z(i) : LA -~ LA is continuous
( we leave the proof as an easy exercise to the reader) we infer

which completes the proof. So it remains to show the approximation
result. 0

exists a sequence ( ~n) c C1([R, A) such that ~’(s))  = for all

s E ] and ~,~ : " [R x [o, 1 ] -~ M is smooth. - t2

Proof - We embed (M, ~ . , . ~ ) isometrically in some and denote
the image by M. Denote by H the space H~( [0, 1 ], f~m). We can consider §
as a map in C1(R, H). Let U c Rm open, M c U be a tubular neighbourhood
of M and denote by p : U --~ M the projection. Let
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Then Hu is an open subset of H. Moreover p induces a smooth map p :
Hu --~ A by p (q) = p o q. If we approximate in C~( [so , s 1], H), the compo-
sition of the approximation with p will be an approximation of c~ with
image in A. By the previous remark we have only to show the following :
given a map ~ E C1(1R, H) and numbers so, s 1 ; so  s 1, E &#x3E; 0 there exists

such that

and $ is smooth.
This approximation can be carried out using mollifiers. First we define

by

Then one mollifies in the t-variable. One gets for E &#x3E; 0

where 03B8~ denotes the standard - mollifier say . = 1 ~ 03B8(t ~), and

/*oo

Here C &#x3E; 0 is a constant such that 0 == 1. If a ~ 0 03C6~2 ~ 03C6 in C1.

Moreover f ~ 03C6~2(s)(t) is of dass C~. Next one mollifies 03C6~2 in the s-variable
getting ~~eC"([R,H), where ~’~) is of class C". Moreover ~ -~ ~
as ~, (5 -~ 0 in C~ on [so , ~i].
Now note that

Clearly 03C6~,03B4 is smooth. D

Proof of Lemma 6. Since A is connected we find a smooth path § :
[0,1] ] ~ A such that 03C6(0) = m, 03C6(s1) = q. Here m~M is an arbitrarily
fixed element. Applying Proposition 1 to the parallel transport B :

LqA we find a suitable constant a &#x3E; 0 such that
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Hence the statements in Lemma 6 are equivalent provided they are
equivalent in Lm for B-1(S). In LmA we have for all x

Define x : (~ -~ T~M by x(s) = x(s) if s E [0,1] ] and 0 otherwise. By
a result in [1 ], Theorem 2 . 21, we have the following equivalence for a
bounded set S of LZ(o, ~ ; f~n)

(17) S is precompact iff for all ~ &#x3E; 0 there exists p &#x3E; 0 such that

Taking tR" ^_~ TmM we get a criterion on LmA. A straightforward calcula-
tion shows for t E [ - 1,1].

Hence (17) implies our assertion. D

DEFINITION 5. - A subset S c LA is called uniformly fibre-compact
(u f p c) if the following holds:

(i) S is bounded.
(ii ) Given any 8 &#x3E; 0 there exists p E (o, 1 ] such that )) Z(i)x - x ~ ~  8

for all x~S and T ( _ p.
If, in addition, S is closed we call S uniformly fibre-compact (u f c).
In the following we denote by [ ] : the map defined by

DEFINITION 6. - A smooth map D : LA -~ LA is called fibre-compact
if the following holds :

(i ) D maps bounded sets into bounded sets.
(ii ) There exists a number o-e(0,l] ] and a monotone increasing map

D R+ ~ R+ such  for all x~L
and re [ - 1, 1 ].
For example the fibre-preserving map A : LA -~ LA is fibre compact.

In fact, by Lemma 3 we find a monotone increasing map A such that
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Combining this with Lemma 7 we find for a suitable monotone map

LEMMA 9. - Assume (qk) c A is a sequence such that (Oqk) c LA is

uniformly fibre-compact. Then (qk) is precompact.

Proof - We have to construct a convergent subsequence of (qk). Since
(Oqk) is bounded, we find eventually, taking a subsequence, that

Taking local co-ordinates based at q let

This is well-defined provided k is large enough.
Using the notations in [16] we have

Define a family of curves [o, 1 ] -~ A by

Note that (~k) is bounded in So by the special form of the ~k the
numbers [~k, 0, 1 ] will be uniformly bounded. Moreover we must have
~k -~ 0 uniformly.
We carry out the parallel transport along ~k denoting by xk E LqA the

image of aqk. By Proposition 1 there exists a constant c2 &#x3E; 0 such that

for all and all i E [ - , 1 ]. Here, of course, the constant bounding
aqk is contained in Cz. Since (~qk) is (u f p c) we infer that (xk) is pre-

compact in LqA. Eventually, taking a subsequence we may assume

for some x E In local co-ordinates the transport equation is given by

Since 03BEk ~ 0 uniformly and sk &#x3E; 1, we obtain ( 0393q((1 - s)03BEk)(03BEk, a) ~ _ ~k~ a ,

where 8k --~ 0. For ak being the local representative of x~ this implies

Since 6~ --~ a, where o- is the representative of x, we infer r~k -~ 6. Hence

uniformly.
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Therefore

This implies

Next we study the question how uniformly fibre-precompact sets are
mapped by certain operators LA --~ LA.

LEMMA 10. - Let f : TM -~ TM be a continuous fibre-preserving
map and assume there exists a constant C &#x3E; 0 such that _ C(l + 
Then the map f : LA -~ LA defined by ](x)(t) = f (x(t )) is continuous
and maps uniformly fibre-precompact sets into uniformly fibre-precompact
sets.

Proof The continuity is a well-known fact from nonlinear analysis.
For the second assertion note that we can restrict ourselves to a chart
since a (u f p c) set can be covered by finitely many « big » exponential charts.
So assume 

, ,

where expq : V -~ U is a local co-ordinate system on A. Moreover we
may assume V is convex. Let (03BE, ~) E V x Lq be the representative of some
x E S.

Let

In view of the technique used in the proofs of Lemma 6 and Lemma 9
it is clear that the set Sq is precompact. Denote by fq the representative of f
Then

It is enough to show that pr2 ~(S)) is precompact (using Propo-
sition 1 and the previous remark). Let c pr2 o fq(~q 1(S)). Taking

= pr2 ° where r~n E Sq we infer eventually taking a subsequence
In --~ ~ uniformly and l1n --~ r~ in LqA for some ~ E V and 11 E LqA. Hence
~n ~ pr2 ° fq(03BE, ~). This proves Lemma 10. D

III.4. A family of smoothing operators.

One of the difficulties in the proof of the main result is the fact as

already explained-that the vertical component of the gradient of x x
is not compact. The idea is now to replace by a~ = Fn, where the F"
are the smoothing operators introduced below.
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Define for all n a fibre-preserving map Fn : LA  TA by

for x E LqA and all y E TqA.

LEMMA 11. - For all n Fn is a smooth map. Moreover we have

If we consider F~ as a map LA it is fibre-compact and we have the
estimates

The proof uses Lemma 7 and is straight forward.

LEMMA 12. - c LA is (u f p c) and (nk) c ~I, nk ~ + oo, then
is (u f p c). Moreover if xk ~ x then Fnkxk ~ x in LA.

Proof - Let qk = Since (xx) is bounded (qk) is bounded. So we find
finitely many exponential charts exppi : Vpt -~ Upi such that Vp= is convex

in TpA and the family cover the whole sequence (qk).

Clearly it is enough by the previous construction to show that the sub-
sequence of (Xk) consisting of those elements that the corresponding qk

lie in a specific chart exp(1 2 vpi) is (u fp c). So we may assume without

loss of generality that (qk) c exp(1 2 V for some convex open zero-neigh-bourhood V in TqA. ~ ~
We carry out the parallel transport along the curves -~ exp~ ( 1- s)(~k).

Note that (~k) is bounded in TqA. Denote the image of Fnkxk by zk E LqA.
If we can show that (Zk) is precompact we are done by Proposition 1.

So we shall show that has a convergent subsequence. Eventually
taking a subsequence of (qk) we may assume qk --~ qo in C for some qo E A.

Denoting by zk the local representation of Fnkxk we have for all y E TqA
using the notation in [16 ].
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where ~k is the local representative of xk. We have 03BEk ~ 03BE0 uniformly.
Denote by xk the image of xk under the parallel transport along 03C6k. By
our assumption we may assume eventually taking a subsequence xk ~ Xo
for some xo E L~A. In local coordinates

where

Since 03BEk ~ 03BE0 uniformly we infer that ~k ~ ~0, where ~0 = ao(0),
Xo = and ao = ao). By the definition of Fn it is clear

that ~03B4Fnkxk~ ~ nk~xk~.
Hence, taking the limit in (4) for fixed y E TqA we infer

Since is bounded and dense in LqA we deduce that (5) holds
for all y E This implies

Moreover This implies

On the other hand !! _ ~ ~ This implies

Therefore

This implies

Now

where

Since 03BEk ~ 03BE0 uniformly and zk ~ ~0 we obtain zk ~ Zo. where

and

This shows that is precompact. Hence (Fnkxk) is (u fp c). The proof
of the second part is implicitly contained in the previous arguments. The
details are left to the reader. D
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LEMMA 13. - For fixed x E LqA ; y, z E we have the identity

Moreover, the following estimate holds for some constant M only depen-
ding on M

Proof - (6) follows from a straightforward application of the cova-
riant derivative Dy to the definition of Fn, (1), using Lemma 2. In order
to prove (7) let z = (DyFn)x. Moreover note that there exists a constant
c &#x3E; 0 only depending on M such that R(a, b, c)  b ( ( c ( for all
(a, b, c) E TM 0 TM Q+ TM. We obtain from (6)

Applying the interpolation inequality III .1 (7) to Fnx and z we infer

and with

Combining (8)-(10) gives

IV. CONSTRUCTION OF A N-FAMILY

In this chapter we shall introduce the ’fin described in 1.2. Here the

smoothing operators Fn and the compactness concept introduced in III

will be crucial.
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The set-up.

We introduce a functional ~’ E C°°(LA, R) by

For a E TxLA we compute

We introduce the smooth gradient vectorfield ~’ : LA -~ TLA by

Let

and put y = (Tn)a and z = Ka for some a E TxLA. We find using (2)

This is true for all y E TqA and all z E LqA.
Hence

and

Using the fibre preserving map A* : LA --~ LA we deduce from (5)

Further (5) implies

Define a smooth fibre-preserving map ~ : T*M -~ TM by f = ~ ~( f ), . ).
Introduce a smooth map with compact support h : [o, 1 ] x TM -~ R by

where h* is the map introduced in Chapter I before Theorem 2. We define
a map a ~ : LA ---~ R by

Then E C 1 (LA, but in general it has no better regularity properties.
However, if we consider TA : TA - R for the differentiable structure
on TA it is of class We define now an : LA - R by
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Since Fn : TA is smooth we infer an E C°~(LA, !?). Finally, define
for n~N~

Clearly ~n E C°°(LA, M) for n E With a E TxLA we have

Further

where H : LA -~ LA is defined by

and

Hence

IV. 2. Compactness estimates.

We shall now derive some estimates which will be used two times.
In the proof that the family (~’n) constructed in the previous paragraph
is in fact an N-family and in the representation result for the gradient flows.

LEMMA 14. - There exists a constant H only depending on M and h
such that

for all x e LA, where q = The estimate is true for all n if we put
TO 1 = 0.

Proof From IV 1 (12) we infer

for a suitable constant H &#x3E; 0 since h has compact support. Moreover
using IV. 1 (12) again, combining it with Lemma 13, we infer for arbitrary
a~TxL
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Hence, eventually taking a greater constant

Taking a = yields (1). The claim for n = oo is trivial. D
For the following we define smooth maps Bn : LA for n by

where A was defined in 111.2. Denote by A* the LA-adjoint of A, i. e.

Further denote by Q : LA -~ LA the fibre-preserving maps which
induces on each fibre the orthogonal projection onto the orthogonal space
in LA of kern (5). Recalling that kern (~) was a smooth bundle over A
we infer that Q is smooth. However, this property is not needed for the
following estimate. We have

Since this is true for all y E TqA we infer that A*x e where q = 
by Lemma 5. Hence

Moreover ~ A*q~ _ ~Aq ~. This of course implies that A* is fibre-compact
, 1

with factor 
2, 

i. e.

LEMMA 15. - For all n E ~I Bn is fibre-compact. Moreover there exists
a monotone increasing map B : R+ ~ R+ independent of n~N such that

for all x E LA and i E [ - 1, 1 ].

Proof In fact, using Lemma 7, Lemma 13 and Lemma 14, we infer
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Next we estimate

This implies

Now we use the interpolation inequality III.1 (7) and find using that

Therefore

Combining (4) and (7) yields

Note that the expression on the right hand side is independent of n E I~ .
Now for a suitable monotone increasing map ~cB our assertion follows.

D

IV. 3. Verification of N-family properties.

The following result is one in the key steps of reducing Theorem 2 to
Theorem 3.

PROPOSITION 2. - There exists no &#x3E;_ 1 such that an N-family
for ~’ ~ .

Proof - We have to check (i)-(iii) of Definition 3. Clearly (i ) holds by
our construction. Next we prove (ii ). Let (xk) c LA such that x

and (nk) c with nk ~ + ~o. Define = Id. By Lemma 12 we have

Fnkxk -~ x. This implies -~ « x (x).
Hence

Next assume ~’ ~(x) = 0. We have
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In order to show that the left hand side tends to zero we have only to
show that the second term on the right hand side tends to zero. Using
Lemma 13 and Lemma 14 we infer for a suitable constant H only depending
on M and h

Since x clearly Ik + IIk -~ 0. Since (xk) is bounded in LA

and nk -&#x3E; + oo we infer that IIIk --~ 0. Similarly if ~~ --~ 0 we

infer

~03A8’~(xk) IlL ~L + 1 Ik + Ilk,

By our assumption Ik --~ 0 and similar to the argument used before
IIk ~ 0. Hence )) ~ 0. Since xk ~ x this implies 03A8’~(x) = 0.
The proof of (ii ) is complete.

Next we show that (iii) holds. Let (xk) c LA and (nk) ~, nk+ 1 &#x3E; nk,
such that

With qk = 03C0xk we infer

and

Define dk := ~ aqk - FnkKHFnkxk ~. By Lemma 14 we have

By Lemma 3 there exists a constant c &#x3E; 0 only depending on H such that
for all x E TqA with (  2H + 1 we have

provided x 1 kern (5).
We have

Therefore

Hence for a suitable constant c &#x3E; 0 only depending on H and therefore
only depending on M and h we find
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provided k is large enough since dk -~ 0. Clearly if a priori nk &#x3E; no for

a suitable no only depending on M and h (11) will imply that the sequence
( ~ ~ is bounded. For the following we fix such a no. Hence if ~i 1 &#x3E; no
and I I I L ~ 0 then ~qk~2 + I xk~2) is bounded. It is easy to

see that this implies that (xk) is bounded in LA. So for the following let
(nk) c &#x3E; no, and c LA such that ( -~ 0.

Define

We have ~bkIIA ~ 0. Hence taking the inner product with Az where
z E we obtain

Since (~ ~qk( ) is bounded we find by Lemma 3 a suitable constant c &#x3E; 0
such that

Moreover

Since (xk) is bounded using (13) and Lemma (15) we infer that (xk) is

(u f p c). If (nk) becomes stationary for k large enough we conclude from
Lemma 9 and Lemma 11 that (qk) must be precompact. If nk -~ + oo we

infer from Lemma 12 that (Fnkxx) is (u f p c). Hence by Lemma 10 
is u f p c). Finally that implies that is (u f p c). Hence by (14)
(Oqk) is (u f p c) and by Lemma 9 (qk) is precompact. Hence (qk) is pre-
compact and c). Therefore (xk) is precompact. D

V. ESTIMATES AND REPRESENTATIONS
FOR GRADIENT FLOWS

V . 1. Parameterised families of transport equations
and a compactness estimate.

In the following we may assume, without loss of generality, that the
number no introduced in Proposition 2 is equals one. We fix for the follow-
ing a n E No = ~ ~ ~ 0 ~ where we denote by ~Fo the functional ~P. Denote by

the global flow corresponding to the differential equation
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where /3 is as described in 1.2. We define a smooth vector bundle y : :

A x A where the fibre over (q2, ql) E A x A is given by

Here the right hand side denotes the Banach space of continuous linear
operators Lq2A. Further we denote by

the smooth map defined by

We define a LA x R - J~ such that y o ~cn = K by

where s~, s 1 ) E is defined by the Cauchy problem

LEMMA 16. is smooth.

Proof - Let us first prove the assertion for the case that s1| is
small. Then the problem is localised in a co-ordinate chart.

Let expq : V~ -~ Uq and V q -~ U Ii be co-ordinate systems such
that for some 8 &#x3E; 0 we have

We assume without loss of generality that sl _ s2 .
Let

Define a map G by

Clearly G is smooth. Then (3) written in local co-ordinates corresponds
to the operator differential equation

By the continuous and differentiable-parameter dependence theory
for ordinary differential equations, we infer that the map which asso-
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ciates to x LqA x (sl - E, x (s2 - ~, s~ - E) the unique
linear map 6 E LqA) such that 6 = a(t), = Id and 03C3 satisfies (4)
is a smooth assignment. Hence n is smooth provided |s1 - s2| is small.
In the general case we can write s &#x3E; t

where s = sN &#x3E; &#x3E; ... &#x3E; sl &#x3E; so = t. The previous argument applies
to all si _ 1 ) provided |si - Si - 1 ( is small enough. Hence t )
is smoothly depending on x, s, t in the general case. D

can be considered as a smooth parametrisation of certain linear trans-
port equations of type (3). The importance will become clear in the
next section.

Since s)  1 for all x E LA, s E fF~ we immediately obtain
denoting by )( . (( : ~ -~ the operator norm the following estimate

Define a smooth fibre preserving map

for n~N and

where B" was introduced in IV. 2 (2).

LEMMA 17. - For all n e No there exists a monotone increasing map
-~ ~~ such that

for all x E LA and re [ - 1,1].
Proof - We have using the compactness estimates for A* (before

Lemma 15, Lemmas 11, 13 and 14.

where o- : f~ + -~ (~ + is monotone increasing. Hence for suitable monotone
increasing maps 

which is the desired result. D
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V . 2. The representation proposition.

Define for n E No a map

by

PROPOSITION 3. - For all n E No we have the following represen-
tation for En

where

Moreover there exists a monotone increasing map vn : (F~ + --~ (~ + such

that 
’

for all x~L, s~R, and z E [ - 1,1].

Proof 2014 We calculate

Now using IV. 1 (12) and IV. 2 (2) we infer

Hence

Moreover

This implies
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Combining (5), (6) and (7) gives

Now applying the variation of constant formula to (8) using the defi-
nition of fln gives

This proves (2). This representation together with the fact that K., s)
is uniformly fibre. compact as we shall prove, will be one of the key ingre-
dients of the proof. Next we prove (4). We have

Observe Hence

Using (10) we can apply Proposition 1 and find for a suitable constant M
only depending on M

Now using Lemma 17 and the fact that Z( -1 )x = 0 (in LA) we infer

Now let us investigate the expressions [~(x *n ( . )), s, h j and [x * n h]. We
have by (10)

Moreover

Hence
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for all t, s E Further

Hence

for all t, s E (~. Now using the definition of [x *n h ] we infer

Using the definition of ~,~ (. )), s, h we infer

Hence combining (15), (16) and (12) we find for a suitable increasing
map v n : (~ + ~ ~ +

( 1 ~) ~ x, *n h) - x~ h)Dn(x *n h) ~ ~ C vn( L-x J + ~ S I ) ~ ~ ~ It.
Now we combine (9) and (17) and find

completing the proof.

VI. CONSTRUCTION OF INTERSECTION PAIRS
AND COMPUTATION OF INDICES

In this chapter we shall construct the sets Si, S2 occurring in the abstract
critical point theorem and compute the indices in for relevant sets

VI. 1 Intersection pairs.

Recall the definition of the bundles 7rM : B - M and B° -~ M
introduced in III. 1 as well as the contents of Lemma 1:

(1) U
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is a diffeomorphism onto an open neighbourhood U of Ao = where

p : M --~ A was defined by m --~ m.

We find a number 8 &#x3E; 0 such that the set

is completely contained in U. We denote by the boundary of At::

Denote by LA x (~ ~ LA : (x, s) -~ x ~ s the flow associated to the
differential equation

Define subsets of LA x I~ +, f~ + - [0, + oo), by

For fixed define

Moreover define

Note that

(6) follows immediately from the fact that the map t -~ o t ) is decreasing
for all x E LA and that c: ( -’lJ, 0), c f0, + x ). Moreover
the set Ao = p(M) is the set of stationary points of the flow.

LEMMA 18. - Given any constant c &#x3E; 0 there exists to &#x3E; 0 such that
for all t &#x3E; to the following holds

Proof - Clearly the second statement in (7) is trivial. In order to prove
the first statement concerning Q we note that

In fact, arguing indirectly we find otherwise a sequence (qn) c 
such that
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Hence is (u f p c) and therefore (qn) is precompact. Eventually taking
a subsequence we may assume qn -~ qo in A = ’0- Hence

qo E Ao = p(M) giving the contradiction

Applying Proposition 2 to ’P (consider 03A8 = 03A8~ with h = 0) the following
compactness property holds (Palais-Smale-condition).

for some sequence (xn) imply that (xn) is precompact.
Since ~’ has only the critical level 0 we find a constant r &#x3E; 0 such that

Hence there exists a to &#x3E; 0 such that (7) holds. D
Now let h be the Hamiltonian with compact support from Chapter IV.

Since h has compact support we have for a suitable constant c &#x3E; 0

and all n E N. This implies with the to &#x3E; 0 given in Lemma 18 corresponding
to c

for all t &#x3E; to. For the following let

In the following section we shall study the problem (S2 *n t) n Si.

VI.2. Fixed points of fibre-preserving maps and index maps.

Fix n E We have to calculate

for all and to show that c(M) is a lower bound for the expression
on (1). This will imply that in(S) &#x3E; c(M). Now consider the intersection
problem

Using the fact that s --~ ~,~ s) is decreasing and the estimate ( 11 )
in IV. 1 we infer

Using the maps Eo, En and J1n introduced in V. 2, we define a conti-
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nuous family of fibre-preserving map(A~ x R+ considered as bundle
over A~).

by

Clearly E~ is continuous by the properties of Eo, En, }lo, Ko and Kn.
Moreover

Moreover the following statements are equivalent

and

and

(6) is equivalent to 0 = ,un(( - to, 0, s)En(( - to, s).
Hence (6) is equivalent to

That is

Multiplying this with 0, to) gives an equivalent equation to

which the representation result Proposition 3 can be applied. In order to
get (7) we use the identity ,uo( - oq, o, to) ~ - to, 0)
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However (7) is equivalent to

Hence we have proved the equivalence (i ) ( _ ) (ii ). (5) follows from this
equivalence together with (3). D
For the following define an : At; x R+ - LA by

LEMMA 20. - For all n E I~ there exists a monotone increasing map
Kn : (~ + --~ f~ + such that

for all [ - 1, 1 

Proof 2014 We have for t E ]

Now observe that (  c for a suitable c for all q E AE by the construc-
tion of Ae (Recall A, c: U = ~(B°)).
Now combining Proposition 3 (4) and Proposition 1 we conclude that (9)

holds for all te ] for a suitable Kn. Similarly we can estimate o- for
t &#x3E; to. The details of the proof are shorter but similar to that of Propo-
sition 3 and are left to the reader. D

Recall the definition of the bundles the sets Ag and and the
contents of Lemma 1. We define an open subset V of B~ by

Moreover define

Note that in fact bd(V) is the boundary of V in B°. We consider V,
V = V u bd(V) and bd(V) as bundles over M. Define U = ~(B°). Denote
by cxi 1 the diffeomorphism defined by

Moreover define the map oc2 by

where the are the maps already used in 111.1. Here we identify of
course again B and TA Define a : B~ QQ B° --~ LA (u to be the compo-
sition of and a2

03B1 = 03B1203B11 .
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It turns out that a is a diffeomorphism. In fact, it is enough to show that a~
is a diffeomorphism. Clearly is smooth. The inverse is the smooth map a2
defined by

Define a map Sn by

where B° denotes the complement of the zero section in B°, by

Here pr2 : B~ Q+ B° -~ B° denotes the projections onto the second factor.
Clearly En is continuous. Moreover it preserves for fixed the fibre
over M. In fact, if = m we find s)) == ~(x). Hence

Further, in order to see that bd(V) x (~+ is mapped into B° we observe
that En(x, s) = 0 is equivalent to s) = 0. This implies ~(~c) ~ 
Hence x ~ bd(V). In the following we shall relate the cohomological pro-
perties of the zero set of 8n(, s + to) for some fixed s e to the cohomo-

logical properties of the set (S2 *n s) n Si. We need

LEMMA 21. - The map y : --~ B° defined by

maps (ufp c) sets into precompact sets.

Proof - Let D c LA be (u fp c) and (zn) c y(D). We have to show
that (zn) possesses a convergent subsequence. Let (xn) c D such that

2n = y(xn). Since 5 : B0 ~ L|0 establishes a diffeomorphism it is

enough to show that ( yn), yf~ = possesses a convergent subsequence.
Let qn = and mn = Eventually taking a subsequence we
may assume

We have

Then

Clearly ~-1(qn) ~ ~-1(q) uniformly for the metric i. e.
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uniformly in t E [Oz 1 ]. This implies For n E N we
define a smooth path an : [o, 1 ] -3 A by

We have an(s) _ - ~mn(( 1 - s)~ -1 (qn ), ~ -1 (q,~ )). Since the parallel
transport along a curve is only depending on the curve but not on its parame-
terisation we can apply Proposition 1 to find that the images xn by the paral-
lel transport along an of xn build a (u fp c) sequence. Since c Ao = M
(we identify Ao and M, B and TA 1M) we infer by an easy application of
Proposition 1 by the compactness of M that is precompact. (If(Yn) c LA
is a sequence such that (~{ y,~)) converges in A and ( yn) is (u fp c), then 
is precompact; this is an easy exercise using Proposition 1). Hence even-
tually taking a subsequence we may assume

where

We have

Hence

We introduce local co-ordinates based at m E M by (for n large enough)

Denoting by cn the solution of

with

we have

By the special form of the an it is clear that an(s) and converge uni-

formly for s E [o, 1 ] to a(s) and a’(s) respectively given by a(s) = expm ( a(s))
and

Hence a(s) _ (1 - s)0 ~(~). Since ~ in L~A where x==OJO, ~)
we infer that r~n converges to some ’1 in LmA where 11 = c(0), ij = c(l) and
c’(s) = - rm(a(s))(a’(s), c(s)). Now
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This gives

Therefore

Since 03BEn ~ 03BE uniformly where 03BE represents q and ~n --&#x3E; n in Lm.
Inn - m we infer yn - y in LA (M . D

LEMMA 22. - Define an : V x -.~ B° by

Then 03C3n maps sets of the form V x [o, s ] into precompact sets.

Proof By the definition of 0396n we have

By Lemma 21 an maps bounded sets in V x into (u f p c) sets. By
Lemma 22 y maps (u fp c) sets into precompact sets. D
Denote by M the complexification of the tangent bundle.

For j E 7L we define smooth maps

by

It is well-known that the family (e J ) (’ denotes the derivative) is a total
subset of L2(o, 1 ; C). Since all ej have mean value 0 the span of the ej will
be a subspace of the H1-functions with mean value zero .Since the deri-
vative-map induces a linear isomorphism we infer that (ej) is a total subset

r r~ i

in {x~H1([0, 1], C)| .0 x = 0 . For we introduce smooth sub-

bundles B0k ~ M of B0 ~ M by

B0k = { x~B0| x = 03A3kj= -kajej, where aj~TM Q+ i TM and aj=a-j

(~~ the complex conjugate) } .
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Clearly the maps in B~ are real valued. A local trivialisation, say centred
at m E M, is given by

where Vm c TmM is open such that the restriction of the exponential
map gives a difTeomorphism onto exp (V). Note that

Denote by Pk : B~ -~ B~ the fibre-preserving map which projects on
each fibre in B° orthogonally onto the corresponding fibre in B~. Here,
of course, « orthogonally » referes to the TA-inner product. (Recall that
we identified B° c B ~ TA ~M.) It is easy to see that Pk is smooth and that

LEMMA 23. - Given any and an open neighbourhood W of
the set

(which is allowed to be empty)
there exists a ko E N such that for all k &#x3E; ko the following holds

is contained in Vk = 

Proof 2014 We carry out the proof of (13). The proof of (12) is similar
and left to the reader. Arguing indirectly we find sequences k~ --~ + ~o,

Xj E bd(V) n and [0, so ] such that

By Lemma 21 the sequence (x~) must be precompact. Hence we may
assume eventually taking a subsequence

where s E [0, so ] and x E and moreover

However, we know by Lemma 19 that this is impossible. This proves (13)
1

LEMMA 24. Given any open neighbourhood X of ( x E V to) = 0 ;
in V the projection map ~cX :_ ~M ~ X : X -~ M induces an injective map
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H(M) - H(X) in cohomology. (to is the number introduced in
Lemma 18).

Proof - We use an approach similar to that used by Dold in the defi-
nition of the fixed point transfer, [8 ]. We find such that

F(t ) :== { x E V n B~ I t ) = 0 ~ (it could be of course empty)

is compact for all t E [0, to ] and F(to) c X. (This can be done by Lemma 22).
We have the following commutative diagram (Xk = X n B~).

where j is the inclusion and 1rx and ~k denote the projections induced from
If we can show that the map 1rt induced in cohomology is injective,

it follows from 03C0*k = that 03C0*X is injective. Hence we have reduced
the infinite-dimensional problem to a finite-dimensional problem. The
finite-dimensional vector-bundle B° --~ M is an ENRM in the sense of
Dold [8 ]. That is there are fibre-preserving maps over M :

such that ri = id and O is an open subset of x M for some 

Here, of course, [Rm x M is considered as the trivial bundle over M :

(x, m) - m. Moreover i is the induced projection. Define

where Vk = V n Bj~ and maps f by

Moreover let

If a E F(t) we infer

Hence

or equivalently

Therefore
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If we have similarly x =  t ) which implies

~)=~(-P,~~))=~M).
Therefore

and in fact f and r induce homeomorphisms

F(t) ~ F~). F(~) ~ F(t)

which are inverse to each other. This implies the compactness of F(t)
for te [0, to] and that X~ = is a neighbourhood We have

the commutative diagram

M

If we can show that (T X~)* is injective we infer from (T X~)* = r*~
that 7~ is injective. So, in order to complète the proofwe show that (r ~ X~)*
is injective. To simplify notation we shall write r = T X~. Define

F = 

Consider the following diagram. (We dénote ail inclusion maps by the
letter j, ~m x M ~ Rm dénotes the projection onto the first factor.
Moreover maps denoted by « exc » are inclusion maps inducing in coho-
mology the natural excision isomorphism.)

0} ) x ’~~"~’~ 

j 
jexc

’ 

~ 
_ 

([Rm, ~B{ 0} ) x M 

By the homotopy-invariance of the cohomology the bottom map induces
in cohomology 

d* = ~), T)* .
Hence we obtain the diagram

H((R’",R"’B{0}) x X,) 
’ 

r 
i l

/ i ~*
H((R"’,R"’B{0}) x M) 

If we can show the bottom map is injective the map (id x T)* must be
injective.
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Clearly d : (Rm, ~B{0}) x M has the form

m) = (a -  l 0 m)
where 0x denotes the zero element in .

Denote by W a compact neighbourhood of F such that W c Vk. Then
N N N /v

the inclusion map (W, WBF) -~ (Vk, VkBF) will induce an isomorphism
in cohomology. For B~ being the open ball of radius p around 0 in Rm
we find for p &#x3E; 0 large enough a continuous extension e : R’" x M -~ Bp
of the map W -~ B p : (X, m) - pr 1  (of course using Tietze’s
Theorem). 

’

Define a map 

x x M) -~ x M,(~B{0}) x M)
by m) = (x - e(x, m), m) .
Note that di is homotopic to the inclusion map. In order to show that d*
is injective, consider the following diagrams where we assume that B
defined above satisfies in addition Bp x F. 

Note that in cohomology d i = j * where j :
x M, x M) - (R’" x M, (R"’B{ 0 } ) x M)

denotes the inclusion map. By the homotopy invariance and the long exact
séquence j* will be an isomorphism. Hence we obtain for some homomor-
phism ce the following diagram in cohomology.

1 
-

Hence (d 1 W)* is injective which implies the injectivity of d*. Summing
up we have shown that the map

H((M"’, R~’) ( 0 } ) x M) H((~m~ ~mB ~ ~ ~ ) x X
Vol. 2, n° 6-1985.
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is injective. Denote fl~B ~ 0 ~ ) x I~’) the natural
suspension isomorphism. Clearly the map (id x i)* is the map induced
under m-fold suspension. Therefore we finally obtain

Hence the map r* is injective. That completes the proof of the Lemma.
D

PROPOSITION 4. - For all n we have

Proof - We prove (14) by arguing indirectly. Assume in(S2)  c(M).
We find such that

Define

By Lemma 19 we have with

the following relation between D and E

By Lemma 21 the set E is compact. Hence D is compact. Clearly

and

We find an open neighbourhood W c LA of such that

We shall show that the inclusion map

cannot induce an injective map i* : H(LA) -~ H(W) in cohomology.
Assume, arguing indirectly, it does. We find Ui, ... , Uk open in LA,
k = cat (cl(W )) such that

W

Ui is contractible in LA.
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From the long exact sequence for the pair (LA, U; ) we infer in dimen-
sion j &#x3E; 0 that the induced map

is bijective. Hence any cohomology class in 1, can be repre-
sented by some cohomology class in Ud. Consider the maps

which constitutes a factorisation of the identity map of M through LA.
Hence the second map induces an injective map in cohomology

Therefore

Let vL E n(i) &#x3E;_ 1; i = l, ..., c(M) - 1, such that

Take representatives ..., i such that ,uI E Then

On the other hand by standard properties of the cup-product we have
~c E W). Since the inclusion W ~ LA induces an injective map
in cohomology we infer from the long exact sequence for the pair (LA, W)
that the map H(LA, W) ~ H(LA) is the zero map. This implies, since
,u ~ v that v = 0 which establishes a contradiction. Up to now we have
shown that in(S2)  c(M) leads to the conclusion that there exists a certain
neighbourhood W of such that the inclusion map W ~ LA cannot
induce an injective map in cohomology. Define a map x by

Consider moreover the factorisation of the map

by (i denotes the inclusion, f3(x) = 

where a(q) = q(0). Let us show that x and X are homotopic if £ &#x3E; 0 is small

enough (which we may assume, recall V = ~-1(A~)). Clearly if £ &#x3E; 0 is
small enough we have

for where ~£ ~ 0 as £ -~ O. We can embed i : M -~ (~’~
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for some m and take a tubular neighbourhood of M in Let y denote
the projection of the tubular neighbourhood onto M. Then the

defined by (t, x) --~ + (1 - t )i( x(x))) gives a homotopy. This
implies for the induced maps in cohomology

If we can show that is an isomorphism we find since i* is not injec-
tive that x* is not injective. Consider a : A ~ M and define

Then a is continuous and a deformation retraction onto Ao, which is
homeomorphic to M. Therefore a* is an isomorphism. Next consider
7c : LA -~ A and define

Denote by Eo the zero section of LA. Hence the inclusion map of ~o -~ LA
induces an isomorphism in cohomology. Since Eo and A are naturally
isomorphic we find that ~c* is an isomorphism.

Therefore 
,

does not induce an injective map in cohomology. This, however, contra-
dicts Lemma 24 and Proposition 4 is proved. D

VII. PROOF OF THEOREM 2

We give now the proof of Theorem 2. Clearly it will essentially consist
of collecting the results we have already proved.

In IV we have constructed a ~-family (~n) for C1(LA, (~), where

In VI. 1, 2 we have constructed the sets

and

and proved that

for all n E N. By Theorem 3 the functional ~’~ has at least c(M) critical
points. If x is a critical point of ~x we have (q = nx)
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and

This implies x E TqA. Integrating by parts yields

for all y E TqA. Therefore

and

Denote by cr : TM -i T*M the natural isomorphism for Riemannian
manifolds

Then the pull back co of co via 03C3 is given by

(see [16 ], 3 .1. 3). Hence we have for all y E TqA

(Here we have used the definition of h). Define y : [o, 1 ] -~ T*M by
;~(t ) = a(x(t)). We infer

That is

Since x(0) = 0, x(l) = 0 we infer y(0), y(l) E E. Therefore we have found
c(M) different solutions for y = y(0), I]
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