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ABSTRACT. - We prove the existence of non-collision orbits with large
period for a class of Keplerian-like dynamical systems.
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RESUME. - Nous prouvons 1’existence d’orbites de non-collision avec

grand period pour une classe de systèmes dynamiques de type keplerien.

0. INTRODUCTION

In this paper we study the existence of T-periodic solutions for a system
of ordinary differential equations of the form

where V is a Keplerian-like potential, i. e. V (x) behaves for

x close to 0, a being any real number greater than 0. We prove that, for
large T, such a system has a non-collision T-periodic solution (i. e. a

solution which does not cross the origin) under the only assumption that
V attains its maximum on the boundary of an open set which contains
the origin.
A potential of such kind arises, for example, if at x = 0 there are

z positive charges sorrounded by z + k (k > 0) negative ones uniformly
distributed on a shell containing x = 0. Then V(x)==2014z/~ I inside the

shell, while V ( x) = x at infinity.
The existence of periodic solutions of ( 1) when V’ : - and a >- 2

(or, more precisely, the case of strong forces - see [6] for a definition) has
been studied in [1], [3], [6], [8], see also [2] for a review of the results in
this and related fields. We notice that in such a case all the periodic
solutions are non-collision orbits.

The situation is much more complicated when a _ 2. For some partial
results for a > 1 we refer to [5] (see also [4] for a somewhat different class
of potentials). In particular, the results of [5] do not cover the case
a =1 ( 3), which is known to be quite degenerate. For example, if

(~) Some results are f ound also when (x== 1 but under other symmetry conditions.
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then the T-periodic solutions belong to one parameter
families containing collision solutions and all the orbits of each family
have the same value of the energy and the same value of the action
functional [7].

Actually, in the present paper, we show that Kepler’s potential is very
sensitive to perturbation, at least in the sense that even a very small

perturbation far from the singular set (if it goes in the "right" direction)
can assure the existence of non-collision orbits.

The results proved here have been announced in the C.R. Acad. Sci.
Paris note [0].

1. ASSUMPTIONS AND MAIN EXISTENCE RESULTS

We consider a potential R) satisfying
(VI) 
(V2) there exists an open, bounded set Q c IRN, with smooth boundary

r such that

(i) 0~03A9 and Q is star-shaped with respect to 0;
(ii) letting b = max ~ V(x): one has that b = V (~), 
(V3) lim sup V (x) _ [i  b.

+00

Given T > 0 we look for solutions of

where V’ denotes the gradient of V.
We say that a solution y (t) of ( P) is a non-collision orbit if y (t) ~ 0,

‘d t.

Let S1=[o, 1]/~ 0, 1 ~, H=H1 (S1; and A= {y E H : y(t)~0, d t~ .
We denote by I I u ( ( i = I u ( 2 u I 2 (4) the norm in H.

Define fT : ~{ + ~} by setting

(4) From now on we will assume that each integral is taken from 0 to 1.
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[where V(0)=-oo].
Then fTEC1(A; R) and, if u E A and then y(t)=u(tIT) is a

non-collision solution of (PT).

THEOREM 1. - Suppose ~8) satis fies (V1), ( V2) and
(V3). Then 3 T* such that V T  T* problem (P) has at least one non-collision
solution x such that { x (t) ~ ~ r.

2. ESTIMATES FOR THE MINIMUM OF fT ON COLLISION
ORBITS

It is easy to show that it exists a of class C~
such that: (i) as s -~ 0+; (ii) (iii) V (x)  ~ ( I x ~ ),
d x E ~N B ~ 0 ~ ; (iv) o is not decreasing. Let gT: H1 (0, 1 ; (~+) -~ (~ be
defined by

Consider now u E H. Setting r (t) = I U (t) I, one has r E HI (0, 1; f~ +) and

Then

Moreover, if u e H E A there exists a Qe[0, 1 [ such that

1; ~+). Hence

LEMMA 2. - 

rEHo(0, 1; ~+) } . D

LEMMA 3. - gT attains its minimum on Ho (0, 1 ; 

Proof - Trivial since gT is coercive and weakly lower semi
continuous. D
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LEMMA 4. - ~ c, i > 0 such that d T > i

1; ~+) ~ 

Proof - Let rT be such that 1; l~ + ) ~ .
Then set

From the conservation of energy it follows that T2 ET is a constant of the
motion. Fix now To and correspondingly r0=rT0 and Eo = ETO. We claim
that Eo  b. In fact, since 3to such that r’ (to) = 0 [we recall that

ro (o) = ro (T) = o), then hence If Eo = b,
then ~’ (ro (to)) = 0 and ro (t) = ro (to) > 0, V t, contradiction which proves
the claim.

Take now any T > To. Distinguish between: (i) and (ii) ET>Eo.
If (i) holds, from T2 ~r (rT) __ T2 ET and Eo it follows that

Suppose now that (ii) holds. Let tT be such that rT ( tT) = 0 and 
V t e [0, tT[. Set From ET> Eo and the monotonicity of ~r it
follows that po - ro (to). Since rT (t) > 0, V t e [0, we can solve

rT ( t) = p in [0, tT[ to such that rT (’tT ( p)) = p, V p e [0, From
the conservation of energy we get, since ET> Eo

We can now evaluate

Set
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Then c>O and from (3) and ~r ( r)  b it follows

( 2) and Eo  b j ointly with (4) prove the Lemma. D

3. PROOF OF THE THEOREM

We start by showing

LEMMA 5. - satisfies the PS condition in the set

where °

Proof. - Let c A be such that

hence, setting w = u - wn ~ w in C° (S1; RN).2 I nl _ > > g n n n n ( )

Suppose, by contradiction, that 03BEn = un ~ +~. Then 
unif ormly and using (V3)

n sufficiently large,

contradiction which proves the boundedness of II u" II1. We immediately
deduce that strongly in IRN) and weakly in HI (Sl; 
Moreover, from the weakly lower semi-continuity of fT, we deduce

hence u e A. Usual arguments then prove that u" --~ u in D

Proof of Theorem l. - Consider the set of functions

E = ~ x E H such that x (t) = ç cos (2 ~ t) + Tl sin (2 7t t) + xo,
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Then, V x E E, x (t) ( =1, V t.
SN - 1 -~ r is the radial projection [which is a diffeomorphism by

(V2)], set

We have that:

By Lemmas 2, 3 and 4

From (5) and (6) it follows : 3 il such that

Moreover, since P  b, one has

and hence

One can now proceed as in the proof of the theorem by Lyusternik and
Fet on the existence of one closed geodesic on a compact Riemannian
manifold (see [9], Theorem A. 1. 5). In fact, letting E > 0 be such that

we can work in the set ( u: where the PS
condition holds according to Lemma 5. Since the minimum on such a set
is achieved on { V (x) = b ~ , set which is homeomorphic (through
C) to the existence of a critical point u such 
follows. Lastly, if such a critical point is such that u (t) e r, ‘d t, then for
the corresponding solution y (t) = U (tiT) one would find y (t) = yo. Hence
one finds fT (u) = - T2 b, a contradiction. This completes the proof. D
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4. FINAL REMARKS

PROPOSITION 6. - Let N = 2 and V E C 1 ( f~N B ~ 0 ~ , R) satisfy (Vl-2).
Then

(i) 3T* such that V T> T*, (PT) has a non constant solution y (t) which is
a non-collision orbit;

(ii) if Q is convex, then y (t) e Q, V t.

Proof. - The only point where (V3) has been used is in proving
Lemma 5. If N = 2, this can be avoided using Lemmas 2-4 jointly with the
arguments of [6]. We will be sketchy here. Let Ao = {u~039B: u is non-

contractible to a constant in 039B}. It is possible to show that fT is (bounded
from below on H and) coercive on Ao. Since 1: c Ao, (7) implies that

for T large. Then it follows that

~u0~039B0:fT(u0)=mim{ fT (u): This proves (i).
As for (ii), consider

U is of class C~. Applying (i) above we find a T-periodic solution of

with y e Ao. It follows easily that such a solution must be contained in Q
for every t (in fact, if it hits the boundary it must be a straight line in the
past or in the future, so that it cannot be periodic). D

Remark 7. - By a suitable modification of Lemma 5, it would be

possible to show that Proposition 6 (ii) holds even if N > 2.

PROPOSITION 8. - Let the assumptions of Theorem 5 be satisfied. Then
for every compact set K c Q, 3 To: To, ( PT) has a solution yT with

Proof - From the proof of Theorem 5 we know that for T large
enough fT has a critical point uT such that

If there is a compact set K c Q such that eK, V t, one would have
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Since max V  b, this is in contradiction with (9) for T large. Q
K
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