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ABSTRACT. - We study the Cauchy problem for a class of non-linear
Schrodinger equations. We prove the existence of global weak solutions
by a compactness method and, under stronger assumptions, the uniqueness
of those solutions, thereby generalizing previous results.

RESUME. - On etudie le probleme de Cauchy pour une classe d’equa-
tions de Schrodinger non lineaires. On demontre l’existence de solutions
faibles globales par une methode de compacite, et sous des hypotheses
plus fortes, l’unicité de ces solutions, generalisant ainsi les resultats connus
precedemment.

1. INTRODUCTION 
’

A large amount of work has been devoted in the last few years to the
study of the Cauchy problem for the non-linear Schrodinger equation
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where cp is a complex function defined in space time IRn+ 1, A is the Laplace
operator in ~’~ and f a non-linear complex valued function [1 ] [3 ] [4 ] [6]
[7] ] [11 ] [15] ] [2Q ]. That problem has been studied mostly by the use
of contraction methods. Under suitable assumptions it has been shown
that the Cauchy problem has a unique solution which is a bounded conti-
nuous function of time with values in the energy space, namely in the
Sobolev space H~ 

1 
= for initial data ~po E H 

1 [6]. On the other
hand the Cauchy problem for a large number of semi-linear evolution equa-
tions has been studied by compactness methods (see [12] for a general survey,
and also [9 ] [16] ] [17] ] [19 for the special case of the non-linear Klein-
Gordon equation). Here we apply the compactness method to the equa-
tion (1.1). We prove the existence of weak global solutions for slowly
increasing or repulsive rapidly increasing interactions (Section 2) and
the existence and =uniqueness of more regular solutions under stronger
assumptions (Section 3). The latter results improve previous ones [6] as
regards the assumptions on the interaction. The method of the proof
of existence follows closely [12], while the proof of uniqueness combines
a variation of the previously used contraction method with suitable space
time integrability properties of the solutions. Under additional repulsivity
conditions on the interaction one can show that all the solutions obtained
here are dispersive ([~] ] especially Proposition 5.1).
We conclude this introduction by giving the main notation used in this

paper and some elementary results on the free evolution. We restrict our
attention to n > 2 since the special simpler case n = 1 would require
slightly modified statements. We use the notation 2* = 2n/(n - 2). We
denote the norm in Pairs of conjugate indices are
written as r, r, where 2 ~ r  oo and + r -1 - 1. For any integer k,
we denote by Hk - Hk(lHn) the usual Sobolev spaces. For any interval I

of fl~ we denote by I the closure of I. For any Banach space B, we denote
by B) (respectively B)) the space of strongly continuous (respec-
tively bounded strongly continuous) functions from I to B, by B)
the space of weakly continuous functions from I to B, B) (0  oc  1)
the space of uniformly strongly Holder continuous functions from I to B
with exponent oc, namely functions ~p from I to B such that

for all s and t ~ I, and by B) the space of infinitely differentiable
functions from I to B with compact support. For any q, 1 oo, we

denote by Lq(I, B) (respectively B)) the space of measurable func-
tions cp from I to B such that [[ ~p( . ) ~ ( B E (respectively E [23 ].
If B = Lr, we denote by [ . the norm in Lq(I, Lr). If I is open we denote
by ~’(I, B) the space of vector valued distributions from I to B [13 ].
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We shall use the one parameter group U(t ) = exp (- t0394) generated by
the free equation and the fact that, for t ~ 0 and for any r > 2, U(t ) is
bounded and strongly continuous from Lr to L’ with

2. EXISTENCE OF SOLUTIONS

Before discussing the existence problem we first give some preliminary
properties of the equation (1.1) for a very general class of interactions.
We introduce the following assumptions on f :
(HI) C) and for some p, 1  p  oo, and for all z ~ C

(H2) (a). There exists a function V f~) such that V(0) - 0,
V(z) = V( z D for all z e C and f (z) = 

(b). For all satisfies the estimate

For cp E H 1 such that the energy is defined by

The assumption (H2), part (a) formally implies the conservation of the
L2-norm and of the energy for the equation (1.1).
We set q = p + 1 and we introduce the Banach space X = H~ n Lq.

The dual space is X’ = + Lq, the duality being realized through the
scalar product ( in L2, linear in 03C8 and antilinear in cp.

LEMMA 2.1. - Let f satisfy (H 1 ), let I be a bounded open interval
and let cp E L~°(I, X). Then

Let 03C6 satisfy the equation (1.1) in D’(I, X’). Then

where

Vol. 2, n° 4-1985.
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(3) For any t, s E I, rp satisfies the integral equation

where the integral is a Bochner integral in H - k, k > Max (1, 5(~)).

(4) Let in addition f satisfy (H2), part (a). Then !! ~p(t ) [ ( 2 is constant in I.

Proof - PART I . We decompose f as f = f i + f2 Where f J E ~)
and

with p 1 = 1 and p2 = p. The result follows from standard measurability
arguments and from the estimate

where q~ = p J + 1 .

PART 2. - Under the assumptions made, the right hand side of (1.1)
is in L°°(I, X’) and the left hand side is in D’(I, X). Therefore the equation
makes sense in D’(I, X’) and implies that 03C6 E L°°(I, X’). By integration and
after extension to I by continuity, qJ E X’), so that by Lemma 8 . I
in [13], cp E X) and the L°°-bound on ~ 03C6(.)~x extends to all t E I.
On the other hand, one can approximate 03C6 by a sequence { 03C6j} in X)
such that, after restriction to I, converges to ~p in L~(I, X) and converges
to cp in L~(I, X’). This implies that ~p E L2) and that tends to q in

L2) (see [22], exercise 40 .1). Taking the limit j -~ cr~ in the identity

we obtain

so that cp E ~1~2(I, The remaining Holder continuity properties of ~p
follow by interpolation between L2 and X.

PART 3. - We again approximate q by a regularized sequence {03C6j}
as in Part (2). The functions satisfy

where t, s E I and the integral is in H-k. We now take the limit j 
Annales de l’Institut Henri Poincaré - Analyse non linéaire



313CAUCHY PROBLEM FOR THE NON LINEAR SCHRODINGER EQUATION

in (2 . 9). For fixed t and s, the left hand side of (2 . 9) tends to cp(t) - U(t - 
in L2, while the right hand side tends to

in H-k. Then (2.5) follows from (1.1).

PART 4. - We again approximate qJ by a regularized sequence { 
as in Part (2). Taking the limit j --> oo in the identity

and using the fact that Re ( ~p, cp ~ = 0 as a consequence of the equation
(1.1) yields the result. Q. E. D.

The continuity properties of qJ obtained in Lemma 2 .1 make it meaningful
to study the Cauchy problem for the equation (1.1) for qJ E L °° (I, X) with
given initial data qJo E X at to E I. We first prove the existence of solutions.

PROPOSITION 2.1. - Let f satisfy (H1) and (H2). If p + 1 > 2*, assume
in addition that

for some C2 > 0 and all p E I~ + . Let to E IR and let X. Then the equa-

tion (1.1) has a solution X) n l LY)
2~~-Max(p+l,2*)

with oc(r) defined by (2 . 4), and with = Furthermore

,, , , , ,.- ... - ..- ,

for all 

If p +1 ~ 2*, assume in addition that V can be decomposed as V = Vi + V?
where Vi satisfies the estimate .

for some p’, I  p, and for all p e R + , and where the map 03C6 - 

is weakly lower semi-continuous from X to R on the bounded sets of X.
Then for all t e R, q~ satisfies the energy inequality

REMARK 2.1. - A sufficient condition to ensure the required lower

semi-continuity of the map cp -~ under the assumptions (H1)

and (H2) is that that map be convex from X to R (see for instance [5],

Vol. 2, n° 4-1985.
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Corollary 2.2). For that purpose, it is sufficient that V2 be convex from C
to R, or equivalently that V2 be increasing and convex from IR+ to [RL If

- p + 1 > 2* and under the assumptions (HI), (H2 a) and (2.10), there is
no loss of generality in assuming that

In particular the required lower semi-continuity is satisfied by V2( p)= 

Proof of Proposition 2. l. The proof proceeds in several steps. One
first solves a finite dimensional approximation of the equation (1.1),
one then estimates the solutions uniformly with respect to the approxi-
mation, and one finally removes the approximation by a compactness
argument.

STEP 1. - Finite dimensional approximation.
Let { w~ ~, j E ~ +, be a basis in X, namely a set of linearly independent

vectors, the finite linear combinations of which are dense in X. For any
we look for an approximate solution of (1.1) of the form

by requiring that ~pm satisfies the equation

for 1 K j K m, and the initial condition

with the cmk chosen in such a way that tends to rpo strongly in X when
m - 00. By the linear independence of the w/s, the equation (2.15) can
be put in normal form and by Peano’s theorem, it has a solution in some
interval ] with Tm > 0 [1 D ]. In order to prove that Tm
can be taken infinite, we next derive an a priori estimate on the solutions
of (2 .15). Multiplying by and summing over j, we obtain

the imaginary part of which yields

so that

Now

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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By standard arguments, (2.19) and (2.20) imply the existence of global
solutions of (2 .15), namely one can take Tm 

STEP 2. - Uniform estimates on ~~.
In order to take the limit m -~ oo, we need stronger uniform estimates

on which we derive from the energy conservation. Multiplying (2.15)
by and summing over j, we obtain

the real part of which yields

We now prove that

For that purpose we consider for fixed t the quantity

We estimate J(r) as

where = 1, 2, are defined as in the proof of Lemma 2 . l, part (1). Esti-
mating the first norm in the right hand side of (2. 25) by the use of (2.7),
taking the limit r -~ 0, and applying the Lebesgue theorem to the integral
over cr, we obtain (2.23). From (2.22) and (2.23), it follows that

for all t e R, with E( . ) defined by (2.3).
Under the assumptions (H2) and possibly (2.10) made on V, the conser-

vation laws (2.19) and (2.26) imply .

for some locally bounded real function M. That result follows from a
simple computation if p -~- 1  2~ (see for instance Lemma 3 . 2 in [6])
and directly from (2 .10) if p + 1 > 2*. Since II qJ 2 and E(cp) are continuous

Vol. 2, n° 4-1985.
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functions of 03C6 in X and since 03C6m0 tends to qJo in X when m - oo, (2.27)
yields an estimate uniform in m

namely qJm is uniformly bounded in X). Since f is bounded from
L2 n L~ to L2 + Lq, (2. 28) implies that is uniformly bounded in

L2 + and therefore that ~m, defined by

is uniformly bounded in X’). It then follows from the relation

that the sequence { is uniformly (in m and t ) Holder continuous in L2
with exponent 1/2, and by interpolation between (2.28) and (2.30), in Lr
with exponent a(r) for 2  ~  Max (2*, q).

STEP 3. - Convergence of a subsequence.
We now take the limit m - oo by using a compactness argument.

By (2.28), the sequence { is bounded in X), which is the dual
of L~(f~, X’), and is therefore relatively compact in the weak-* topology
of X). One can then extract from that sequence a subsequence, still
called { for simplicity, which converges to some qJ E L°°(Il~, X) in the
weak-* sense.
As a preparation to the proof of the fact that qJ satisfies the equation (1.1)

(Step 5. below), we now derive some easy consequences of the previous
convergence. Let _

(so that § E ~’( ff~, X) + H -1 )). We first prove that § E L2 + Lii)
and that tends to § in the weak-* sense in L2 + Lq). In fact,
by (2 . 28) and the assumption (HI), the is bounded and

therefore weak-* relatively compact in L2 + Lq). On the other hand,
from the equation (2 .15), we obtain for j  m and 8 E C)

Annales de l’Institut Henri Poincaré-Analyse non linéaire
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by the weak-* convergence of ~pm to rp in X), where the last expres-
sion in (2 . 33) has to be appropriately interpreted.
From (2.33) and the fact that the w/s form a basis in X, it follows that

any weak-* convergent subsequence of f f (~p,~) ~ in L2 + L4) converges
to 03C6 in D’(R, X’). Therefore ø E L2 + and converges to ø
in L2 + Lq) in the weak-* sense.

From (2.31) it now follows that X’). Together with the fact
that ~p E X), this implies, by the same argument as in Lemma 2 .1,

part (2), that cp E X) n 1 L’) with oc(r) given by (2.4).
(2~, q)

We next prove that for all t e tends to ~p(t ) weakly in X. Now
for fixed t, the sequence { is bounded in X uniformly in m by (2 . 28)
and therefore weakly relatively compact (X is reflexive). It is therefore
sufficient to prove that it can have no other weak accumulation point than
cp(t) in X. Now assume that a subsequence (still for brevity)
converges weakly to x in X. By the Holder continuity of cp and Holder
equicontinuity of qJm in L2, there exists a constant C such that

for i in a neighborhood of t (actually for all r E We can then estimate

for y > 0

Now the second term in the last member of (2.35) tends to zero when
m - oo by the weak convergence of to x in X (actually L2 would
be sufficient), the third term tends to zero when m - oo for fixed y by the
weak-* convergence of qJm to cp in X), and the first term tends to zero
with y, so that x = 

STEP 4. - Initial condition.
We next prove that qJ satisfies the initial condition qJ(to) = qJo. For

that purpose we use again (2 . 32) for some 8 C) with 0(to) = 1,
and with the integration over i now running from to to infinity. Integrating
by parts, we obtain

Vol. 2, n° 4-1985.
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Taking the limit m - oo, using (2.33) and the convergence of 03C6m0 to 03C60

in X, we obtain

where the integral is taken in X’. This implies qJ(to) = 

STEP 5. - Differential equation.
We next prove that 03C6 satisfies the equation (1.1). In view of (2.31),

it remains only to be shown = ~. Now from weak-* convergence
of to § in L2 + it follows that for any compact interval I
and any bounded open set Q c tends to § weakly in Lq(I x Q).
On the other hand by (2.30), the restrictions of the functions qJm to I x Q
are equicontinuous from I to L 2(0), and by (2. 28), are uniformly bounded
in H 1 (S~), so that, by the compactness of the embedding ofH1(0) into 
and by the Ascoli theorem, the sequence { is relatively compact in

L~(Q)). Together with the fact that rpm tends to qJ in the weak-* topo-
logy of X) and a fortiori of L°~(I, L2(S2)), that compactness implies
that ~p~ converges strongly to qJ in and a fortiori in L2(I x Q).
We can therefore extract from the sequence {03C6m} a subsequence which
converges to qJ almost everywhere in I x Q. Along that subsequence,

tends to f(qJ) almost everywhere in I x Q. Now f (cpm) is bounded
uniformly with respect to m in L2 + Lq) and therefore in Lq(I x Q).
The last two facts imply (see Lemma 1. 3, p. 12, in [12 ]) that tends
to weakly in x Q) along the previous subsequence. Therefore

in I x S~, so that _ ~ since I and SZ are arbitrary.

STEP 6. - Conservation laws.
Since qJ satisfies the equations (1.1), the conservation of the L2-norm

(2.11) follows from Lemma 2.1, part (4). In order to prove the energy
inequality (2.13), we need some additional convergence properties of ~pm
to cp. We now prove that qJm tends to qJ strongly in LY) for all compact I
and all r, 2 ~ r  Max (2*, q). In fact for each t, weak convergence of

. 

to in X implies weak convergence in L2. On the other hand,

by the conservation of the L2-norm and the fulfillment of the initial condi-
tion. When combined with weak convergence, (2. 38) implies strong conver-
gence in L2 for each t, which together with the strong equicontinuity (2 . 30)
implies uniform strong convergence in L2 in compact intervals. Conver-
gence in Lr) for other values of r follows as usual by interpolation
between L2 and X.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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We finally prove the energy inequality (2.13). For that purpose, we take
the limit m -~ oo in (2.26). The right hand side tends to since ~"~
tends to ~po strongly in X. In the left hand side, the contribution of Vi 1
(if p + 1 > 2*) or of V (if p -+- 1  2*) converges to its value for cp(t) by
the strong convergence of to cp(t) in 2*) or
in L2 n Lp + 1 (if p + 1  2*), while the contribution of V 2 (if any) and the
kinetic term are weakly lower semi-continuous in X. The result then follows
from the weak convergence of to in X. Q. E. D.

3. UNIQUENESS OF SOLUTIONS

In this section, we prove that, under stronger assumptions on the inte-
raction, the solutions obtained in Section 2 are unique. We replace (HI)
by the following stronger assumptions.

where pi and p2 satisfy the following conditions:

REMARK 3.1. - The maximum value of p2 - 1 for n  3 is 4/(n - 2) as
expected. The minimum value of compatible with it is pi 2014 1 = 4(n - 2)/
(n(n + 2)) for 3  n  6 and p 1-1= 4(n - 4)/(n(n - 2)) for n > 6. Clearly (H3)
implies (Hl) with p==p2 and the condition p -1  4/(~2 - 2) contained
in (H3) implies that H~ 1 c L~ so that X = H~ 1 and X’ = 
The proof of uniqueness proceeds by a contraction method. In dimen-

sion n > 3, it requires some space time integrability properties of the
solutions, which we derive below. We first recall the corresponding pro-
perties for the solutions of the free equation. That result is an extension
of a result of Strichartz along the line followed by Pecher in the case of
the Klein-Gordon equation ( [21 ] [14 ]). We use the notation co = ( - ~)~ ’ .
Vol. 2, n° 4-1985.
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Proof By the Sobolev inequalities, it is sufficient to prove that for

cp E L 2, 0 ~ 5(r)  1 and 2/q = b(r), E Lr) and

By density, it is sufficient to prove that result for ~p E and by duality
and density again, it is sufficient to prove that

for any where  . , . , n + 1 denotes the standard duality in n + 1
variables. Now 

I , B I

The last term in (3.7) is estimated by

Using (1.2) and the Hardy-Littlewood-Sobolev inequality in the time
variable ( [18 ], p. 117) we can continue (3 . 8) as 

’

which implies (3 . 6) and thereby completes the proof. Q. E. D.

We shall need the following estimate on the interaction term in the
equation ( 1.1 ).

LEMMA 3 . 2. - Let with f (o) = 0 and |f’(z)  C Z 
for some p,  00. Let 1  2  r  oo and 0  a~  1. Let
either p = 0 or 0  p  ~,. Then

Annales de l’Institut Henri Poincaré-Analyse non linéaire
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for all 03C6 E H1 n Hf with

The constant C is uniform in l, r, ~., r~ (and p if p ~ 0) provided those variables
stay away by a finite amount from the limiting cases in the inequalities

Proof - The proof requires the use of Besov spaces. We refer to [2 ] for
various equivalent definitions and basic properties thereof. We shall use
the following definition. Let 1  r, m  oo and 0  ~,  1. The Besov

space is the space of all qJ E Ll for which the following quantity (taken
as the definition of the norm of qJ) is finite :

where Ty denotes the space translation by y in f~n.

We shall also use the Sobolev space of non integer order Ht defined as
the space of all qJ E L1 for which

We need the continuous inclusions

From (3.14) and the Mikhlin theorem, we obtain

We next estimate in Bi,l by using {3 .13) and omitting the first norm,
which is easily eliminated by an homogeneity argument. In order to esti-
mate the remaining integral, we note that for any 0, 0 ~ 8  1,

so that

with sand e related by (3.11). We now split the t integration in (3.13)
with qJ replaced by f(cp) into the contributions of the two subregions t > a
and t  a for some a > 0 to be chosen later, and we estimate the norm

Vol. 2, n° 4-1985.
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of the integrand by (3.16) with 0 = 6~+ > ,u for t  a and 0 = 0-  ~c
for t ~ a, where ,u is defined by (3.10), thereby obtaining

with the range of integration appropriately coupled with 0. We continue
the estimate for p = 0 by

and for p > 0 by

where we have applied Holder’s inequality to the t integration with
I/k = 1/1 - (1 - 0)/r. We then optimize either (3.18) or (3.19) with res-
pect to a, making for 8 ± the symmetric choice (3 .12). If p > 0, we use in
addition the inclusion (3.14), and use again an homogeneity argument to
replace the norm of qJ in Hf by ( We then obtain for p > 0

and for p = 0, a similar expression with k replaced by l, thereby proving
(3 . 9). The stated uniformity .of C in (3. 9) with respect to r and 1 follows
from that of the inclusions (3.14), the uniformity with respect to À and p
from the adequacy of the definition (3.13), and the uniformity with respect
to q from the explicit dependence given by (3 . 20). Q. E. D.

We are now in a position to derive the relevant integrability properties
of the solutions of the equation (1.1). We need an assumption stronger
than (HI), but weaker than (H3).

LEMMA 3.3. - Let n > 3. Let with f(O) = 0 and let /
satisfy (3.1) with

Let I be an interval let to E I, let qJo E H~ and let ~p E L°~(I, H1) be a

Annales de l’Institut Henri Poincaré-Analyse non linéaire
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solution of the equation (1.1) with cp(to) = Let r and p satisfy 1 ~ ~(r)  2,
~(r) ~ n/2, 0  p  1, 5(r) + p  2 and

Let q satisfy 2/q > 03B4(r) + p -1. Then 03C903C103C6 E Lr) and for any compact
interval J c I, is estimated in Lq(J, Lr) in terms of the norm of qJ in

H1).

~’roof. We first remark that under the assumptions (3.1) and (3.21),
the results of Lemma 2.1 are available with X = HB so that it makes sense
to consider solutions of (1.1) in L~(I, H~).
By the Sobolev inequalities, it is sufficient to consider the case 5(r) = 1.

The proof is based on the integral equation (2.5) with s = to, namely

and on estimates on its integrand. We first take p’ and p" such that

with s sufficiently small, to be chosen later, and we prove that for any
such that E L2~ and for any t ~ 0, belongs to L 2*

and satisfies the estimate

for some 5, v such that 0  ~  1, 0  v  1 and with M depending only
on (5, v and ~ but not otherwise on p’ and p", and depending on 03C6 through

1 only. By (3.1) and by (3 . 24) we can decompose f for each p" as
f - J 1 
and C independent of p", and we estimate separately the contributions of f1
and f2 to (3.25). The contribution of f1 is estimated by the Sobolev inequa-
lities and by (1 . 2) as

with n/s = = p", so that ( p i - 1)s = 2 and both norms in the last
member are estimated in terms of Then (3 . 26) yields the first
term in the right hand side of (3 . 25). The contribution of f2 is estimated
by the Sobolev inequalities, by (1.2) and by Lemma 3 . 2 as

Vol. 2, n° 4-1985.
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with p"  ~.  1, so that ~( t ) = 1 + p" - ~.  1, with n/s ± =1 + b( l ) - 8 ±
and 8± defined by (3.12) with p replaced by p’. We estimate the norm
of cp in by interpolation between the norms in L2, L2~ and LY~,
where 6(r’) = 1 + p’. The interpolation is possible provided 2  (p2 -1)s  r’.
The condition ( p2 -1)s > 2 is equivalent to p2 -1 > {2/n)(~(l ) + 1- 8) and
is easily satisfied for p2 sufficiently large within (3.21). The condition
(p2 -1)s  r’ is easily rewritten as

and will be considered below. In order to minimize v in (3.25), we inter-
polate (p2 - 1)s between 2 and 2* if 2 $ (p2 - 1)s  2*, thereby obtaining
the second term in the right hand side of (3.25) with v = 1 - ,u, and
between 2* and r’ if 2* ~ (p2 - 1)s  r’, thereby continuing (3.27) as

after an additional use of the Sobolev inequalities, and with

so that the condition v ~ 1 is equivalent to

after elimination of A. It remains only to show that the conditions (3.31)
and {3 . 28) with (3 .12) for p’ can be satisfied uniformly for p’ and p" satis-
fying (3.24). For that purpose, we finally choose 5() = 1 - 82 so that
À = p" + 82 and ,~( 1 - p’) _ ~, - p’ - 2~2 (see (3.10)) and we choose
~ = 2E2 in (3 .12) so that 0- = 0 and 0+ = 4E2(1 - p’)-1  2£ by (3 . 24).
The conditions (3.28) and (3 . 31) are then implied respectively by

and

which are satisfied for 8 sufficiently small under the condition (3.21).
This completes the proof of (3.25) with the uniformity thereafter stated.
We now use (3.25) to complete the proof of Lemma 3.3. We continue

to take 5(r) = 1. Let L°°(I, H~) be solution of (1.1). We estimate 
in (I, L2*) by applying 03C903C1" to the integral equation (3 . 23) and estimating
iteratively the right hand side in L2*) for successive values of p"
increasing from 0 to p in steps of E2, with 8 chosen as explained above. The
free term is in Lq(I, L2*) by Lemma 3.1 and the integrand
is estimated at each step by using {3 . 25) and applying the Young inequality
to the time integration in bounded intervals. For any compact interval
J c I, the norm of 03C903C103C6 in Lq(J, L2*) depends on 03C6 only through the
constant M in (3 . 25) and the norm of the free term, both of which are esti-
mated in terms of the norm of ~p in L~(I, Hll. Q. E. D.
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We are now in a position to prove the uniqueness of solutions of (1.1)
under the assumption (H3).

PROPOSITION 3.1. - Let ~’ satisfy (H3). Let I be an open interval,
let to E I and let ~po E H1. Then there exists at most one ~p E Lx(I, Hi) which
satisfies the equation ( 1.1) in and the condition _ 

Proof. -- Let and 03C62 be two solutions of the equation (1.1) in HI)
with the same initial data ~po at t = to. From Lemma 2.1, part (3), we obtain

where the integral is taken in H -1. We estimate (3. 32) in Lr~ for some r’
satisfying 0  ~’ - 5(r’)  1 to be chosen more precisely below. We obtain

where we have used (1.2) and (3.1), and where 1/l’ = 2~’/n. For n = 2,
the last norms in (3 . 33) are estimated in terms of the norms in L°°(I, H!)
provided 2 ~ (p~ - 1)l’  oo which is achieved under (H3) provided
0  b’  (n/4)(pi - 1), and we obtain from (3.32) and (3.33)

By an elementary argument, this implies that ~p 1 - ~p2 ~
For n 1 3, we substitute (3.33) into (3.32) and we estimate the time

integral by Holder’s inequality, so that

with

We estimate the last norms in (3 . 35) by using either the boundedness of cp
in H~ or Lemma 3 . 3 where we now take p = 0. Those norms are estimated
in terms of t and of the norms of ~pi in L~(I, H~) provided there exists r
such that 1 ~ ~(r)  2 and

and
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The last two conditions are equivalent to

and

The existence of m’ satisfying (3.36) and (3.41) is ensured by (3.21) which
is part of (H3), and it remains only to ensure (3.37) and (3.40) with
1 ~ 5(r)  2 and 0  ~’  1 under (H3). Now (3.37) and (3.40) follow
from (3 . 2) by choosing (5’ = (l/2)((5(r) 2014 1) and eliminating b(r), or from (3 . 3)
whenever relevant by choosing 6(r) close to 2 and eliminating 5’. Taking
in (3.35) the Supremum over t in a sufficiently small interval containing to,
one obtains a linear inequality which implies that ~i 1 == CfJ2 in that interval.
Iterating the process yields == /?2 everywhere in 1. Q. E. D.

Under the assumptions of both Propositions 2.1 and 3.1 we obtain
existence and uniqueness of the solution of the Cauchy problem for the
equation (1.1). In addition the solutions satisfy the conservation of the
energy, which implies a regularity in time stronger than the previous one.

PROPOSITION 3 . 2. - Let f satisfy (H2) and (H3), let to and let ~po E H 1.
Then the equation (1.1) has a unique solution in L(, Hi) with cp(to) = 
The solution 03C6 belongs to H 1 ) and satisfies the conservation of the
L2-norm (2.11) and the conservation of the energy

Proof 2014 Propositions 2.1 and 3.1 assert the existence and uniqueness
of the solution ~p of the equation (1.1) in L ~(~, and the fact that

~p E H~) n HI) n ~ L~). In addition, by uniqueness,
2~Y2*

we can apply time reversal to the equation (1.1) and therefore to the energy
inequality (2.13), thereby obtaining the energy conservation (3.42). It

remains to prove the strong continuity of ({J in HI. Since cp E ~ B03B1(r)(R, L/),

the function (1/2)~~03C6(t)~22 = is a continuous function

of time, so that the H~-norm of ~p is a continuous function of time. The

strong continuity of ~p in H~ 
1 follows now from the weak continuity and

the continuity of the norm. Q. E. D.
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Note added in proof
The proof of Lemma 3 . 3 can be somewhat simplified by using systema-

tically the more convenient Besov spaces instead of the Sobolev spaces
and in particular the simpler and more efficient Lemma 3 . 2 of [9] instead
of Lemma 3.2 of this paper.

Vol. 2, n° 4-1985.


	The global Cauchy problem for the non linear Schrödinger equation revisited



