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ABSTRACT. - We prove energy and density bounds for minimizers of
certain constrained variational problems, and we deduce limitations for
their topological degree.

RESUME. - On demontre des estimations a priori sur l’énergie et la
densite des solutions de certains problemes variationnels contraints, et l’on
en deduit des bornes pour leur degre topologique.
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1. INTRODUCTION

The objective of this note is to establish energy and density bounds for
minimizers of certain constrained variational problems. As a consequence,
we are able to provide limitations for the topological degree of such
mappings. The prototype of these questions arose in our study of liquid
crystals [HKL1].

Let W(A, u) be a smooth function of 3 x 3 matrices A and three-vectors
u for which

whenever ueH1(0; S2), where Qc (R3 is a bounded domain. Suppose
that u is a W-minimizer in the sense that ueH1 (Q; S2) satisfies

A conclusion of [HKL1] in the case of a liquid crystal integrand is that
u is Holder continuous, in fact smooth, in a neighborhood of any point
a~03A9 where the normalized energy

is sufficiently small and, in particular, in a neighborhood of any point a
where

In this case

where each Ki > 0 and we may, by [HKL1], 1. 2, choose

ex = min K3~ without loss of generality. The argument leading to
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299STABLE DEFECTS

partial regularity extends to general smooth W satisfying (1.1) without
serious alteration provided that the blow-up functional [HKL1], 2.2, [Lu]
is elliptic.

Thus, the set of singularities of u in Q is precisely

where

Since u e H1 (Q; S2) it is immediate that Zu has one dimensional Hausdorff
measure (Zu) =o.
The first conclusion of the present note is an energy density bound: If u

is a W-minimizer, then

A second conclusion is an interior energy bound:

If u is a W-minimizer and K is a compact subset of SZ, then

Thus the set of W-minimizers is bounded in (SZ). We shall, by imposing
a convexity condition on W, prove the stronger statement that the set of
W-minimizers is compact (in the topology induced by the norm).
More precisely, if (Uj) is a sequence of W-minimizers with, say,

then there is a ~ 2) and a subsequence (u~,) such that
(i) u is a W-minimizer and
(ii) 

This is directly analogous to the well known Montel space property of
bounded harmonic functions. The arguments here, in contrast to those of
[SU], 4.6 and [HL1], 6.4 do not make use of the regularity theory.
To give some perspective to the assertion about the density, note that a

special case of W is
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the integrand of a harmonic mapping of Q c (R3 into S2. A W-minimizer
u is then a solution of the system

When SZ = ~ _ ~ I x (  1}, a large class of examples of solutions of (1.5) is

given by the homogeneous extensions of conformal or anticonformal

mappings of S2 onto itself, that is, by rational functions of z or z. So if

denotes stereographic projection and f (z) =p (z)/q (z) is a rational function,
gcd (p, q) =1, then

is a solution of (1.3). Moreover, for such an n f,

Our density bound illustrates that not all such f give rise to minima.

Moreover, numerical experiments of M. Luskin et al. [CHKLL] indicate
that O (a) = 2 probably does not occur. H. Brezis, J. P. Coron, and E. Lieb
[BCL1], have shown that when 0 (a) ~ 0, then

and that any nonconstant homogeneous-degree-0 minimizer must be in
the form

for some rotation Q of (R3. Combined with the interior regularity theory
of [SU] and the asymptotic decay estimate of [S], the latter result implies
that near a point a with 0 (~) 5~ 0, the minimizer u behaves like

for some rotation Q. In this harmonic mapping case, the energy bounds
of the present paper lead to further results on the stability, the number,
and the location of singularities [AL], 
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The bounds established here apply to a minimizer u~H1 (SZ; S2) of

any functional satisfying the uniform growth condition (1.1). From our
arguments, we deduce in paragraph 4 two other consequences:

for some q > 2 depending only on A, and
~ 3 - q ( Zu) = O; hence, the Hausdorff d imension of Zu is  1.
In paragraph 6 we discuss how these results further generalize. They

hold, roughly, for any mapping from a smooth compact Riemannian
manifold with boundary to a smooth compact simply-connected
Riemannian manifold that is a quasi-minimizer of some integrand satis-
fying uniform growth conditions. Without the simple connectivity hypoth-
esis on the target, there may be no interior energy bound as shown by
harmonic maps into the circle. In (1.1) one may also replace 2 by a
number p > 1 provided one insists that the target manifold be simply [p]-1
connected [HL1], § 6. For p ~ 2, minimizers are in general only regular
at their points of continuity (see [HL1], § 3, [Lu]).
For a fixed compact domain Q and compact manifold N, the results

here indicate similarities between the family of energy-minimizing (not just
energy-stationary) mappings from Q to N and a uniformly bounded
family of harmonic functions on the disk. The results are also somewhat
analogous with the universal density and mass bounds of [Mo].

In an earlier work we described how some of these ideas may
be used to study an experiment of Williams, Pieranski and Cladis [WPC].
Discussion of the static theory of liquid crystals may be found in [BC],
[E] and [L]. Analytical questions which arise are discussed in [HK1], 
and [HKLu].
The authors appreciate the discussions and continuing interest of

J. L. Ericksen. They also thank H. Brezis and M. Luskin for their generous
comments.

2. DENSITY BOUND

Our proof of the density bound is based on the following consequence
of [HKL], 2.3. For the reader’s convenience and for other applications we
give a proof in the appendix. Note that this lemma differs from the

corresponding estimate of R. Schoen and K. Uhlenbeck [SU], 4.3 in that
there is in [HL1], 6.2 no "smallness" assumption applied to the right hand
side of the inequality.
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2.1. LEMMA. - ~2) and a E SZ, then for almost every positive
r  dist (a, aS2), there is a function w E H1 (a); ~2] such that

and

where ~ E (R3 is arbitrary and C is an absolute constant.
A proof of the lemma is given in the appendix. In particular, assume

that u satisfies (1.2) in a domain Q. Then u satisfies (1.2) in B (a) for
almost every p > 0 sufficiently small so

2.2 COROLLARY. - If u~H1(03A9, S2) is a W-minimizer and c SZ,
then

where ~y = 6 ~c1~2 AZ C depends only on A.

Proof. - By Fubini’s Theorem,
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for some s with -r  s  r. Choosing w~H1 [Bs(a); S2] as in Lemma 2.1
2

with ~=0 and r replaced by s, we conclude from (2.2), and the equality
~=1, that

2. 3. THEOREM. - ~ 2) is a W-minimizer and a E SZ, then

where M=2y~ depends only on A.

Proof. - With R =dist(a, we apply 2.2 iteratively with r=R,

-R, -R, ... to find that, for each~={0, 1, 2, ...},
2 4

Letting j - oo, we see that

Finally, we may for any 0  r  R, choose j E {o, 1, 2, ... } so that

2 -’ -1 R _ r  2 -’ R; hence,

Let us consider briefly another application of Lemma 2.1. Let f (z) be
a given polynomial of degree m and for E > 0 consider the harmonic

Vol. 5, n° 4-1988.
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mapping of the unit ball B into S2 defined via homogeneous
extension as given in ( 1.6). With as boundary values on aB, let uE
denote a minimizer of the Dirichlet integral, that is,

Although is a solution of the equilibrium equations (1.5) it need not

equal uE. Indeed, Ef (z) --; 0 pointwise in the complex plane, from which it
immediately follows that

Moreover, ~tanu~= vtan nE f’ so

Consequently,

as E - 0. It is immediate that is not a minimizer for E sufficiently
small, even when m = 1.

3. ENERGY BOUND

The proof of the energy bound is also based on Lemma 2.1.

3.1. THEOREM. - For any compact subset K of SZ there is a constant CK
depending only on Q, K, and A so that

for any W-minimizer ~2).
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Proof - By compactness of K, it suffices to prove such a bound with
Q= B and for a fixed positive 8  1. For 0  p  1, let

and note that D is monotone increasing with

By the W-minimality of u and 2.1 with § = 0, we find that for almost all
0p 1,

where a = 21[1/2 C. Integrating this inequality from 1- ~ to 1 gives

4. HIGHER INTEGRABILITY

We illustrate here how our estimate 2.1 may be used to ascertain higher
integrability of the gradient of a minimizer. The tool for this is the
Reverse Holder inequality, cf. Gehring [Ge], Meyers and Elcrat [ME], and
Giaquinta and Modica [GM], or Giaquinta’s book [Gi], Chapter V.

4.1. THEOREM. - There is a q > 2 depending only on A so that any
W-minimizer u belongs to H1,qloc (Q). Moreover, for any ball B Q,

where Ci and C2 depend only on Band A.

Proof. - Suppose cr= Q. From 2.1, for any E > 0,
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for 0  p ~ 2 r, where c depends only on A. Integrating this from r to 2 r
shows that

Set E = Or and choose

Note that by Sobolev’s inequality,

where p = 2 n/2 + n = 6/5  2 and C1 is an absolute constant. Hence

We now divide this inequality by I. We then obtain, for some constant
c2 depending only on A and 8 that

Fixing S  1/8, we may now apply this reverse-Holder inequality as in the
references cited above to conclude the existence of a q > 2 such that

Moreover, for c 3, c4 depending on r and A,

since p  2. The conclusion now follows using 3.1. 0

4.2. COROLLARY. - The singular set Zu = ~a E Q : e (a) > 0~ of the mini-
mizer u has ~3 -q (Z") = 0. In particular, the Hausdorff dimension of Zu is
strictly less than 1.
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Proof. - For Dr (a) c Q, we infer from Holder’s inequality that

Squaring and multiplying by r -1= r2 ~q - 3»q , r - 3 tq - 2oq, we see that

hence,

and the corollary follows from 4.1 and a covering argument [G],
§IV,2.2. D

4. 3. REMARK. - Corollary 4.2 (with a possibly different q > 2) may
also be derived directly from 2.3, the regularity lemma [HKL], 2.5, and
the "Work-raccoon theorem" [W], 5.1 in the manner of [W], 5.2.

5. THE COMPACTNESS OF MINIMIZERS

By imposing a convexity condition on W we shall show that a bounded
set of minimizers has some compactness properties. For ease of exposition,
we shall assume that Q=B, a unit ball.

This is an opportunity to distinguish between a local W-minimizer and
a W-minimizer. To this point, the functions we have called W-minimizers
need only satisfy ( 1.2) in some subdomain Q of their domain of definition
in order that the conclusions of the previous results hold in that subdo-
main. In particular, a function which satisfies ( 1.2) in some neighborhood
of every point of its domain of definition must have O _ M throughout.
However a function may have the property that ( 1.2) is satisfied in some
neighborhood of every point without minimizing the functional in the
entire domain. A simple example of this is given by the mapping
u : defined by
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where e is an ordinary harmonic function in (R3, which fails to minimize
the Dirichlet integral (1.4) for large enough r among all functions
v : ~, -~ S2 with v = u on In order that the conclusions about compact-
ness be valid, all the mappings in question must be W-minimizers in the
same domain.

5.1. PROPOSITION. - Suppose that the functional

is lower semicontinuous with respect to weak convergence in H1 (B; ~2). If
(uJ) is a sequence of W-minimizers and if

then u is a W-minimizer.

The lower semicontinuity hypothesis is implied by the convexity condi-
tion (5.9) discussed below [M]. Also the weak convergence hypothesis
always holds for some subsequence by Theorem 3.1.

Proof. - By rescaling slightly, we may assume that

S2), p > 0, is the sequence of minimizers so that Uj’
and B are W-minimizers. Assume that

Given S > 0, choose 11 E H1, 00 (B) so that

and

Let us set

so that
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Applying our Extension Lemma A.1 in the appendix, with Q chosen to
be the region B1-ð, we may find a function ~ 2) such
that

Extending w~ to all of B by letting

we see that w~ is then an admissible variation with boundary data Uj’
hence

From this inequality and the assumed lower semicontinuity, we see that
given s > 0, for j sufficiently large,

for all sufficiently large j. Expanding the right hand side and employing
(5.2), we have that

Vol. 5, n° 4-1988.
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For the latter integral we observe that

Next we observe that by a version of Poincare’s inequality, there is a
constant CD so that for all sufficiently small b,

Applying (5.6) with ~ = u - v now gives

Finally, according to Holder’s inequality and Theorem 4.1,

Consequently by (5.5) and (5.7)
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Now permit j - oo. Since Uj -+ U in L2 (B), the third term vanishes so
that

Choosing b small enough to make the right-hand side less than

1 
(C A ) -1 E we see that C 5.3 ) and (5.4) now imply that

2

We shall now impose a few assumptions about W. Suppose

and

there is a ~, > 0 such that for all A, u, I u I =1,

It follows from (5.9) that for any (A, u) and (B, v) with I u I = I v I = 1,

It ought to be noted that the liquid crystal integrand (1.3) may be
written

where V (A, u) is a nonnegative quadratic form in A which is smooth
in u, cf. [HKL1], [HK1].

5. 2. LEMMA. - If
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and if

then a subsequence of the converges strongly in H1 (Q; ~2).
Proof. - First select a subsequence of the (Vj) so that, after changing

notations,

Integrating (5.10) gives that

and it suffices to show that the right-hand side of (5.12) approaches zero.
The first term on the right-hand side of (5.12) approaches zero by our

hypothesis (5.11).
Note that

and

Thus

In as much as

the second term on the right-hand side of (5.12) also converges to zero.

Finally the third term goes to zero because
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and

5.3. THEOREM. - Suppose that W satisfies (5.8) and (5.9). For any
sequence of W-minimizers, there is a subsequence (Uj) and a S2)
such that

and

u is a W-minimizer for any subdomain Q c~ B.

Proof. - By Theorem 3.1, a subsequence (Uj) is weakly convergent in
52) to a function S2). Moreover, u is W-minimizing

by Proposition 5.1 because (5.9) implies the weak lower semicontinuity of
the functional

To prove the strong convergence in H1loc (B; S2) it now suffices by this
lower semicontinuity and Lemma 5.2 to show that

for any smooth domain Q en B. This we will establish by an argument
similar to the proof of Proposition 5.1. In the argument we may rescale
slightly and take Q=B. For B 1 _ s and 11 as before, we here let

We again apply Extension Lemma A.1 to the function Vj restricted to the
region B1 _s to obtain H1 (As; ~2) satisfying (5.2). Extending
w~ to all of B 1 _ s by letting Wj= v on we infer from the minimality
of B that

Vol. 5, n° 4-1988.
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We estimate the last term as before. Namely, using the Reverse Holder
inequality 4.1 as before and realizing that the limit u is also a minimizer,

Thus

Combining this with ( 5.14) gives ( 5.15) and completes the proof. p

6. GENERALIZATION

We make the following assumptions:
(a) Domain: We wish to let the domain be an arbitrary smooth compact

Riemannian manifold M with boundary. However, since the results will
be only local bounds with constants depending on M and since the
functionals considered in (b) are general enough to include the affect of
an arbitrary smooth metric on M, we will assume, without losing general-
ity, that the domain is an open subset Q of l~n with the ordinary Euclidean
metric.

(b) Functional: ~ (u) = A (x, u, V u) dx where A is a measurable func-
tion satisfying the uniform growth conditions

for some constants A >_ 1, ~. >_ 0 and p > l. For further assumptions on
the functional which lead to partial regularity, see e. g. [EG], [FH], [G],
[GG], [GM], [Lu]. It might be noted, in addition, that under appropriate
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assumptions, minimizers of unconstrained problems are actually fairly
smooth [CE].

(c) Target: N is a smooth compact, simply [p]-1 connected

(i. e. xo (N) = ~1 (N) = ... = i (N) = 0] Riemannian manifold without

boundary. via an isometric embedding, we view N as a Riemannian
submanifold of Rk.

(d) Quasi-minimizer : N) [HL1], § 1 and, for some

constant Q >_ 1,

whenever and This
includes minimizers for certain vector-valued obstacle problems. See

[G], p. 252. Partial regularity results for higher dimensional smooth obsta-
cle mapping problems have been obtained in [DF] and [F]. These issues
become significantly more complicated when the system of equilibrium
equations is far from diagonal, cf. e. g. [K].
Under these assumptions, we now use the notations

Note that for p >_ n, lim IEr,a (u) = 0 for all a~03A9 by the absolute continuity
rj0

of |~u|p dx.
By the topological assumption in (c), [HLi], 6.2 provides a suitable

replacement for 2.1. The conclusion now involves an additive inequality

that is valid for all À > 0.
In generalizing 3.1 we find that

Vol. 5, n° 4-1988.
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for some constant K depending only on n, k, and p. Moreover,

where a = 2 + 2 K A2 p+ 2 QP (n + ~) I ~ I, The second conclusion follows from
the first by taking ~, = [rp ~’ (r)] -1~~1 +p~, One verifies the first by applying
(6.1) with ~, replaced by ~,/(A2 Q) to obtain a suitable comparison function
w with w (a) -_- u (a); hence,

Similarly in generalizing Corollary 2.2, we find that

for some s with 1 r  s  r and constant K depending only on n, k and p.
2

Moreover,

where 

The new version of Theorem 3.1 should be:

For any compact subset K of S2 there is a constant C depending only on
Q, K, N, A, p, Q, and p so that

for any W-minimizer u.
In modifying the proof of 3.1, we now find that

for almost all 0  r  1; hence,
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Next we note that trivially, for 0  r  2 P,

and we may modify the proof of 2.2 by iterating using the quantity
in place of We now obtain the density bound

We also obtain the reverse-Holder inequality

where y now depends on n, k and p. Since 1  m  p we infer from [G],
§ V, 1.1 that

the gradient of the minimizer u belongs to Lqloc (Q) for some q > p depend-
ing only on n, k, p, A, J.1 and Q.
Using this, Holder’s inequality and [G], § IV,2.2 as before, we deduce

that

the set Zu = ~a E SZ : O (a) > 0~ has c1fn - q measure zero, and hence

Hausdorff dimension strictly less than n -p. D

Finally, we take note of the necessity of the simply connected hypothesis
in (c). For example, the function

sin 

is th unique energy minimizing (even stationary) harmonic map from B to
Sl having boundary values (cos But

ruling out the possibility of an interior energy bound.

Vol. 5, n° 4-1988.
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APPENDIX

Here we give succinct proofs of the extension lemmas which are used
in this paper.

A .1. EXTENSION LEMMA. - Let Q be B1, the unit ball, or the annulus

B - B~ for some s 1  s  l. For any v E H1 (Q; (~3 with v =1 on aSZ
2 

)

there exists a function w E H1 (Q; ~2) such that

and

for an absolute constant C, independent of S2.

Proof. - For I a I  1 consider the function

whose gradient (with respect to x) is

Thus

and hence

Indeed, elementary considerations show that

independent of v E (~ 3 .
Integrating over Q, we obtain
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Hence there is an a0 with -, such that

Now observe that on aSZ,

Let

This is a bilipshitz homeomorphism of S2 onto itself. Indeed,

with

uniformly independent of a with I a ~ _ ~ . Thus we may choose

and the constant

Proof of Lemma 2. 1. - By Fubini’s theorem,

for almost every positive r  dist (a, lQ). For any such r, we abbreviate
B = ~r (a) and let v be the harmonic extension of u to B and determine w
by Lemma A.1 with Q=B. Thus

Vol. 5, n° 4-1988.
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It is well known and easy to check that v satisfies

so

Now by Lemma A.1, for 

This research was supported in part by N. S. F. grants DM S 85-113 57,
MCS 83-01345, DMS 87-0672, and the Sloan Foundation.
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