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ABSTRACT. - In this paper we consider the following problem:

where Q c Rn is a bounded domain and 
We prove the existence of a nontrivial solution of (1) for any ~, &#x3E; 0,

RESUME. - Soient Q un sous-ensemble ouvert borne de Rn et À un nombre

positif, le but de cette note c’est de montrer que le probleme suivant :

admet, au moins, une solution non triviale, si r~ &#x3E; 4.
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0 . INTRODUCTION

Let Q c (~n, n &#x3E; 3, be an open bounded set with smooth boundary.
Consider the problem

where ~, is a real parameter and 2* = 2n/(n - 2) is the critical Sobolev

exponent for the Sobolev embedding Ho(~) c~ LP(Q).
The solutions of (0.1) are the critical points of the energy functional

Since the embedding Ho(S~) ~ is not compact the functional
does not satisfy the Palais-Smale condition in the energy range ] - oo, + oc [
(cfr. remark 2 . 3 of [4 ]).

Moreover if £  0 and Q is starshaped (0.1) has only the trivial solution
(cf. [6 ]).

Recently Brezis and Nirenberg in [2] ] have proved that if n &#x3E; 4 and
0  ~.  ~,1 (~~ 1 is the first eigenvalue of - A) then (0.1) has a positive
solution. In [4 ] Cerami, Fortunato and Struwe have obtained multiplicity
results for (0.1) in the case in which £ belongs to a suitable left neighbour-
hood of an arbitrary eigenvalue of - 0394 (cf. also [3 ]).

In this paper we prove the following theorem:

THEOREM 0.1. - If n &#x3E; 4 the problem (0.1) possesses at least one tion
trivial solution for any ~, &#x3E; 0.

A weaker result related to theorem 0 .1 has been announced in [5].
We observe that if n = 3 and Q is a ball, Brezis and Nirenberg [2 ] have

proved that the problem (0.1) does not have nontrivial radial solutions
if 0  03BB  03BB1 4.

1. SOME PRELIMINARIES

Let [ [ ~p denote respectively the norms in and LP(Q) (1 -p  x),
and let

denote the best constant for the embedding L2*{S~).
The following lemma shows that f;~ satisfies a local P. S. condition.
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LEMMA I .1. For any i~ E ~ the functional f;~ (see (0. 2}) satisfies the

Palais-Smale condition in - x, - in the follow~ing sense:

If c  ~ and is a sequence in such that
n

J 
as m -~ ~o -~ c, 0 strongly in H - ’ (S2), then s~

(P. S.) { contains a subsequence converging strongly in 

The proof of this lemma is in [2 ] and in [4 ]. We recall that a deeper
compactness result has been proved in [7 ].
We recall a critical point Theorem (cf. [l, Theorem 2 . 4 ]) which is a

variant of some results contained in [0].

THEOREM 1. 2. Let H be a real Hilbert space and f E C1(H, f~) be a
fimctional satisfying the following assumptions:

f - u), f ’(0) = 0 for any i~ E H
( , f ; ) there exists ~3 &#x3E; 0 such that f satisfies (P. S. ) in ]0, j3 [
( f3 ) there exist two closed subspaces V, H and positive constants p, ~

such that

(i) f(u)  ~3 for any u E W
(ii) feu) &#x3E; b for any u E V, ~) u ~~ - p
(iii) codim V  + oo.

Then there exist at least m pairs of critical points, with

m = dim (V n W) - codim (V + W) .

2. PROOF OF THEOREM 0.1

Uur aim is to define two suitable closed subspaces V and W, with
V n W ~ ~ 0 ~ and V + W = H, such that f’; satisfies the assumptions 

and f3) of Theorem 1.2 with - 1 
n

In the sequel we denote the eigenvalues and by M(i.~) the
corresponding eigenspaces.

Given i &#x3E; 0, we set

where the closure is taken in Ho(~).
If r &#x3E; 0 we set
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Without loss of generality we can suppose that 0 E Q and that Ni(0) c Q.
Given  &#x3E; 0 we set (cf. [2] [7])

where ~ ~ ~o (N ~ {0)), ~(x) = 1 on and

The following lemma holds :

LEMMA 2 .1. - If is defined as in (2 .1 ), then for any ,~

where Ki, K2, K3 are suitable positive constants.

Proof The proof of (2 . 2), (2. 3), (2 . 4) is contained in [2 ~, moreover
(2.5) and (2.6) can be straightforward verified.
Now we shall prove some technical lemmas. We set

The following lemma holds :

LEMMA 2 . 2. - If U E then for any ,u &#x3E; 0

Proof By the identity

(1) In the sequel we denote by a &#x3E; 0 a function  const near u = 0,
and by a function such that 0 0.
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i t follaws that

1;here 0 = 8(x) is a measurable function such that 0  e(x)  1.
By (2.9) and by (2.5), (2.6) we have that

and the lemma is proved.

LEMMA 2 . 3. - If ,u is sufficiently small, then

Proof - The evaluation (2 . ~ 1 j follows immediately by (2. 2), (2. 3)
~ &#x3E; &#x3E; d (2 . 4j.

REMARK 2 . 4. - Suppose that £ = ~,~, with ~,~ E a( - ~) and denote by P~
lie projector on the eigenspace M~ corresponding to ~.~.
we set

Let { an orthonormal family spanning M j, then by (2.5) we have

then

~ ~~1. 2, n° 6-1985.
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Moreover we have

Then by (2.14) and (2.6) it follows that

Moreover by (2.14) and (2.6) we have

Analogously by (2.14) and (2.5) we have

By (2.~5), (2.16), (2.17) it easily follows that (2.11) holds if we replace
~ with ~.

Moreover, by (2.15), (2_16), (2.17), also (2.7) holds (for  small) if we
replace ~ with ~ and with

Now we can prove a crucial lemma :

LEMMA 2.5. For ,u sufficiently small

where W = W(,u) (resp. W(~c)) if ~, ~ a( - A) (resp. ~, E a( - A)).

Proof - Observe that if we fix u E 0, then

Then in order to prove (2.18) we need to evaluate

We distinguish two cases :
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Observe that t is bounded if 11 is small, in fact by (2. 7) and (2. 3) we get

Then by (2. 5) we have that

where ~. = max { ~.~ ( ~,~  ~. ~ .
n- 2

We set A(u -, ~c, c) _ (~. - ~,) ~ 2 ,u 4 and observe that

n(n - 2)

If 2~  2~4t2*~ 2n + 4 ~ by (2 .10)a and the boundness of t,

then, if n &#x3E; 5, by (2 .11)a, (2.21)

then, by (2. 22), the conclusion follows in the case n &#x3E; 5.

If n = 4 the proof is the same. In this case (2 . 11 )b replaces (2 11)a in (2 . 22).
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Observe that

Now the proof follows by using the previous arguments.
Proof of theorem ~. 7. 2014 If ~~o-(- A) (~ &#x3E; 0) we set V == Hi and

W = with ~ suitably small in order that (2.18) is verified. We see
that the assumptions of Theorem 1.2 are satisfied. Obviously (/i) and

(/3. iii) are verified. Moreover (f2) is verified with 03B2 == - by lemma 1 . 1

and (With {3 = -S"~ ~ 1 / B is verified by lemma 2.5. ~
Finally observe that if u~H1, then

if II u II = p with p suitably small.
Hence by (2 . 27) also ( f3 . ii) is verified. Since dim V n W = 1 and

V + W = then by Theorem 1. 2, we deduce that problem (0.1) has
at least one non trivial solution.

If £ E c-( 2014 A) we set W = with  suitably small in order that (2.18)
is verified and, by repeating the above arguments, the conclusion follows.
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