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ABSTRACT. - Consider a compact symplectic manifold (M, o) together
with a pair (L, L1) of isotopic compact Lagrangian submanifolds such
that ~2 ( M, L) = o.

Using Gromov’s theory of (almost) holomorphic curves the cohomologi-
cal properties of a family of holomorphic disks are studied. By means of
a stretching construction for those disks and a Lusternik-Schnirelman-
Theory in compact topological spaces cuplength estimates for the intersec-
tion set L n L 1 are derived.

Key words : / Symplectic geometry, Lagrangian intersection problem, holomorphic disks,
Lusternik-Schnirelman theory.

RESUME. - On examine une variete symplectique compacte (M, o),
munie d’un couple (Lo, L 1 ) de sous-varietes lagrangiennes isotopes telles
que ~2 ( M, L)=0.
En utilisant la théorie des courbes presque holomorphes, developpee

par Gromov, on etudie la cohomologie de certaines familles de disques

(*) Research partially supported by N. S.F. Grant DMS-8603149, the Alfred P. Sloan
Foundation and a Rutger’s Trustee’s Research Fellowship Grant.

Annales de l’Institut Henri Poincaré - Analyse non linéaire - 0294-1449
Vol. 5/88/05/465/35/$5,50/(e) Gauthier-Villars

H. HOFER(*)

© 198 8 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved



466 H. HOFER

holomorphes. On en déduit, par la theorie de Lusternik-Schnirelman, des
estimations du cuplength de l’intersection Lo n L1.

I. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

In recent years much progress has been made in the study of periodic
solutions of Hamiltonian systems and symplectic geometry. Since Conley
and Zehnder’s astounding solution of one of the Arnold conjectures [10]
( see [3] for more conjectures and [5], [8], [15]-[18], [20]-[22], [24], [33], [34],
[37], [39], [45], [46] for the proofs of some of them) Gromov’s idea of
using (almost) holomorphic maps to study certain problems in global
symplectic geometry had an important impact and led recently to Floer’s
Morse theory for Lagrangian Intersections in compact symplectic mani-
folds ([15]-[17]). Moreover the methods are also useful in the study of
closed characteristics on compact hypersurfaces in symplectic manifolds
( Weinstein-Conjecture), see [19], where results in [25], [26], [42] are proved
in more general spaces.

In this paper we shall derive a multiplicity result for certain almost
holomorphic discs satisfying some boundary conditions. In fact we shall
describe the Z2-cohomology of such a family of discs. This will extend
some of Gromov’s results [22]. Secondly and most importantly we show
that the above multiplicity result together with an approximation result
can be used to develop the Lusternik-Schnirelman-Theory for Lagrangian
intersections, just complementing Floer’s Morse-theory. The approach
used here seems to be much simpler than Floer’s method which is partially
very technical. It has to be seen if it can be used to derive also the Morse-

theory. After this work was completed the author received a preprint from
A. Floer [50] in which he independently derives the Lusternik-Schnirelman

Theory relying heavily on his papers ([15]-[17]). Our approach however,
seems to have the advantage of "relative" simplicity.

In order to state our main results we have to fix some notation. Let

be a compact symplectic manifold of dimension 2 n and let L be a

compact smooth Lagrangian submanifold of M, i. e. dim L = n and
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Given a smooth manifold N (without boundary, say) we say a
map x -~ Lx which associates to point xeN a smooth compact Lagrangian
submanifold of M is an exact smooth N-family of compact Lagrangian
submanifolds if there exists a smooth map H : N x [0, 1] x M -~ R and a
smooth compact Lagrangian submanifold L of M such that

where ~ : N x [0, 1] x M -~ M is the smooth map satisfying

Now let G be a compact convex region of C with smooth boundary aG
and let J be an almost complex structure on M such that x J) is
a Riemannian metric (such J’s always exist, see [22]). Let x --~ Lx be an
exact smooth ~G-family of compact Lagrangian submanifolds of M. We
define

For a point xo E aG we define a map

Our first result is the following, where H denotes ech cohomology with
coefficients in 7 2.

THEOREM 1. - Given ( M, ~), J, G and x -~ Lx as above the set L, is
a compact subset of C~ (G, M) equipped with the weak C~-Whitney topology
provided 03C02(M, Lx0) =0 for some x0~~G. Moreover in this case the map
03C0x0 induces for every xo E aG an injective map If (Lx0) ~ If L, 3) in

ech-cohomology. D

Remark. - It seems to be not likely that Theorem 1 holds for other
coefficients than 7~2 due to certain orientability questions which arise

during the proof (see Theorem 5 in VI). Moreover a refinement of the
proof shows that the condition ~c2 (M, Lxo) = 0 can be replaced by
[w] ~ ~c2 ( M, = o.

Next let Z + i [0, 1] ] and let Lo and L 1 be two compact Lagrangian
submanifolds such that 1=03A6(0) for some exact symplectic diffeomor-
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phism 03A6: M ~ M (exact means 03A6 is generated by a time dependent Hamil-
tonian vectorfield). Let J be as above and put Define

I cp ( =g (cp, cp) 1~2 for cp E TM. We set

Moreover we 
define 03C0:03A9J(0, 1) ~ 0:u ~ u(0). 

Then OJ (Lo, L1) is a

subset of We

equip SZ (Lo, L1) with the topology induced from the weak COO-Whitney
topology on C °° ( Z, M) .

THEOREM 2. - Let (M, (0), J and Lo, Li be as described above

and assume ~2 (M, Lo) =o. Then S2J (Lo, L1) is compact and

L1)) is injective.
In the following we shall call two compact Lagrangian submanifolds

equivalent if one is the image of the other by an exact symplectic diffeo-

morphism.

DEFINITION. - Given a paracompact topological space X we denote by
c (X) the 7L2-category of X, which is by definition the supremum of all
natural numbers k such that there exist cohomology classes ~ 1, ... , ~k -1
in H (X) with deg 1 and

where U denotes the cup product. We put c (QS) =0. Moreover it is clear
that c (Point) =1.
Our next result is

THEOREM 3. - Let (M, co) be a compact symplectic manifold and L1 1
a pair of equivalent compact Lagrangian submanifolds of M such that

1t2 (M, Lo) =0. Then Lo (~ L1 contains at least c (Lo) many points.
Theorem 3 will be an easy consequence of Theorem 2. Finally we give

a fixed point theorem which is a special case of Theorem 3 and which is
one of the Arnold conjectures [3].

THEOREM 4. - Let (M, (0) be a compact symplectic manifold with

1t2 (M) ==0. Assume ~ : M ~ M is an exact symplectic diffeomorphism. Then
C has at least c ( M) fixed points.
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This follows from Theorem 3 applied to 

Lo = diag ( M x M) and L 1= graph ( ~) .
Remark. - One can prove Theorem 4 directly by a modification of the

method used here. In that case using some elementary K-theory to resolve
certain orientability questions (which prevented one to use more general
coefficients in Theorem 1) one is able to take arbitrary coefficients in the
definition of c(M) improving the fixed point estimates. In this direct

approach one studies au +g (u) = 0 for maps u : G -~ M, where G is a

Riemannian surface diffeomorphic to S~ (replacing Theorem 1)~ and

on R x S1 (replacing Theorem 2).

ACKNOWLEDGEMENTS
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Lagrangian intersections. Especially I would like to thank A. Weinstein
for carefully reading a first version of the manuscript and many helpful
comments.

II. ELLIPTIC ESTIMATES

In this chapter we derive certain a priori estimates for solutions of the
equation Here we follow basically [15], but we impose more
general boundary conditions. Moreover we derive the estimates in such a
way that they can be used in a crucial approximation result which is used
in deriving Theorem 2 from Theorem 1. One could also use Gromov’s

"geometric" approach to find the estimates [22].
Denote by D either the manifold {z~C||z|1, im (z)~0} which has

boundary or the open unit We denote

the norm defined by

where x = s + it, and denotes a multi-index. Note

that the norm just defined is equivalent to the usual norm where one sums
the terms with indices By ao we denote the elliptic differential
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470 H. HOFER

operator given by

The following is a standard elliptic estimate, see [2].

LEMMA l. - For given j~1 there exists a constant c > 0 such that for
every smooth u : D -~ ~n with compact support in D and u (aD) c f~" the

following estimate holds

Now let (M, w) and J be as described in chapter I. We equip M with
the Riemannian metric x J). By a result of Nash there exists an
isometric embedding of the Riemannian manifold ( M, g) into ( f~N,  . , . ~)
for some sufficiently large N. Hence we may assume without loss of

generality that M is a submanifold of some IRN and g =  . , . ~ I M, and
that M is equipped with a symplectic structure o and an almost complex
structure J such that 00 0 (Id x J) _  . , . ~ ~ M. Denote by r a smooth sub-
manifold (not necessarily open or closed) of C = l~2 with boundary ar c r.
For a sufficiently regular map with u (r) c M we define a
differential operator 3 by

Given a subset K of r we denote by intr (K) the interior of K with

respect to r. If K is a measurable subset of r and u : r -~ (~N sufficiently
regular we define for j = 0, 1, ... seminorms ~ ~j,k by

Let (Hk) be a sequence in converging to some H.
Denote by x -> L~ an associated smooth exact family of compact Lagran-
gian submanifolds defined by

for some fixed compact Lagrangian L, where, ~k : is

associated to the Hamiltonian Hk.

PROPOSITION 1. - Let (Uk) be a sequence of maps from T to M c (~N
which belongs to (r, for some j~ 2 such that
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where x --~ Lx is as described before. Let G be a compact submanifold of C
with boundary aG such that G c r, and assume K is a compact measurable
subset of r with K c intr (G). Assume there is a constant C>O such that

and moreover

Then is precompact for the seminorms ]) K, i. e. every subsequence
of has a subsequence which is Cauchy with respect to II ~.

The following picture illustrates the situation.

Proof - Denote by x -~ Lx the family associated to H (recall Hk  H).
Arguing indirectly, using the compact embedding -~ C (G, (~N)
for j >__ 2 and the compactness of K we find if our assertion is wrong a

subsequence of (uk) for simplicity still denoted by and a point xo E K
such that

We have to distinguish between the cases x0~~0393 and x0~ ah, where the
first case is more difficult. We discuss in detail the first case and leave the
second to the reader. It is not difficult to extend the maps H~,
H : 9r x [0,1] x M ~ R to maps defined on r x [0,1] x M (which we again
denote by the same symbols) such that Hk  H in 
for the weak C~-Whitney topology. Denote by x E r --~ ~x: _ ~k (x, 1, . )
and x E r -> the associated families of exact symplectic maps and define

Vol. 5, n° 5-1988. 
,



472 H. HOFER

Clearly

Using the facts that Hk  H, G is a compact subset of r, and (uk) is

bounded in Hj (G, it is easy to check that

Moreover as a consequence of (9)-( 12) we infer

Without loss of generality we may assume (~ are Using the
standard Riemann mapping theorem and a regularity result concerned
with the boundary behavior, see for example [43], we can map D (the half
ball) diffeomorphically onto an open neighborhood of 0 in r such that
aD = ( - l, 1) is mapped into ar and the diffeomorphism is holomorphic
away from aD. If we compose (vk) from the right with this diffeomorphism
we may assume that the vk are defined on D, that G belongs to D and
that ( 13) holds. Then G is a compact neighborhood of o in D. Now we
take a parameter depending chart V x U -> C" where V is an open

neighborhood of o in D and U is an open neighborhood of u (o) in M
such that
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Without loss of generality we may assume in the following that V = D.
Define wk by

We may assume without loss of generality that all the are defined for

every xED. By construction we have

Now let 03B2:[R~[0,1] be a smooth map such that for s~1 2
and 03B2(s)=0 for s~3 4. Put (|x| ~) for x~C and s>0 and define
J(x,(p(x,~))=T(p~(~) J(~) T(p~(~)’~. Using Lemma 1 we compute on
D with 8: = 

Here L °° (Dt) is the L~-space on the E-Half ball with the usual essential
supremum norm. From ( 17) we obtain

Here, in general c3 (E) --~ oo as E -~ 0 whereas c is independent of
E > o. Since uniformly we see that for E > 0 small enough
[using (14)]

Voi. 5, n° 5-1988.
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Next we have to study the right hand side in ( 19). We have for suitable
constants c1, c2, c3 large enough, since (Wk) and are bounded in H J.

Combining ( 19) and (20) gives

tend to zero if k,loo as a

consequence of ( 13) and the definition of the wk. Hence DE~2 --> w ~ DE/2
in 1-P. Hence we have for some sufficiently small Eo> 0

contradicting (13). This proves Proposition 1. D

III. "BLO W-UP ANALYSIS"

Let (M, (0), J and x -~ Lx, k E be as in Proposition 1. We shall

show now that under the assumption ~2 (M, L) = 0, where ~X (L), a
HI-bound implies a Hj-bound for the holomorphic maps. The compactness
argument uses the phenomenon of "Bubbling off of holomorphic spheres
or discs", and which was detected by M. Gromov in his paper [22]. A

phenomenon of this kind had been detected earlier for harmonic maps by
Sacks and Uhlenbeck [38]. The arguments used here are similar to those
used in [15], [48].
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PROPOSITION 2. - Let all data be as in Proposition I and assume in

addition 03C02 ( M, L) = 0. Assume F - M, k~N is a sequence such that for
some constant c > 0

and

for some j >__ 2. Then there exists a constant c~ > 0 such that

[In particular in view of Proposition 1 (Uk) is precompact for the seminorms
II 
Proof - Arguing indirectly we may assume eventually passing to a

subsequence of (uk) that

Since M is compact we have an a priori L2-bound on (uk). Hence

Define a sequence (Ek), Ek > 0, by

Since (5) holds we must have Ek ~ 0 as k - oo. We pick xk~K with

Define Either (rk) is bounded or unbounded. The
Ek

second case is easier and left to the reader. Eventually taking a subsequence
we may assume that Eventually taking a subsequence
we may assume and without loss of generality xo = 0. As in
Proposition 1 composing uk form the right with a fixed suitable holo-
morphic map rB3r extending smoothly to aD and mapping
aD into ar and D diffeomorphically into r we may assume that D c r
and aD Denote by DR the open half ball of radius R around o in
the closed upper half plane. We find a sequence (AJ c R such that the
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maps

map DR into f or k large enough (and aDR into aD) . In fact let A~
satisfy

If r=0=im(xj we take Llk = O. Clearly, noting that dist ( xk, r) = im (xk) at
least if k is large enough, by our assumption 0 e D c r, we must
have 0 as k - oo. Define vk : DR  M by

for k sufficiently large. Obviously

Put then we have

Consider the family of maps Hk : ~DR x [0, 1] x M -~ l~ defined by

Since Hk  H in the weak C~°-Whitney topology and xk --~ o, 
we see that Hk  H, where H is defined by

Now applying Proposition 1 with r = DR, some suitable G containing in
its interior 1 we see that is precompact for )) We can

carry out the same construction for every R > 0. Hence we can construct

a smooth map - M such that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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(That v is smooth follows from standard elliptic regularity theory or just
use Lemma 1 and a chart.) We shall construct now using (8) a smooth
map (B, aB) -~ (M, Lo) such that

where B is the closed unit ball in C. By our assumption that 
and a~2 ( M, L) = 0 (= > ~c2 ( M, Lo) = 0) we must have

contradicting (9). This contradicting will imply the assertions of Proposi-
tion 2 for the case that xo E {ar) n K. Now in order to construct w observe

that for every b > 0 there exists R > 1 such that the p ath t - v starting

and ending at a point in Lo has length less than 8. This follows immediately
from (8) (i) using Polar coordinates. Moreover using (iv) we have

Since by (ii) v is non-constant this implies that v* cc> > 0 for R large
enough and that this integral is increasing in R. Now it is obvious that v
can be used to construct a map satisfying

B
If rk -~ oo as A; -~ o0 one obtains by the same procedure a map v : ~ --~ M

satisfying 8 (i)-(iv) with C+ being replaced by C. This can be used to

Vol. 5, n° 5-1988.
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construct a map w: S2 --+ M such that which contradicts

~c 2 ( M, L) = 0 again.
In order to construct the map w one can also, starting with (8), employ

a removable singularity theorem ([22], [37]).

IV. AN APPROXIMATION RESULT AND PROOF OF

THEOREM 2 ASSUMING THEOREM 1

In the following we work under the assumptions of Theorem 2. Define as
before Z = R + i [0, 1] and put for § > 0, Z~ = ( - ~, ~) + i [0, 1] with boundary
aZ~ _ ( - ~, ~) ~,J (i + ( - ~, ~)). Let [i : (~ ~ (~ be a smooth map such that

for s _ 1 and s = 0 for s >_ 3 . For E > 0 define) _ 

2 
03B2(s)=0 for s

_ 2

Define for ~ > 0 and a subset of C°° (Z~, M) equipped with the
weak C~-Whitney topology by

where Lo-L1 are given in Theorem 2. We define a continuous map

PROPOSITION 3. - Given any open neighborhood U of SZJ (Lo, L1) and a
number a >_ 0 there exists ~o > 0 such that

Proof. - We can consider C°° (Z, M) and C°° (Z~, M) as (nonlinear)
subspaces of the Frechet spaces C°° (Z, and C°° (Z~, l~N), respectively.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



479LAGRANGIAN INTERSECTIONS

The latter are assumed to be equipped with their usual seminorms. Arguing
indirectly, i. e. assuming the result to be false, we find now sequences
~k --~ oo and (uk), such that

Fix Then we have for k large enough

Employing Proposition 2 we have for every j >_ 2 a on 

Since ç is arbitrary we find for every a number
c (N, j) > 0 such that

Since on a bounded sufficiently regular domain n by the Sobolev
embedding theorem we infer that (uk)) is precompact in SZ (Lo, L1).
Taking a suitable subsequence and using (1) we see that the limit
v E SZ ( Lo, L 1 ) of this subsequence must satisfy

Hence L 1 ) which contradicts the fact that 
Now let G be a convex compact submanifold of C with smooth boundary

aG such that (i+[ -1,1]). Put

For ~ > 0 we define a smooth compact domain with boundary by

5, n° 5-1988.
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Observe that G~ c Z and G~ (~ Z~ = Z~ where Z~ has been previously
defined. Now we fix an exact smooth aG-family of compact Lagrangian
submanifolds of M, say x -> Lx such that Lo and

and such that the parameter dependent Hamiltonian

satisfies

Since L1 this can be done. The above family x -~ Lx induces also a
family L~ on every G~ by defining

Note that the family x ~ L~ is defined by an obvious Hamiltonian H~
obtained from H so that x -~ H~ (x, . , . ) is constant on the boundary
portions [ - ~, ~] and i + [ - ~, ~]. The following picture shows the stretching
construction.

We need the following

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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LEMMA 2. - There exists a constant a >_ 0 such that for every ~ > 0 the
following holds: If u E L~, then

Proof. - Observe that for we have

By the definition of x - L~ there exists a smooth map

generated by the smooth map

such that

and

for By our assumption ~2 (M, L) = o. By the
construction of the family x  L it follows immediately that any two
maps with u(x)eL) for x~~G03BE are homotopic. Now let

be a smooth map satisfying for

(~, x) E [0, 1] x Using that d~ = 0 we find by Stokes’ Theorem

We pick a smooth map v : [0,1] x M satisfying

Define e : [0, 1] x [0, 1] x aG~ -~ M by

Vol. 5, n° 5-1988.
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Again by Stokes’ Theorem using that and C~ (o, ~, x) = v (~, x) with
image (v) c L and we compute

Here combining (5) and (8) gives

We have to compute the right hand side. For f=0,1 we have

Hence

Now observe that x --~ H~ (x, . , . ) is constant on [ - ~, ~] and i + [ - ~, ~].
So it follows immediately that there are constants Ci > 0, f=0, 1 such that

where the constant is independent of ~ > o. Hence we infer from (9)
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Where the constant c2 > o is independent of ~ > o. In order to complete
the proof we have to give a constant c3 > 0 and for every ~ > 0 a map

G~ -~ M such that uç (x) E L~ for x E and

Combining ( 13) and ( 14) will give us

If now we have

which will complete the proof. Fix a map such that u (x) E Lx
for x E aG and for s E [ -1,1]. We obtain induced maps uç
by defining

We compute

This completes the proof of Lemma 2. Q
It is worthwhile to note the following corollary to the proof of Lemma

2 and the Propositions 1 and 2.

PROPOSITION 4. - Let (M, w), J and G be as in Theorem l. Let (Hk) be
a sequence of smooth maps aG x [0, 1] x M - I~ converging to some H in
the weak C’-Whitney topology. Denote a corresponding exact ~G-families
of compact Lagrangian submanifolds by x --~ Lx and x --~ Lx, respectively.

Vol. 5, n° 5-1988.
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Let G ~ M, be a sequence of maps in f~N), j >__ 2, such that

uk (x) E Lx for x E aG and ~~uk~j-1, G ~ 0 as k ~ ~. If 03C02 ( M, L) = 0 then
is precompact in H’ (G, 

Proof - By the proof of Lemma 2 ( 11) we find a constant al > 0 such
that

Since !! G -~ ~ we inf er that

for some constant a2 > 0 independent of k. Now applying Proposition 1

and Proposition 2 with r=G=K we find that (Uk) is precompact in

H’ (G, Q
Now we complete this chapter by proving Theorem 2 assuming Theo-

rem 1.

Proof Theorem 2 : injectivity of n. - Let G~ for § > 0 be as previously
constructed. Let the constant a > 0 be as in Lemma 2. Given an open

neighborhood U of OJ ([0’ Li) in SZ (Lo, L1) we find by Proposition 3 a
number ~o > 0 such that for every ~ >- ~o

For J where ~ >_ ~o the restrictions u belongs to 52~, a by
Lemma 2. Hence we have f or ~ >_ 0 the commutative diagram

, 

where xo and 1tu are the maps "evaluation at 0". By Theorem 1

is injective, hence xu is injective for every open
neighborhood U of L1) in Q(Lo, L1). By the continuity property
of Cech is injective since

Qj(Lo, L 1 ) is a metrisable space. D
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In view of Proposition 1 and Proposition 2 we have only to show the
existence of a constant a > 0 such that

for every u~03A9J(0, 1) in order to conclude the compactness of

. 

Denote by X(Lo, Li) the space of all smooth maps y : [0, 1] -~ M with
y(f)eL, for f=0,1 equipped with the topology induced from C~([0,1], M).
We call a curve y in Z(Lo, Li) contractible if there is a smooth map
0: [0, 1] x [0, 1] -~ M such that

Denote by Eo ( Lo, L 1 ) the subset of 03A3 ( Lo, L 1 ) consisting of contractible
curves. Clearly ~o ( Lo, L 1 ) could be a priori empty.
LEMMA 3. - Let (M, ~), J, be as in Theorem 2 and assume

~2 (M, Lo) =0. Then there exists a continuous map a : Eo (Lo, L1) --~ (~ such
that for every smooth map v : [0, 1] x [0, 1] -~ (~ with v (i, o) E Lo and
v (i, 1) E L1 for every i E [0, 1 the following holds

provided the induced maps t -~ v (i, t), i = 0, 1 belong to Eo (Lo, L1).
Proof - We can define a on every component of (1)

separately. Fix, if a point x0~0~1 representing a component
of Eo. Let t --~ be an exact isotopy of the identity in Dco (M) such that

Note also Given a smooth map y E Eo in
the component associated to xo let y : [0,1] x [0, 1] -; M be a smooth map
such that

for every t, t E [o, 1 ]. Define

Vol. 5, n° 5-1988.
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Clearly we have to show that the definition ( 18) does not depend on the
choice of y. For this let S’ = [o,1]/~ 0,1 } and let y : S’ x [0, 1] -~ M be a
smooth map such that

a will be well defined if we can show that Define

~:S’x[o, 1]-~M by

Define a homotopy 1 : [0, 1] x S’ x [0, 1] -~ M by

The following picture describes the homotopy 1

Bottom is in Lo and right and left side cancel since i is circular.
Using Stokes’ Theorem and we compute

Since ð (s, t, o) _ ~ (r, o) E Lo for all (s, r) E [o, 1] x S’ and Lo = 0 we must
have

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Now 03B4(s, t, 1)=03A6s03BF03B4(03C4, 1). Let H : [0,1] x M - R be a Hamiltonian gener-
ating t ~ 03A6t. Then with F (s, r) = H (s, 03A6s03BF03B4 (r, 1 )) we have

which implies that the right hand side in (22) is zero. Consequently

Now ~: S’ x [o,1 J -~ M for every i E S’ and

for every t E [o, 1]. Hence we can consider b as a map from the
closed unit disc B into M mapping aB into Lo. By the assumption
~2 (M, Lo) =0 b is homotopic to a constant map (B, aB) -~ (M, Lo). Since
~ I Lo = 0 this implies that the right hand side of (23) is zero. This shows
that a (y) is well defined. The continuity of a is trivial. Now let

v : [0, 1] x [0, 1] --~ M be a map as on the statement of Lemma 3. Extend it
to a map v : [ -1, 2] x [0, 1] --~ M such that

Then v induces a map S’ x [0, 1] -~ M satisfying ( 19). Consequently, taking
orientations into consideration

which is the desired result. D

Proof of Theorem 2: compactness. - Given u E S~J (Lo, L1) and b > 0 we

find since 2 numbers Ri, R2~R such

that

and
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If 8 is small enough the end points of the pathes t -~ u(Rj+it) must be
close to intersection points in This shows that all the curves

t -~ belong to 1:0 (Lo, L1). Using these observations it is trivial to
construct for a given 1 > E > 0 a map v : [-1, 1] + i [0, 1] -~ M such that

and

By Lemma 3 we conclude

Since the set of intersection points in Lo n L1 is compact and a is

continuous we can bound the right hand side of (27) by some constant a

independent of u E SZJ (Lo, (1). Using now Proposition 1 and Proposition 2
we are done. D
We also note again that for every u E SZJ (Lo, L1) the restriction

t -~ u (r + it) belongs to Eo (L1, L2).

V. PROOF OF THEOREM 3 ASSUMING THEOREM 2

By Theorem 2 the space is compact in Q:=Q(Lo, L 1 ) .
Moreover Qj is invariant under the continuous R-action

LEMMA 4. - There exists a continuous map 6 : (E8 such that

i - a (u * i) is strictly decreasing if u is not a fixed point for the ~-action.
Moreover the fixed points for the action are precisely the constant curves in
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Proof. - We introduce a restriction map r : Xo where Zo has been
defined in IV before Lemma 3 by

Now define c : Qj - R by

where a has been introduced in Lemma 3. By Lemma 3 we have (taking
orientation into account) 

.

Now, in order to show that t --~ a (u * t) is strictly decreasing if u is not a
fixed point for the R-action we have to show that

for every open subset U of Z. For this we shall use a unique continuation
result. So let U be given and so + ito an interior point. Taking a chart

around u (so + ito) we see that with 

T cp (u (x)) -1 and we have

Differentiating this with respect to s and t and using J (x)2 - - Id we
obtain

for some matrix valued smooth mappings A, B. We may assume that

w (xo) = 0 where xo = so + ito. By Aronszajn’s unique continuation result,
see [4] and also [28], w vanishes if it vanishes near xo. Hence

as required.
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Clearly the constants in Lo (~ (1 are fixed points for the R-action on
Qj. Now assume M ~ tR = { u ~ for some u E Qj. Then

for every r > 0. This implies u = const. Since u (o) E Lo, u (f) e Li we see that
u E Lo (~ L 1 as required. D

Proof of Theorem 3. - The proof follows along the line of standard
Luisternik-Schnirelman-Theory, however carried out for a gradient like
~-action in a compact topological space, as for example done in [10]. The
proof will be completed if we can show that the R-action * on Qj has at
least c (Lo) rest points.

Given any subset K of Qj denote by EK: K  (Lo, xo) the map
where xo is an arbitrarily fixed point in Lo. We obtain an

induced map EK: H (Lo, xo) - H (K). We define a map ind: 2~J ~ ~I by
ind (K) = k where k is the least integer such that there exist open subset
Ui, ... , Uk of Qj covering K such that Since Lo is a compact
manifold it is clear that ind(03A9J)  ~. The following properties follow
trivially from the definition of ind.

(continuity) every subset K has an open neighborhood U
such that ind (U) = ind (K)

(monotonicity) if K2 then ind (K1) >_ ind (K2)

(subadditivity) ind (K1 U K2) _ ind (K1) + ind (K~) (4)

(invariance) ind (K * i) =ind (K) for all i E (~

(normalisation) ind (point) = 1

Using the standard properties of cup products and the fact that

H (Lo) -~ H (Qj) is injective one easily verifies that

Next we define for i =1, ..., ind(Qj)
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Clearly

Since St~ is compact and T - a (u * i) is strictly decreasing if u is not a
fixed point for * we see that for given open neighborhood U of

Cr (d) = { u ~03A9J| a (u) = d, u *R= { u }} there exists an e > 0 such that

,

Now using (4) and (7) one easily shows that if j~{ 1, ...,
ind and that if the set Cr (dj) contains infinitely many points
by showing that ind (Cr (d~)) >__ 2. In any case this implies the existence of
at least ind(Qj) many rest points for * or equivalently the existence of
ind(Qj) many intersection points in Lo n L1. Since ind(03A9J)~c(0) the

proof of Theorem 3 is complete.

IV. FREDHOLM THEORY AND THE PROOF OF THEOREM 1

Let (M,co), J, ( Id x J) and xLx as described in Theorem 1.

Denote by H: aG x [0, 1] x M --~ I~ a Hamiltonian generating the family
x -~ ~x of exact symplectic diffeomorphism such that (x, 1, L) for
some fixed L with ~c2 ( M, L) = 0. We can extend H to a smooth map
G x [0,1] x M - R which we denote again by H. By D: G x [0,1] x M -~ M
we denote the associated family of symplectic diffeomorphism. For j > 2
denote by M) the Hilbert manifold of Hj-maps of G into M.
Since we assume ( M, g) c ( (~N,  . , . ~) one can consider t~’ = H’ (G, M) as
a split submanifold of ~N) (see [13], [35]-[36] for the theory of
Hilbert manifolds). For l = 0, ... , j we denote by El --~ t~’ the Hilbert

space bundle of Ht-section along Hj-maps, see [13]. By Aj we denote the
submanifold of it consisting of all u: G - M such that u (aG) c L.
Observe that for j >__ 2 a map IRN) has a continuous trace on aG.
We denote by Aj the pull back of E~ --~ A’ via the inclusion it.
The Sobolev on Hm (G, IRN) given by the inner product
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induces smooth fibre metrics for the bundles A’ and E~ - Aj for
l = o, ... , j. By a result of Kuiper, see [6] and [32] the group of invertible

operators in an infinite dimensional Hilbertspace is contractible. Hence

every infinite dimensional Hilbertspace bundle with fibre metric over a
Banach manifold admitting a smooth partition of unity is (smoothly)
isometric isomorph to a trivial Hilbertspace bundle over the same Banach
manifold, where the latter bundle is equipped with the obvious constant
fibre metric.

We define a smooth 1-parameter family of diffeomorphisms

Then io (u) = u, and (x, a, L) for x E aG if u E A’. Now
consider the smooth composite map

defined by

where is an isometric trivalisation (Kuiper) and pr2 is

the projection onto the second factor.

PROPOSITION 5. - If ((ak, c [0, 1] x Ai and -~ 0 in H then

((ak, uk)) is precompact.

Proof - If f(ak’ uk) ~ 0 in H then

We have to show that every subsequence of (ak, uk) has a convergent
subsequence. Arguing indirectly we may assume without loss of generality
that the given sequence uk)) has no convergent subsequence but ak - a
for some a. Since for xEaG we can now employ
Proposition 4 as follows: Define by
Hk (x, t, m) = ak H (x, ak t, m). Then Lax = ~k (x, 1, L) where ~k is associated
to Hk. Clearly defined by Ho (x, t, m) = a H (x, at, m). Hence

iak is precompact in H’ (G, Hence (uk))) has a conver-

gent subsequence giving a contradiction. 0
Now let V be a Hermitian connection on M, i. e. ~ ~ = o, ~ g = 0 and

VJ=0. Following [13] V induces a connection denoted by the same symbol
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in the obvious way for the bundles E~ -~ A~ and E~ -~ A~. The covariant
derivative V a of the section 0 of --~ A’ satisfies 

where Zu is coming from the torsion of V.

PROPOSITION 6. - There exist an open neighborhood U in [0, 1] x A’ of
the set (o) such that f U : U - H is a nonlinear Fredholm operator of
index n + l, where U is the component of U containing the set of all (o, u)
satisfying f(o, u) = o. Moreover U can be chosen in such a way that f is
proper with respect to a small open neighborhood of 0 E H.

Proof - Let (a, u) E [o, 1] x Ai such that f (a, u) = o. One easily computes
that Tuf(a,u): is given by

where Ka (u) is relatively compact.
Let us show that this is a Fredholm operator of index n. Since e

gives an isomorphism -H we have to show that the map

~ --~ ~S (T ia {u) ~) + J (ia (u)) is a Fredholm operator. First

observe that T u Aj consists of all Hj sections of u* TM - G such that
for xEaG. maps this space isomorphically onto the

space of all HP sections such for Now using
Lemma 1 similarly as in the proof of Proposition 1 (but much easier) we
find for given u E A’ numbers cl, c2 > 0 such that

This shows that the operator in (6) is semi-Fredholm.
In order to show that the operator in (6) is Fredholm we shall use

Kato’s perturbation theorem for semi-Fredholm operators [29]. Let a = 0
and uEA/ such Then u = const. eL

For such a u we have
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for xeG for xEaG, where c = u (x). By
a result in [47] this is a Fredholm operator of index n in the Holder space
setting. In the Sobolev space setting we will have by regularity considera-
tion of course the same index. If now u belongs to the component of the
constant maps in Aj and a E [0, 1] then we can connect u and a constant
map by a continuous path. By Kato’s perturbation result (6) defines a
Fredholm operator of index n if u is homotopic to a constant map. (Kato:
If in a continuous family of semi-Fredholm maps at least one is Fredholm
than all the others are Fredholm.) Since the set of linear Fredholm

operators is open we can find the set U with the required properties. We
have to show that perhaps replacing U by a smaller set having the same
properties than U the preimage of any compact set K in a sufficiently
small E-ball around o E H is compact in U. This follows however immedi-

ately from Proposition 5 and the local normal forms for nonlinear Fred-
holm operators as for example given in [7]. D

LEMMA 5. - Let fi U-H be as in Proposition 5. Then

fa : Ua == { u E Aj I (a, u) E U ~ ~ H is a proper Fredholm operator of index n
and map defined by x (u) = u (xo) for some xo E aG, then
the map Ja: Ua  L x fa (u)) is a proper Fredholm operator
of index 0 and the ~2-degree of ~a with respect to lo x ~ o ~ for some lo E L is
given by

Proof. - By Proposition 6 and the homotopy invariance of the Z2-
degree we have

Now, if fo (u) = lo x { o ~ we have

Since ~2 (M, L) = 0 ( 10) implies tht u (x) = lo for all .B:eG. If we can how

that T ulo : Tu T 70 (u) ( L x H) is an isomorphism we are done. We have

Since T ufo has index n and the kemel are precisely the constant sections §
we see that T ufo is onto. Since the map ~ --~ ~ (xo) maps the constant
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section (a n-dimensional space) onto Tlo L we see that Tulois an isomor-
phism. Hence

Combining (9) and ( 12) gives the desired result (8). D

_ 

Assume now that we can show that x induces an injection
~c : H (L) -~ H ( f (1, . ) -1 (o)). From the commutative diagram

we infer than that is injective which will complete the proof of Theorem
1. [Note that for via il ( . ) and that
by elliptic regularity theory the solution of f(l, u) = 0 i. e. the solution of

a (i 1 (u)) = 0 are smooth. ]
That it is injective will follow from a completely abstract result which

we shall prove now. Before we do so let us sum up what we know.

We have a smooth Fredholm operator 03C8:=f1 defined on a separable
Hilbert manifold V : = U1 with image in a separable Hilbert space H such
that 03C8: V ~ H is proper with respect to a neighborhood of o in H.

Moreover W has index n. We have a compact smooth manifold L and a
smooth map 7t: V --~ L such that

for some lo E L where § : V ~ L x H is defined by 03C8 (u) = (03C0 (u), 03C8 (u)). We
wish to conclude that :(L) ~ (03C8-1 (o)) is injective. That this is in

fact true is the statement of the following Theorem, whose proof uses
some duality theory and implicitely the cohomology transfer (see [12J).

THEOREM 5. - Let V ---~ H be a smooth Fredholm operator of index n
defined on a separable Hilbert manifold V with image in a separable Hilbert-
space H. Assume ~ is proper with respect to a zero neighborhood in H.
Suppose there exists a smooth map ~: V --~ L into a compact smooth manifold
L such that
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for some lo E L where 03C8 (u) = (03C0 (u), 03C8 (u)). Then it: H ( L) -> H (03C8-1 ( o)) is

injective.

Proof - We find an open neighborhood W of K: _ ~ -1 (o) in V and
an orthogonal projection P: H -~ H with codim R ( P)  oo such that

is surjective for every u E W. (Here of course we use that K is compact.)
Define

Then A is a submanifold of V of dimension

By the very definition of the Z2-degree we have for the induced map

the equality

Now using the homological definition of the Z2-degree we see that (coeffici-
ents of H* are in Z2).

maps the fundamental class 0,~ _ 1 ~~o, o~ to the fundamental class 

Hence the map

induces in d-dimensional 7 2-homology a map which maps the fundamental
class to the fundamental class To simply notation we
shall write o for o~03C8-1(Lx{o}) and o for oLx{o}. We have the sequence
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The composite map O defines a group homomorphism. We compute 0
as follows: Let E E Hi (L x ~ o ~), then

So e = Id. Denote the map H~ (K) --~ H‘ (L x ~ 0 ~ ) defined by diagram ( 13)
by a. Then

We have the commutative diagram

Hence (n K) must be injective as required. 0
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