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ABSTRACT. If A c is a convex body we prove the existence of an
embedded minimal disk M c A meeting aA orthogonally.

RESUME. - Si A c f~3 est un ensemble convexe, nous prouvons l’exis-
tence d’une sous-variete minimale M c A du type disque, intersectant aA
orthogonalement.

INTRODUCTION

Let A be a bounded open strictly convex subset of ~3 with boundary aA
of class C4.

In the present paper, we consider the free boundary value problem for
minimal surfaces in A. This means that we seek a minimal surface M c A
whose interior is contained in A and whose boundary aM is contained
in aA which is stationary (for the area integral) with respect to all variations
preserving the inclusion aM c aA. This implies in particular that M has
to meet aA orthogonally.
Our result is

THEOREM. - There exists an embedded minimal disk M in A solving the
free boundary value problem..

Liste de mots-clés : Minimal surfaces, free boundary problems, geometric measure
theory, minimaxing procedure.
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Annales de l’Institut Henri Poincaré - Analyse non linéaire - 0294-1449
Vol. 3/86/05/345 /46/~ 6,60/(~) Gauthier-Villars 14

© 198 6 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved



346 M. GRUTER AND J. JOST

Our proof has several ingredients :
a) The minimaxing methods of Pitts [P ] are used to connect two distinct

points on aA by a sequence of disks meeting aA transversally. We obtain
a minimaxing varifold which has a certain almost minimizing property
in the sense of Pitts [P] and Simon-Smith [SS].

b) The methods for minimizing among embedded surfaces of Almgren-
Simon [AS ] and Meeks-Simon-Yau [MSY] ] are used for local replacement
arguments.

c) We use the (easy) extension to free boundaries of the curvature esti-
mates for stable minimal surfaces of Schoen-Simon [SRS ] for some com-
pactness arguments.

d) The regularity at the free boundary depends on the companion paper
[GJ ], where Allard’s regularity theorems for stationary varifolds [Al, A2 ]
are extended to solutions of free boundary value problems.

e) Finally, Simon-Smith [SS] ] showed that any (regular) metric on S3
admits a minimal embedded two dimensional sphere. Besides using many
of their arguments in a) and b), we shall make use of their paper in an essen-
tial way to show that the almost minimizing varifold produced in a) and
shown to be an embedded minimal surface in b), d ) is actually simply
connected, i. e. a disk or a collection of disks.

We remark that our arguments easily generalize to the case where the
ambient space is replaced by a three-dimensional Riemmanian manifold
of class CS and A is a strictly convex ball in this manifold provided there
are no minimal embedded spheres in A. We did not include the details,
because it was already demonstrated in [P ] and [MSY ] how to generalize
such arguments to manifolds, and also because the present paper is already
long enough.
A corresponding parametric problem was recently treated by Struwe [St ],

using a method of Sacks-Uhlenbeck [SU]. He showed that given an
embedded surface S in f1~3 of class C4, diffeomorphic to the standard sphere,
there exists a parametric minimal surface f : D -~ 1R3, where D is the
unit disk with c S and meeting S orthogonally. It is not clear,
however, whether his solution is embedded (at least if S is strictly convex)
or at least immersed. He does not assume that S is convex, but in the general
case his solution cannot be confined to lie in the interior of S. For these

reasons, we believe that our result captures the physical and geometric
essence of the problem better than his.

Finally, it was shown by Smyth [Sm] ] that if T is a tetrahedron
in (1~3 (i. e. having a boundary formed by four planar pieces) then there
exist three embedded minimal disks meeting T orthogonally. The rather
explicit boundary in his problem made it possible to apply arguments
of a much more elementary nature than ours.
The present work was begun when the second author was supported
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by the SFB 72 of the University of Bonn and completed while both authors
enjoyed the hospitality of the Centre for Mathematical Analysis in Can-
berra. We thank Leon Simon for inviting us to Canberra and for acquainting
us with his unpublished work, and both institutions for their generous
support.

§1 THE EXISTENCE
OF AN ALMOST MINIMIZING VARIFOLD

Terminology.

A is a bounded open strictly convex subset of 1R3, aA E C4, U c (~3 open

Furthermore, for E > 0, a > 0,

Let

DEFINITION. A varifold V E V2(A) (:={ W E V2(R3) : spt ~W~ c A} ),
V ~ 0, is called uniformly almost minimizing among disks relative to 
if for each E > 0 there is a > 0 and 03A3~M with F(V,  E and A, E, a)
for at least one i E ~ 1, 2 ~ for each (U i, U2) E We also say, that ( for
this i) V is almost minimizing among disks on U~.

Vol. 3, n° 5-1986.
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Note that for a1  a2 the property of uniformly almost minimizing
among disks relative to implies the same property relative to 
We also say that is almost minimizing among disks in U

(U an open set) if for each E > 0 there is a > 0 and 03A3~M with F(V, _v_(E))  E
and L E S(U, A, e, a).

In this paragraph, we use the methods of [P, § 4 ] together with their
modifications by [SS ] in order to obtain the existence of a varifold which
is uniformly almost minimizing among disks.

Let ~ M.

We consider the set of maps P(A) -

with

uniquely defined via

and

Put

is the set of critical varifolds.
It follows from the isoperimetric inequality that M > 0. Actually

with

LEMME 1. - There exists V E _C(1’,) which is uniformly almost minimizing
among disks relative to u03C3 for each 03C3 > 4.

Annales de I’Institut Henri Poincaré - Analyse non linéaire
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Proof (~). - Since C is compact relative to the topology defined by F,
and since the almost minimizing property considered here is preserved
under limits in V2(A), it suffices to show that for each a > 0, there is 
which is uniformly almost minimizing among disks relative to 
We suppose that this is false, i. e. that for some a > 0 no V E C has

the required property. Then, for each u E C, there exists E~ > 0 with the
property that for each a > 0 and 03A3~M with V)  E", there is

(U 1(E, oc, V), U2(~, a, V)) E ~lC for which E is neither in a, nor

in a, V)). This means that there exist isotopies

with

Since C is compact relative to the topology defined by F,

for suitable Vi, ..., Vno E C.

Using again a compactness argument, one easily sees that there is some
E2 > 0 with the property that if { ~t } E P(A) with

and if for some to E [o, 1 ]

then for some j~{ 1, ..., n}

Let O be a finite covering of A by balls of radius r/4. Then there exists
a finite partition of unity ( 81, l = 1, ..., L } subordinate to O with

(’) We shall largely follow [SS].

Vol. 3, n° 5-1986.
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Let

Let be a path in P(A) with

We want to modify (~t), using (5) and (6), to obtain a new path with

and hence the desired contradiction.

Using (I) and (2), for some 5o > 0

We choose 6 > 0 having the following four properties

We choose a partition

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Putting a = B2 in (5), for each j with there is and

isotopies E I(Vij, A) with

and

Let

where each Ck is of the form

For given k E ~ 1, ... , n(~) ~ we perform the modification of ~t in the
interval  t  For simplicity of notation, we shall suppress
the subscript k in the sequel. We thus want to construct (~t) with

and

First of all

Next, let io E { 1, 2 } and

Using (20) and (24) for t = 2 1 + t~), (22) also holds for - + t~) _ t _ t~.~ 2 
~ ~

Now suppose inductively that ~t has been defined 
with

Vol. 3, n° 5-1986.
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and

We then want to construct with (26) and (27) holding
with / + 1 instead of l.

Since > min (diam U1, diam U2) for we can

find Uil, with

If i = io in (28) and (27), we put

Since in this case

where supp = ~ x : x ~ , (20) and (21) again imply (22) for this
interval. Moreover

We now recall the partition of unity satisfying (11). We put

where

Thus

We choose 0  s2  s3  s4  s5  ti. We put

with

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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with

with

for

and

The idea behind this complicated construction is quite simple. By (28),
the supports of and + 1 

are disjoint. Since by (21 ) ; we can decrease
the energy by at least e, performing a modification on we have some

freedom for operations on still preserving (22), and vice versa.
We thus want to show that

Since the estimates on the different subintervals are rather similar (and
taken from [SS] anyway), we confine ourselves here to carry out only
one (typical) example, namely ti + s3 _ t _ tl + s4-
We divide

Vol. 3, n° 5-1986.
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With (21)

Finally

Now, on R

Therefore, noting (31),(18), ( tl + 1 - 6

(37) and (38) yield

By (35), (36), (39) and (13)

for

Handling the other subintervals in a similar way, we obtain (32). More-
over, by construction

This holds for I = j - 1, ... , j + r - 1. By induction likewise

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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We finally put

with

for

and

By the same argument as for we see that (41) continues
to hold for t  tj+r+ 1.

Putting n AB

(19) then implies that (41) also holds for those t. Hence 03C6t is defined on

[o, 1 ] and satisfies

Since by definition of ~, we only performed modification on sets with
volume less than a quarter of the volume of A, we see that (~t) also satisfies
condition (4) (observe that we made sure that (40) holds at every step of
the construction, so never deviated enough from to become a

path with Ai = { zl }.) We then smooth out (~t) to get a C1-path (~t) with

Thus, we have obtained the desired contradiction finishing the proof.
q. e. d.

COROLLARY I. - a) There is at most one point x E A at which V is not
almost minimizing among disks.

b) For each x E A there is some r =~ r(x) > 0 with the property~ that V is
almost minimizing among disks in B(x, x ~.

Proof: a) If the almost minimizing property would fail at xl and x2
( x 1 ~ x2), we take r1, r2 with

in Lemma 1 to obtain a contradiction.

Vol. 3, n° 5-1986.
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b) If V is not almost minimizing in B(x, r) =: U 1 for all r  ro(x), then

it is almost minimizing in U2 == B 0 x 4r) for all r  1 ro by Lemma 1
hence in B(x, }. q. e. d. o) ( ~ ) 

-4 
o Y

§ 2 . MINIMIZING SEQUENCES OF SURFACES
AT FREE BOUNDARIES

We extend the methods of [AS ] and [MSY ] to free boundary value pro-
blems using the regularity theorem of [GJ].

Let U c ~3 be open, of class C2, and let ~U n A be simply connected.
Let M E ~~ intersect 3U transversally and

Let A be a component of n U) with

Then there exist F c and C c with

The constant co depends only on aA. This easily follows from the isoperi-
metric inequality...

. We also define for U as above and t >_~ 0, 
’

if

LEMMA I . Let U be an open subset of I~3 with a convex boundary aU
of class C2. Suppose on dU the following isoperimetric inequality holds:-

If 03BB is a system of Jordan curves in cU n A dividing aU n A into two
(not necessarily connected ) components E1, E2, then . 

’

for some ~ > 0.
Suppose
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with

and

Let

and let intersect aU transversally. Suppose aM n A is not contained
in any set C satisfying (2), (3) where A is a component of MB(M n U) with
aM n A n A = ~ and F c aU n A satisfies (1).

Then there exists M with

M intersects aU transuersally

If in addition

Proof - We can proceed as in [AS ; p. 457 ff. ] once we have demons-
trated the following claim :

If A, F and C are as above (in particular satisfying (1)-(3)) then

We achieve this as follows.
Since aU is convex, ~P2(R(t)) is monotonically increasing in t, and, by

assumption

If A intersects R(t) transversally (which is the case for almost all t by Sard’s
lemma), it divides R(t) into two (not necessarily connected) sets F(t), F’(t).

Vol. 3, n° 5-1986.
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We label them in such a way that they depend continuously on t and

w. l. o. g.

and hence

The coarea formula then yields

Hence, by assumption on T, there exists t ° E T T with

We put

Since 3U is convex, A dist (-, U) > 0 on ~3BU. Thus, from the divergence
theorem, if v denotes the unit normal vector field of A,

Therefore

and if E(t2) ~ we even have strict inequality. In particular the claim

follows if = 0 for some t E T T , noting H2(E(t2))  2 .
In general, we have at least - -

(5) implies that we can also assume

because, if not, we take U’(to) u U, F(to) (note (5)), A(T) := A n U’(T),
and A n A(T) instead of U, F, A, A resp., show that (with the arguments
below)
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and apply the divergence theorem to show that

thus demonstrating the claim.
Therefore, assuming (8), we can assume as well

Assuming this and using (5), we obtain from (6) (t 1 == t, t2 = to)

Hence, from the isoperimetric inequality on R(t)

With (7)

for almost all t E 0 T and since this expression is monotonically decreas-
ing and ~P2(E(o)) = 0

provided

This implies (noting (8))

contradicting the choice of T. Hence

Vol. 3, n° 5-1986.
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Now either ~f~( F( 2014 j  = 0 which case however was already treated
after (6), or ~ 2

whence the claim follows again, noting H2( E -  H2(). q. e. d.
2

LEMMA 2 (Boundary filigree).

Assumptions.

f Yt increasing family of convex sets where each Yt satisfies the
assumptions of the set U of Lemma l.

Conclusion :

Proo~f. By Sard’s Lemma, M intersects aYt transversally for almost
every t E (0,1), and by assumption M c A and M meets aA transversally.
In particular, int M n aA = 0. Thus, we can apply Lemma 1 and get M
with

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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(and not only as in [AS1, p. 457).

(11) holds.

From (11) and (17)

Using (16)

and using (14)

and using (12),

w. l. o. g.

Using the coarea formula, (18) yields

Since g is increasing, the result easily follows from integrating (19).

exists in the varifold sense.
Then V is an integral varifold, and

where M is a stable embedded minimal surface in U n A with aM n U c aA,
and M meets aA orthogonally.

Proof As in [AS ], p. 463, we see using the boundary filigree lemma,
that W is stationary, rectifiable and there is some c > 0 with

Vol. 3, n° 5-1986.
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Interior regularity of W follows from [AS ], §§ 5, 6. Also, W is integral.
Let xo ~ spt ~W~ n U n aA.
We assume for a moment that W has a varifold tangent C at xo with

spt ( ~ C I contained in a half plane H.
Since W is also stationary w. r. t. variations of its boundary on aA,

C has to contain the interior normal of aA at xo.
W. 1. o. g. xo = 0, and (0, 1, 0) is normal to H.
Let ((D~ - aDp) x ( - a, c7)) n A.
By rescaling, we can assume w.1. o. g. K1,1 c: U.
Put Nk : _ ~ i ( S)- 
By definition of C,

for some sequence (rk) ~ oo as k - oo.

Let (0,1) be given.
(21) implies that we can find r E (rk) with

W. 1. o. g. also

By assumption

Since --~ ,ur #V~J, (23) and the coarea formula yield for almost
all 7 E (60~2, 1) and k ~ o0

Thus, for sufficiently Y large e A:, ~ we can fi n d 6k E 3 4 and -, 1 )
with B4 / B4 /

Furthermore, by Sard’s Lemma, we can assume that intersects

Dpk x ({ - ~k ~ ~ ~ 6k ~ ) and aDpk x [- l, 1 ] transversally. Moreover
intersects Ar transversally by assumption. ’"

We now want to apply Theorem 1 of [AS ] for M = Ilr(Nk) and U = 
(M, U as in [AS ], Theorem 1).
As observed in [AS ], p. 475, we don’t have to worry about the edges

of Because of (26), anyway only the edge oAr n x [ - 
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has to be taken into account. The N. and P from the statement of Theo-
rem 1 in [AS] are then in instead of ~l.

Anyway, we find integers 0  Rk  Rk and disks ..., with

and ~P1k,.. , ~PRkk are homotopically nontrivial in Ek while aPk k + 1, ... , 
bound disks in Ek.
Note that because of (26), the edges

are not intersected by the api.
Moreover,

and using (14) and ] 2 . 6 (2) (d),

Then, first of all, ... , Pk k can be discarded as in [AS], p. 465 f.,
without changing the varifold limit in (28).
We now want to delete ...,Pkk.
Let Ok,l be the intersection of the disk bounded by Pi in Ek with

x ( - 6k, 6k) (I = R~ + 1, ..., 
Clearly _

Choosing c-o sufficiently small and using the boundary filigree lemma
for the family of cylinders (which after suitably rescaling and slightly
perturbing satisfy the proper assumptions)

Vol. 3, n° 5-1986.
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we get

and thus also these P~ can be discarded without changing the varifold
limit in (28).
Thus ,

where --~ 0 as r ~ oo, since aA E C2.
Furthermore, comparing Pk with either of the parts into which api n Ar

divides x ( - n Ar, and using (27)

We now choose k so large that Ek  03C003C30 (Note that the choice of 60
leading to the deletion of Pk for I = Rl + 1, ..., Rk did not depend on k.
Thus

(30) and (31) imply that Rk is bounded independent of k. After selection
of a subsequence, we find a positive integer n and

with (using (31), (32), (33))

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Since U(0, 1 ) n A c K1,1, (34) yields

Since we can make o-o and ~(r) as small as we want by choosing r suffi-
ciently large (satisfying (23)), we obtain, using the monotonicity at the
free boundary of [GJ ]

We now apply the first part of the proof of instead of (Nk)
(l = 1, ..., n). This, together with the interior regularity of [AS, § 5] ] implies
that each Wi is a stationary integral varifold with density WI ~-almost
everywhere. Taking cro in (38) sufficiently small, the free boundary regularity
of [GJ ] implies

where Ml is a minimal surface which can be represented as a graph over
D 2 n 

’

By (39) (remembering xo = 0) and (36),

Since for 1, ...,n} either ul  um or ul > um in D 2 n Ar03C1o 1 by
construction of Wl, and since we can apply the strong maximum principle
to the difference of two solutions of the minimal surface equation also at
boundary points, uj = um on D2 n Ar03C1o 1. Hence

In order to finish the proof, we have to show that at each

xo E 3A n U n spt~ [ W [ [, there is a varifold tangent C of V of the form
nv(H) with H a half plane and n E (~I.

W.1. o. g. xo = 0 again. 
"

Vol. 3, n° 5-1986.
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We choose a sequence (Nk) in with

It follows that C is stationary. We reflect C across Tan (A, xo) and obtain
a stationary C (cf. [GJ ; 4 .11 ]). We apply the interior arguments of [AS ; § 6 ]
to C and deduce that it is contained in a plane. From the two remaining
possibilities, the first one, namely that C is a halfplane (containing the
interior normal of A at xo) was already treated above. Therefore we only
have to exclude the second possibility, namely

Let Br = B(xo, r) n A and assume w. l. o. g. Bi 1 c= U. By the usual repla-
cement argument, we can assume that each Nk intersects Brk in a number

of disks ..., for a suitable rk E -~ 1
Using the coarea formula, for given E > 0 we can also assume that for

all sufficiently large k

It follows that if one of the disks Pk, i E ~ 1, ..., has part of its boun-
dary on aA, i. e. 0, we can replace it by a region Ak c aB(xo, rk)nA
with

where c is a fixed constant. Lemma 2 (again after rescaling and perturbing
so that the proper assumptions are satisfied) implies that those Pk do not
contribute to the limit and can hence be discarded.

Therefore, we may assume

We let

Since A is strictly convex, we may assume if e is small

By smoothing out the corner cA r~ { ~ : dist (x, Tan (A, xo)) _ ~ ~ we can
obtain a convex Ag c A with boundary of class C2. We can also assume
that cAE is intersected transversally by all Nk. Thus, we can apply Thm. 1

of [AS ] and produce a minimizing sequence

Annales de l’Institut Henri Poincaré - Analyse non linéaire



367EMBEDDED MINIMAL DISKS

Therefore, by interior regularity v(Nk) converges to a stationary vari-
fold W with spt ~W~ c AE and

and

where M is an embedded minimal surface in the interior of On the
other hand, by interior regularity as well, also spt ~ ~ W ~ ~ is represented
by an embedded minimal surface M in the interior of A. Of course

Therefore, by unique continuation, M and M also coincide in the interior
of A. It follows

and in particular x0~ spt ~W II which is a contradiction and excludes the
possibility

Since Var Tan (W, xo) ~ 0, this completes the proof.

THEOREM 2. Let U be an open 3-cell in (1~ 3, S an embedded surface
in A which intersects aU and aA transversally. Suppose S n aA is connected.
(~’) a sequence in I(U, A) with

~~here M is a stable embedded min. surface in UnA meeting aA orthogonally,

(M is not necessarily connected~.

Proof 2014 Since S n U neither is necessarily connected nor a disk we
first have to perform some reductions as in [MSY ], § 3.

Vol. 3, n° 5-1986.
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Suppose y > 0 is given.
Assume that there is some S - with

and some curve ~, on S which (possibly together with a curve in aA) bounds
a disk A in U n A with

and

while none of the two parts into which £ divides its component of S n U
is a disk.
We then cut S along ~., insert A into each part, smooth out the corners

and move the two inserted disks a bit apart so that we get an embedded
surface Si 1 with

while S 1 n U has one more connected component than S n U.
We then perform a similar reduction with Si and so on until we obtain

a surface Sk which allows no further such reduction. We note that the
number k of possible such reductions is bounded independent of y by the
number of components of S n U and their topological complexity. By (45)

Hence, we can find as in [MSY, § 3 subsequences qj and (S’) with (after
selection of a subsequence of (S~))

where K is independent of j and S’ allows no more such reduction for
some fixed y > 0.

(47) implies

Thus, we can assume w. 1. o. g. that already our original sequence (Sj)
allowed no such reductions for some fixed y.
The proof is then completed by simple modifications of the arguments

of [MSY, Th. 2 and § 5 ] involving Th. 1 (actually in the present context
where the ambient space is (~3 instead of a general three dimensional
manifold, the proof can even be simplified compared to [MSY ]).
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§ 3. CURVATURE ESTIMATES
FOR STABLE MINIMAL SURFACES AT FREE BOUNDARIES

AND AN ABSTRACT REGULARITY THEOREM

We want to extend the interior curvature estimates for stable minimal

hypersurfaces of [SRS ] to such hypersurfaces which solve a free boundary
problem.

Let S be a hypersurface in ~" + 1, 0 E S, and X be a hypersurface in
1 (O, po) for some po > 0, with aX n 1 (O, po) - S n X n 1 (O, po)

and X lies entirely on one side of S n B(0, po). Suppose X is embedded
and is stationary and stable w. r. t. the area integrand. This implies in par-
ticular that X meets S orthogonally.

Suppose S is of class C4, and S n B(0, po) is diffeomorphic to the n-dimen-
sional disk.
We now perform a C4-transformation f of coordinates with the following

properties

i. e. S n Bn+ 1(0, po) is mapped into the hyperplane orthogonal to the
first coordinate axis.

iii) The area integrand is transformed into a C3 integrand F satisfying
properties (1. 2)-(1. 6) of [SRS ].

iv) Normal vectors to S are mapped onto normal vectors to j(S).
’ 

Let M = f (X). Assume M E C2.
Let ei be a moving orthonormal frame on M.
Let ~ be a vector field on 3 (o, po) with compact support.
Let v be the normal vector field, x E M, a, f3 E TxM, and A the second

fundamental form of M, i. e.

where D is covariant differentiation on M.
The first variation of F at M w. r. is given by

where xe M, V is the derivative in 1, and c 1, ~c 1 are the constants of
[SRS, (1. 9) ].
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Similarly, the second variation is given by

with

as in [SRS, (1.10), (1.12)], where 1 denotes orthogonal projection onto
the v-direction ( [v(x) ] Q+ TxM = Txn + I),
We now use a normal vector field ~ = ~ in (3) to obtain

where H is the mean curvature of M, cf. [SRS, (1.14)].
We now assume that M is stationary w. r. t. all variations ~ with

E ~ 0 ~ x ~n for x E ~ 0 ~ x ~n, i. e. variations which are tangent to
the supporting hyperplane, i. e.

This implies

Furthermore, we assume that M is also stable w. r. t. such variations,
i. e. (using (7))

for all compactly supported (.
Note that this equivalent with the original assumption that X = 

was stationary and stable w. r. t. variations which are tangential to S.

As in [SRS, (1.17)] ] we deduce

where c3 depends only is as in [SRS, (1.4)] and hence depends
on the C4-norm of S, and ( is any Lipschitz function on M vanishing
near M n ~Bn+ 1(0, po).
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The crucial step now is to use (9) in order to extend Lemma 1 of [SRS]
to the present situation. The constants c3, c4, ... in the sequel will
depend only on n, , 103C10 ( , 1 as in [SRS, ( 1. 3)-( 1. 6) ]).

LEMMA 1. - Let M as before be a C2-surface in g"+ 1(0_ Po) with
aM n Bn + 1(0, po) - f(S) n M n Bn + 1 (o, po) which is stationary and stable
w. r. t. F.

There exists Eo > 0, depending only on n, ~c, ~cl po, with the property
that if 103C1  Eo, vo E S" n T0 f(S), 03C6 is a bounded locally Lipschitz function
vanishing in a neighbourhood of aM n C(o, p), where C(o, p) = p) x ~,
then

Remark. We have tacitly assumed that M is complete. As in [SRS ]
one can also handle singularities, i. e. points where M is not locally an
embedded hypersurface as long as the (n - 2) dimensional Hausdorff
measure of the singular set vanishes.

Proof We ( 1 - v - as a test function in (9). It is
standard to estimate

and hence ( is locally Lipschitz.
W.!. o. g. 2 p  po.
Then (9) gives (cf. [SRS, (2 .1) ])

We now choose an orthonormal frame ..., en on M with the pro-
perty that on S n M, e 1, ..., en-l 1 are tangential to S and en is normal.
We look at the second term on the right hand side of ( 11 ) which equals

integrating by parts, since 4J vanishes near M n p).
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But

since  v ) = 0, employing the standard summation convention. Now

since v, e 1, - - - , en -1 are always tangent to the hyperplane j’(S) = { 0} x 
whereas en is normal to it.
Hence

and there is no boundary contribution in (12).
Hence we can calculate as in [SRS, (2.8)] ]

We examine the second term on the right hand side of (13) :

If we integrate over M we obtain

since vo) = 0, since vo is tangential to f (S). Hence the boundary con-
tribution vanishes again, and we conclude as in [SRS, p. 751 ]

and if 103C1 is small, we can absorb the terms with |A| and ! |A|2 into the
left hand side. q. e. d.
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It is now fairly straightforward to extend Theorems 1-3 of [SRS ] to
the present context to obtain.

LEMMA 2. Suppose S is a surface of class C4 in fF~3, 0 E S, S intersecting
B3(o, po) in a disk.

Suppose M is a complete surface of class CZ with boundary
aM n B3(o, po) = S n M n B3(o, po) which is stationary and stable with
respect to the area integral and variations tangent to S.

Suppose

Then there exists 03B40 > 0, depending only on , 1po ( f the transformation f
introduced above leads to an integrand satisfying (1. 2)-(1. 6) of [SRS]

with constants , 1 with the property that i x E M n B3 0 1 po ,
1 

p p Y .f ~ ~4Po ~
0  p  4 po, M’ is the connected component of

and

(i = I, ..., k), where c~ depends only on ~c, ,u 1 po .

Using the techniques of [SRS ] it is not too difficult to show

LEMMA 3. - Suppose (Sn) is a sequence of surfaces in fl~ 3, for which
Sn n B3(o, po) is a disk with uniformly (i. e. independently of n) bounded
C4 -norm (in the sense that the corresponding transformations fn, mapping Sn
onto a disk and satisfying i)-iv) above, have uniformly bounded 
Suppose is a sequence of complete orientable surfaces with boundary
in B3(o, po), with

which are stationary and stable w. r. t. the area integrand and variations
tangent to S,~.
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Suppose moreover

Then after selection of a subsequence, we can find a varifold

with

where M is a complete orientable surface with boundary in B3 0 1 po

where S is a surface of class C4.

LEMMA 4. Suppose Sand M are as in Lemma 2, in particular

Then there is some constant c8, depending only on ,u, 1 po with

where A is the second fundamental form M.

We indicate the modifications of the arguments of [SRS ] required to
prove the preceding lemmata.
We look at the point x = 0 and try to represent a surface M satisfying

the assumptions of Theorem 1 [SRS ] (in the modified form for our free
boundary problem) as a graph over the plane which is orthogonal to the
normal vector v(0) of M (v(0) = en+ 1 in the notations of [SRS]). Note
that v(0) is tangent to j(S).

In the definition of the excess Ea on p. 757, we can allow only vectors vi
which are tangent to the plane f(S), since we had to make that restriction
in Lemma I.
Lemma 1 then has to be applied with vo = v(0) (p. 753 and p. 763) and

with vo = vi, where vi realizes the infimum in the definition of E~ (cf. p. 760,
p. 763).
For the harmonic comparison function on p. 766 we then have to

require that the normal derivative vanishes at the free boundary.
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(In order to fix the notation, assume

Then

ui then can be reflected as a harmonic function across {x1 = 0}, and the
estimates (4.8) pertain.

Since the graphs ui also meet f (S) orthogonally,

and hence as on p. 767 for ( a compactly on ~2~~~ supported Lipschitz
function

Finally, we note that the vector

on p. 770 again is tangential to f (S) and hence admissible.
Moreover, when one performs blowing ups, then in the limit S becomes

a plane, i. e. F becomes the area functional, and we can reflect M, since
stationary w. r. t. F, across S = f (S) to apply interior arguments (cf. 4.11
in [GJ]).

Detailed arguments in a similar situation were carried out in [GJ ].
We note that also the arguments of chapter 6 of [P ] can be carried over

to free boundaries without essential difficulties. The arguments of chapter 5
of [P ], which are taken from [SSY ], however, are not readily generalizable
for several reasons. Therefore, we had to take recourse to [SRS ] for the
curvature estimates.

Let A be a bounded open strictly convex subset of (~ 3 with dA 
Let x E A, cr, o’i, (J 2 > 0
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We fix x0~A and 03C3 > 0 and put

Let ~ :_ a) be a nonempty set of varifolds V in V2(I~3) with
support contained in A which are stationary for the area integral w. r. t.
variations tangent to aA and which enjoy the following property

for all 0  pi  p2  o- for which U

there is some V* E j~ with

and

where M is a not necessarily connected embedded minimal surface with
boundary

which is stable w. r. t. variations tangent to aA.

It is now easy, using the arguments of chapter 7 of [P ] (cf. also [SRS ],
chapter 7 and [SS ]) in conjunction with Lemmata 2-4 to prove the following
abstract regularity theorem (cf. [SS ]).

LEMMA 5. - Let xo E A and (J > 0 so small that aB(xo, 6) n aA is empty
or a circle.

where M is a (not necessarily connected ) minimal with boundary

which is stable w. r. t. variations tangent to aA. In particular, M meets aA
orthogonally.

Finally, if V * is constructed from V as in the definition of then V * = V.

The idea of the proof is first to show that by comparison with a suitable
sequence of replacements, every tangent cone of V is a plane with integer
multiplicity. Then one selects spheres which are intersected transversally
by spt ~ ~ V II ( (using Sard’s Lemma) to make suitable replacements which
by definition of ~/ again lead to stationary surfaces so that one can apply
a unique continuation result for elliptic equations, taking the decomposi-
tion result of Lemma 2 into account. This gives regularity on annuli
A( p, pi, p ~) for any 0  p 1  p2  ~, and regularity at p then is obtained
as in [P, 7 .12 ] .
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§ 4. REGULARITY OF ALMOST MINIMIZING VARIFOLDS
AT FREE BOUNDARIES

Besides considerations of free boundaries, we also use arguments of [SS].

Then for each x E U, there exists ~ E (0, dist (x, aU)) with

Proof. We assume w. 1. o. g. x E aA since the interior case is similar
and already treated in [SS ].

After selection of a subsequence

Given ~o E (0, dist (x, ~U)), using (3) and the monotonicity formula at
the free boundary of [GJ] ] for V,

if j is greater than some where cl - cl(x, dist (x, aU)), and K is the
curvature of aA.

Using the coarea formula, and Sard’s Lemma, for each j, we can choose
a E (~os2, (Jo) for which intersects aB(x, a) transversally and

Let now 03C8j E I(B(x, 6), A) be given with

We want to show that there is an isotopy

where c~ depends only on Ci 1 and K.
Employing a diffeomorphism which changes areas only by some fixed
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factor (controlled from above and below by K and an upper bound for o-o),
we can assume that aA E B(x, is plane.

Since E I(B(x, a), A) there is some 03C31 E (0, 6) with

By (5), we can find ~-2, o-3. o-i  0-2  0-3  6, with the property that :LJ
intersects aB(x, ~) transversally for all T E [62, 63 ] and

with c3 = 16ci, if 0-2  i  0-3 ((J2 and 63 of course depend on I/).
We introduce polar coordinates re [0,(7] ] and () E S2 on B(x, a). Let

Using (9) and 0  2014, it is easy to check that ~* (after approximation
K

by differentiable isotopies) satisfies (7) and (8).
We now choose

Hence from (7), since 6  o-o

So far, we have chosen a different 6,  for each ~, but sincf

if T ~ 1  z2, (2) holds with ~ = 
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and

exists in V2((~3).
Thus W L G2(U n A) is an integral varifold and

where M is a (not necessarily connected ) minimal surface in U n A with

which is stable w. r. t. variations tangent to aA.
A similar statement holds, if ~i is any union of components n U and

exists in ~T 2(IJ).

Proof By Lemma I, for any x E UnA, there exists ~ E (0, dist (x, aU))
with

By Sard’s lemma, we can assume that each ~_‘ meets B(x, cr) transversally.
We also note that W is stationary in U n A and stable in B(x, 6) n A

by (13), e. g.
We now use the idea of Pitts [P, 3 .10, 3 .11 ] to construct suitable regular

stationary comparison surfaces, in order to apply Lemma 5 of § 3.

and for which

By Theorem ? of §2, V L G,(B(_~, a)) is an integral varifold with

where M’ is a stable embedded minimal surface (w. r. t. variations tangent
to cA),
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Selecting a subsequence, we can assume that

and by Lemma 3, § 3, it is an integral varifold with

where M* is a stable embedded minimal surface with

The argument of Pitts ( [P, 3. 10, 3 . 11 ]) then implies that

is stationary.
Moreover, by the same argument, we can also perform replacements

on annuli.

Hence, Lemma 2 follows from Lemma 5, § 3.

THEOREM. - xo E > 0 so small that aA n B(xo, 6) is empty or a
circle.

_ 

V is almost minimizing (uniformly among disks in the sense of § 1 ) in

U := U(xo ~ ~) ~ ~ 
Then V is an integral varifold, and

where M is a (not necessarily connected) embedded minimal surface with

which is stable w. r. t. variations tangent to dA.

Proof 2014 By the argument of Pitts [P, 3 . 3 ], V is stationary (w. r. t.
variations tangent to aA in our case).

Let T be any annulus in B_(xo, cr)~ { xo }. Then V is almost minimizing
(in the above sense) in T n A.

Hence, if En -~ 0, there is a sequence an -~ 0 and a sequence of disks
Ln with

We choose a sequence T, A, En) with, putting ~n= -Il,
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After selection of subsequences, we get varifold limits

and

where M: satisfies the conclusions of the Theorem.
By Lemma 3 of § 3, the same conclusion holds for V*.
As in the proof of Lemma 2, we then conclude the desired regularity of V.

§ 5. CONTROL OF THE TOPOLOGICAL TYPE
OF THE ALMOST MINIMIZING VARIFOLD

In this paragraph, we rather closely follow the corresponding argument
of [SS ].
From the preceding paragraphs, we infer that there exists a varifold of

the form

where each M~ is an embedded compact minimal surface with boundary
aMj = M~ n aA which intersects aA orthogonally, njE N, for j = 1, ..., N.

(Since A is strictly convex, no interior point of M can touch aA in par-
ticular.)
M~ m for f ~ k.
Each M~ is uniformly almost minimizing among disks with respect to

some collection of open subsets of A.
We now want to show that each M~ is simply connected, i. e. a disk.

W. l. o. g., we shall do this for M :=Mi.
We again put for xeA, > 0

Let 03B4 > 0 be so small that for any x E cA, 5) n cA is a single circle.
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v(M) then is uniformly almost minimizing among disks w. r. t. the collection
of pairs of annuli

We can also require that 6 > 0 is so small that for each x E M, B(x, d) n M
is topologically a disk.
For each x E A, we can select

with the property that v(M) is uniformly almost minimizing among disks
w. r. t. the collection of these annuli.
The balls U(x, p(x)) cover A, and hence (cf. [F ; 2 . 8 .ll, 2 . 8 . I 3 ]) we

can choose a finite number of points Xj E A, j = 1, ..., J with

and

If yo is any simple closed curve in M, we can isotope it in M to a curve
y c M n A with 

,

We need some notation :

We choose 7 > 0 so small that

and that

and
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are continuous, that for any y E T2~, ~,( y) and are so close on M that

they can be joined by a unique shortest geodesic arc on M, and that T~
intersects no other connected component of spt~V)~ [ besides M = Mi.

In particular, T~ n aA = 0 and

By the almost minimizing property of v(M) w. r. t. the collection of these
annuli, for any sequence (~k), Ek -~ 0, there is a sequence (ak) and sequence
(Lk) c ~~ with

and

From (4) and (6), for xey

We select yi, and 0  ~ with

where the boundaries all intersect transversally, and for each
yey

for some j~{ 1, ..., J }.

are then topological balls. By making a further subdivision, if necessary,
we can also assume that M n W~ is connected for j = 1, ..., q (without
increasing M aW). a
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and hence

Consequently

After selection of subsequences, we get varifold limits

By (8), V* is almost minimizing in for yey, and hence regular
there, cf. § 4. Since on the other hand, V and V* coincide outside W, they
have to coincide everywhere, i. e.

Furthermore, spt ~ ~ n W~ is an embedded minimal surface (cf. Lemma 2,
§ 4), and the same holds, if instead of Lk n W~, we take any union 
of components of ~k n W~, for which the varifold limit exists as I -~ oo.

Let ..., be the components of Lk n W~.
We can assume

We can assume that for each k, we can select with

Finally, since spt ~ ~ is an embedded minimal surface, and

we can also w. 1. o. g. discard with nm = 0 by pushing them into ~W~.
Then, P is bounded independently of k, and thus, after selection of a sub-
sequence,
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Put

Let B be any open topological ball in A for which B n M n Wj is con-
nected for j = 1, ... , q and B n M n 0 for at least onejE {I, ...,q}.

Let Ak be any connected component of B n Ak having a varifold limit

(such a component exists by (14)).
By (17) and (21), we can find jo, mo and a compact set K c B n W J°

with c= A~ and

After selection of a subsequence, the varifold limit

exists.
From (17) since B n M n W~ is connected

U = 1, ... , q), with and mjo > 1 by (22).

LEMMA 1. Let B be a topological ball in A for which B n M n W~
is (empty or) connected and simply connected for j = I, ..., q and

B n M n f~ for at least one j E ~ I, ..., q ~. Let Ak be a connected
component of B n Ak.

Proof - Otherwise, there exist}1 ~ ~2 e { I, ..., ~ } with =0, > 1,
and so that we can choose some nonempty arc 03B2 c B n M,
a point xo in the interior of 03B2 and ~  i with

Put

By assumption

and we want to derive a contradiction from (25).
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We can also assume, by possibly decreasing 17 > 0, that

We then use (15) (note that A~ = and Aj~ was a connected component
of ̂ k n B, V n Wj = n1v(M n and the coarea formula, in order to

find (for k > 10, say) jci e M n B+ and ~k~ [1 8~,1 4~] for which

m ~), ~B(x1,~k) intersects ̂ k transversally (Sard’s Lemma) and

W. 1. o. g.

By (12), Ak E A, Ek~ 
Thus, for each k, we can find a sequence I(Ak, B(xi, A, ak)

with, putting Ai :- ~ ij(Ak),

By Lemma 2 of § 4,

where Ek is a stable embedded minimal surface in B(xi, Ylk) which by the
boundary regularity results of [AS is regular up to its boundary

Let El, Ek be the (unions of) components of Ek with

By (26) and the isoperimetric inequality
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As in § 4, we infer that

where By (27), since x1~M,

This is a contradiction, however, since

using again the unique continuation argument of § 4 for the first equality.
_ q. e. d.

W. 1. o. g.

(~. : T6 -~ y was the nearest point projection).

We cover T~ by a finite collection B 1, ... , Br of topological balls

so that is connected and simply connected for each sE ~ 1, ..., r ~,
7’e{ 1, ...,q}.

Suppose Bi n M ~ ~ and let A~ be any connected component of A n T~
with

(such Ak exists by (14)).

and > 1 by Lemma 1.

we see

Continuing this way, repeatedly using Lemma 1, we get
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provided Bi n W~ n M ~ 0. Moreover, if U c is open, U n M ~ 0,
then for large k

(This follows from (15) and Lemma 1).

Using (29), we can lift y inside T~ to Ak with starting point z 1, i. e. we

and [

where y’ is some oriented arc in y with length at most ~.
Likewise, we find a lift y2 with starting point z2, and if we continue this

process L times, we obtain y c Ak n T~ with

P(1)

length (y~~)  (7, and points Z 1, ..., e y n A~ n T~ n with

r m= 1

- y |  2 (i = 1, ... , L + 1) (here, 03BB# is the induced map on homotopy
classes, and L - y is of course multiplication in the fundamental group).
On the other hand, since P(1) - L (by choice of L), there must be two

different points zI2 which are contained in the same for some

mo E { I, ... , P( 1 ) ~, since the number of the points z~ is L + 1.
Let y* be the subarc of y with endpoints zi i and zi2. By (30))

where length (y")  7 again, and m > 1, i. e. up to a small error, ~, gives
a nontrivial covering y by y*.
We then close y* off in to obtain a closed curve yo in Ak n T~

(note that c Wi 1 c= T~ by construction) with

with ~! ~ 1.
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Since Ak is an embedded disk, yo bounds an embedded disk Do on Ak.
By an elementary cutting procedure (one can e. g. use the topological
version of the argument of [AS, § 3 ]), we can find an embedded disk D 1 c A
with

Hence yo can be homotoped to a point in Since Di c= Y~~, and
x : Y26 -~ M was continuous by choice of 6, n(yo) is homotopic to a point
in M.

Moreover, the choice of (7 implies that and 2(yo) are homotopic
in M.

Hence, by (30), my is homotopic to a point for some m > 1.

As M is orientable, this implies that y itself is homotopic to a point,
and hence that M is a disk. (That M is orientable follows, e. g., from the
following argument : Topologically, A is half of the 3-sphere S3, and since
M meets aA transversally, we can reflect M across aA to obtain a closed
embedded surface M without boundary in S~. Thus, M and hence also
M is orientable).

This completes the proof of our main theorem and thus also this paper.
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Added in proof Subsequently, stronger results were obtained by the
second author (cf. J. Jost, Existence results for embedded minimal surfaces
of controlled topological type I, II, III, Ann. Sc. Norm. Sup. Pisa, to appear).
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