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ABSTRACT. - We prove the existence of a solution of the nonlinear
elliptic equation: A (u) + g (x, u, Du) = h (x), where A is a Leray-Lions
operator from into W -1 ~ p’ (Q) and g is a nonlinear term with
"natural" growth with respect to Du [i. e. such that I g (x, u, ~) I
~ b(lul) satisfying the sign condition g (x, u, ~) u >_ 0 but
no growth condition with respect to u. Here h belongs to W -1’ P’ (S~), thus
the solution u of the problem does not in general be more smooth than

The existence of a solution is also proved for the corresponding
obstacle problem.

RÉSUMÉ. - Nous demontrons l’existence d’une solution du probleme
elliptique non lineaire A (u) + g (x, u, Du) = h (x), ou A est un operateur
de Leray-Lions de a valeurs dans W -1 . p~ (Q) et où g est un

Classification A.M.S. : 35 J 20, 35 J 65, 35 J 85, 47 H 15, 49 A 29.
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terme non lineaire a croissance « naturelle » en Du [i. e. tel que

~ g (x, u, ~) ( _ b ( ~ u ~ ) ( I ~ ~p + c (x))], qui satisfait la condition de signe
g (x, u, ~) u ? 0 mais dont la croissance en u n’est pas limitée. Le second
membre h appartient a W -1 ~ p’ (Q), et la solution u du probleme n’est
donc pas, en general, plus reguliere que W1,p0 p (SZ). Nous démontrons
également l’existence d’une solution pour l’inéquation variationnelle avec
obstacle associee a ce probleme.

INTRODUCTION

In this paper we prove the existence of solutions of non linear elliptic
equations of the type

where A is a Leray-Lions operator from into W -1 ~ p~ (SZ),
hE W-1, ° p~ (SZ), and g is a non linear lower order term having natural

growth (of order p) with respect to ) Du I. With respect to I u I, we do not
assume any growth restrictions, but we assume the "sign-condition"

It will turn out that, for any solution u, g (x, u, Du) will be in L 1 (Q), but,
for each g (x, v, Dv) can be very odd, and does not necessarily
belong to W -1 ° p~ (S2).

In the present paper, the main features are the "sign-condition" and
the non smoothness of the right hand side h.

Let us point out that, if h is sufficiently smooth, existence results of
bounded solutions have been recently obtained in [1], [3], [2], [8], [9],
[10], [19]. But, in general, it is well known that, even for the corresponding
linear equation, one cannot expect an L 00 solution: the solutions can be
only in They are bounded if > see [5].
When g does not depend on Du, existence results for this type of

problems have been proved in [15], [20], [11], [4]. When g depends on Du
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with natural growth, the case where A is linear has been solved in [7], [6].
This result was generalized to non linear A’s in [13], [16]. The proofs of
the four last paper are based on the almost everywhere convergence of
the gradients, a result which is due to J. Frehse [14] in the non-linear case.

In the present paper we present a proof which proceeds from different
ideas. We consider uE defined by 

’

Because of the "sign-condition" it is easy to obtain a 
on uE. Extracting a subsequence, uE tends to u in weakly. The
problem will be solved whenever the convergence will be proved to be
strong in Wy P (SZ). We obtain this result proving that the positive part uE
of u~ strongly converges to u + (and that the similar property holds for
uE ). The proof consists in two steps. In the first one, we prove that the
"exeeding" part of defined as (uE - uk ) + (where u: is the truncation
of u + at level k) is controlled in in terms of (u + - uk ). The
second step is to prove that the "bounded" part (uE - uk ) - of uE strongly
converges to zero in Wo~ P (SZ). For this we use the technique of multiplying
by a non linear test function cp ((uE - uk ) -) introduced in [8], [9], [10]; this
is allowed because 0 ~ (uE - uk ) - _ k.

Finally we give also an existence result for the corresponding obstacle
problem.

1. STATEMENT OF THE PROBLEM

1.1. Assumptions

Let Q be a bounded open set of (RN. Let 1  p  + oo be fixed and A
be a non linear operator from Wo~ p (SZ) into its dual

W-~ (H) ~+1=1~ defined by/
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where a (x, s, ç) is a Caratheodory function x R x f~N --~ (RN such that

where 0, P > 0, a > 0.

Let g (x, s, ç) be a Carathéodory function such that

where b is a continuous and increasing function with (finite) values on
~+, and c >_ 0.

We consider

1.2. The main result

Consider the non linear elliptic problem with Dirichlet boundary condi-
tions

Our objective is to prove the following

THEOREM 1.1. - Under the assumptions ( 1.1 ), (1.2), (1.3) there exists a
solution of ( 1.4).

Before giving the proof of the theorem, let us emphasize that the main
difficulty stems from the fact that u is unbounded. Since h is only in

(Q), it is impossible to expect the existence of an L 00 solution

(see [5]).
Usually boundedness plays an important role in the study of equations

of the type (1.4). Indeed, to overcome the difficulties due to the quadratic
growth of the non linear term, non linear test functions (with respect to
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the solution) are used in [2], [8], [9], [10] and it is important to know
beforehand that such exponentials remain bounded. We shall see that it is
possible to avoid this assertion, in the present framework.

2. PROOF OF THEOREM 1.1

2.1. An approximation scheme

Let us define

and let us consider the equation

which has a solution by the classical result of J. Leray and J. L. Lions [17].
Multiplying (2.2) by Us and using ( 1.2) we get

hence

from which wet get

Hence we can extract a subsequence, still denoted by Us, with

2.2. Convergence of the positive part of uE

Our objective in this paragraph is to prove that
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Let k be a positive constant. Let us define

In a first stage we shall fix k, and use the notation

Note that therefore z: Multiplying (2.2) by z+~
yields

Note that where zE > 0, uE > 0 hence uE > 0 and from (1.2)
gE (x, uE, 0. Therefore we deduce from (2.7)

Hence

Since on the set z£ (x) > 0~, we can also write

which implies

As E - 0, we have
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But zE is bounded in hence also

Define

Since we have

we obtain that

passing to the limit in E (for fixed k) in (2.8) yields

Second step: behaviour of zE

We shall use as a test function in (2.2) the function

where ~, will be chosen later. Note that

hence and, since clearly Therefore

vE is an admissible test function for (2.2). We deduce

Define
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We have

Note that cp~ (zE ) >_ 0 and that gE (x, UE, DuJ  0 whenever 0. Using
then (1.2) and (1.1) we have

Since 0 implies zE = u:, we obtain

Moreover, using (2.12), (2.13) and (2.14), we obtain

Annales de /’Institut Henri Poincaré - Analyse non lineaire



355 A NON LINEAR PDE WITH UNBOUNDED SOLUTION

Vol. 5, n° 4-1988.



356 A. BENSOUSSAN, L. BOCCARDO AND F. MURAT

Extracting a subsequence such that

(which is still possible), and using Lebesgue’s dominated convergence
Theorem, it is easy to pass to the limit in E (for k fixed) in the right hand
side of (2.16). The limit is

since (u + - uk ) - = 0 and cp~ (0) = 0; moreover

which implies so the last term is zero too. Thus
passing to the limit in E for k fixed in (2.16) gives
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Third step: conclusion

From ( 2.10) and ( 2.17) we deduce

Letting k tend to + oo, the right hand side tends to zero. By a variation
of a result of Leray-Lions (for the proof see e. g. [12], [10]), this implies

2.3. Convergence of the negative part of Us

Similarly to the preceding Section, we want to prove now that

Define

Multiplying (2.2) by we get

But
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therefore we obtain as in ( 2.10) that for k fixed:

where Q - 0, if k - + oo.
The next step is to study the behaviour of (uE - uk ) -. Considering

again as test function

we deduce as in ( 2.17) that

Combining (2.21) and (2.22) we deduce, as in ( 2.18), that

u£ -~ u- in strongly.

2.4. Convergence

From ( 2.19) and (2.20) we deduce that for a subsequence

Since g is continuous in the two last arguments we have

From (2.2) and ( 2. 3) we infer that
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For any measurable subset E of Q and any m > 0, we have

where

. So

Since the sequence DuE strongly converges in (LP(Q»N, (2.27) implies the
equi-integrability of gs (x, us’ Dus). Now (2.25) and Vitali’s Theorem yield:

Because of (2.23) and (2.28) it is easy to pass to the limit in

to obtain

Moreover since use, DuE) 0 a. e. it follows from (2.25), (2.26) and
Fatou’s Lemma that
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Thus Theorem 1.1 is proved.
Finally let us note that

indeed put in (2.29) where uk is the truncation of u. We have

and

by Lebesgue’s dominated convergence Theorem, since

by (2.30), and

3. VARIATIONAL INEQUALITIES

In this Section we extend our main result (Theorem 1.1) to variational
inequalities. Let B)/ be a measurable function with values in R such that
"’+ U L°° (SZ); note that this implies:

We consider the problem

We have the following result
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THEOREM 3.1. - Under the assumptions ( 1.1 ), (1.2), (1.3) and (3.1 ), there
exists a solution of (3.2).

Proof - We follow the developments made in Section 2. We just
emphasize the necessary changes. We start with the approximate problem

using the same approximation g~ of g as in the case of the equation
[see (2.1)]. For the existence of a solution of (3.3), see [18].
Using v = W + as test function in (3.3), we easily deduce that Us remains

in a bounded set of Wo~ p (S~) and that remains

bounded. Actually this is the only point in the present proof where the
hypothesis ~+ E Wo° P (Q) (~ L°° (SZ); is used; with some technicalities it is

possible to obtain the same estimates just using (3.1) as hypothesis.
Pick now a subsequence such that

Note that u > B)/ a. e.

We first study the convergence of the positive part u£ . Define again

and consider the test function

Since k will tend to + oo, we may without loss of generality assume that

which is possible since B)/ is bounded above. By this choice of k, the above
test function is admissible. We recover immediately the inequality (2.10).
We then prove (2.17). We consider for that the test function
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which is clearly admissible. Using this test function we recover (2.15) with
the first = replaced by ~ and (2.17) follows.

Therefore (2.19) is proved as in the case of the equation.
We turn now to the convergence of the negative part. As in Section 2.3

we define

We begin proving (2.21). We can use

as a test function in (3.3) because it is clearly admissible. We easily deduce

from which (2.21) follows as in the case of the equation.
The final step is to recover (2.22). Our test function will now be

where bE is a positive constant such that 1, where

E~=exp 03BB(y-~)2; such a constant exists since 0  y£  k. Let us check

that this test function is admissible. Consider a point where 03C8~ 0, then
0, u >_ 0, and Consider next a point where B)/  0, u >- 0,

then ~T =0, and again Assume from now on Bj/  0, u  0;
note that u -  - ~r, u~ _ - ~r. Suppose that 0, then 

But thus

vE >_ - ~E EE ux >_ ~r. Suppose finally and (otherwise

Noting that u-~~-03C8, u-k~03C8 we deduce again v~~ B)/.
With this choice, we derive (2.22) and (2.20) follows as in the case of

the equation.
From the above arguments we can assert that
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By the same argument as in Section 2.4, we deduce again that

and by Fatou’s Lemma that g (x, u, Du) u~L1 (SZ) with

By passing to the limit in (3.3) with n L°° (SZ), one recovers
immediately (3.2), which completes the proof of Theorem 3.1.
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