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ABSTRACT. - A new approach for the analysis of Vortex Methods is
described. This analysis which is based on the notion of weak solution
for the convection deformation vorticity form of the Euler equations leads
to convergence results in the case of Vortex In Cell methods as well as
for three dimensional Vortex Methods.
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RESUME. - On ecrit une nouvelle approche permettant une analyse
simplifiée des méthodes de vortex. Cette analyse utilise la notion de
solution faible des equations de convection deformation du tourbillon et
aboutit a des resultats de convergence en particulier dans le cas des
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methodes de Vortex In Cell ainsi que pour des methodes de vortex

tridimensionnelles.

I. INTRODUCTION

This paper is devoted to a new mathematical analysis of Vortex

Methods. In fact these methods, which are commonly implemented for
the simulation of incompressible flows at high Reynolds numbers, have
been given a large amount of theoretical work, since the first work of
O. Hald [11]. The most recent contributions deal with some important
extensions of these methods in two and three dimensions, such as Filament
Vortex Methods ([9], [17]), Vortex In Cell Methods [6], viscous flows ([7],
[8], [14]) among many others (see also [1]).
The main purpose of this paper is to provide a very simple understanding

of the convergence of these methods with a wide range of applications.
Let us briefly describe the idea on which this work is based. Consider

for instance the three-dimensional Euler equations in velocity-vorticity
formulation:

at infinity.

A very simple way to define a particle approximation of this problem
is to consider an approximation of the initial condition (Do by a linear
combination of Dirac measures and then to define the

evolution of the positions and the weights of the particles in a way that is
consistent with ( E . 1). Beale and Majda [4] first suggested modifying the

weights by methods using finite-difference approximations of the stretching
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229ANALYSIS OF VORTEX METHODS

term Later Greengard [9] improved this method by observing
that only derivatives of the velocity along the vorticity are needed and

proposed an analysis of a Filament Vortex type method.
In fact it is possible to define a way to compute the functions 

by using directly the interactions of particles. Such methods have been

implemented since 1977 by Rehbach. The mathematical basis of this

approach is that, given a differentiable velocity field, there exists an explicit
measure solution of (E. 1) when Oo is a Dirac mass; it seems that this

property was clearly written for the first time in [16].
Starting from this remark, since the method is based on the explicit

solution of the equation satisfied by the vorticity, it seems natural to look
for estimates of the vorticity rather than the velocity. Therefore we have
to work in distribution spaces whose choice is made to:

1. give back a satisfactory control of the velocity in order to ensure

stability in the nonlinear terms;
2. express properties of optimal accuracy for the approximation of

continuous functions by Dirac measures.
These properties are actually easily proved to be shared by type

spaces; in particular the first property is then related to the Calderon’s
theorem, while the second one is related to quadrature estimates. Further-
more it turns out that this analysis is largely independant of the precise
way the velocity is computed from the vorticity. This means that, for
instance, from this point of view Vortex In Cell methods are naturally
connected to methods which use calculation of the velocity based on

integral methods.

Finally we emphasize that, since the essential tool that is required for
the analysis is that the approximate vorticity must be an explicit solution
of the original equation, methods like Contour Dynamics Methods and
Filament Vortex Methods are obviously good candidates for this analysis.
Let us point out that this analysis seems also promising when dealing with
boundary terms or time discretization.
An outline of this paper is as follows. In section 2 we give some very

simple preliminary results concerning distributions and stability properties
of advection equations in distribution spaces. In section 3, we analyze the
standard two-dimensional Vortex Method and in section 4 we give a proof
of the convergence of Vortex In Cell methods that is largely independent
of the author’s previous work [6]. Finally in section 5 we focus on the
three-dimensional grid free point Vortex method. For a different analysis
of this method we refer to [2].
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II. PRELIMINARY RESULTS

In all this section n = 2 or 3. We introduce, for and p E [l, +00],
the Sobolev spaces

and, for p E ]1, + oo [, the dual of p* with 1 /p + 1 /p* =1.
We denote 11m, p and the corresponding norms, and by j. 1m, p
the usual semi-norm of VVm° p 

In addition 3m,p will be the space of all distributions 
such that there exists a constant C independent of cp in p* satis-

f ying:

For such T we also set

Observe that if T E 

Let us prove the following result:

LEMMA 2 . l. - Let r, m be two integers with let be a family
of integers whose conjugates are denoted by Assume that the distribution

T satisfies:

for all cp with compact support.
Then we can write:
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with

Proof - For the sake of simplicity we only give the proof corresponding
to the case the general case follows with minor modifications. We
classically begin by viewing T as a linear continuous form on the subspace
H c (LP* made by the n-uples

We then provide (LP* with the following norm:

By (2.1), we know that the norm of T is less than 1 on H. So that we
may extend T on the whole space (LP*)N, with a norm __ 1. Let T the
resulting linear functional and such that

We first get classically

Since ~T~~1 our choice of the norm in (LP(lRn))N leads to:

for all ( fa) E (LP* ( I~8"))N. This proves that ( Ca’
The above result proves in particular that the elements of 

precisely the distributions T which can be written

In this case, observe also that if in the above proof we choose the following
norm in (LP 

Vol. 5, n° 3-1988.
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we easily obtain

which is the analogue in 9~m, p of the classical result

In both cases we shall call a canonical decomposition of T, in 
or in ~m, p, depending on wether T belongs to P ( f~") or 9~m, p, a (non
unique) decomposition of T which realizes the above minima.
The following lemma deals with stability properties in for

the linear hyperbolic equations of 1 st order. To begin with we recall some
standard properties about classical solutions of the following problem:

We define the characteristics X (sl; x, s2) related to v as the solutions of
the system

and we denote by J the jacobian determinant of the transformation X:

If 8 and ~o are smooth enough the unique classical solution of (2. 2) is
given by

It is easily seen from (2. 3) and (2. 4) that if

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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then

We also recall the following property which is a straigthforward conse-
quence of ( 2 . 3) :

We state now the

LEMMA 2 . 2. - Let p E ] 1, + oo [, and i > 0. Let v be a vector

valued function in L°° (0, i; (W"‘° °° (~n))n); given ~o in W -m~ and 9

in L1 (0, i; the problem (2. 2) has a unique solution ~ in

L°° (0, i; W -"‘~ p and there exists a constant C only depending on i and
v such that

Moreover, if ~o and 8 (., t) lie in 9~m, p for all time, so does ~ (., t), and the
above estimate remains valid by changing II [ ] _m, p.

Proof. - To begin with, let us recall in what sense we speak of weak
solutions; we denote by L the differential operator such that:

and L* its formal adjoint:

A distribution § will be called a weak solution in (0, i; p(~")) of
( 2 . 2) if

Vol. 5, n° 3-1988.
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for all function cp such that

Let us now prove the uniqueness of such a weak solution of (2.2). If
03BE1 and 03BE2 are two solutions of (2. 6), then 03BE1-03BE2=03BE is solution of the

homogeneous problem, i. e. (2. 6) with 8 = 0 and ~o = o. Given gs in

L1 (0, i; Wm° p’ let cp be the classical solution of

Using the characteristics defined in (2. 3), the solution of (2. 8) can be
written in the form:

from where it is easily seen that cp fullfils the requirements (2. 7). Hence
we get from (2 . 6) with 9=0 and 

Taking in particular (., t) =03BB (t) 03C8, 03BB E L1 (0, i), 03C8~ W’n’ p* gives

and therefore § * 0.
In order to prove (2. 3) it will be convenient to use a canonical decompo-

sition of e and ç in 

Using the fact that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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it is an easy matter to check that the distribution § defined by

is a weak solution of ( 2 . 2) in the sense of ( 2 . 6), ( 2 . 7) .
Now, by the smoothness of X, which is a consequence of the smoothness

of v, (2. 9) leads to

Therefore we get on the one hand:

which is the desired result (2. 4).
On the other hand if ~o and 8 are in 9~m, p, then for a canonical

decomposition of ~o and 8 in 3m,p we have ~o, o = 80 = o. Therefore by
( 2 .10) we get

which implies that ç ( . , t) E 3m, p and

We shall end this section with a result concerning quadrature formulas
in ~n.

Vol. 5, n° 3-1988.
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LEMMA 2. 3. - Let h > 0 and let xj be the points in Rn defined by

then we have for any g in ( ~") with m >_ n

The proof of this result can be easily deduced from the arguments given
in [16], theorem 3.1, and from the property that Wm° 1 ( ~n) is imbedded

in the space of continuous functions as soon 

III. VORTEX METHODS WITH EXPLICIT KERNELS IN TWO

DIMENSIONS

In the two-dimensional case the Euler equations may be written in the
form:

with x = (xl, x2) E f~2, t > o.

We denote by G the elementary solution of ( 3 . 3) and we set

so that if Bj/ is the solution of (3. 3) we have

Now let us introduce a particle approximation Wo of G)o:

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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with

We shall denote by B~ the square

Let uh be an approximate velocity field; the weak solution of

is the measure

where is obtained through the ordinary differential system

In order to couple Uh and oB we first need to regularize K; thus let ç be
a function in L 00 ( (f~2) n L~ ( f~2) and

We set

and

The approximation is finally defined by (3. 5), (3. 7).
Let us state our convergence result:

THEOREM 3. 1. - Assume that ~o is smooth enough. Assume also that
the following conditions hold

Vol. 5, n° 3-1988.
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Then there exists a constant C such that for hand E small enough

In fact it will be a consequence of the foregoing proof that convergence
holds in a more general situation i. e. when ç E Wm~ °° ( ~2) n wm, 1 ( ~2), m
finite. This would lead to error estimates of the kind of those found in

[16], for instance, but with stability conditions more restrictive than (3.10)
for small values of m.

Our arguments will use the following steps:
1. use (3.1), (3.2), (3.5) in order to derive estimates in some

W ~ m° p ( ~2) spaces;
2. then go back to the velocity by using the properties of the regularized

kernel.

More precisely the needed properties of the regularized kernel are

summarized in the following lemma:

LEMMA 3 . 2. - (i) Let T be in ( I~2) (~ L1 ( (~2); then

(ii) Let ç be in L°° ( l~2) (~ L1 ( (~2) and T be in Lq ( (~2), q  2; then

K£ * T is in for any p such that 1 /q -1 /2 and

(iii) Let ~ be in Wm° °° ( f ~2) (~ Wm° 1 ( ~2) and T in 9~m, p, m >_ 1, 1  p  + oo;

then
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(iv) Under the assumption (3. 9) we get

1poo.

Proof - The proof of (3.12) is a classical matter and can be omitted
here. To check ( 3 .13) let us consider p  2 and q > 2; we write

and hence

On the one hand we have by the Sobolev inequalities (see [5])

On the other hand an easy calculation shows that

Therefore ( 3 . 16) gives

Let us now prove (3.14). If T E ~m, p, m >_ 1, 1 p  + oo, we write a
canonical decomposition of T in 9~m, p:

with

thus

Vol. 5, n° 3-1988.
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Since, by Calderon’s theorem, the convolution operators f -~ aK * fare
continuous from LP into LP for 1 p  + oo (see again [5]), we have:

Finally the last assertion results from easy calculations for which we
refer to [ 16] for instance..
We now come to the proof of the theorem itself. Since all the velocity

fields introduced in this section are clearly divergence free, we shall equiva-
lently use either conservative or non conservative forms of the nonlinear
terms [such as We shall consider separately the part of
the error coming from the particle discretization and the one coming from
the regularization of the kernel; we begin with the regularization error
and for this purpose we introduce the following intermediate problem:

Let us estimate 

LEMMA 3.3. - Assume that (3.9) holds and that
°° ( ~2) (~ ( ~2) with m >__ d. Then we have for some positive

constant C and for all t E [0, r]:

Proof. - We omit the proof of (3. 18). In fact it is easily seen that it is

enough to obtain the bound for E = o, which is precisely a well-known

regularity result for the two-dimensional Euler equation (see [3] for

instance). Let us focus on ( 3 . 19) .
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Using ( 3 .17) on the one hand and ( 3 .1 ), ( 3 . 2) on the other hand, we
get: 

’

Since u and uE are divergence free, the above system can be rewritten as
follows

whereas (3.4) and (3.17) give

Let us denote by Xg the characteristic curves associated with the flow
u£. Writing the solution of (3.20) as in (2.4) gives, since in the present
caseJ=l

and therefore

Next, by ( 3 . 15)

which gives by ( 3 . 18)

Then ( 3 . 12) yields

Vol. 5, n° 3-1988.
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Combining ( 3 . 21), (3.23), ( 3 . 24) and setting

we obtain the inequality:

It remains now to insert the above estimate in (3.22) to get

from which we obtain by Gronwall’s lemma

This gives the desired estimate for and p = oo. Finally let us

consider the case p finite. By (3.13) we can write

Then we observe that, since we have also

Next, by (3.15) we get

Combining (3. 21) and the above estimates gives the desired result..
Using (3.6), (3.7), and (3.17), we can derive the following system:

Then we write
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where 03BBh and h are respectively solutions of:

Let us first derive estimates of which will prove the consistency of
the method:

LEMMA 3. 4. - Let m >_ 2. Assume coo E Wm° °° ( f~2) n wm, 1 (1R2); then we
get:

Moreover we can write for any p, q E ) 1, + oo [

where the distributions ~,’~ E Lq ( f~2) and E 9~m, p satisfy

Proof. - Let cp be some test function Coo with compact support; we
have

By lemma 2. 3 we have therefore

which can be rewritten as

By lemma 2 . 1 with po = p f or k ~ 0, this implies that we can write

Vol. 5, n° 3-1988.
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where ~o, o E Lq (1R2) and ~o, a E ~~ a ~? p and

Next consider the solution of (3. 25) with initial condition 03BE0, 03B1. By
lemma 2. 2 we have

Since clearly writing ~.h = ~o and ~a gives ( 3 . 28)
a 

and ( 3 . 29) ..
We now turn to ?~h. We set

To begin with, we observe that is solution of the following system:

Therefore we can write

where This means that if cp is some test function C °°

with compact support

where

Annales de l’Institut Henri Poincaré - Analyse non fineaire
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and

Let us evaluate pl, pi.
LEMMA 3. 5. - Assume that ~o E Wm’ 

°° ( (~2) n yV"‘,1 ( ~2), with m >_ 1.
We get:

( i) P i ( ~ ~ t) E ~’ ~ , p and

(it) p§ e 03B83,p and the following decomposition holds ph = £ p§ , k, with
I $ k $ 3

ph , ~ ( . , t)) e 8~, ~ and

Proof. - Using the change of variables whose jacobian
determinant is one because uE is divergence free, we get from (3. 30) :

which implies that p~ E 1, p and gives immediately ( 3 . 32) .
Next, using lemma 2. 3 we obtain the following estimate

Since roo E W2, °° ( ~2) n W~- ~ (R~) we have by lemma 3.3

Therefore

Thus we obtain

Vol. 5, n° 3-1988.
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Therefore, following lemma 2.1, we can write the desired decomposition
of p~ and (3.33). N
Denote now by ~, i, ~i ~ k, 1 ~ k _ 3, the solutions of ( 3 . 26) with right

hand sides p~, respectively. Then we have

Let M a constant to be defined below. We define:

Using lemma 2. 2 and 3. 5 we obtain immediately the following result:

and there exists a constant C depending only on M and t such that for
t E [0, ’GM]: 

.

We are now able to present the

Proof of theorem 3. 1. - Let us fix some p in ]2, + oo [ we set:

By (3.4) and ( 3 . 3 S) we have, for 0 ~ t  1):

Next we write
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From ( 3 .13), ( 3 .14) and lemma 3 . 4 with q such that 1 /q =1 /p -1 /2 we
get

It is also possible to derive estimates of the derivatives of Ai, in the
following way: we write and if r is an integer ~ 1,

By lemma 3. 2 this yields

Using the same argument combined with the fact that ~,’’ lies in 33, p’ we
obtain

Combining ( 3 . 36), ( 3 . 37), ( 3 . 38) and ( 3 . 39) we conclude:

Since by ( 3 .10) h/E is bounded, this yields

By Gronwall’s lemma we conclude:

Using ( 3 . 37) to ( 3 . 40) we then obtain

Vol. 5, n° 3-1988.
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To prove the estimate announced in the theorem with finite p we observe
that, due to (3.10) we can choose m such that Ed; thus ( 3 . 41 )
with r = 0 and (3.18) gives

For p = + oo we use the following interpolation inequality

which combined with ( 3 . 39), r=0, 1, p large enough, gives the desired
result.

Finally we have to prove that, for a suitable choice of the constant M,
For that we start from ( 3 . 39) with r = 3 and 4 we use the above

interpolation argument and (3.18); we obtain that for E and h small

enough:

which is the desired result if, using (3.18), we choose

This ends the proof of the theorem.

IV. VORTEX IN CELL METHODS IN TWO DIMENSIONS

In this section we plan to show that the approach developped in the
previous section provides a good tool for the analysis of the convergence
of Vortex In Cell methods. For a previous analysis based on different
techniques we refer to [6].

In short, VIC methods consist in the following steps
1. Solve the system:

Annales de l’Institut Henri Poincaré - Analyse non linéaire



249ANALYSIS OF VORTEX METHODS

2. Then compute uh from roh by some coupled finite element particle
scheme.

The advantage of such methods is that any Finite Element method on
a uniform rectangular grid can be easily formulated in terms of Fourier
Series, leading to Fast Poisson solvers which require only 0 (N Log (N))
operations [to be compared with the 0 (N2) operations for the naive way
of computing interactions in section III].
We focus below on the case of P1, homogeneous, Finite Element

Methods, because optimal LP estimates are known in this case for any p,
but we believe that, since our techniques are rather general, they can work
in many situations in which both the polynomial space and the artificial
boundary condition are more accurately choosen.

IV. 1. Definition of the finite element-particle scheme

Let E > 0, R > 0; let co be a bounded measure which will be typically a
linear combination of Dirac measures. We introduce the characteristic

f unction x of the square [ -1 /2, + 1 /2] 2 and we set

We also set SZR = [ - R, + R]2, rR = ~03A9R. If f is a scalar function we define
the vector valued function:

Next we consider the Dirichlet problem:

Let fTt be a sequence of triangulations of QR satisfying the usual

regularity condition: there exist two constants c 1 and c2 such that each

triangle contains a circle of radius c 1 s and is contained in a circle
of radius c2 E. We define Eg to be the space of continuous functions on

piecewise linear on each and vanishing on rR. Finally we denote

Vol. 5, n° 3-1988.
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by IIE the Ritz projection on BE defined by:

We set:

and

We finally define the mapping ~R by (4. 2), (4. 4), (4. 5) and:

The approximation wo being defined as in section 3, the numerical
method consists now in looking for roh) such that

Let us observe that the velocity field as defined in (4.5) is not in general
divergence free; this will not lead to additional difficulties in our analysis
because it is essentially based on the conservative form (4. 7). However it
must be pointed out that VIC methods are usually formulated in terms of
finite difference schemes for the stream function B)/ (such that 
This point of view is developed in [6] and the links between the both
approaches are briefly discussed below in section IV. 4.
The advantage of the finite element approach leading to Uh is that it

enables us to derive optimal stability properties for ~R. This is the purpose
of the following section.

IV . 2. Stability and consistency properties of ~R

To begin with, we recall some classical results concerning the Dirichlet
problem and its corresponding Ritz projection.
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In the sequel ) ) . ) p, R will denote the norm of Wk,
p (QR) whereas |.|k, p, R

will be the corresponding semi norm; in addition if s is some real

number )) . p, rR will be the usual norm of WS~ 
p (rR).

PROPOSITION 4.1. - (i) A is an homeomorphism from
W 1’ p n p (QR) onto Wk- 2’ p for k = 1, 2, p E 1, + 00 ~. Moreover
there exist constants C independent of R >_ Ro such that

If has compact support in and v=O on I-’R, we also
have

(ii) The Ritz projection IIE is stable on W1~ P and there exist constants
C independant of R >_ R o and s _ Eo such that

Moreover we have

Proof - For k =1, 2, our first assertion follows from classical tools
concerning the Laplace problem in smooth domains. For these results we
refer to [13] for k = 1 and [10] for k = 2. To derive (4 . 8) we use a scaling
argument. This argument which is detailed in [6] consists in using the
change of variables

and setting for any function f defined in SZR

We easily check that

Vol. 5, n° 3-1988.
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Then, using the results of [10] and [13] on Q, we obtain

which implies

For (4 . 9) we use a duality argument. Let cp a test function in Lq(QR)’
with and let w such that

By (4. 8) with k = 2 we get w E W2~ q with

Then we write

Since and v = 0 on rR, setting we can write by
the Green’s formula

where (.,.B denotes the duality pairing between and

Next we introduce the function w~W2,q(03A9R) such that:

Since Supp f c we thus have
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Combining (4.13) to (4.16) we obtain

and therefore

Finally to get (4.10) to (4.12) we note that

Then, let us apply in S2 the LP estimates given in [15]; we obtain for
instance

Therefore

which yields the first estimate in (4.10). The other results derive in a
similar way from the estimates given in [1 5]..
We sum up in the following lemma some remarks whose proof is

straightforward and which will be useful in the sequel

LEMMA 4. 2. - (i) For i =1 or 2, is a bounded measure with total
mass less than C/E.

(ii) One may rewrite (4. 1 ) in the following way

As a consequence of (4 , 17), it is easily seen that we have for any pair
(k,P)

We now sum up the stability properties of ~R in the following lemma:

LEMMA 4. 3. - ~R is a linear mapping which satisfies the following
property: if ~u is a distribution with compact support in S2R~2, there exist

Vol. 5, n° 3-1988.
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positive constants independent of E _ Eo and R >_ Ro such that the following
estimates hold

Proof - Let p be a finite number. We begin by deriving (4.19) for
k = o, 1. From (4. 5), (4.6) we get:

Next (4.10) and (4. 4) give

Combining (4. 22), (4. 8) and (4. 9) and using the fact that uR = 0 outside
of QR give

Since co has its support contained in QR/2 the following inclusions clearly
hold for E small enough:

Supp curlE ~G~ * XE) C QR/2 + 2 E C Q3 R/4.

Hence we can write

and by virtue of (4. 2), (4. 8) and (4. 9), (4. 23) leads to:

Next, by (4. 1) we have

Annales de l’Institut Henri Poincaré - Analyse non linéaire



255ANALYSIS OF VORTEX METHODS

By (4.18) we have also

Combining (4.21), (4.22) and (4.24) we obtain (4.19) for k =0, 1 and
r= 1.

When k =0, 1 and r = 0 we observe that, denoting by p* and q* the

conjugate exponents of p and q, if and c~ E Lq ( (~2), we may
write

this last bound being a consequence of the already mentionned Sobolev

imbedding

Thus we get

and (4.21), (4 . 22), (4 . 24) leads to (4.19) for 1 and r=0.

To deal with the other cases, we make use of lemma 4 . 2, assertion ( 1);
thus we can write

and also, by (4. 5)

Combined with the above estimates, this yields (4. 18) for 1~ = 2 or r = 2.
Now let us derive (4. 20). By the Gagliardo-Kohn-Nirenberg inequality,

we first obtain:

which by virtue of (4 .19) gives (4.20) for k = 0. For k =1, we come back
to the definition of uR, We observe that, since on each is the

linear function which interpolates the values of uR at the vertices of K, we
have by the inverse inequality for quasi uniform mesh:
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Using the Gagliardo-Kohn-Nirenberg inequality together with (4.23),
(4. 24) and (4. 25), this implies immediately (4. 20) for k = 1.

Finally for k = 2 we use again (4 . 17), and we obtain

and thus (4 . 20) for k = 2..
We now turn to the following consistency result:

LEMMA 4. 4. - Let ( ~2) n W3, °° ( ~2) with support contained
in S~R~2, and u = K * m. There exist constants C such that

and

Proof Denote by UR - the function 
on ~R .f Y R 

0 elsewhere
Following (4. 4) and (4. 5), we can write

First of all observe that, we have

for any p in ]2, + oo] (by lemma 3. 2 for instance); therefore
we obtain easily (see [16] for a detailed proof)

Next, in order to estimate A 1 we use (4. 8) and (4 . 11) to get
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and therefore

We have also

To estimate A 2 we observe that is solution of

Therefore, by virtue of proposition 4.1, assertion (i), we may write for
+00.

Next, to get a bound for for 2  p  +00 let us consider the
function w such that

We first get by the maximum principle

and therefore

Then we get from (4. 32) and (4. 34)

Since m has its support in curlE (m * x) -curl m has its support in
Q3 R/4 for E small enough and therefore (4. 9) allows us to write
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Then, combining (4. 35) and (4. 36) gives

In order to estimate the right hand side of (4. 34) and (4.37) we first
recall the following result concerning the decay of u (x) for large x: if
u = K * M, where o is compactly supported and smooth enough we get

This implies in particular that for 2 p  + 00

Thus we have by a classical trace theorem and the now familiar scaling
argument

Next, argueing as for the estimate of A 3, we obtain

whereas using similar arguments and starting from (4. 18) lead to

Since ( ~2) n W3, °° ( ~2), combining (4.39) and (4. 40) yields

and thus (4.33), (4. 37) and (4. 41) give

Since ~2 - OR the above bound and the decay of u imply
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which proves that

It remains now to combine (4. 29), (4. 30), (4. 31) and (4. 38) to get (4. 27).
For (4. 28) we use (4.12) and obtain

Next we can write, thanks to the Gagliardo-Kohn-Nirenberg inequality

and thus

Combining (4. 29), (4. 43), (4. 44) and (4. 45) finally gives (4. 28) ..

IV. 3. Error estimates

We shall prove the following result

THEOREM 4. 5. - Let us assume that t~4 E ~V2~ 1 ( ~2) (’~ W2. °° ( ~2) with
compact support. Let u’‘ and ~~ be defined by (3. 5) and (4. 7). We also
assume that there exist constants positive constants C and a such that

Then the following bounds hold for E small enough

In order to apply the techniques introduced in the previous section, we
first need some refinement of lemma 2.2. The lemma which follows
indicates in what way the various constants involved in lemma 2. 2 actually
depend on v.
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LEMMA 4. 6. - Assume the hypotheses of lemma 2. 2 with m _ 2. Then
we may write the solution of (2. 2) in the following way

where ~a E W - ~ " ~~ p ( I~2). Moreover

where the constants satisfy

Furthermore, if ~o and 8 have compact support in a ball of radius R, then

~ (., t) vanishes out of a ball of radius R (t) where

Proof - Let us focus on the case m = 2, the other cases being treated
in a similar way. The idea is to start from (2.9) and write in a precise
way the terms of the form First we need to estimate 

for I i I =1, 2 in terms of the derivatives of u. All along this proof we shall
use the following notation:

By differentiating (2. 3) with respect to x, we obtain

Integrating this differential inequality gives for s, t E [0, 1]
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Differentiating once again (2. 3) we obtain

which yields

By (4. 51) we get therefore

Next developing (2. 9) yields

By virtue of (4. 51) and (4. 52) the agove estimate becomes

where the constants Cx, 2 satisfy the bounds (4. 50). The desired results
(4. 48) and (4.49) follow finally from (4. 53) and lemma 2.1.
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To check the second assertion of the lemma we start again from (2.9)
and observe that if then, by definition of the characteristics,
I X ( t; y, s) _ R (t) for s  t. Therefore « ( . , t), (p) = 0 as soon as cp has its
support out of a ball with center 0 and radius R (t)..
Remark. - Lemma 4.6 can obviously be generalized to any value of

m, leading to more involved expressions for the constants Ck, m. Briefly
speaking its meaning is that, when one solves the system 2. 2, high order
derivatives of v only interact with smooth components of the solution.
This idea can be used to give an alternative analysis to the one given in
section 3 (and also in the foregoing section 5).

In order to derive estimates we shall proceed in a sligthly
different way than in section 3. We define ~,’‘ and ~,h to be the respective
solutions of

Then we introduce

where the constant M will be defined below.

We first state the

LEMMA 4. 7. - Assume that ~o E V~3,1 ( ~2) n W3, °° ( f~2) and has com-
pact support. Then the following assertions hold:

{i) There exist two constants Ro and Eo depending only on i such that
~,h ( . , t) and ~,h ( . , t) have their support contained in the square

[ - R + E, R + E] 2 for R>Ro, E ~ Eo and 
(ii) Let p be in ]2, + oo [. We may write

with
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(iii) We have and

Proof - Let A denote a constant such that

In particular we have also

Whence by lemma 4. 6 we get

To check the second assertion we notice as in the proof of lemma 3.4
that

Since h is solution of (4. 54) we get by virtue of lemma 4. 6

with

But for we have

where C is a constant depending only on 1; (4. 57) results now easily from
(4. 60) and (4. 61).
For the last assertion of the lemma, we first observe that
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Then, applying lemma 4. 6 leads to the following consequence of (4. 55)

which yields (4 . 58)..
Now we are in position to prove the theorem.

Proof of Theorem 4 . 5. - We write:

Since by lemma 4.6 the distributions ~,’‘, ~,1 and ~,2 have their compact
support contained in [ - R + E, R - E]2, for R large enough and E small
enough we may use lemma 4. 3 and 4.4; we obtain first by the estimate
(4.19) of lemma 4. 3 :

whereas, by lemma 4. 4

Combining (4. 62) to (4. 64) implies

Therefore we obtain by the estimates proved in lemma 4 . 7

which implies, by Gronwall’s lemma
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It remains now to prove that First we get by combining (4. 57),
(4. 58) and (4. 65)

Due to (4. 20), (4. 66) leads to

and, by (4. 28)

Inserting (4. 46) in (4. 67) and (4. 68) and using (4. 62) give

Taking p sufficiently large and thus s close to 1 in the above estimate

yields the following estimate, valid as soon as E is small enough

The same arguments apply to give the following bound

Finally if we specify now our choice of the constant M by setting

we obtain as a consequence of (4. 69) and (4. 70)

This proves that iM = t and ends the proof of the theorem.

Vol. 5, n° 3-1988.



266 G.-H. COTTET

IV. 4. Back to the finite difference approach

In this section we briefly discuss a more conventional finite difference-
particle scheme which was already analyzed in [6] and we show the links
between the analysis of the convergence of the two methods.
We assume here that the triangulations ~E are defined on uniform grids

(xij) of [R2, with i, j E. We denote by wE the piecewise linear
function such that the family ~ w£ ( . is the natural basis of Eg.

Given a bounded measure co, we set

If (0 is a Dirac mass located on a particle, the above formula defines an
assignment procedure from the particle towards the mesh.

Denoting by A~ the usual five points approximation of A on the mesh

x~~, we consider the solution of the following system

(the dots mean that we do not write the 12 equations needed to describe
all the corners and all the sides of The above system turns out to be
a natural finite difference discretization of the Neuman problem:

Next we set
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and

The equations (4. 71) to (4. 74) define a mapping ~R such that

Now let (vh, roh) be the solution of

Observe that, unlike u’’ defined in section 4.1, v’‘ is divergence free. We
have

THEOREM 4. 8. - Under the assumptions of theorem 4. 5, we get

Proof. - We start from (4. 54) and (4. 55) with vh instead of uh. We
introduce also the modified value of iM. Then we obviously obtain the
analogue of lemma 4. 7 with !/ replaced by v~’.

Therefore the proof reduces to the one given for theorem 4. 5, provided
we are able to estimate in terms of m-mh.
For that, we proceed as in ( 4 . 62) and we write

Now we assert the following result established in [6]: there exists a constant
C~ depending only on the size of the support of roh and on the mass of roh
such that, for R sufficiently large

In addition, we claim that the following estimate results also from the
proof given in [6]
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Next we observe that the total mass of roh is obviously bounded by
~J whereas, for t  iM, the support of ~’’ is contained in a ball B (0, A),
where A depends only on r. Therefore the constant C~ involved in the right
hand sides of the estimates (4. 77) and (4. 78) is bounded independently of
h.

Now the proof can go along the same lines as for theorem 4. 5 and we
obtain the same error estimates..

V. VORTEX METHODS IN THREE DIMENSIONS

In three dimensions the vorticity-velocity formulation of the Euler equa-
tions has the form

where in the above equations: u = (ul, u2, u3) and c~ = (wl, c~2, c~3) are vec-
tor-valued functions defined in [R3; is the vector with com-

K is a kernel which takes its values in the space of
j

linear mappings in 1R3 and can be written in the following way:

The design of grid-free three dimensional Vortex methods is based on
the following lemma

LEMMA 5. 1. - Assume that u E C° (0, i; C 1 ( ~3)) and w° = ao 6 (x - xo) ,
03B10 E R3. Then the unique measure solution of (S . 1), (5. 2) is the vector-

valued measure
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where X and a are respectively the solutions of the following differential
systems

In ( S . 5) ~ u . a means the product of the matrix by the vector
a. The proof of this result follows from simple calculations in distributions
spaces ( see [16]).
The design of the method is then as follows: we set

where

Next, Uh being an approximate velocity field, we consider the measure
solution of

which by virtue of lemma 5.1 can be written
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where (XJ)j and are obtained through the ordinary differential systems

Then we define a regularization of the kernel K as in the two dimensional
case by setting, if ç is a function in L~ ( f~3) (~ L1 (1R3)

and

Finally we write

and the approximation is defined by (5.6) [or equivalently (5.7) and
( 5 . 8)], and (5. 9).
An interesting question would be to wonder wether these equations lead

to a well-posed problem. Such an analysis is straightforward in two

dimensions because the system under consideration is lipschitz (or quasi
lipschitz if the cut off is only bounded). In the present situation we only
want to underline that combining ( 5 . 8) and ( 5 . 9) leads to a nonlinear
differential system in the Therefore it rapidly becomes clear that
existence and uniqueness of the approximate solution only hold for small
time, just like in the continuous case. This time could happen to depend
on E and actually it will be a consequence of the foregoing analysis that it
can be bounded below independently of E.

Before stating our convergences result let us also comment somewhat
the physical relevance of the proposed numerical method. In the continu-
ous problem the vorticity o is obviously divergence free, a property which
is unfortunately not shared by roi. In particular (5. 9) does not imply that
c~n = curl uh. This could introduce undesirable features on the approximate
solutions like, for instance, distorsions of the vortex lines. However, start-
ing from (5.6), it is not difficult to check that div roh is a weak solution
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of the following hyperbolic equation

which means that the method is (in a weak sense) conservative with respect
to div Therefore provided the initialization is correct, it is unlikely that
large distorsions of the vortex lines could develop.
Our main result is the

THEOREM 5.2. - Assume that t~o is smooth enough. Assume that the
following conditions hold:

and that there exist two strictly positive constants C and s such that

Then there exists a time i and constants C depending only on mo such
that for hand E small enough

In fact, it can be proved (but the argument below must be slightly
modified) that (5.13) holds as long as there exists a smooth solution to
the Euler equations. This proves in particular that, at least for h and E
small enough satisfying (5.12), existence of solutions for the system ( 5 . 7),
(5.8) holds for any time interval in which the Euler equations have a
smooth solution.
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First of all we need a result analogue to lemma 2.2 dealing with
convection equations with terms of order 0. Consider the following pro-
blem

where ~o, ~ (., t) (resp. a and v) are vector-valued measures (resp. continu-
ous functions). We get

LEMMA 5 . 3. - Let pE]l, + oo [, and i > o. Let v and a be vector
valued functions respectively in L°° (0, i; °° ((~"))") and in

L°° (0, ~; (Wm+ 1, °° ( ~n))n); given ~,~ in (W -m° p ( (F~"))" and 8 in

L1 (0, ,~; (W -m, p ( ~n))n)~ the problem (2. 2) has a unique solution ~ in L°° (0, i;
(W-m~ p(~n))n) and there exists a constant C only depending on i and v such
that

Moreover, assume that ~o and 8 (., t) belong to ~m, p with p > 3/2 and that
~; ( Wm + 1, 3 let q be such that 1 /q =1 /p + 1 / 3. Then we can

write

where ~ E L~ and ~’ E ~m~ p satisfy
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Proof - We only give the proof of (5.16). We proceed as in lemma
2. 2; to begin with, we define the operators L and L* as follows

where (cp x V) a) stands for the vector (03A3 03C6j~03B1j/~xi)i.

Let us denote by [O a]* the matrix and by Exp the exponential
of matrices. We observe that it is possible to write

Next, starting from the following decomposition of ~o and 8 in 

it is straightforward to check that the distribution § ( . , t) defined by

is indeed the weak solution [still in the sense of (2. 6), (2.7)] of (5. 26).
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Now we use the smoothness of X and Holder’s inequality to estimate
the integrals in the above right hand side; we obtain for each value of a

where in the above formulas: the pk satisfy (
stands for Max { ~ i O a ( . , ~) ~ ~, ~ - t), C (a, a) is a constant which can be
written in terms of )( V a ~,~, ~.
We choose po = 3, po = q* and = p* if k > 0 (p* and q* denote

the conjugate exponents of p and q) and we obtain finally

The decomposition § (., t) = ç (., t) + ç’ (., t) and the estimate (5.16) result
now easily from lemma 2 . 1 with the particular choice po = q, Pk = P if
k ~0. .
The proof keeps going like in two dimensions. We state now a lemma

which is the 3 D analogue of lemma 3. 2.

(iij Let ~ ve in L°° ~~3) (~ L1 (I1~3) and T be in LP (I1~3) with q  3 and let

q such that 1 /q _ ~ /p -1 /3; then

Annales de l’Institut Henri Poincaré - Analyse non linéaire



275ANALYSIS OF VORTEX METHODS

(iii) Let ~ be in °° ( p~3) (~ 1 ( ~3) and T be in ~m, p, m >_ 1,
1 p  + ~; then

(iv) Under the assumption (5 . 11 ) we get

We shall not prove these results; the only difference with the 2 D

situation appears in the value of q in (5.17) and a in ( 5 .18) . These
modifications result from the modifications in the Sobolev imbedding
in 3 D.

Next we introduce the solution Mj of

and we have

LEMMA 5 . 5. - Assume that (5 . 11 ) holds and that
°° ( ~3) n W"‘,1 ( ~3) with m >_ d. Then there exist a time i and

constants C depending only on ~o such that for 0 _ t _ i

Proof - Like in two dimensions we omit the proof of ( 5 . 22) because
it is obviously related to the existence of smooth solutions for the original
Euler equations [corresponding to the case E = 0 in (5.21)] for small time
(see [12] for a proof of this result). Thus let us focus on (5. 23).
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Starting from (5.1)-(5.3) and (5.21) we obtain

Let us then consider some real number +00]. Argueing like in
two dimensions we get

Next we write

By ( 5 .19) and ( 5 . 20) we have then, for 1  q  + o0

and therefore for t _ i, using ( 5 . 22) we get:

Now assume that q  3 and let p be such that 1 /p + 1 /3 =1 /q; we can
write, using ( 5 .17) and ( 5 . 20)

By Holder’s inequality and (5.22) this implies, for 

Obviously we have also

Annales de l’Institut Henri Poincaré - Analyse non linéaire



277ANALYSIS OF VORTEX METHODS

Thus, combining (5.22), (5.23), (5.25) and (5.26) yields for ~3 and

which by Gronwall’s lemma implies

To obtain the desired estimates on the velocity it remains only to
combine (5.26) and the above estimate for the appropriate value of q..

Like in the two dimensional case we write now

where 03BBh and Jlh are respectively solutions of

In all the sequel the real number i will take the above specified value.
Denote now by X£ the solutions of (2.3) with uE instead of v; we set

Xj,O); we get
LEMMA 5 . 6. - (i) Let m >- 3. Assume mo E w"‘ + 1, ~ ( ~3) n y~m + ~, ~ ( ~3);

then we get:

Moreover we can write for any p E ]3/2, + oo [ and q such that 1 /q =1 /p + 1 /3

where jlh (., t) E Lq (1R3), (., t) E ~m~ p satisfy
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(ii) The following identity holds:

Proof - Let us consider p, q E ] 1, +oo[ and m >- 3. We observe that, as
in the proof of lemma 3.4, lemma 2.3 implies that, using the same
arguments as in two dimensions, we can write

where

Then, since ( 5 . 30) is a linear problem, we write h as 03A3 03BE03B1 where 03BE03B1 is the
weak solution in of the system

Since mo e Wm+1,~ (R3) Q Wm+1,1 (R3) we have by ( 5 . 23)
....

Therefore lemma 5. 3 applies and gives

Furthermore, by (5.16) we can write with

Writing ~,h = ~ _ ~ ~~, this last estimate yields ( 5 . 33).
To check (5. 34) we first observe that wE - ~,~’ is solution of
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Next since ( u£, is solution of (5.18) we have clearly

Therefore by lemma 5.1 the distribution

is also a measure solution of ( 5 . 29) and thus coincides with c~E - 
As in the two dimensional case the main part of the proof is now

devoted to estimating 03BBh. First we write

i

For brevity we introduce the following notation: if a, b, c are three vector
fields we shall denote by [a, b, c] the scalar function

Next we set where, for any smooth vector valued function
cp with compact support

We write also vh = vi + v2 where
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As expected, estimating which indeed takes into account the effect
of the stretching term on the error, is almost straigthforward. In particular
the predominent part vi is directly related to the LP norm of u - u":

LEMMA 5 . 7. - Let p E ]3/2, + oo [, q such that 1 /q =1 /p + 1 /3 and r >__ 3.
Assume that ~o E Wr~ °° ( (~3) (~ Wr~ 1 ( ~3). Then the following assertions hold
for t E [0, i]:

(i) We have: vl E 9~1, p (~ LP ( (~3), and:

(ii) we can write

with

and

Proof. - Using the change of variables and integrating
by parts gives

and thus, denoting by p* the conjugate exponent of p
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which gives ( 5 . 40) and implies that v i E ~ 1, p; ( 5 . 41 ) is derived in a similar
way (without integrating by parts).
Next using the quadrature formula of order r _>_ 3 in 1R3 given in lemma

2. 3 yields immediatley:

and, since by lemma 5.5 wE and XE are smooth, it follows from the
Holder’s inequality that, if q* denotes the conjugate exponent of q:

The estimate given in the assertion (ii) follows then from lemma 2.1..
Argueing as in the two dimensional case we can also prove

(ii) The following decomposition holds

with the bounds

We can now put an end to the

Proof of the theorem. - Let us first fix the value of the integer r

introduced in lemma 5. 6. We choose r such that

for E small enough, which is indeed possible by (5. 12). Moreover ~o will
be assumed to be in wr + 1, °° ( ~ 3) n Wr + 1,1 ( ~ 3) . In all the sequel p will
be in ]3/2, + oo[ and q will be such that 1 /q =1 /p -f-1 /3.
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Let us consider the solution ~, i of ( 5 . 30) with right hand side

Since, by lemma 5 . 6 and 5. 7, p~ + v~ + + is in W -1 ~ p ( (~3), lemma
5. 3 applies and gives

where

Proceeding similarily, we introduce for k E [2, r] ~,k, the solution of ( 5 . 30)
with right hand side p2, k + V2, k. In addition, for will be the
solution of ( 5 . 30) with right hand side p2, r + 1. Then we write

where

For k = 0, ~,o will denote the solution of ( 5 . 30) with right hand side v2, o
and therefore ~,o (., t) E Lq ( l~3).

Finally we introduce the following notation:

It results from the above definitions that we get

where

Annales de l’Institut Henri Poincaré - Analyse non linéaire



283ANALYSIS OF VORTEX METHODS

Now let us define

where M is a constant to be defined below.

Starting from the estimates proved in lemmata 5. 6 and 5. 7 on the one
hand, and lemma 5. 3 on the other hand, it is easily seen that there exist
positive constants only depending on t and M such that the following
estimates hold

Let

Our purpose is now to bound in terms of yp. For this we
write

On the one hand, combining ( 5 . 32), ( 5 . 3 3) and ( 5 .17), ( 5 . 19) yields

On the other hand, we get, still by ( 5 .17) and ( 5 .19)
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Therefore combining ( 5 . 40), ( 5 . 41 ), ( 5 . 42) leads after straigthforward
calculations very similar to those made in the two-dimensional case to the

following differential inequality

But by ( 5 . 45) this yields

which by Gronwall’s theorem finally gives

Taking then

and using (5.49) and (5.50) with k = r + 1, combined with (5.22) allows
us to check as in the two dimensional case that iM = t.
We have thus proved that

Using in addition ( 5 . 23) completes now easily the proof of the theorem.
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