
On the definition and the lower semicontinuity
of certain quasiconvex integrals

Paolo MARCELLINI

Istituto Matematico « U. Dini »

Viale Morgagni, 67/A, 50134 Firenze, Italy

Ann. Inst. Henri Poincaré,

Vol. 3, n° 5, 1986, p. 391-409. Analyse non linéaire

ABSTRACT. - Let us consider vector-valued functions u : Q - ~
defined in an open bounded set Q c Let f (x, ç) be a continuous func-
tion in Q x quasiconvex with respect on ~, that satisfies, for some
p __ q, the growth conditions f (x, ç)  c2(1 + I ~ Iq).

We extend the integral I(u) to functions u E (l~N), and we study
its lower semicontinuity in the weak topology of in order.
to obtain existence of minima.

RESUME. - Soit Q c f~8" un ouvert borne et soit u : Q  Soit

f (x, ç) une fonction continue sur Q x quasi-convexe en ~ et qui
satisfait a la condition f (x, ç)  c2(l + ~ ~ Iq) avec p _ q.

On etend l’intégrale I(u) aux fonctions u E et on étudie la
semi-continuite dans la topologie faible de ~N) pour obtenir
l’existence de minimum.
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392 P. MARCELLINI

1. INTRODUCTION

In this paper we study the definition, the lower semicontinuity, and the
existence of minima of some quasiconvex integrals of the calculus of varia-
tions. To introduce our results, first we describe a situation studied by
Ball [3 ] [4 ], of interest in nonlinear elasticity.

Ball considers a deformation of an elastic body that occupies a bounded
domain Q c (~n (n > 2). If u : S2 ~ is the displacement, and if Du is
the n x n matrix of the deformation gradient, then the total energy can
be represented by an integral of the type

The energy function f(x, ~), defined for x E Q and ~ E n, is quasiconvex
with respect to ~ in Morrey’s sense [23 ] ; that is, for every vector-valued
function § E 

One of the simplest, but typical, examples considered by Ball ( [4 ], sec-
tion 7), is given by a function f of the type:

where det ç is the determinant of the n x n matrix ~, and g, h are nonnegative
convex functions, that satisfy the growth conditions:

The constant c i is greater than zero, and the exponent p satisfies the inequa-
lities 1  p  n. In particular, the condition p  n is necessary to study
the existence of equilibrium solutions with cavities, i. e. minima of the

integral (1.1) that are discontinuous at one point where a cavity forms ;
in fact, every u with finite energy belongs to the Sobolev space [Rn),
and thus it is a continuous function if p > n.

Ball assumes also that g is singular, in the sense that g = + oo at

some finite S, and that h(t ) ~ + oo as t -~ 0 + . These assumptions, very
natural for applications to nonlinear elasticity, are not relevant from the
point of view of lower semicontinuity of the integral ( 1.1 ). In fact, we can
approximate the convex functions g and h, considered by Ball, by increasing
sequences of convex functions gk and hh each of them being finite every-
where. If the integral corresponding to gk, hk is lower semicontinuous
with respect to a fixed convergence, then also the integral corresponding
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393QUASICONVEX INTEGRALS

to g, h will be lower semicontinuous with respect to that convergence,
since it turns out to be the supremum of a sequence of lower semicontinuous
functionals.
We can choose the growth at o0 of each gk and hk so that they satisfy

the conditions (we do not denote the dependence on k) :

If p  n, since ||det 03BE| ]  c5(l + |03BE|n), we obtain that the function f in (1. 3)
satisfies :

Thus it is clear the interest to study the lower semicontinuity of integral (1.1)
under the assumption ( 1. 7) that follows.

Let u : Q c [RN. We consider a continuous function f (x, ç)
defined for x E Q and ~ E that satisfies

where cl, C7 are positive constants, and 1  p  q. Under the coercivity
on the left-hand side of (1.7), in order to obtain existence of minima it
is natural to study the lower semicontinuity of integral (1.1) with respect
to the weak convergence in the Sobolev space ~N). However,
there is an other interesting problem to consider, before to study semi-
continuity : How to define integral (1.1) for every [RN)? More
precisely, integral (1.1) is well defined if u is a smooth vector function,
say u E C 1 (SZ ; By the right-hand side of ( 1. 7), the integral (1.1) is
continuous in the strong topology of ~N) ; thus it is well defined
for u E (I~N). It remains undetermined the meaning of the inte-

gral ( 1.1 ) if u E but u ~ (1~N). To explain this point,
we study in our context a case already considered by Ball [3 ] [4 ].

Let us discuss the meaning to give, for n = N > p, to the integral:

Like in [3] ] [4], it is useful to consider also functions of the form

u(x) = xu( ~ x ~ )/ ~ x (. If we denote by u = = (xx), we have:

It is easy to see that 1 Du(x) I2 and det Du(x) are radially symmetric func-
tions. Thus we can compute them for x = ( ~ 0, ..., 0). For such an x,
we obtain
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394 P. MARCELLINI

Thus, for u given by ( 1. 9) we have

First, let us procede formally to compute the integral (1. 8). By using (1.11)
with v = 1, since det Du = 0 a. e., we obtain

We have denoted by 03C9n the measure of the (n - 1) dimensional sphere
{ = 1 ~. In particular, as well known, we can see from (1.12) that
u(x) = xl x ~ belongs to HI’p(S2 ; for every p  n.

On the other hand, we can define the integral (1. 8) as the limit of values
of the integral I(uk), where uk is a sequence of smooth functions that con-
verges to u strongly in f~n), and satisfies :

This situation happens if we define, for example, uk = u * ak, where a(x) is a
radially symmetric mollifier, and, as usual, ak(x) = kna(kx). Two 6ther
examples are obtained: the first for vk(r) = r/(r + the second for

vk(r) = kr if 0  r _ I/k, and vk(r) = 1 if r > I/A:.
Since uk converges to u in (~"), by (1.11) we obtain

Thus the methods for computing integral (1. 8) turns out to be different
in the two cases ( 1.12) and ( 1.14). In this paper we will follow the second
method. In fact we will show in section 5 that, if p is not much smaller than n,
then the value (1.14) is the correct one for the integral (1.8) in the sense
of the next definition. We follow a very classical method that was intro-
duced by Lebesgue in his thesis [77] ] to define the area of a surface, by
mean of the elementary area of approximating polyhedra.

DEFINITION. 2014 For every U E C 1 (S2 ; (J~N) let I(u) be the integral (1.1 )
(the integral I(u) is well defined also if u ~ C1(S2 ; f~N), since the integrand
is nonnegative). For u E (~N) we define
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395QUASI CONVEX INTEGRALS

for all sequences uk that converge to u in the weak topology of 
and such that ~N) for every k.

Let us recall that, after Lebesgue, the scheme of the above definition
has been used by many authors, for integrals of area type. For example
we quote the researches by De Giorgi, Giusti, Miranda (see e. g. [14 ] [22]),
Serrin [24 ], Morrey ( [23 ], definition 9 .1. 4), and more recently [12 ] [7 ] [11 ].
By the very definition, F is lower semicontinuous in the weak topology

of (J~N) ; in fact F is the maximum functional not greater than I,
and lower semicontinuous with respect to the weak convergence in

The definition of F is well motivated if F is an extension of
the integral I, i. e. if F(u) = I(u) for every u E C 1 (~2 ; This fact happens
if and only if:

for every u, uk E C 1 (SZ ; (~N), such that uk converges to u in the weak topology
of ~N).
We succeeded in proving the semicontinuity result in (1.16) only if p

is not much smaller than q, precisely if p > qn/(n + 1). The integrand f
is assumed to be a general quasiconvex function, and not only polyconvex
(we recall the definition in section 3), that satisfies the structure condition :

and for every x E E In some sense, (1.17) is an intermediate con-
dition in between the quasiconvex and the polyconvex case. In fact we will
show in section 3 that, in the polyconvex case, (1.17) is a consequence of the
other assumptions.

In section 2 we prove the semicontinuity result (1.16) in the general
quasiconvex case. In section 3 we study semicontinuity in the polyconvex
case. In section 4 we prove existence of minima in the Sobolev class

of functions with prescribed values at the boundary of aSZ.
Finally, in section 5 we compute the integral in (1.8) according to the
definition (1.15).

2. THE GENERAL QUASICONVEX CASE

Let Q be a bounded open set of tR". Let f(x, ç) be a continuous function
for every x E Q, and every n x N matrix ç. In this section we assume that f
is quasiconvex with respect to 03BE in Morrey’s sense [23 ], i. e. for every x E Q
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Moreover we assume that f satisfies the conditions :

for every x E Q and ~ E where q > 1 and c~, Cg > 0. Finally we assume
that there exists a modulus of continuity (i. e. is a nonnegative
increasing function that goes to zero as t -~ 0+) with the property that,
for every compact subset Qo of Q, there exists xo E Qo such that

for every x E Qo and 03BE E 
Condition (2.4) is a generalization of conditions of type I or type II

by Serrin (see [24 ] or [23 ], p. 96-97). It is satisfied for example if f(x, ç)
has the form :

if a(x) is a continuous function greater or equal than zero, by taking as xo
a minimum point of a(x) in Qo.
The following semicontinuity result holds:

for every u, uk E (J~N), such that uk converges to u in the weak topology
of for p ( > I) strictly greater than qn/(n + I).
We obtain the proof of theorem 2.1 through some lemmas.

LEMMA 2 . 2. Let f(x, ~) be a quasiconvex function satisfying the growth
condition (2 . 2~ . If q - I _ p  q, then there exists a constant c9 such that

for every wl, w2 E 1)(S2 ; it results:

Proof - We proved in section 2 of [19] ] that, by the quasiconvexity
and the growth assumption of f, there exists a constant c9 such that

The constant c9 depends only on the constant c~, and thus it is independent
of 
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To estimate the left side of (2.7) we use inequality (2. 8) and Holder’s
inequality with exponents p/(q - 1) and pj(p - q + I).

LEMMA 2 . 3. - Theorem 2 .1 holds f f = is independent of x and
if u is affine, i. e. if Du is constant in ~2.

Proo. f. Let us assume that E for every x E S2, and that
Mj~ converges to u in the weak topology Like in De Giorgi [9 ]
(see also _[19 ]), let Qo be a fixed open set compactly contained in Q. Let
R = dist (Qo, and let v be a positive integer. For i = 1, 2, ..., v
let us define

For i = 1, 2, ..., v we choose scalar functions §; E such that

Let us consider functions (~N) defined by 
For every k and i the function Vki - u has its support contained in Q. Thus,
by the quasiconvexity assumption, we have

Let us sum up with respect to = 1, 2, ..., v :

Now we estimate the second addendum in the right side. We have

Dvkj = (I - + 03C6iDuk + u). In order to apply lemma 2.2,
we define w 1 and w~ by:
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Thus wi, w2 By Lemma 2 . 2 we obtain

Since p > qn/(n + 1), we have also np/(n - p) > p/(p - q + 1). Thus, as
k -~ + oo, uk converges to u in the strong topology of 
Therefore since Duk is bounded in LP, there exists a real number c10, inde-
pendent of k and v, such that:

By the structure assumption (2.3) we obtain also

~/ J L

From (2.12), (2.16) it follows that

We obtain the result as v -~ + oo and Q.

LEMMA 2 . 4. 2014 Theorem 2 .1 holds if f = f() is independent of x.

Proof Let u E C 1 (_SZ ; ~N). Let Qo be an open set compactly contained
in Q. Of course u E c1(00, f~N). For every positive integer v, let us consider
a subdivision of Qo into open sets Q; such that
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For every i, we define a vector ~~ E IRnN by

Since Du is uniformly continuous in Qo, for every > 0 there exists vo
such that

Let Mj~ be a sequence in c1(Q ; [RN) that converges to u in the weak topo-
logy of H1,P(Q; ~N). For every i, we define in S2i the sequence

As k - converges to vj(x) _ ~ ~~, x ~ in the weak topology
of Thus, by lemma 2 . 3, we have:

We apply lemma 2 . 2 on the domain Qo, with w 1 = Duk and w~ defined
in each Qi by w~ = Duk - Du + ~~. By (2.20), there exists a constant c12
such that

For a similar reason we have

From (2.22), (2.23), (2.24) we obtain

We obtain the result as v -~ + oo, E -~ 0, ~2.
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Proof of theorem 2 . ~. Let Qo be an open set compactly contained
in Q. For every positive integer v let us consider a subdivision of Qo into
open sets Qi, like in (2.18). In particular the diameter of each Q; is less
than l/v. We define f~.(x, ~) by using assumption (2 . 4) :

where _~1 is the point in S2~ for which we have

for every x E Q;.
Then, if uk converges to u in the weak topology of (1~N), by the

previous lemma 2.4 we obtain

Since f(x, ç) is uniformly continuous with respect to x E Qo, fv converges
to f as v --~ + oo. Moreover ç) is bounded in terms of f(x, ~), by (2 . 27).
Thus, we can go to the limit as v --~ + oo, by the dominated convergence
theorem. Finally we obtain the result as Qo ~ Q.

REMARK 2.5. It is clear by the given proof that theorem 2.1 holds
if we assume, more generally, that c~, c8 in (2.2), (2.3) are continuous
functions of x E Q (possibly unbounded at the boundary of Q). On the
contrary it is not known if it is possible to extend theorem 2.1 to Cara-
thedory functions f(x, ç), or to integrals whose integrand depends explicitly
on u, other than Du. About this point, see the examples in section 6 of [19 ].

3. THE POLYCONVEX CASE

We say that a function f(x, ç) is polyconvex with respect to 03BE in Ball’s
sense [3 if there exists a function g(x, r~), convex with respect to r~, such that

where each is a subdeterminant (or adjoint) of the n x N matrix c.
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It is possible to verify that every polyconvex function is quasiconvex,
according to definition (2 .1 ).

In order to deduce from theorem 2.1 a semicontinuity result in the poly-
convex case, let us discuss the structure condition (2. 3). It is easy to handle
the particular case of a function f defined, for n = N, by

where g is a convex function. In fact, for t E [o, 1 ], we have

Thus a function given by (3 . 2) satisfies (2 . 3), if f(0) is finite. Of course
also any convex function of ~, finite at ~ = 0, satisfies (2.3). We will use
the following result :

for some constant c13. If p >_ min ~ n - I, N - 1 ~, then for every BE (0,1 ]
the function

satisfies the structure inequality (2.3).

Proof 2014 We prove the theorem in the case n > N ; otherwise it is suffi-
cient to interchange the role of n and N. Let us consider the n x N matrix ç
as a vector ç = (~1) for ~i E i = 1, 2, ..., N. The function fE in (3 . 5)
is convex with respect to each ~I. Thus, for every t E [o, 1 ], we have

Other than by 0) and by ~), we have estimated the left side of (3 . 6)
by some intermediate addenda f (x, ç) computed for vectors ç = (~ ~) with
at least one component equal to zero. For these intermediate addenda
we have

We have used the fact that all the determinants of order N are equal

Vol. 3, n° 5-1986.



402 P. MARCELLINI

to zero, when computed at the vectors ~ = (~t) with some null components.
By (3.6), (3.7) we obtain the result with a constant c16 that depends on E:

Now we deduce from theorem 2.1 a semicontinuity result for polyconvex
functions f (x, ç) = det1 03BE, ... ).

(3.. 9) The set where g is finite is independent of x, it is not empty and it

is open in (~m ; g is continuous with respect to x E Q and it is convex
and lower semicontinuous with respect to r~ E (~m.

THEOREM 3 . 2. - Let f be a nonnegative polyconvex function, and let
us assume that the corresponding g satisfies (3 . 9) . Let us assume also that
there exists a positive constant c17 such that g(x, ~) >_ c17|~ |. Then we have

for every u, uk E C 1 (S~ ; I~N), such that uk converges to u in the weak topology
of p~N), for p > min { n ; N ~ ~ n/(n + I).

Proof It is sufficient to give the proof also assuming that p  min ~ n; N ~.
Like in [8 ] we can approximate g by an increasing sequence of continuous
functions gh of the form

with a~ E Co(S2 ; b~ E By changing gh with ~) ; 
(we still denote by gh this function) we have

Since the functions aj, bj are continuous, for every h there exists a modulus
of continuity such that

for every x, xo E Q E For every E E (o, 1 ], the function

satisfies the assumptions of theorem 2. l. In fact it satisfies the continuity
condition (2.4) with modulus of continuity ~~h/cl ~ ; it is a quasiconvex
function ; it satisfies the growth condition (2.2) with q = min ~ n ; N ~.
Moreover by lemma 3 .1, it satisfies the structure condition (2.3). By the
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semicontinuity result of theorem 2 .1, if we denote by c 18 an upper bound
for the of uk, we obtain

We obtain the semicontinuity result as 8 ~ 0 and h -~ + oo .

REMARK 3 . 3. - We have proved in this section that the semicontinuity
theorem 2.1 is an extension to the general quasiconvex case of a semi-
continuity result stated in section 5 of [19] (see the following section 6).
We used in [19] ] a different method. The only point in common in the
two proofs is the Rellich-Kondrachov imbedding theorem. Essentially
this fact determine the lower bound for p. We use here the imbedding
theorem in the proof of lemma 2.3 for the quasiconvex case, while we
used it in [19 ] to obtain continuity in the sense of distributions of all the
subdeterminants of the matrix Du.

4. EXISTENCE OF MINIMA

In this section we apply the results of the previous sections to define
the integral out of C1, and to obtain existence of minima. Let us assume :

We assume also that I  p  q, and p > qn/(n + 1 ).
For every u E C1(S2 ; we denote by I(u) the integral in (1.1). Moreover

for every u E we define F(u) as in ( 1.15). By the semicontinuity
result of section 2 if follows :

THEOREM 4 I . - Under assumptions (4 .1 ~, (4 . 2~, (4 . 3~, (4 . 4~, for
every u E C1(S2 ; we haL,e F(u) = I(u). Moreover, for every uo E 
such that F(uo)  + x, the functional F has a minimum on the class

Ho~p(~ ; + uo.
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Now we consider a polyconvex function f, and we assume that the
corresponding g satisfies (3.9) and the coercivity condition

for p > min { n, N ~ ~ n/(n + 1 ). Like before, we denote by I(u) the integral
in ( 1.1 ) for (~N).. ,
We define also F(u) as in (1.15) for u E (~N). We obtain the

following : ,

THEOREM 4.2. 2014 Under assumptions ~.9~ ~.~, for every u e C~(Q; tR~)
we have F(u) = I(u). Moreover, for every such that

F(uo)  + 00, the functional F has a minimum on the Sobolev class

Ho~n(~ ; ~N) + Uo. .

5. THE RADIALLY SYMMETRIC CASE

Let n = N and let us consider the integral

where v : [o, 1 ] -> [v(o), v(1) ] is a nonnegative increasing function. The
integral in (5.1) is well defined if [R"). Let us define, for every
u E ~n) :

for all sequences Mj~ E c1(Q ; fR") that converge to u in the weak topology
of H 1 ~p(~ ; 

If p > n2/(n + 1), then we will prove that

as usual, is the measure of the unit ball in ~n.
Notice that this value for F(u), when v = 1, is the same as in (1.14).
The stated result follows by a lemma, whose proof, based on a method

by De Giorgi [9 ], is the same as the proof of lemma 2. 3. Again we denote
by I(u) the integral (1.1).

LEMMA 5.1. - Let p, q > 1 such that p > qn j(n + 1). Let f(x, ç) be a
continuous quasiconvex function satisfying (2 . 2), ~2 . 3~ . Let Qo be an
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open set compactly contained in Q. If ue is such that
u E C1(S2 - Qo ; ~N), then :

Let us go back to (5.1), (5 . 2). Since p>n2(n+ 1), we can apply lemma 5.1.
Thus, in the definition (5 . 2) of F(u), we can take sequences uk E C1(Q ; [R")
that converge to u in the weak topology of H1.P(Q; [Rn), and such that
Mj~ = u on the boundary { I x = 1 }. Thus we have uk(x) = for I x = 1.
We use the inequality of quasiconvexity:

Therefore, by the semicontinuity of the H1’P-norm, we have

The opposite inequality follows similarly to the computation in (1.13),
(1.14) in the introduction.

REMARK 5.2. - The definition of the integral ( 1. 8) adopted here is
different from the definition adepted by Ball and Murat in [5 ] ; in fact
they use the computation in (1.12). Ball and Murat showed that, by taking
(1.12) as the value for the integral (1.8), then one obtain a functional
that is not lower semicontinuous in the weak topology of 
whatever is p  n.

REMARK 5.3. If one compute the integral (5.1) without taking into
account the singularity of the determinant of the gradient at x = 0, then one
obtain

Thus the difference in between the two values is a measure
concentrated at x = 0. The quantity is also the Lebesgue measure
of the cavity that forms around the origin.

6. ADDENDUM TO SECTION 5 OF THE PAPER [19]

The statement of lemma 5 . 3 in Marcellini [19 ] is wrong. It has been

quoted in a wrong way a right result by De Giorgi [8 ]. More precisely,
Vol. 3, n° 5-1986.
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it is not true that, for every k, the function r~) is uniformly continuous
in Q x [Rm. In fact, each function gk is defined, like in (3.11), as the maximum
of a finite number of functions that are linear with respect to ri and uniformly
continuous with respect to x.
Thus ~) is uniformly continuous separately for x E 03A9 and ~ E R"’,

but not with respect to (x, ri) E S2 x (~m.

For this reason lemma 5.3 and the consequences 5.4, 5.5, 5.6, 5.7
of [19 ] have not been proved. Here we indicate (we hope in a right way !)
how to modify the approach of section 5 of [19 ]. We note explicitely that
sections 1, 2, 3, 4 and 6 of [19 ] do not need to be modified.

First of all the results of section 5 of [19 ] are true if the function g(x, ~)
is independent of x. In fact, in this case we can choose gk essentially (see
the details below) independent of x, and thus we can operate with a sequence
of uniformly continuous functions. In this particular case we obtain the
following semicontinuity result :

THEOREM 6.1. - Let g : 2014~ [0, + 00] ] be a convex and lower semi-
continuous function, not identically + oo. Let v~ and v be functions of

and assume that vn converges to v sense of distributions, i. e. :

Then we have

Theorem 6.1 will be consequence of the following lemma.

LEMMA 6.2. - There exists an increasing sequence that pointwise
converge, as k ~ + ~o, to g(r~). For every k, gk is a function of class C~,
it is convex, it is Lipschitz-continuous in Moreover > - 1.

Proo~ f : The convex lower semicontinuous function is the supremum
of a numerable family of linear functions such that l~  g.

Let us assume that is identically equal to zero. As usual, we define

We have an increasing sequence of nonnegative functions. Each mk is
convex and Lipschitz-continuous in ~m. Starting from this sequence mk,
by regularization like in lemma 5 . 4 of [19 ], we can define a new increasing
sequence of functions that satisfies the statement of lemma 6.2.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



407QUASICONVEX INTEGRALS

Proof of theorem 6. l. Let us define for every k

Let us denote by fk the sequence of the previous lemma that converges
to g. We define :

For every k the derivative D71gk = is it is bounded in SZ x f~m
and it is equal to zero if dist (x, aS~)  1/k. Moreover the sequence g4x, r~)
in increasing and pointwise converges to as k ~ +00.

As usual we set = E - "a(x/E). For every k, if £  1 /k, we define in Qk

By the convexity of gk with respect to r~, similarly to Serrin [24 ], we have

Note that and vE) are well defined in ~k and can be extended
to Q with values respectively - 1 and 0.

Since vE) E f~’~), by (6 .1) and (6 . 7) we have

We go to the limit as £ 2014~ 0: in the first term of the right side we use Fatou’s
lemma, and in the second term the fact that D7lgk is bounded in Q x (~m
independently of f,. Finally we obtain the result as k - + oc, by the mono-
tone convergence theorem.
Now let us turn our attention to a function g(x, r~) defined for x E S~

and ~ E [Rm, with values in [0, + oo ], satisfying (3 . 9).
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(~m) and assume that uh converges to v in the sense of distributions.
Then we have

iJ~ at least one of the following assumptions is satisfied :
i) the continuity condition (2. 4~ holds for the function g ;

ii) g(x, ri) >_ ri ~, for some positive constant 
iii) the sequence vh is bounded in ~~‘). _

Proof. If i ) holds, then we can proceed like in the proof of theorem 2 .1,
using the fact that our statement holds, as proved in theorem 6.1, for
integrands g independent of x. In particular, like in (2.28), we obtain

where gv is defined similarly to fv in (2. 26). We use Fatou’s lemma to go
to the limit as v -~ + oo. Finally we go to the limit as D.
Now let us assume that ii) holds. Like in [8 ] we can approximate g by

an increasing sequence of continuous functions gk of the form (3.11).
Proceeding like in section 3, we can see that gk satisfies the continuity
condition (2 . 4) of the previous part i ). Therefore the lower semicontinuity
result holds for gk and, by approximation, holds for g too.

Finally let us assume that iii) holds. We apply the case ii) to the integrand
g(x, r~) + s Let Qo be an open set compactly contained in S2. If c21 is
a bound for the L l-norm of vh on the set Qo, we have

We obtain the result as f, -~ 0 and 

Corollaries 5.6 and 5 . 7 of [19 hold for an integrand g(x, r~) that satisfies
the assumptions of the previous theorem 6.3. In particular we have a
different proof of theorem 3.2 of section 3.
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