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ABSTRACT. - We study the long time behavior of nonlinear Schrodinger
equations with a zero order dissipation when they are driven by an external
force. We show that this behavior is described by an attractor which
captures all the trajectories. One of our main results concerns the estimate
of the uniform Lyapunov exponents on this attractor, which allows us to
prove its finite dimensional character.

Nous etudions le comportement asymptotique, lorsque le
temps tend vers l’infini, des solutions des equations de Schrodinger non
lineaires, avec dissipation d’ordre zero et en presence d’une force exterieure.
Nous montrons que ce comportement est decrit par un attracteur qui
capture toutes les trajectoires. Un de nos resultats principaux concerne
l’estimation des exposants de Lyapunov uniformes sur cet attracteur.

Celle-ci nous permet d’etablir, en particulier, que cet ensemble est de
dimension finie.

Mots cles : Attracteurs, Schrodinger, dimension.

Classification A.M.S. : 35 Q 20, 76 A 99; 78 A 60.

Annales de l’Institut Henri Poincaré - Analyse non linéaire - 0294-1449
Vol. 5/88/04/365/41 /a4,10/ © Gauthier-Villars

© 198 8 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved



366 J.-M. GHIDAGLIA

0. INTRODUCTION

Our aim in this work is to obtain some information on the long time
behavior (i. e. as t - oo) of the solutions to the nonlinear Schrodinger
equation

Recall that, thanks to inverse scattering theory, much is known on the
conservative case:

where x~R [18]. In that case the long time behavior of the solutions
depends actually on an infinite number of degrees of freedom (the com-
ponents of the initial data in the solitons basis) and (0.2) enjoys the
properties of infinite dimensional hamiltonian systems. In (0.1) we take
into account the effect of a zero order dissipation (y > 0) and of an external
excitation f It has been observed numerically and using physical arguments
that concerning the long time behavior of (0.1),

(i) chaotic attractors exist ;
(ii) a finite dimension "space" confine the attractors,

we refer e. g. to [1], [14], this last reference gives the derivation of (0.1) in
plasma physics. Thus the dissipation term drastically changes the long
time behavior. In this work we will give a contribution to each of the two
points above. We are going to show that the long time behavior of
solutions to (0.1), with appropriate boundary conditions, is described by
a compact attractor. Moreover this attractor will be finite dimensional as
shown by the estimates of the uniform Lyapunov exponents on it. This

kind of results is well-known for parabolic dissipative equations ( see [16]
for an extensive review on the subject) and has been recently extended to
nonlinear waves equations [7]. See also [6] concerning the case of strong
dissipation in (0.1). From our point of view, it was not obvious that the
weak dissipation mechanism in (0.1) would be sufficient to produce a
finite dimensional behavior. Moreover a straight application of the

methods of [3] (which were done successfully in many situations [16], [7])
does not lead here to the finite dimensionnality of the compact attractors.
And, indeed, in our study of (0.1), we have introduced what we think to
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as a new ingredient which generalizes the method of [3]. Although pre-
sented on the particular problem that we consider, we believe to its

generality (other applications will reported elsewhere, in particular to
weakly damped Korteweg-de Vries equations [20]). See the introduction
to the Section 3 for more details.
We consider the equation (0.1) for x varying in a finite interval [0, L],

0 L  00 and The boundary conditions are either of the Dirichlet
type

or of the Neumann type

or finally periodic boundary conditions i. e. u (x, t) is defined for x e R,
t~R and

It is well-known that the Cauchy problem on R for (0.1) with y=0, f=O
and g suitably chosen, does not lead to global in time existence results
( [ 10], see also [17] for the case /=0). We are going to impose some
growth condition on the smooth (C~) function g which is defined on

R + = [0, oo[ with values in R. More precisely we assume that

where

and
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We observe that (0.4)-(0.5) are in a certain sense complementary to the
conditions in [10], [17] that lead to the blow up in finite time result. Also
the classical function g(c) = c occurring in (0 . 2) satisfy (0.4)-(0.5) and
more generally when

(0.4)-(0.5) reduce to ~  2. In fact, if there exists E > 0 and C such that

(0.4) and (0.5) always hold.
Due to the physical origin of the problem the force f is frequently a

time periodic function and very often

where mo E R. Changing u (x, t) into u (x, t) e‘ in (o .1) leads then to

which is autonomous, and amounts to change g (c) into We

note that (0.4) and (0. 5) are invariant by this transformation. Therefore
we will mainly consider the long time behavior of (0.1) when it is auton-
omous (see also Section 2. 2. 2 for general time-periodic forces).
The plan of this work is as follows. In the first Section we derive some

time estimates on the solutions of (0.1), uniform with respect to various
norms. In the second Section we consider the autonomous case and show
that the long time behavior is described by a compact attractor. Finally
the third section contains the result on its (finite) dimension.
We have only considered the one dimensional case (i. e. x E R) for two

reasons. First it is a physically relevant case. Second extensions to higher
dimensions, which are possible, mainly differ from the cases that we study
here, by technicalities including various Sobolev imbeddings that could,
as we think, hidden the (hoped) readability of the paper. However in a
subsequent work we will consider 2 D and 3 D cases together with explicit
lower and upper bounds on the dimension of the universal attractors

which follows from the methods of this paper. The main results of this

work has been announced in [19].
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1. TIME UNIFORM ESTIMATES

In this Section we first derive some a priori estimates on the solutions
to the nonlinear Schrodinger equations

where u satisfy one of the boundary conditions (0.3). As already said, we
impose the two following conditions on g

there exists ~ > 0 such that

where hand G are related to g in (0.6). Then we recall how these estimates
lead by classical techniques to a well-set Cauchy problem in an appropriate
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space (energy space). We return to the differential inequalities satisfied by
the solutions, and deduce the existence of bounded absorbing sets in the
H1-norm. Finally we extend the results to the H2-norm.

1.1. A priori estimates

This paragraph has two goals. First we derive the a priori estimates
that lead to global (in time) existence of solutions to the previous nonlinear
Schrodinger equations. Second we introduce some notations (functional
spaces, norms, ... ) that will be used in the paper.

(a) Evolution of certain scalar quantities

We multiply (0.1) by u and integrate on ]0, L[, it follows that

Since u satisfies one of the conditions (0.3) we have

and the imaginary and real parts of ( 1.1 ) read

where h is given in (0.6). Next we multiply (0.1) by ut and integrate the
real part of the resulting identity on ]0, L[:
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Since, thanks to (0. 3),

we deduce from (1.4) that [see (0.6) for the expression of G]

We multiply ( 1. 3) by y and add the resulting identity to ( 1. 5), we find:

Denoting by ( , )o and 1 10 the scalar product and norms on L 2 (0, L):

we rewrite ( 1. 2) as

Concerning ( 1. 6) we introduce the two functionals

so that ( 1. 6) reads

Vol. 5, n° 4-1988.
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(b) Consequences of the hypotheses on g

We derive from (0. 4)-(0. 5) two inequalities which are useful in the
study of cp 

LEMMA 1. l. - Under the hypothesis (0 . 4), for every E > 0 there exists a
constant cE which only depends on g and E such that for every v

LEMMA 1. 2. - Under the hypothesis (0. 5), for every E > 0, there exists
a constant C~’ which only depends on g and E such that for every v

The proof of these Lemmas rely on the following inequality

which is obtained by integrating on ]x, y[ c ]0, L[ the relation

Proof of ( 1.12). - According to (0.4), for every E > o, there exists

such that

hence

Now thanks to (1.14),

theref ore combining ( 1.16) and ( 1.17), we obtain ( 1.12) . 0
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Proof of ( 1.13). - By (0.5), for every E > 0, there exists such

that

We take s = and integrate this relation on ]0, L[, using ( 1.17) we find
( 1.13). D

(c) A priori estimates

We denote by L2 (I), I an interval of R, the space of measurable complex
functions on I whose modulus is square integrable on I. For m E ~l *, H"‘ (I)
denotes the subspace of L2 (I) of functions whose distribution derivatives
of order _ m are in L2 (I). When E is a Banach space, LP (I. E), 1 _p  oo,
denotes as usual the space of measurable functions on I whose norm in E

belongs to LP (I) [L°° (I) is the space of essentially bounded functions on I
while LP (I), 1 _p  oo, is the space of (class of) functions whose pth power
is integrable on I]. We also denote by ’C (I, E) the set of continuous

functions from I into E. And finally Lfoc (I, E) [resp. H o~ (I)] denotes the
space of functions which are locally in LP (I, E) [resp. Hm (I)].

It is clear on (1.8) that L2 (o, L)), and uo E L2 (0,L) then
L2 (0, L)). Indeed denoting

we deduce thanks to the Cauchy-Schwartz inequality

hence

After integration, it follows that

Now thanks to this bound it is clear on (1.12) that for E sufficiently
small, cp (u) is coercive [see (1.24)]. For we are going to derive an a priori
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estimate on u, solution of (0.1), in L °° ( (Fg +; H 1 (o, L)):

PROPOSITION 1.1. - Let u be a regular solution of (o 1), (0 . 3), under
the hypotheses (0 . 4)-(0. 5), there exists a constant [see ( 1. 33)] such that

where in (1. 33) we take

and Eo in ( 1. 31 ) is chosen in order that

Proof - We first observe that when (0.4)-(0.5) hold we can always
suppose that 0  ~  1:

Indeed, let n E N be such that n  ~ _ n + 1, we write

therefore

and thanks to (0.4) and (0. 5) we find (0.5) with 00 replaced by and
this shows ( 1. 25).
From this observation and (1.13) we deduce that, for every E > o, there

exists CE’ such that for every v
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and with (1.23), applications of Cauchy-Schwarz inequalities and 0  w _ 1
we deduce

Then we rewrite (1.11) as

First we majorize the term u)o as follows ( 1)

Second we choose E. For we minorize cp (u), using ( 1. 9), ( 1.12):

Hence by (1.23) and ( 1. 26) (0  c~  1)

where Eo > 0 is chosen such that

Now with this choice of E, ( 1. 29) implies ( 1. 24).

( 1) This estimate is artificial L2 (0, L)), but we shall make later a weaker
hypothesis on ft that leads to an equality similar to (1.28). See (1.41).
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Using (1.27), (1.28) and ( 1. 30) we find

which shows (1.22) when we set

(1.33) == -~- [the right hand side of (1.32)]. Q
y(D

1.2. Remarks on the Cauchy problem

(a) Functional setting

We introduce on the basic Hilbert space H = L~ (0, L) the unbounded
linear operator A,

with domain ( 2)

For every r>O, the operator A + r is an isomorphism from D (A) (equip-
ped with the graph norm) onto H. Since the imbedding of D (A) into H
is compact, (A + r) -1 is a compact operator on H. It is self adj oint,
therefore there exists a Hilbert basis of H made of eigenvectors of A. We
denote the nondecreasing sequence of eigenvalues counting
multiplicities

the corresponding orthonormalized eigenvectors are denoted by ~ w~ ~~° o.
These eigenelements are explicitely known here but we do not need for

( 1) As usual Ho (0, L) _ ~ v E H 1 (0, L), v (0) = v (L) = 0).
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the moment their actual values. The powers As, are well defined
with domain D(AS). For example V =D(A 1/2) (which is of interest in

what follows) is also, according to the boundary condition,

We have V’ = D (A -1~2) (after identification of H and its antidual H’).

(b) Functional formulation of the equations

We assume that f is given such that

and our aim is to find a function

which satisfy

where ( 1. 38) is understood in the distribution-sense on R (with values in
V’) and uo is a given element in V.

Remark 1. l. - Since H1 (0, L) is continuously imbedded L]),
the function x --~ g ( ( v (x) ~) v (x) is continuous on [0, L], therefore it belongs
to V’ (even here to V) when v E V. In ( 1. 38) we have denoted by the same
symbol the operator v - g (I v 12) v and the corresponding complex function,
but this should not produce any confusion. D

(c) Existence and uniqueness of solutions

It is well known (see e. g. I. Segal [15]) that the Cauchy problem (1.37)-
(1. 39) possesses a unique solution for t E [o, T*[ with the classical alterna-
tive : either or But according to Propo-
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sition 1.1 (which follows from our hypotheses on g), we have seen that
the latter case does not occur. More precisely we have the

THEOREM 1.1. - We assume that g satisfy the hypotheses (0.4) and
(0 . 5). For every uo E V and f satisfying ( 1. 36), the problem ( 1. 37)-( 1. 39)
possesses a unique solution and for every t E R,

( 1. 40) the mapping uo - u (t) is continuous on V.

Moreover, if we have

then

We postpone the proof of the time uniform estimates, in the last part
of this result, to the next Section (Proposition 1.2). Concerning the first
part, we briefly mention the main steps of a proof of these classical results
based on the techniques of J. L. Lions [11] rather than that of [15]. We first
construct finite dimensional approximations (Galerkin approximations) of
(1.38)-(1.39) based on the spaces spanned by m = o, l, ...,
that we denote Thanks to (1.8), which is now rigourous
with um instead of u, it follows that the functions um (t) are defined for

Indeed reversing time t amounts to change the sign of y. Since this

sigh is not important for local in time estimates we deduce the result.
Then using ( 1. 11) with um instead of u we deduce for t E [0, T], T being
fixed, 0  T  oo, an estimate on the H1-norm of um ( t) which is independent
of m. Let us simply notice that since we have only supposed that

V’), we replace (1.28) by

where ( , ) denotes the pairing between V and V’ and 1.1* the dual-norm
of the following norm on V:

Then we pass to the limit m - oo in the equation satisfied by um using
standard techniques (in particular a compactness lemma of [11]). This

produces a solution to ( 1. 37)-( 1. 39), which is weakly con-
tinuous from R into V. The strong continuity in ( 1. 37) is obtained by
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writing ( 1. 38) as a linear Schrodinger equation

and using a result of [12]. Finally uniqueness and continuous dependence
(1.40) are proved as follows. We denote by ui and u2 two solutions of
( 1. 37)-( 1. 38). We set then

Now since and one can show (using the
technics of [12]) that since 

and

in the distribution sense on M. Then ( 1. 43), (1.44) and ( 1. 45) allow one
to derive a standard Gronwall inequality on the norm w Iv which shows
(1.40) and uniqueness when w (0) = 0. D

Remark 1. 2. - When uo and f are more regular, the solution u is more
regular too. See Section 1. 4. D

1. 3. Existence of bounded absorbing sets in the H1-norm

In this paragraph we show the time uniform estimate stated in the last
part of Theorem 1.1. We assume that in addition to (1.36)

According to ( 1. 22)-( 1. 24) it is clear that the solution u of Theorem 1. 1
belongs to L°° ( f~ +; V). More precisely we have

PROPOSITION 1. 2. - We assume that (0.4)-(0.5) holds. There exists a
constant [see ( 1. 57)) such that for every R>O and for every u0~V
with
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there exists T 1 (R) > 0 such that the solution of ( 1. 37)-( 1. 39) satisfy

Proof - We first note that it follows from (1.21) and (1.47):

so that

r

We only consider so that ( 1. 26) holds with e ~ replaced by
’ ~f (o, ~ Then we choose E1 solution to the analogue of ( 1. 31) i. e.

Y

so that E1 does not depend on R. Using (1.41) instead of (1.28), we find
in place of ( 1. 32)

where

It follows from (1.51) (we denote by its right hand side) that for
t~To(R)
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We choose T (R) >_ To (R) such that

holds for every uo satisfying (1.47). This is possible since we know from
(1.22) and (1.24) that cp (u (To (R))) is bounded by a quantity that only
depends on R and the data of the problem. Then according to ( 1. 53)-
(1 . 54),

Since (1.24) is valid for with e~ replaced by e~ given in

ot~)2 
’

(1.50), and replaced by ’’"~; we deduce from (1.55) that

Combining ( 1. 49) and ( 1. 56), we obtain ( 1. 48) with

1. 4. Existence of bounded absorbing sets in the H~ norm

Our aim is to show an analogue of Proposition 1. 2 with respect to the
H2-norm. We strengthen the hypothesis (1.36) as

and we claim that when uoeD(A), the solution u obtained in

Theorem 1. 1 satisfies

the mapping (1.40) being continuous in D (A). Indeed we set r~ = ut, and
differentiate ( 1. 38) with respect to t, we find
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According to ( 1. 38), we have

since uo e D (A) [a consequence of ( 1. 58)]. Hence taking
the imaginary part of the scalar product in H (~) of (1.60) with T~, we

find

Using the fact that for every finite T>O,

We deduce from (1.58), (1.61) and (1.62) by using Gronwall inequalities
that

Returning to ( 1. 38) we have

and thanks to (1.58), (1.64) and the fact already known that
we deduce ( 1. 59). Then the continuity of the mapping

(1.40) in D (A) follows as in the Theorem 1.1.

Remark 1. 3. - Using the technics of [8], it is possible to derive further
regularity results. D
When we supplement ( 1. 58) with

we have the

PROPOSITION 1.3. - We assume that (0.4)-(0.5) holds together with
( 1. 66). There exists a constant such that for every R > 0 and for every

(~) Here again these formal manipulations are rigorous on the Galerkin approximations
and the estimates are obtained at the limit m - 00.
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uo E D (A) with

there exists T2 (R) such that the solution of (1. 37)-(1. 39) satisfy

Proof - Thanks to Proposition 1. 2, we already know that ( 1. 48)
holds. We have to estimate uxx (t) o for large t. For we take the real part
of the scalar product of ( 1. 38) with A u, it follows that

We first notice that since 

therefore using L °° estimates on the terms involving u and L 1 on that

involving 1 Ux 12 we deduce from ( 1. 48) that 
.

where p~,1 depends only on p~, 1.

It remains to study the term

It is equal to

that we rewrite as
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where

Now according to (1.37) we have

where thanks to ( 1. 48)

We replace (1.75) in (1.74), then using the L~ estimate on u, tI. 14J ana

( 1. 48) we deduce that

We apply again ( 1.14) with v = ux: for every 

and then the right hand side of ( 1. 77) is bounded by

Thanks to (1.76) and (1.78), we have for (R),

hence returning to (1.69), with ( 1. 71) to ( 1. 73), we have

for and where
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Now using again ( 1. 48) and the Cauchy-Schwarz inequality we infer that,

We deduce then f orm (1.80),

where we have used the following Young inequalities

and (1.83).
It follows from (1.85) that

which shows that for 

We finish the proof of ( 1. 69) using ( 1. 83) and ( 1. 87) concerning the
bound on and (1.48) for the remaining terms. D

2. THE NONLINEAR GROUP AND THE LONG TIME BEHAVIOR

In this Section we mainly consider the case where the external force f is
time independent. We show that the long time behavior of S (t) in D (A)
is characterized by an attractor. Then we give some remarks concerning
the behavior of S (t) in V and on the time periodic forced case.
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2.1. The universal attractor

(a) The nonlinear group

Let f be given in H, according to Theorem 1.1, the equation ( 1. 38)
with /(t)=/ processes a unique solution when we prescribe
u (o) = uo, uo E v. We set

which defines according to ( 1. 40) a family of continuous mappings on V.
Since ( 1. 38) is autonomous, (S form a group acting on V. Moreover,
as discussed in Section 1. 4, S (t) is continuous on D (A). Let us now
interpret the uniform boundedness properties which result from Proposi-
tions 1. 2 and 1. 3.

(b) Bounded absorbing sets

We recall that a bounded set Ba in V [resp. D (A)] is absorbing in V
[resp. D (A)], if for every bounded set B in V [resp. D (A)] there exists

such that

( 2 . 2) S (t) B c Ba, 

With this definition it is clear that we can deduce from Propositions 1.2
and 1. 3 the

COROLLARY 2. l. - The set

is a bounded absorbing set for { S (t) } in V. While

is a bounded absorbing set for ~ S (t) ~ in D (A).

(c) Omega limit sets

Thanks to (2. 2), as far as the long time behavior of S (t) is concerned,
we can restrict ourselves to initial data which are in Ba. Therefore we
introduce the following m-limit set 

’
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PROPOSITION 2. 1. - The set

where the closures are taken with respect to the weak topology of D (A), is
included in B2 and non empty. It is invariant by S (t) i. e.

Remarks 2 .1. - 1. If we take B a bounded set in D (A), we can also
define co (B) by (2. 5) and when co (B) is also included in B2, non
empty and invariant. According to (2. 2) it is clear that co (B) c: co (B2),
and this shows is maximal in a certain sense, see also the
Theorem 2.1.

2. It is also possible to define co(B1) in the weak topology of V, see
next paragraph. D
The proof of Proposition 2.1 is easy using the following facts

(2. 7) S (t) is weakly continuous on D (A),

(2 . 8) a point b belongs to o(B) if and only there exists two sequences
t" e R, bn E B such that tn ~ oo and S (t") b" weakly converges in D (A) as n
goes to 00 .

In order to prove (2.7), we must show that if a sequence v" converges
to v weakly in D (A), S ( t) v" converges to S ( t) v in the same topology. By
the compactness of the injection of D (A) into V, we know that v" converges
strongly to v in V and since S (t) is continuous on V, S (t) v" converges
strongly to v in V. On the other hand, v" is bounded in D (A) so that
S (t) v" in also bounded in D (A), and we can extract a sequence S (t) v",
which weakly converges to some w in D (A). As before S (t) v" converges
to w in the strong topology of V and w = S (t) v. This shows that the whole
sequence S (t) v" weakly converges to S (t) v in D(A). Q.E.D. Concerning
(2 . 8), we know that the weak topology of D (A) is metrizable on B2 (or
more generally on bounded sets in D (A), we have implicitely used this
fact before) and we denote by dw an associated distance. Thanks to (2. 2)
the convergence property in (2 . 8) can be phrased as: there exists weD(A)
such that d"’ (S (tn) bn, w), goes to 0 as n - oo and (2. 8) becomes the
classical definition of accumulation points in a metric space. D
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(d) The universal attractor

As already noticed, due to the fact that B2 is a bounded absorbing set
in D (A), the set ro (B 2) is maximal in the sense that

THEOREM Z . 1. - The set

satisfies

(2 . 10) ~ is bounded and weakly closed in D (A),

(2 . 12) for every bounded set B in D (A),

Moreover it is the maximal set (in the sense of inclusion) that satisfies
(2.10), (2. 11) and (2.12). It is connected in the weak topology of D (A).
By the compact imbedding of D (A) into D(AS), s  1, and the continu-

ous imbedding of D (A~ into H2 S (0, L) we know that D (A) is compactly
imbedded in H 2 S ( 0, L) for every s, s  1. Then it follows that the conver-
gence in (2.10) holds with respect to the strong (norm) topology of
H2 s (0, L) for such s. In particular (s =1/2).

COROLLARY 2. 2. - For every bounded set B in D (A), the set S (t) B

converges to ~ with respect to the V-norm.

Remarks 2.2. - 1. The uniqueness of a set satisfying (2.8)-(2.11) is

obvious. We shall term this set as the universal attractor.

2. Recall that dw (X, Y) = Sup Inf dw (x, y) and (2. 12) is not ambiguous
x~X yeY

since d c B2 (Proposition 2.1) and thanks to Corollary 2.1, S (t) B c B2
for t~T(B). D

Proof - The properties (2.10) and (2.11) follow from Propo-
sition 2. 1. Concerning (2.12), we argue by contradiction and assume that
there exist two sequences tn E R and bn E B [thanks to Corollary 2 .1 we can
assume that S (tn) b" E B2] such that tn - oo and
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for some Eo independent of n. Since S (tn) bn is bounded in D (A) we can
assume that there exists b E B2 such that

Writting (S (tn/2) bn) we see that thanks to ( 2 . 8),
and this contradicts (2.13). The maximality asserted in the

Theorem is clear. The connexity follows from the observation that B2 is
connected (since it is convex), compact in the weak topology and the
following abstract result (which is easy to prove).

LEMMA 2. 1. - Let (8, d) be a metric space and F a non empty compact
connected set. Let also denote by a semi group on E that satisfy

(i) for every t E I~ +, E (t) is continuous on ~;
(ii) for every e E ~, t - E (t) e is continuous from (F8 + into ~;
(iii) there exists a compact set K and to E R + such that

Then the omega limit set of ~ under E (t):

is a connected and compact non empty set. D
We apply this lemma d = dw, ~ ( t) = S (t), ~ = K = B2,

to = T (B2), the property (i) follows from (2 . 7), (ii) follows in the same
manner. D

2. 2. Remarks and complements

In this paragraph we briefly address two different questions: the
behavior of S (t) in V and the case where the function f depends periodically
on t.

2. 2.1. Behavior of S (t) in V

According to Corollary 2.1, the set B1 is a bounded absorbing set in
V, therefore the behavior of S (t) in V (as t - oo) is related to its action
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on Bt. We introduce

where this time the closures are taken with respect to the weak topology
of V. In the previous analysis i. e. in the proof of Proposition 2.1, we
have used that S ( t) is weakly continuous in the relevant topology, i. e.

( 2 . 7), and this was a consequence of the fact that S (t) was continuous
on V. Here we do not know whether or not S (t) is even defined on a

subspace of V which is compactly imbedded in V. For instance it is not
known whether or not S (t) uo has a sense for uo e H (as it is the case for
the linear equation). However we are going to derive a property of S (t)
that shows its weak continuity on V:

PROPOSITION 2. 2. - For every the mapping S (t) is continuous on

bounded sets of V for the topology of the norm in H.
And then

COROLLARY 2.3. - The set d* defined in (2. 12) is the universal weak
attractor for S (t) in V.

First, we notice that the weak continuity of S (t) in V follows readily
from Proposition 2.2 [as in the proof of (2.7)]. Then by mimicking the
proof of Proposition 2.1 and Theorem 2.1, we obtain Corollary 2.2.
Concerning the proof of Proposition 2. 2 we return to ( 1. 43), with ( 1. 45).
Hence

where ui = S (t) w = u2 - ul. When u01 and U02 belong to a fixed bounded
set in V, we know that for every T, the number

where the supremum is taken on f=l,2, x E [0, L], |t|_ T, I u01 ( _ R is

finite. Hence there exists a constant C (T, R) such that the right hand side
of (2.15) is bounded in absolute value by C(T,R)lwI2. This shows

Proposition 2. 2 thanks to the classical Gronwall lemma. D
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Remark 2 . 3. - Since d is bounded in D (A), it is bounded in V and

by the invariance property (2. 9), we have

On the contrary if we knew (as in [7] for instance) that d* is bounded in
D (A) then the opposite inclusion would hold. D

2. 2. 2. The time-periodic case

We have already noticed in the Introduction that the special case

is contained in the previous analysis. Concerning the more general case
where f satisfy ( 1. 67) and there exists T > 0 such that

we consider the family of applications on V, s e R, t E R,

It is clear that

and thanks to (2.18),

It follows then that for every s E [0, T[, the family { S (s + m T, s) forms
a discrete group. All the results of Section 2.1 can be transposed in this
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case (see [9] for the details). For instance, the set

is the universal attractor in D (A) and moreover

3. DIMENSION OF INVARIANT SETS

’ 

In this Section we prove that the universal attractor in D (A), ~, has
finite fractal dimension [see (3.48) for the definition]. And this clearly
implies that it is the case for every invariant set which is bounded in

D (A). First we show that when m is sufficiently large, the differential of
the semi-group S (t) contracts the m-dimensional volumes in V [see ( 3 . 20)].
Second, we apply a general result of Constantin, Foias and Temam [3]
that leads to the result on the dimension. The proof of Theorem 3.1,
which is a result on the evolution of m-dimensional volumes in V, contains
a generalization of a method presented in [3]. Indeed, instead of considering
the classical norm on this space, ( 1. 42), we introduce a family of quadratic
functional qJ1 (t; . ) that depend on t through a solution u (t) = S (t) uo which
leads to the desired result. This method, which seems fairly general, could
be adapted to cases where the a priori estimates on the solutions are
obtained using nonlinear multipliers.

3.1. The linearized equation

Let uo be given in V, we denote by v (t) the solution to the nonauton-
omous R-linear equation

where u (t) = S (t) Uo. Since we know that u ~L(R, V), it is a simple matter
to check that (3. 1)-(3. 2) possesses a unique solution with
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This equation, which is formally obtained by differentiation of ( 1. 38) with

respect to u, gives the value of the differential of S (t) at uo. More precisely,
we consider (1.38) as a system of two equations on R for the real and
imaginary parts of u, then the mapping DS (t) uo defined by

is the R-differential of S (t) at uo. We are obliged to deal with R-linear

operator since (3.1)-(3.2) is not C-linear [the nonlinear term g ( I u ~ 2) u is
not holomorphic in general]. In the sequel the identification

Ee = E, E = H, V, ... is understood. We have the following result that
makes precise the fact that DS (t) uo is the differential of S (t) at uo:

PROPOSITION 3 . 1. - Let R, R 1 and T be three positive numbers. There
exists a constant C = C ( R, R 1, T) such that for every uo, vo, t with

we have

The proof of this result, which is lengthy but classic, is left to the reader.
It should be noticed that (3 . 5) shows that S (t) is uniformly differentiable
on bounded sets of V, an important property as far as the proof of finite
dimensionality is concerned. D
An energy equality. We set

and when v is solution to (3.1)-(3.2), we have

We take the real part of the scalar product of ( 3 . 7) with - wt:

and this leads to set
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so that ( 3 . 9) reads

where

On the other hand the imaginary part of the scalar product of (3.7)
with w reads

If we set 

and

we deduce from (3.11) and (3.13) the following family of scalar evolution
equations:

When u (x, t) belongs to a fixed compact set in C, it is clear by (3.10),
( 3 . 14) that we can choose p so that w -+ qJ! (t, w) is a norm on V, equivalent
to the usual one. This is the reason why we have introduced such a
parameter ~,.

3. 2. Evolution of the m-dimensional volumes in V

In this paragraph we study how the operators DS (t) uo transform the
m-dimensional volumes in V. We take m elements vo, ..., vo in V and
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study the evolution of the quantities

where Vi (t) = (DS (t) uo) vo, and we have set

The Gram determinant (3.17) represents the square of m!-times the volume
of the m-dimensional polyhedron defined by the vectors v 1 (t), ..., vm (t).
We are going to show that for sufficiently large m this determinant decays
exponentially as t - +00. More precisely we consider an invariant set X
which is bounded in D (A):

We have

THEOREM 3 .1. - Let X be an invariant set which is bounded in D (A).
There exists two constants C 1 and C2 such that for every uo E X, m >_ 1 and

the satisfy

Proof - We first make the transform (3. 6) so that

where

We are going to use instead the (time dependent) quadratic form
qJl (t, . ) with appropriate Il.

According to (3. 19), the number
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is finite since the norm of v in D (A) majorize the L~-norm of v on [0, L].
We take

then q~, (t, . ) defined in (3 .14) satisfy

Hence, for fixed (t, . ) ~ 1~2 is a norm on V, which is equivalent to the
norm (recall that On the other hand, we claim that

there exists a constant C3 = C3 (X) such that

Indeed, let us first bound r (t, w) given in (3. 12). According to ( 1. 38) we
have

and since u (t) E X, and X- is bounded in D ( A) by hypothesis we
deduce that there exists a constant C4 = C4 (X) such that

Then using ( 3 . 23), which shows that u (x, t) ( _ ~ X I ~, V x, t, we deduce
from ( 3 . 12) that

Annales de /’Institut Henri Poincaré - Analyse non linéaire



397FINITE DIMENSION FOR SCHRODINGER

Now according to ( 3 .15),

and (3.26) follows with (3.28).

(b) A first estimation on Gm (t)

We introduce the R-bilinear forms on x 

which depend on t through u = u (t). The quadratic form which is associated
to (p(t;.,.) is q~, (t, . ), hence according to ( 3 . 25), cp (t; . , . ) is a scalar

product on V which is continuous and coercive. We introduce the Gram
determinants

We relate the Hm (t) to the Gm (t) by the

LEMMA 3.1. - With the previous notations and thanks to (3. 25) we have

We detail the proof of this result since it contains another interpretation
of the Gram determinant that is very useful for later purposes. We
recall [4] that the Gram determinant of m vectors çl, ..., ~m in a Hilbert
space Jf with scalar product B)/(.,.) is also the determinant of the quadratic
form on f~m
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Since this determinant is also equal to the product of the m eigenvalues
of this quadratic form, we have

thanks to the classical min-max principle. It is clear on ( 3 . 32) that if ~r 1
is another scalar product on af which is continuous and coercive, i. e.

then

The proof of (3.31) is done when we notice that, for fixed t, the scalar

products on that appears in ( 3 . 22) and ( 3 . 30) satisfy according to
( 3 . 25), the relation (3.33) with (X=Jl and ~i = L - 2. D

(c) An estimate on Hm (t)

We are going to derive from ( 3 .16) the time derivative of Hm (t) given
in (3. 30). According to the classical rule of differentiation of a determinant,

where we have set

and b~j is the usual Kronecker symbol. Now thanks to ( 3 .16) and the
formula
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we deduce that

where

is the (time dependent) symetric bilinear forms associated to r~ (t, . ). We
claim that according to (3.37), (3.35) yields

We assume that this formula holds for the moment and we finish the

We first note that if I vb A ... A vo jy=0 then the vo are linearly depen-
dent, so are the Vi (t) and (3 . 20) is obvious. If A ... A vo ~~ ~ 0, we
know by a continuity argument that I Vl A ... A for small t,
and then {w1 (t), ... , are independent too. Hence for G c IRm,

and according to ( 3 . 25) and (3.26) we

have
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Since we infer from (3 . 39) that

Now we notice that when F c IRm, dim F = l is given; for x E F, the
m

03A3 xj wi (t) span F (t) an l-dimensional subspace of V so that
j= 1

Now the right hand side of (3.42) is explicitly known since

We then conclude from ( 3 . 41 )-( 3 . 43) that

such that

which shows that

Combining (3.21), (3.22), (3.31) and this last inequality we obtain (3.20)
with C1 = 1/(L ).
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As before we can assume that the ( wi (t) ~ J 1 are independent. Then we
use the following Lemma

LEMMA 3.2. - We consider two bilinear and symetric forms on R"’, %s
and ~2 and we assume that ~ is definite and positive. Then denoting by
~ 1 the ordered eigenvalues with respect to ~r, i. e.

for every family { ..., in R"’, we have

where

This lemma is very similar to [3], Lemma 4.1, the present formulation
is more adapted to the proof of (3.29). Let us give now a proof which is
slightly different from that of [3]. We denote by {111, ..., ~m ~ a basis of

where both B)/ and 03C82 are diagonal, i. e..

We decompose the -ç/ in that basis: ~‘ _ ~ Pt~ then

where 

We deduce that the left hand side of (3.46) is equal to
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m

Now we notice that the application P - L det Ql is an m-multilinear
l=1

alternating map as a function of the rows of P. Therefore it is proportional
to det P. Taking P=I leads to

and this shows (3.46). D
Now (3. 39) follows from this Lemma when we notice that in the right

hand side of ( 3 . 3 5), t is simply a parameter so that we can take for each
f ixed t

and apply Lemma 3. 2.. D

3. 3. The result on the dimension

We recall that the fractal dimension of a metric space t! is defined by
the following limit [13]

where NE ( ~) denotes the minimal number of balls of radius E which are
necessary to cover 8. We always have dH (~)  dF (~), where dH denotes
the Hausdorff dimension of 8. We recall that the converse may not be; it
is even possible that dF ( ~) = oo while dH ( ~) = o.
We are going to deduce from Theorem 3.1 that the universal

attractor d of Theorem 2.1 has finite fractal dimension in V. We first

recall an abstract result of P. Constantin, C. Foias and R. Temam [3]
that generalizes one of A. Douady and J. Oesterle [5]. We are given a
nonlinear mapping S on a compact subset X of a Hilbert space Je. And
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it is assumed that

and for every u E X, there exists a linear operator such

that

and

Finally we denote by ~m (L) the norm of the mth exterior product of L in
A’" ~ ( see [2]) :

where the supremum is taken on all 1 with det ( ~_, ~’)~ __ 1.
1 __i, j~m

We set

and define the uniform Lyapunov exponents on X by

We can state according to [3] the

THEOREM. - Under the hypotheses (3. 49) to (3. 51 ), if there exists m >_ 0
such that

then

and
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In fact is assumed in [3] that the operators L (u) are compact but this
hypothesis is not necessary as shown in [7], and this will be used in the
application below.
We can prove the

THEOREM 3.2. - The universal attractor ~ of Theorem 2. 1 has finite
fractal and Hausdorff dimension in V.

Proof - We fix some positive to>O and consider the mapping
S = S (nto) where will be chosen later on. We take X = d

which is compact in V by (2.10) and the compact injection of D(A)
into V. According to Proposition 3.1, L (uo) = DS (nto) . uo satisfy (3 . 50),
(3.51) and according to Theorem 3.1 and (3.52),

Since the right hand side is independent of uo Ed, we deduce that

We fix mEN with y m > C2, then there exists no such that for S = S (no to)

or equivalently (3. 55). Hence (3. 56) and (3. 57) hold and Theorem 3. 2 is

proved. D

Remark 3. l. - Theorem 3.1 is still valid [with y replaced by y/2 in

(3.20)] when we consider an invariant set X which is only bounded in V
because in that case ( 3 . 26) can be replaced by

Hence we can take X =~* given by Corollary 2. 2. The properties (3. 49)
to (3. 51) hold also in this case with but we do not know whether

or not d* is compact in V and therefore we cannot apply the result on
the dimensions. Q

Remark 3.2. - In the time periodic forced case (Section 2.2.2),
Theorem 3. 1 is again valid and Theorem 3. 2 shows that all the d s are
finite dimensional. 

’
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