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ABSTRACT. - For a domain Q c tR" embeddings u -~ exp

n) n~n - 1 ) of (S2) into Orlicz spaces are considered. At the
critical exponent a loss of compactness reminiscent of the Yamabe
problem is encountered; however by a result of Carlesson and Chang, if
Q is a ball the best constant for the above embedding is attained.

In dimension n = 2 we identify the "limiting problem" responsible for
the lack of compactness at the critical exponent a2 = 4 ~ in the radially
symmetric case and establish the existence of extremal functions also for
nonsymmetric domains Q. Moreover, we establish the existence of two
"branches" of critical points of this embedding beyond the critical

exponent a2 = 4 ~.

Key words : Sobolev embedding, variational methods, loss of compactness, limiting
exponent, limiting problem, local compactness.

RESUME. - Etant donne un domaine Q c on considere des
immersions de Ho~ " (SZ) dans des espaces d’Orlicz, du type

Pour l’exposant critique se produit
une perte de compacite. Toutefois, grace a un resultat de Carleson et
Chang, si Q est une boule, la meilleure constante pour l’immersion est
atteinte.
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426 M. STRUWE

Dans le cas n = 2, le probleme limite responsable de la perte de compacite
a l’exposant critique 03B12=403C0 est identifie dans le cas radialement symetri-
que. Dans le cas non symetrique, on démontre encore l’existence de

fonctions extremales. En outre, on montre l’existence de deux branches de

points critiques d’immersion au-dela de l’exposant critique a2 = 4 ~.

1. Let Q be a bounded domain in [R", and let denote the

completion of (Q) in the norm

For p  n there are continuous embeddings

Moreover, the Sobolev constant

is independent of Q, due to invariance of the Ho~ P- and LP*-norms under
scaling

and (therefore) for 1  p  n is never achieved on a bounded domain.

In the border-line case p = n, since Q is bounded, there are continuous

embeddings

however, functions in need not be (essentially) bounded.
Instead the limit case for Sobolev’s embedding of Ho° "(S2) occurs for

embeddings into Orlicz spaces: For any a  oo the map

Annales de l’Institut Henri Poincaré - Analyse non linéaire



427EMBEDDINGS OF H~’ n (Q) TO ORLICZ SPACES

is well-defined and smooth locally; however, there is a limiting exponent
C’Lo = C’Lo (n) such that the unit ball in Ho° "(S2) is mapped to a bounded set
in (Q) under this map.

This result is due to Moser [6], sharpening and extending an earlier
result by Trudinger [15].
For a domain Q let

denote the mean value of a function cp over Q.

Then we may state Moser’s result as follows:

THEOREM 1.1. - There exist constants an, cn depending only on the

dimension n such that for all a _ an there holds

uniformly for all u E (Q) with I) u _ l. The constant an is given by

where 03C9n-1 denotes the (n-1)-dimensional measure of the unit sphere
sn-i , 

Moreover, for a > 03B1n

where the supremum is taken with respect to all such that

Complementing this result, and in striking contrast with the case of
Sobolev’s embedding (1.1) for 1 pn, Carleson and Chang [2] have
observed:

THEOREM 1.2. - Let Q be a ball in Then
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428 M. STRUWE

is achieved at some function uo E Ho~ " (Q) ( 1).
In order to interpret this result in the general context of the calculus of

variations we regard (1.3) as a constrained maximization problem.
Denote

the unit sphere in (S2) and introduce the functional Ho> "(SZ) --~ I~

Then Theorem 1.2 is equivalent to the assertion that E~ for a = an achieves
its supremum on E; i. e. that a suitable maximizing sequence for Ean
in E is convergent.

Arguing indirectly, Carleson and Chang first estimate

assuming to be divergent.
Then they succeed in constructing a comparison function with

Ean (u) > y, and Theorem 1.2 follows.
This local compactness property of the functional Ean bears some resem-

blance with properties enjoyed by other functionals involving limiting cases
of Sobolev embeddings. In many cases one can show compactness e. g. of
a maximizing sequence unless energy "concentrates" at (finitely many)
"singular" points in the domain. Often a close-up view of the behaviour
of near such a point reveals a uniform pattern: Properly rescaled,
the sequence converges to a solution of some "limiting problem"
associated with the original problem, one of whose characteristic properties
is the invariance with respect to a non-compact group action. In the

original problem this symmetry may be "hidden" by perturbations, and it
becomes "manifest" only in the limit where the influence of the perturba-
tion is eliminated by the action.

In many cases this group action is the action of the conformal group,

in particular dilatations of i. e. the action of the multiplicative group

(~) Note that for a fixed domain Q the integral is not invariant

under scaling u - MR(x) --_ U (R x).
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via (X, x) - for all ~, > 0, x E Then the limiting problem is

found in the limit ~, -~ oo, and hence may be referred to as "problem at
infinity". Moreover, this problem is posed on (~n, which is conformally
equivalent to the sphere S" - ~p~ via stereographic projection from p E S".
Hence the resolution of singularities by rescaling also reveals a topological
degeneration near the points of concentration, and divergence e. g. of

maximizing sequences may be attributed to the "separation of spheres".
This phenomenon was first observed for harmonic maps of surfaces [9],

resp. surfaces of constant mean curvature [16]; cp. also [1], [12], [ 13J. Here
the term "separation of spheres" has a clear geometric meaning. Subse-
quently, related phenomena were found in numerous other problems as
well, cp. [3], [4], [10], [11], [ 14].
For the functional Ean the following result was obtained by

P. L. Lions [4], Theorem 1.6:

THEOREM 1.3. - Let S’Z be a bounded domain in and let be a

sequence in Ha ° " (S2) such that I um ( ~ 1 ~ n  1 for all m.
We may suppose that um -~ u weakly in (SZ), ~ ~ um (" dx - p weakly

in measure. Then either: (i) p = the D irac measure of mass 1 concen-
trated at xo E S2, and u - 0, or (it) there exists a > a" such that the family

is uniformly bounded in L°‘ (SZ) and thus

Ean (um) --~ Ean (u) as m -~ oo. In particular, this is the case if u ~ 0.

This "concentration-compactness principle" describes the behaviour of
divergent maximizing sequences for E~n in E on a macroscopic scale.

In our first result in this paper we gain a close-up view of possible
singularities and identify the limiting problem associated with Ean in the
case of radial symmetry. Moreover, for simplicity we restrict ourselves to
the two-dimensional case: n = 2, = 4 ~.

THEOREM 1.4. - Let Q = BR (0) be a ball in (~2, and suppose is a

sequence of radially symmetric functions um (x) = um (I x I) E (Q) with
norm 1. Scaling we may assume that R =1.
Assume that E4 n (um) ---~ [i > 1 while I ~ um I2 dx --~ bo weakly in measure.

Moreover, suppose that

where the supremum is taken with respect to such that

Vol. 5, n° 5-1988.
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e + l, and there exists a sequence Rm  0, a constant K E (~ and
a function w E ( ~2) such that the rescaled functions

where w solves the limiting problem

with asymptotic behavior

w hence corresponds to a conformal change of metric on 1R2 from the
standard metric to a metric of constant Gaussian curvature K = 1. Thus

w is induced by a stereo graphic projection

and is in fact given by

From Theorem 1.4, by using symmetrization techniques, we deduce a
local compactness property for the functional on any bounded domain

S2 c (I~ 2 .

THEOREM 1.5. - Suppose Q is a bounded domain in (~2, and let be

a sequence in Ho° 2 (SZ) such that ~~ um ~~1, 2 _ 1. We may assume that u

weakly in (S2).
Suppose that E4 ,~ (um) -~ (3 > e + I . Then there exists a > 4 ~c such that

the functions are uniformly bounded in L°‘ (SZ). In particular,
(u) _ ~3, and 0.

Remark that the number e + 1 agrees with the number computed by
Carleson and Chang for the maximal limit of the energies E4 ,~ (um) of a

diverging sequence and hence is best possible.
Theorem 1.5 in particular applies to a maximizing sequence for

in E (S~)

Annales de l’Institut Henri Poincaré - Analyse non linéaire



431EMBEDDINGS OF H~’ n ~5~~ TO ORLICZ SPACES

For a ball Q = BR (0), Carleson and Chang exhibit a comparison function
u with ( I u I ~ 1, 2 =1, (u) = fio > e + 1. Hence in this case > e + 1,
and by Theorem 1.5 a maximizing sequence has to contain a strongly
convergent subsequence.

Actually, the same argument is applicable on domains close to a ball in
measure:

COROLLARY 1.6. - Suppose S2 is a bounded domain in (~2 and let BR (x)
be a ball contained in Q. Assume that

then achieves its supremum in 03A3 (Q).
Moreover, numerical evidence suggests that for Q = BR (0) c 1R2 also for

small a > 4 x a branch of radially symmetric local maximizers ua of E~ on
E exists, emanating from a solution of the constrained maximization

problem for on E. This branch persists until apparently it meets a
branch of "unstable" critical points of the restricted functional 

bifurcating from infinity at a = 4 x; cp. [5].
The existence of a "branch" of relative maximizers for E~ beyond 

is established in the following:

THEOREM 1.7. - Let Q be a bounded domain in ~2 and suppose that for
03B1=403C0 there holds: sup > e + 1.

Then there exists a number a* > 4 x such that for any a E ]0, cx*[ there
exists a function ua E E which locally maximizes Ea on E.

Actually, we will construct a set C c R x E such that for any (a, u) E C
the function u locally maximizes E~ in E and such that the projection of
C to the first component covers the interval ]0, a*[. Moreover, a* is
characterized by the condition that either: (i) there exist pairs (a, ua) E C,
a _ a*, and functions va E E such that a - a* while

(i. e. the functions ua "loose their stability" as a -~ a*), or (ii)

(i. e. ua "becomes unbounded").
The existence of saddle-point-type solutions for a E ]4 ~t, a*[ is established

rigourously only for a dense set of values a in a right neighborhood of 4 ~:

Vol. 5, n° 5-1988.
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THEOREM 1.8. - Suppose the conditions of Theorem 1.7 are satisfied
and let a*, ua be defined as in Theorem 1.7. There exists a constant

E ]4 ~t, a*] such that for almost every a E ]4 ~t, in the sense of Lebesgue
measure there exists a second critical point u°‘ E E of Ea, u°‘ ~ ua.

For the proof of Theorem 1.8 we employ critical point methods beyond
the compactness range. To overcome the resulting technical difficulties we
use a device from [13] to obtain suitable a priori bounds on comparison
functions by varying the parameter a. Our method works at the dense set
of points of differentiability of a certain monotone function, defined by a
minimax-scheme.

In order to close the "gaps" one would need to have a priori estimates
for the L’-norms of critical points of Ea in terms of their energies and
e. g. log (a - 4 ~), which seem to be unknown.

ACKNOWLEDGEMENTS

I am indepted to S.Y.A. Chang and J. Moser for suggesting the problem
and stimulating discussions.

2. PRELIMINARIES

We briefly collect some well-known facts about the functional Ea and
introduce some concepts from critical point theory that we shall use later
on.

First recall the following regularity properties of Ea :

LEMMA 2.1. - Let Q be a bounded domain in The functional
Ea : H1,n0(03A9) ~ R, given by (1.4), is continuously Fréchet differentiable on

(Q), for any a > 0, and dEa is locally uniformly continuous and bounded.

Proof - Using Theorem 1.1 and Vitali’s convergence theorem for

uniformly absolutely continuous integrals we easily verify that Ea is differ-
entiable and its differential is uniformly bounded locally near any

Annales de l’Institut Henri Poincaré - Analyse non linéaire



433EMBEDDINGS OF Hp’ " (Q) TO ORLICZ SPACES

Indeed, for u, cp E (SZ), E > 0:

where we denote sP: = s I s Ip-1 for all s E R, p > 0.
Now estimate for any t E [0, E]:

with constants c depending on n and a. Note that for any the
function

Similarly, cp E Lq, V q  ~. Finally, by Theorem 1.1, if E > 0 is sufficiently
small also is uniformly bounded e. g. in for
all cp E with )) cp ~) 1, n __ 1. By Holder’s inequality then the term

for any b > 0, and the integral of this expression is uniformly absolutely
continuous for te[0, s].

Hence, we may divide by s and pass to the limit s -~ 0 to obtain that
for all u, the partial derivative

exists.

Estimate (2.2) and the discussion following it moreover show locally
uniform continuity and boundedness of all partial derivatives. In particular,
Ea is Fréchet differentiable and dEa : Ho° "(S2) -~ is locally
uniformly continuous and bounded.

Q.E.D.
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In order to restrict E~ to the unit sphere E in (SZ) we compose Ea
with the radial projection x : u -~ u/II u ~~ 1, ~. The composed map again
will be differentiable in a neighborhood of E; moreover, at any u E E the
differential in direction of an arbitrary function cp E (Q) is given by

with some constant Since clearly (u), u ~ = o, ~, may be

easily computed

By definition, is a critical point for E~ on E if ~) (u) =0, or
equivalently if for some number X > 0 given by (2.5) u weakly solves the
differential equation

with boundary data

To give the proof of Theorem 1.4 it will be convenient to reduce the

variational problem for E~ on (Q) to a one-dimensional variational
problem. This may be achievied by substituting a radial function

u (x) = u () x I) E Hy n (BR (0)) by a function

where H o ~ n ( [o, oo[) denotes the completion of Co ( [o, oo[) in the norm

F or convenience, we denote d v = I, etc. was defined in Theorem I , I.
dt
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In fact, under (2.8) the norms in and Ho° "([o, oo[) are

related by

while E~ transforms

In particular, under (2.8) the critical exponents an transform into 
Similarly, the derivatives transform: Let v and u, and cp be

related by (2.8). Then

In particular, for with 

Similarly, if we also denote the radial projection in

Ho~"([o, ooU we have

Analogous to (2.4)-(2.5) we also have the explicit expression for

Vol. 5, n° 5-1988.
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with

and is critical for Ip on 03A3 iff for some number X > 0 given by (2.12)
v satisfies the equation

with initial and asymptotic data

Moreover, for the analysis of the functional I1 on L Holder’s inequality
for v~03A3

and invariance of the H~’ "-norm with respect to scaling

will be used repeatedly.

NOTATIONS. - The letter c denotes a generic constant. For simplicity
we often write ( u I I = I u I ( 1, 2 if no confusion is possible.

3. PROOF OF THEOREM 1.4

In terms of the functional I1: Ho° 2 ([0, oo[) -~ (~ Theorem 1.4 may be
rephrased as follows:

THEOREM 3.1. - Suppose n = 2 and let be a sequence of functions
vm E H1,20 ( [0, oo [) with ~ vm~1, 2 =1. Assume that I1 > 1 while

0 in ( [0, oo [) . Moreover, suppose that ( ( d I  C
uniformly.

Then there exists a sequence im -~ oo, and a function w E ( (l~) such
that the shifted functions

Annales de I’Institut Henri Poincaré - Analyse non linéaire
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where w solves the limiting problem associated with I1:

Moreover, necessarily (3 _ 1 + e.
Theorem 1.4 will be a consequence of Theorem 3.1 and the explicit

form of the solution to (3.2)-(3.3). The constant K will be obtained as
K = lim ~’Lm - vm ~~m))~

We now give the proof of Theorem 3.1.

Step 1. - Definition of im.

Using (2.15) we may choose tm~ 1 such that

LEMMA 3. 2. - U2m(tm)/tm ~ 1 as m ~ oo .

Proof - By (2.15) clearly 1 for all t > 0, m Suppose by
contradiction that for some E > 0 and all t ~ 1 there holds the estimate

uniformly in m. Then by (2.15) and since 0 in we may estimate

for arbitrary A ~ 1:

Since A was arbitrary we conclude that Ii (vm) -~ p= 1, contrary to hypo-
thesis.

Q.E.D.

Remark that since vm --~ 0 in by Lemma 3.2 necessarily tm --~ oo as

Conversely to Lemma 3.2 there holds

Vol. 5, n° 5-1988.
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LEMMA 3.3. - Given 8 > 0 there exists s > 0 such that

whenever t >_- 1 and ( t - tm >_- ~ tm, provided rrc is sufficiently large.

Proof - Suppose that for sequences sm, 1 we have 

vm ~ 1 while Sm/tm ~ 1.
Possibly exchanging and we may assume that sm  tm. Scaling

with ( 2.16), we introduce wm = satisfies ) ) wm ~ ~ 1 ~ 2 =1 while by
(2.15)

We may assume that w weakly in Ho° 2 ([0, oo[) and locally uniformly,
while rm -~ r  1. By ( 3.4)

and w (t) --_ w (r) is constant for t ~ r. By (2.15) again w2 (r) _ r  1. But

on the other hand

The contradiction proves the lemma.

Q.E.D.

For arbitrary 6 E ]0, 1[ now let Km be defined as follows:

Note that since tm - oo also oo. Moreover, by Lemma 3.2

and hence also
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as m  oo. In particular, by Lemma 3.3 now also 1, and we note
that the definition of im is in fact independent of b, for sufficiently large m.

Step 2. - Boundedness of the sequence 

LEMMA 3.4. - For any E > 0 there exists b > 0 such that for sufficiently
large m there holds

Proof - By Holder’s inequality (2.15)

Again using Holder’s inequality and the definition of tm:

Hence from Lemma 3.2 we infer that for any E > 0 we may choose 5 > 0
such that

if m is sufficiently large.
Q.E.D.

( 2) o ( 1 ) denotes error terms 0 (1) --~ 0 (m -~ oo ). ,
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The next lemma relates Km and the asymptotic growth of the functions
wm given by ( 3.1 ) :

LEMMA 3.5. - Given any E > 0, A >_ l, there holds the inequality

provided m is sufficiently large.

Proof - Compute

ro r2

By definition of im and (3.5) for any im] there holds

Um (t) ~ um (im). Hence the last term is non-negative.
Moreover,

Finally, by (3.5) and Lemma 3.4

if m is sufficiently large.
Q.E.D.
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Let

denote the Lagrange-multipliers associated with vm by (2.12). We establish:

LEMMA 3.6. - - fi -1, as m - oo.

Proof - Since vm  0 locally uniformly for any A > 0 we have

Moreover, by Lemma 3.3 for any b > 0 there is s > 0 such that by (2.15)

and the last integral can be made arbitrarily small by choosing A suffi-
ciently large.
Now choose a sequence of numbers bk > 0, ~k -~ 0.
By the above we obtain that for any fixed k, as m - oo:

while by Lemma 3.4 as k - 00

Relabelling the sequence ~~k~, moreover, we may assume that (3.6)-(3.8)
hold with bm.
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Next, by Holder’s inequality (2.15), for ~m tm:

By Lemma 3.2 therefore for such t:

Hence by (3.6)-(3.7) we obtain:

and the proof is complete.
Q.E.D.

Now we are ready to prove:

LEMMA 3.7. - The sequence is uniformly bounded.

Proof - Suppose by contradiction that oo. For some A ~ 0 to

be determined in the sequel let ~m be functions with support
in [ - AKm, 1] such and I r~ m (t) ~ - c uniformly. Define
testing functions cpm (t) --- ([o, oo [). Note

that ( ~ cpm ~ ~ 1 ~ 2 -~ o as moo. Hence, boundedness of ]
implies that
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By Lemma 3.6 and using (3.5), Lemma 3.2, and (3.9) this implies

Hence, using Lemma 3.4 we may conclude that

Incidentally, the same reasoning will yield (3.10) for a sequence
with support in any fixed finite interval and having

II  c, ~ ~1 m (t) ~  c, uniformly. We will return to this later.
Now we use Lemma 3. 5. Choose A = 40, E =1. Then for suitable numbers

sm E [ - A Km, -1) and sufficiently large m :

Now let

Then from (3.10) we obtain that

But by definition of im and choice of sm:
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Hence the above estimate implies that

as m - oo. The contradiction implies the claim.
Q.E.D.

Step 3. - A subsequence converges locally in to a

solution w of ( 3. 2)-( 3. 3) .

First we establish that ) 12 dt is locally bounded. We use boundedness
of to sharpen Lemma 3.5 as follows:

LEMMA 3.8. - For any A > 0 there holds the estimate

Proof - As in the proof of Claim 3. 5 we write
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Estimating

resp.

if tm E im + A], m >_ mo (A), we may bound

But by (3.5)

whence the claim follows from Lemmas 3.4 and 3.7.

Q.E.D.

LEMMA 3.9. - A subsequence converges strongly locally in

to a solution w of (3.2)-(3.3).

Proof - Boundedness of w~ in Ht;c2 follows from Lemma 3.8. In

particular, we may assume that weakly locally in and

locally uniformly. By Lemma 3.7, clearly, we may likewise suppose that
00 .

Inserting ~m = (wm - w) ~r, where into (3.10), by uniform local
convergence w we now obtain that w also strongly locally in
H1,2loc W-

Next, choosing a fixed and passing to the limit in

(3.10), w is a solution to the equation

Vol. 5, n° 5-1988.
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with w (t) _ w (o) = 0 for all t. I. e. w satisfies (3.3). Moreover, by
Lemma 3.8 and (3.11) w (t) --~ 1 monotonically and hence w(t)-oo as
t -~ - o~o .

Denote for convenience

Multiply (3.11) by wand integrate from - 00 to 0. This gives the identity

whence w is a solution to (3.2), as claimed.
Q.E.D.

Step 4. - Estimating P.
Note that by (3.12)-(3.13) necessarily ~i = 4 e - x + 1. The required estimate

hence is a consequence of

LEMMA 3.10. - K >- In 4 -1.

Proof - Note that by unique solvability of (3.2)-(3.3) w (t) = w ( - t).
Hence by weak lower semi-continuity from Lemma 3.8 we obtain the
estimate

However, testing (3.2) with wand integrating between 0 and t we deduce

whence
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Now, since w(0)=0, by (3.2) w is strictly decreasing on [0, oof. Hence the

map t -~ s = ew ~t~ is invertible and by (3.14) the differential is given by

Integrating we obtain that

Substituting

we may write

where 0 (1) --~ 0 as w - - oo. The lemma follows.
Q.E.D.

The proof of Theorem 3. 1 is complete.

Proof of Theorem 1.4. - Let wm be defined by (1.6) with

Rm = exp ( - ~m/2), K = K. Let

By definition of im and Km, and since Km  K, Lemma 3. 9 yields that

Vol. 5, n° 5-1988.



448 M. STRUWE

in H1,2loc(R) and locally uniformly. From ( 3 . 2), ( 3 . 15) -( 3 . 16) we deduce
that

with asymptotic behavior

Hence

uniformly locally, where

(1.8) is immediate from ( 3 . 18) . To see (1.7) observe that ( 3 . 17), ( 1. 7)
resp. are the Euler-Lagrange equations of two functionals

resp. that are transformed into one another under (3 . 1 9).
Finally, the characterization of W given in (1 . 9) can be obtained as

gollows: Let O be the stereographic projection O : R2 ~ S2 c R3, and let

By ( 1 . 8) -( 1 . 9) W is a bounded function
2

on S2. Moreover, by conformal invariance of (1 . 7), W (weakly) solves
the equation

Hence W is smooth, in fact analytic. But all smooth solutions to (3.20)

are of the form Bj/ a conformal map of S~. Thus w is

of the form for some conformal map B)/: tf~ -~ S~. Since
2

w is radically symmetric with respect to the origin, the characterization

(1.9) follows.
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4. PROOF OF THEOREM 1. 5

For a non-negative function denote u* its radial symmetriza-
tion (cp. [8], Chap. VII)

For a bounded domain S~ c I~2, considering c the

symmetrization-map * extends to a map

where meas (Q) = meas (BR (o)), with the properties:

for all (Q), and all a > o.
Now suppose {um} c H1,20 (SZ) is a maximizing sequence for in

E (S2); however, assume that the supremum of E47t on L is not attained.
By Theorem 1. 3 there exists a point x0~03A9 such that |~ um I2 dx ~ 03B4x0
weakly in measure.

Moreover, we may assume that otherwise we consider the new
maximizing sequence um = 

c Ho~ ;ad (BR (0)) be the symmetrized sequence.

LEMMA 4. 1. - I2 dx --~ 80 weakly in measure.
hence we may assume that weakly in

H1.2, strongly in L2. But * preserves the L2-norm. Thus, since 
weakly in H1,2 and strongly in L2, necessarily Negating the asser-

( 3) We denote H1,20,rad(BR(0))=H1,20(BR(0))~{u(x)=u(|x|)}. the space of radial
H6,2 (0)- functions.
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tion of the lemma, by Theorem 1. 3 (ii)

and we have a contradiction.

Q.E.D.

In view of Lemma 4. 1 and Theorem 3. 1 the proof will be complete
once we establish a uniform bound To achieve this

requires the construction of a pseudo-gradient flow for (E4 n p ~) _ : E in a
neighborhood of We briefly recall the

following concepts:

DEFINITION 4. 2. - Let U be a norm-neighborhood of E, o ~ U and let
be the set of regular points of E in U. A locally

Lipschitz continuous vector field e : IJ -~ (BR (0)) is a pseudo-gradient
vector field for E iff e satisfies:

(i) 
(ii) ~ dE (u), 
A C1-functional E on an open subset of a Banach space always admits

a pseudo-gradient vector field, cp. [7], p. 204 ff.
The vector field e defines a pseudo-gradient flow

via the initial-value problem

Note that E is non-decreasing along flow-lines, in fact by Defini-

tion 4. 2 (ii)

Finally, note that if u~03A3 and ~dE(03A6(u,t))~~c>0 for all t such that

(u, t) E D (~), then by boundedness of e, Definition 4 . 2 (i), the solution

O (u, t) is defined in a time interval 0 _ t _ T of length
T > 0 independent of u.
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Now consider vm = u:/II ~03A3, and let

LEMMA 4 . 3. - tm(C)  0 as C --~ 00, uniformly in m.

Proof - Otherwise there exists a sequence Ck  oo and a number
T1 > 0 such that for any k and some m = m (k) the is defined
for all 

uniformly in t E [o, T1]. By (4. 4)

becomes arbitrarily large as k - oo, contradicting Theorem 1. 1.
Q.E.D.

Proof of Theorem 1.5. - Choose a sequence Ck  oo and let
- ~ tm = vm, For large satisfies:

uniformly in m, while as k - 00

uniformly in m.
Suppose that for some k E (~ : dx -~ 00’ Then from Theorem 1. 4

we conclude that

and the proof of Theorem 1. 5 is complete by (4. 5).
Otherwise, by Theorem 1. 3 (ii) for all k vm. k - g weakly as m  oo,

and 
’
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But by (4. 6) and Lemma 4.1:

as k - oo , and therefore ( vk) -~ 1  ~3.
The proof is complete.

Q.E.D.

Proof of Corollary 1. 6. - We may assume that BR (0) c Q.
For any function c Ho’ 2 (Q) with norm 

In particular if we let u = uo: the maximizing function constructed by
Carleson and Chang, we find that

which is > e + 1 iff

Hence in this case

and by Theorem 1. 5 a maximizing sequence c E (Q) converges.
Q.E.D.
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5. PROOF OF THEOREM 1. 7

By Theorem 1. 5, under the hypothesis of Theorem 1. 7

is achieved (Q). Moreover, we have

LEMMA 5 . 1. - 

Proof - Since > e + 1, for any ( c such that u weakly
in Ho~ 2 (Q) by Theorem 1.5 also

Moreover, ~u~~~um~ = 1, whence

and, in fact, equality holds. But then )] u II = 1, and strongly.
Q.E.D.

By compactness of K4 n the family of norm-neighborhoods

constitutes a neighborhood basis for I~4 ~ in E.

LEMMA 5. 2. - For sufficiently small E > 0 we have

Proof - By contradiction, assume there exists a sequence um e N2 eBNg
such that E4n(um)  We may assume that weakly in

Ho. 2 (Q).
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Let satisfy: By compactness, strongly,
where In particular, v solves (2 . 6):

Hence 

Also note that by lower semi-continuity whence

I. e. and hence E4 n ( u) _ E4 ,~ ( u/ ~ ~ u ( ~ ) _ ~i4 n.
Moreover, equality (u) _ ~i4 ,~ as in the proof of Lemma 5 . 1 entrains

that ] u II = 1, hence u.

But then in particular u ~ K4 n and u cannot be relatively maximal.
Hence we obtain that E4 n ( u)  ~i4 n.
Now let By Theorem 1.1

is uniformly bounded in L2 (S2), if 16 E2 _ 1. Since u weakly, therefore
E4 n ( u) = lim 

Finally, wm - um -~ 0 strongly in Ho~ 2 (SZ). By uniform local continuity
of E4 n, Lemma 2.1, and compactness of it hence follows that for

sufficiently small E > 0 : 0, and E4 ,~ (u) _ (34 n. The con-
tradiction proves the lemma.

Q.E.D.

Actually, our proof is more involved than needed for the case a = 4 ~.
However, the proof immediately extends to the more general situation
considered in Lemma 5.4 below.

LEMMA 5 . 3. - There exists a* > 4 ~, £ > 0 such that for all a E [4 ~c, a*[
there holds

Moreover, ~ia is achieved in NE for all such a, and

is compact.

Proof - By compactness of and uniform local continuity of Ea
(cp. Lemma 2 . 1) there exists a neighborhood N of such that the map
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is continuous, uniformly with respect to uEN. Choose E>O
such that (5 . 1) holds and c N; then (5 . 2) will be valid for all a in a
small neighborhood of 4 ~.
For such a now let umENE be a maximizing sequence, Ea (um) --~ and

let satisfy We may assume that strongly in

Ho° 2 (~2), where vELoo, and weakly; also let wm=um-vm+vu
weakly. Then as in the proof of the preceeding lemma we conclude that
for sufficiently small E > 0, a sufficiently close to 4 x we have that

Hence Moreover,

I.e.: and 

Thus also and It follows that u E E, i. e.

u E Ng and ~i* is attained. Moreover, um  u strongly.
In particular, if um E Ka, this also shows that K~ is compact.

Q.E.D.

By Theorem 1.1 sup E~ is achieved in E for a  4 ~. Thus, the proof of
Theorem 1.7 is complete. Note that even though our proof does not
reveal the existence of a "branch" of relative maximizers for oc > 4 ~, we
can find relative maximizers of E~ for a sufficiently close to 4 x arbitrarily
close to K4 n.
We would like to examine the set of relative maximizers more closely.

Denote

the set of pairs ( a, u) where u E E is a relative maximizer of E~ on E
belonging to some compact set K~ of relative maximizers which possesses
an isolating neighborhood N.

Let

denote the projection of C onto its first component. Note that I ~ [0, a*[.
Moreover,
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LEMMA 5 . 4. - Suppose = ~ u (ao, u) E C ~ is compact. Then I contains
an open neighborhood of ao.

Proof - Replace 4 ~ by ao in the definition of N£. The proofs of
Lemma 5. 2 and 5. 3 then remain valid.

Q.E.D.

LEMMA 5 . 5. - Suppose a, and suppose {um} ~03A3 is a sequence of
relative maximizers of on E such that (um) >-- ~i > 1 uniformly while
I) um ~L~ _ C  oo uniformly. Then {um} is relatively compact.

Proof. - By (2 . 6), um E Ho~ 2 (S~) satisfies

with

Since uniformly, if weakly, by dominated convergence
Eam (um) -~ l, contrary to hypothesis. Hence um +~ 0 weakly, ~,m > ~,o > 0
uniformly, and (5 . 4) gives a uniform a-priori bound for um in H2’2 (Q). The
lemma follows from compactness of the embedding H 2 ~ 2 ( SZ) -~ H 1 ° 2 (SZ) .

Q.E.D.

The characterization of C as stated after Theorem 1.7 now follows:
Rename

Then any set K* of relative maximizers of Ea* either is empty or non-

compact. In the second case, either K* contains a critical point which is
not relatively maximizing in its closure, i. e. C looses its stability; or by
Lemma 5. 5 K* cannot be uniformly bounded, i. e. C becomes unbounded
at a = a*.

In the first case, let a*, um E E satisfy (am, um) eC. If ~ um ~L~ ~ oo,
again C is unbounded. Otherwise, by Lemma 5. 5 either Eam (um) -> 1, and
for given E > 0 and sufficiently large m there exists vm~03A3 such that

while Eam(vm)> Eam(um). accumulates at a critical

point u* of Ea which is not relatively maximal, and C looses its stability
as a -~ a*.

This characterization of C apparently cannot be reached by the usual
methods of bifurcation theory based on degree theory or the implicit
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function theorem. Since (2.6) is the Euler-Lagrange equation associated
with a constrained variational problem, the linearized equation will always
have a non-trivial kernel.

6. PROOF OF THEOREM 1. 8

Let be the set of relative maximizers of on X, and let E > 0,
a* > 4 ~ be as determined in Lemma 5.3 such that (5.2) holds.
Note that by Moser’s result Theorem 1. 1 for a > 4 ~ the functional E~

is unbounded on X.

Thus, for any such a we can find U1 eX such that

Fix uo E N~ such that

and let

be the set of paths connecting uo and u 1 in X.
Define

Note that by (6 . 1) necessarily Hence any p E P intersects N2 EBNE
and we infer that _ By continuity of a - E~ (uo, 1) and Lemma 5. 3
( 6 .1 ) -( 6 . 2) remain valid in a neighborhood A of C’L. uo, u 1 and the class P

being fixed, we extend the definition of ya to such a neighborhood A.

LEMMA 6 . 1. - For all 03B1~A we have

and the map a -~ ’Ya is non-decreasing in A.

Proof - The first part is clear from (6 . 1)-(6 . 2). Since for fixed u~03A3
the Ea (u) is non-decreasing, also the second part follows.

Q.E.D.
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We intend to show that for a. e. a e A ya is a critical value of Ea.
However, for a > 4 ~c our functional E~ does not satisfy the Palais-Smale
condition and the familiar minimax-principle, cp. [7], cannot be applied
without additional a-priori estimates. In order to obtain such estimates,
we also vary the parameter a and make use of the fact that y~ is monotone,
hence a. e. differentiable in A. This technique was introduced in [13] to
deal with a similar lack of compactness in a different setting.

First we state a technical lemma.

LEMMA 6 . 2. - For any y* > 1 there exists > 4 ~ with the following
property: if a  and if ~ c E satisfies the conditions

uniformly in m E then there exists an exponent a’ > a such that the family
is uniformly bounded in 

Proof - We may assume that u weakly.
For Q’ c Q, L > 0 we may estimate

Hence for arbitrary E > o, choosing L = E-1~2, meas (SZ’) _ E/C (L) we obtain
that

uniformly in m. I. e. the sequence {exp (03B1 u2m)dx} is uniformly absolutely

continuous, and we may pass to the limit m - oo for E~ by Vitali’s

convergence theorem:
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In particular, u ~ 0; in fact, given y* > 1 by Theorem 1.1 for any compact
interval I c ]0, oo[ [ there exists a uniform such that

Ea (u) >_ y* > 1, oc E I, implies 
Hence

Now for arbitrary E > 0 there exists C (E) such that

Thus, for any a’  4 ~ ( 1- b) -1, by Theorem 1.1 and (6.6) the sequence
will be uniformly bounded in La’ (Q), as claimed.

Note that a. may be determined as root of the equation

with

is non-increasing as a function of a, there is a unique
solution a* > 4 x to (6. 7).

Q.E.D.

Next observe that from the family W=W(t1) in [6], p. 1080, we may
construct comparison paths for any (with a convenient choice of ui)
that yield a uniform lower bound y~ > 1 for a E ]4 ~c, a*[.

Let a~ > 4 x be fixed corresponding to this number y~ and Lemma 6. 2.
We may assume that a*  a*.

LEMMA 6. 3. - Suppose the map a - ~y~ is differentiable at a E A, oc  

Then there exists a sequence ~ in ~ such that E~ (urn) --~ while

and such that

uniformly in m E ~i.

Proof - We may assume that a is an interior point of A. Let 
be a strictly decreasing sequence a, a (m - oo ).
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Suppose u e E satisfies the inequality

In particular,

Note that since we have for any m:

Since is differentiable at a we may assert: There is a uniform constant

C > 0 (depending possibly on a, but not on m) such that

for all satisfying ( 6 . 8) for some m ~ 1.
Consider now any sequence of paths p,~ E P such that

Then, since Ea (u) _ Eam (u) for all u, (6. 8) and therefore (6. 9) hold for all
such that

Note that by definition of the class
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for any m >_ 1. Hence also

for all mo >_ l. Note that W m+ l’ etc.
By Lemma 6. 2 there exists such that the functions

U = exp (u2), u E are uniformly bounded in L°‘~ (SZ). In particular,

as m -~ oo, uniformly in as an indirect argument easily shows.
Hence to complete the proof it suffices to show that for a sequence um E Wm
there holds

while m - 00.

Suppose by contradiction that there exist 03B4>0, m0~1 such that for all

m >_ m o there holds

uniformly with respect to u E VVm.
By (6.11) we may choose mo such that also

for all m ? mo. Relabelling ( if necessary, we may assume that

m o =1. Moreover, we may assume that uo, = Wi.
Invoking (6. 11) once more we see that

for u in a suitable neighborhood W of W and for all am, m >_ mo. (Again,
we may assume that mo = 1, uo, 
Hence there exists a Lipschitz continuous vector field e: W -~ Ho~ 2 (Q)

which is simultaneously a pseudo-gradient vector field for all functionals
on W, satisfying

for all u E W, all a~. Since  d (Eam ~ ~) (u), u ~ = o, we may assume that e is
tangent to X.
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Let 11 be a Lipschitz function such that on W, ~ = 0
outside W. Extend e to E by letting

e again is Lipschitz, bounded and satisfies ( 6 . 12) .
x (~ -~ ~ (S2) be the solution of (4. 3).

Since e is bounded and Lipschitz C exists globally. Fix a sequence pm
of paths satisfying ( 6 . 11 ) and let

with associated qm = ~ u ~ p;~ ~ Eam (u) _ yam + a) ~.
Note that for any u Epm, to >_ 0 by definition of e;

i. e. pm still satisfies (6 .10) for all 
Moreover, for any by (6.12)

Hence

and for t .=1 and m sufficiently large there holds

However, uo, and are left fixed 1). Thus the path pm E P,
and we obtain a contradiction to the definition of from (6. 13).
The proof is complete.

Q.E.D.

Proof of Theorem 1. 8. - Suppose oc -~ is differentiable at a E A,
oc  a*, and let {um} be the sequence constructed in Lemma 6. 3. We may
assume that urn --~ u weakly.
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By Lemma 6. 2 there is a’ > a such is uniformly
bounded in Loci (Q). In particular, by Vitali’s convergence theorem

Hence, with a constant c = - 8 ~ (meas (SZ)) -1 ~ 0 we have

and it follows that ~~ u ~~ = l. I. e. strongly, and u is a critical point
of Ea in X. Since Ea (u) = ~ya  moreover, u is distinct from the relative

maximizer ua E X, constructed in Theorem 1. 7.

Finally, we cover the interval ]4 ~c, a*[ by suitable intervals A to obtain
the existence of (at least) two distinct critical points of Ea in E for a. e.
a e [4~, a*[.

Q.E.D.
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