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ABSTRACT. - In this paper we investigate the effect of a partial obstacle
on a semilinear elliptic B. V. P. which has, in general, no solution.
We show that highly unstable solutions arise, a phenomena previously 

°

observed for the same equation in presence of holes in the domain.

RESUME. - Dans cet article nous examinerons l’effet d’un obstacle
partiel pour un probleme semi-lineaire elliptique au bord qui, en general,
n’a pas de solution.
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Nous montrons que des solutions hautement instables surgissent; il s’agit
d’un phenomene precedemment observe pour le meme genre d’equation,
en presence de trous dans le domaine.

Mots clés : Inégalité variationnelle, croissance critique, concentration-compacite, minmax,
point critique.

0. INTRODUCTION

In a remarkable series of papers J. M. Coron and A. Bahri have been

giving a complete explanation of a phenomenon previously observed by
Kazdan and Warner [9], i. e. the role of the geometry of the domain with

respect to existence-non existence for non linear elliptic boundary value
problems of the form

It is well known that (0.1) has only the trivial solution if Q is starshaped.
Conversely, A. Bahri and J. M. Coron showed, roughly speaking, that
"holes" in Q induce richer topology on the energy sublevels for (0.1).
This, in turn, is responsable of the existence of non trivial critical points
for the energy associated to (0.1).

In this paper we prove that a similar effect results by imposing a
bilateral condition to (0.1). More precisely, we are interested to the

following free boundary problem:
Given n C° (SZ), and a smooth closed subset C c Q,

find u E Ho (SZ) (’~ C° (Q) and a closed set C such that

In case a solution to (0.2) solves (0.1) in and hence (0.2)
includes the study of (0.1) for domains with "holes".
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The paper is organized as follows.
In Section 1 we discuss the behaviour of P. S. sequences for the following

variational inequality:

PROBLEM 1:

where K is the closed convex set of functions such that 

a. e. in Q and on C in the sense of H~ ( see [10], Definition 5.1,
p. 35).

In Section 2 we give a variational principle for Problem 1 and prove,
under additional hypothesis on C, the existence of non trivial critical

points for the energy functional associated to Problem 1.
In the last section, we will prove a regularity result for Problem 1 which

insures that every solution of Problem 1 solves the free boundary problem
(0. 2).

NOTATIONS. - We denote by 11.11 the norm in the Sobolev space

H( (Q), and for p >_ 1, 1.lp will denote the usual norm in LP= LP(Q). If

we write 

All the inequalities between H1 functions on the closed set C have to
be regarded in the H 1 sense.

1. THE BEHAVIOUR OF P.S. SEQUENCES

DEFINITION 1.1. - un E Ho (Q) is called a P.S. sequence for Problem 1
if
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PROPOSITION 1. 2. - Every P. S. sequence is bounded in Ho (Q).

for n large and hence, by Holder inequality,

Since by ( ii) we have

we readily get the boundeness of II 
Remark 1. 3. - In view of Proposition 1. 2, we will always assume in

the sequel, that if un is a P. S. sequence then weakly in for

some uEK, and lim lim |un|2* exist. Moreover, we can suppose

that ~ ~ u" I2, ~ converge weakly in the sense of measures..

PROPOSITION 1. 4. - Let be a P. S. sequence. Then u is a solution

of Problem 1.

Proof. - Choosing in (iii) we get, denoting

i. e.

We claim that
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From the claim it follows, using ( 1.1):

Since (iii) yields in the limit

we see from (1.4) that u solves Problem 1.
It remains to prove ( 1. 2) and ( 1. 3). Since 03B8n A B)/ - 0 a. e., ( 1. 3) follows

from Lebesgue’s dominated convergence Theorem. Finally, setting
v = u + (9~" - ~) + in (iii), we get

On the other hand, since 3n A in Hfj, we have

But, denoted by xn the characteristic function of ~ 9~" >_ ~r ~, it results

since Xn -+ 0 almost for every x for Thus (1.6) gives

Hence, ( 1. 7), (1. 5) yield ( 1 . 2)..
In view of the above Lemma, we will be concerned in the following

with P. S. sequences which weakly converge to zero.

Vol. 5, n° 4-1988.
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Remark 1. 5. - Let u" - 0 be a P. S. sequence. Since (iii) implies, taking

v = o, lim I V un|2 _ lim ( 2*, from ( 1. 4) we get

Let us now introduce the energy functional:

and

The main result in this section is the following

THEOREM 1. 6. - Let P.S. sequence with Then

lim E (un) =(k/N) SN/2 for some kEN.
One of the basic ingredients in the proof of Theorem 1. 6 is a Lemma,

essentially contained in P. L. Lions [12], concerning the local behaviour of

weakly convergent sequences satisfying some kind of "reverse" inequalities.

LEMMA 1.7. - Let weakly in Let

U ~ (RN be a given open set, and assume

Then there is a (possibily empty) finite set of points x 1, ..., xm E U such

that
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Proof - We have to prove:

Let cp E Co (x°)), cp =1 in (x°). We have:

by ( 1. 8), Holder and Sobolev inequalities. Thus (1.10) readily follows..

Remark 1.8. - Let be a P. S. sequence. After extending u" to be
equal to zero outisde Q, an application of Lemma 1. 7, with U = (RN, gives

there is a finite set of points, xl, ..., x,~ E such that:

(for some subsequence). In fact ( 1. 8) is easily checked, taking v = (1- cp) u",
cp E ( I~N), 0 _ cp  1, in (iii) ..

Remark 1. 9. - Let be a P. S. sequence. If un ~ 0 in Ho (~),
necessarily

In fact, by the previous Remark, On the other hand,

by R emark 1. 5, we have and (1.11)

follows..
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Proof of Theorem 1. 6. - By Remark 1. 5, it amounts to prove

In view of Remark 1. 8, we can assume there is a finite set of "concentra-
tion points" x 1, ..., xm in such that

In order to prove ( 1.12) we will use an iteration procedure, which, at
each step, reduces the energy by exactly SN/2. This will be done "blowing"
each singularity x~. In what follows, we will use quite the same arguments
as in Brezis [3] (see also [4], [13]).
To perform the "blowing up" technique, let b E ]0, SN/2[ be given and

let E" > 0 be such that

Here x° denotes any of the "concentration points" Xj’ and p is chosen in
order B2p (x°) contains only x° as a concentration point.
Now, let be such that
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Notice that En -~ 0. In fact, if (for a subsequence) by (1.13) we
get

while

by assumption. Also, x" -~ x°. In fact, xn I y implies

for any given r>0, provided n is sufficiently large. But, if r is small,

lim r I Un 12. = 0 if y~ x° again by assumption.
Now, define

Remark that un = 0 outside

and

Finally, let us set large }. Notice that

Vol. 5, n° 4-1988.
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white U=0 iff

or

In case x° E aS~ and dist ( x", l  oo, or x° E aC and

aC) - t  oo clearly U is an half space.
Let us remark that o=0 a. e. in In fact, if z o U, 

then, either (x" + E" z) c ~~ or BrEn (xn + En z) c ~. In both cases:

Using Lemma 1. 7 we can exclude the case 0=0 in (RN. In fact, since,
as one can easily check in this case, un satisfies ( 1. 8) while ( 1.10) cannot
be satisfied, in view of (1.13), at any point, an application of Lemma 1. 7
yields Un -+ 0 in contraddicting the inequality on the left in

(1.13).
The first consequence is that U ~ Qf ; thus, either or U is an half

space. Later we will rule out the second alternative.

We are now in position to prove ( 1.12). Il will require a few steps:

Proof of S tep’,, 1. - In order to apply Lemma 1. 7 to let us

fix Notice that
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is admissible for (iii) in Definition 1.1, and (uj, is uniformly bounded in
Hà (n); hence

Using a Lemma by Brezis and Lieb [5], one can verify that

and

Thus Lemma 1.7 applies to get ~j" - 0 in ( U), since the inequality

cannot be satisfied for any xeU, in view of ( 1.13) and the obvious
inequality:

Proof of S tep 2. - Standard arguments in variational inequalities insure
it is enough to prove 

’

for every r>O, ZEU for which B2 r (z) c U. Thus, given ç, we extend it
outside Br(z), setting 03BE=03C9. Now, 0~03B8~1, 9=1 on
B,(z), 8=0 outside B2 r (Z), we see that

Vol. 5, n° 4-1988.
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is admissible for (iii) in Definition 1.1, and we obtain

By Htoc (U) convergence we can pass to the limit, getting

i. e. (1.15), because ~ - ~ = 0 outside Br (z) and 9=1 on Br(z).
Furthermore, since 0) = 0 outside U, clearly 0) E Hà (U). Since ~ ~ 0, as

we have noticed before, by Pohozaev identify this implies U cannot be an
half space, and hence U = 

Finally, let us recall that 0) is uniquely determined (up to translations
and changes of scale) and satisfies

Proof of S tep 3. - It is enough to observe that

Since a. e. in the claim follows by
Lebesgue Theorem.

Proof of Step 4. - First of all, remark that Let 

so that u 1, n = ~,~ v 0. We will prove later that:

uniformly for cp on bounded subsets of K. Choosing v 0 in (1.16)
and setting we get

by Lebesgue Theorem, since - w - ~jn n 0 - o. Thus we can replace ~n by
v 0 = u 1, " in ( 1.16) and this completes the proof of Step 4.
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Inequality ( 1.16) follows by Step 2, since

where the o ( 1 ) are uniform on cp and, as usual,

Since cp - ~n is uniformly bounded in L2~ (Q) for cp on bounded subsets
of HA (Q), it is enough to prove:

First remark that un  w ~ and hence, by Lebesgue Theorem,

Since

and the conclusion follows from

Vol. 5, n° 4-1988.
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Proof - First remark that a. e. Hence, using a Lemma by Brezis
and Lieb [5] we immediately get

Proof of Step 5. - By Step 3, we get

The last equality follows by Brezis-Lieb Lemma and Step 2. Thus

lim Jo u" ~2* = lim ~ I2* + In view of Step 4, the same argument

can be iterated k times, if k I u,~ ~2*  (k + 1) obtaining, for

the kth iterate uk, n, the equality

This implies lim ~2*  SN~2. Thus uk, n is a P.S. sequence satisfying

An application of Remark 1 . 9 yields - 0 in H~ (Q) and ( 1. 12) follows
from (1.17). N

Remark 1.11.2014 From the results in this Section it follows that if u

is a P. S. sequence ( u non necessarily zero) and E (un) - c, then
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Also, k = 0 if and only if u" - u strongly. In order to prove (1.18) consider
the sequence 9~n : = un - u and use Proposition 1.1 to verify

uniformly with respect to cp on bounded subsets of K. From (1.19) follows,
choosing v = 9,~ v 0 as test function,

by Lebesgue theorem, A 0 _ 0. Thus, we can replace ~" by
9~" v 0 in (1.19), and this proves that (~n v 0)" is a P. S. sequence for
Problem 1. Thus Theorem 1. 6 implies that v 0) _ (k/N) for
some with k = 0 iff 9~" v 0 -~ 0 i. e., by ( 1. 20), 9~,~ -~ 0. Now,
from (1.20) and Taylor’s expansion formula we easily get (1.18).

In particular, this result implies that the energy functional

verifies P. S. condition (in the sense of Szulkin [14]) at every energy level
except for those of the form E (u) + SN~2, where u is a solution to
Problem 1 and k >_ 1 an integer..

2. THE EXISTENCE THEOREM

In this Section we will use a Min-Max principle in order to get
the existence of a non trivial solution to Problem 1. More precisely, we
prove that if u - 0 is the only solution to Problem 1 with energy less than

SN/2 and the set HBC verifies a geometrical assumption (as in Coron
[8]), then there exists a critical point of "saddle type" for the functional f
with energy in ](t/N) SN/2, (2/N) SN~2[. Notice that by Remark 1.11, under
this hypothesis f verifies P. S. condition in this interval.

In order to prove our existence theorem, we will construct, following
Coron [8], a continuous map g0 defined on an N + 1-dimensional cylinder
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Z with values in K, such that

Then, we define

and prove that

Since f verifies P. S. condition in a neighbourhood of c, an application
of the deformation Lemma by Szulkin [14] for functionals of the form
C1 + convex-proper-lower semicontinuous gives the existence of a critical
point at the level c, and this will complete the proof of the following

THEOREM 2 . 1. - If SZ, C verify: there exist and R 2 > R 1 > 0 such
that

and is large enough, then Problem 1 has a non trivial solution.

Proof. - First of all we remark as in [8] that we can suppose

for some a > 1, $o that the hypothesis large enough" in Theorem
2.1 means "a large enough".
For the construction of the map g0 we will use the functions

As an immediate consequence of the Concentration-Compactness Lemma

by P. L. Lions [12], we get the following
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LEMMA 2.2. -~- For every neighbourhood V of there exist some
E>0 s. t.

Now, fix a point a° ~  a -1, a compact neighbourhood V of
such that V, and correspondingly fix E > 0 as in Lemma 2. 2, in

such a way that

Let 03C9 be the unique positive and radially symmetric (around the origin)
solution of

and let

for t E [0, 1[, [, cr E where BN = ~ ~ E I ~ I  1 ~. Then, c~~ solves (2 .1)
and for every o, t it results

If a is large, we can find, as in [8], a cut-off function with

support in QBC, such that neighbourhood of aBN,
and such that the functions:

verify:

Vol. 5,n° 4-1988.



340 G. MANCINI AND R. MUSINA

for t° large enough. Remark that since r (va) = o, V cx, V t, from (2 . 2),
(2. 3) it follows

and

Moreover, if ~, > 1 is big enough then

Now we can define our "boundary data" Z : = [0, 1] x BN --~ K by set-
ting :

for se[0,1], Remark that g° is well-defined and continu-
ous on Z since for does not depend on o. By observations above,
we have

Thus, to conclude the proof of the Theorem is enough to verify:

for every

Suppose by contradiction that there exists age CO (Z, K) such that 
on lZ,

and consider the map
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We claim that

since the map

is an admissible homotopy between G and Idz. In fact if

H(t;s,03BE)=(03BB-1,a0) then necessarily s=03BB-1 and 03BE~~BN since 

because of (2.4).
Let us define the sets:

Notice that Z+ is open in Z and Z° is closed in Z since r(u»o if 
is small. Moreover

By Lemma 2 . 2 and (2 . 5) we have that F c V and in particular

Hence, by excision property we have

while on the other hand we shall prove that

getting in this way a contradiction which proves Theorem 2.1.

Vol. 5, n° 4-1988.
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Proof of (2. 8). - Fix R > ~,-1 such 
and consider the path

We claim for every t. Suppose this is not the case; then
there exist t E [o,1 ] and ( s, ~) E aZ + such that

We first deduce that s >_ ~,-1; on the other hand, from and

(2. 7) it follows that (s, 03BE)~ Z°. Since ~Z+ c aZ U Z° we conclude that the

only possibility and (s, ç) E Z + which implies, together with (2. 6),
s  ~, -1, in contrast with s >_ ~, -1.

Since p ( . ) is admissible, we have that deg (G, Z+, p (t)) does not depend
on t, and hence

since 
Formula (2. 9) can be proved in the same way, observing that the path

is admissible for the degree, and thus

3. A REGULARITY REMARK

Before stating our regularity result, we point out some properties of
solutions to Problem 1.

PROPOSITION 3 1. - If u solves Problem 1, then
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Proof. - Let us and let w be the unique
solution of:

In order to prove that w = u, we observe first of all that w > 0 in Q (i. e.
weK); in fact, choosing v = w v 0 as test function in (3. 2) we get

and hence w A 0=0, since/=0 a. e. in Q.
Thus Proposition 3.1 follows from uniqueness for the linear variational

inequality:

From Proposition 3.1 it follows immediately that u is a weak solution
of the equation 

I,

We are now in position to state and prove our regularity result:

THEOREM 3. 2. - If 03C8 E C° (SZ) ~ H1 (Q) and u solves Problem l, then u
is continuous in Q.

Proof - We first prove that u E L °° (SZ). Let u be the unique solution
of:

From (3. 3) it follows that the function z : = u - u solves

where since by the maximum
principle. The boundness of u is a consequence of the following Lemma,

Vol. 5, n° 4-1988.
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which is essentially contained in [6] (see also [7], Lemma 1.5):
LEMMA 3 . 3. - Suppose g~Lq with q~N/2 and z solves (3.4).

T’h?MzeLBVToo.
Applying Lemma 3.3 we easily get and finally, since

O~M~B~ in C, can conclude that 

We now w:=h-u, where h solves

Using Proposition 3.1 it is easy to verify that w is the unique solution of
the linear variational inequality:

Since is continuous on fi, an application of a Theorem by Lewy-
Stampacchia ([11], Part II) gives the continuity of w, and the theorem is
proved..
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