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ABSTRACT. - We consider a system of equations of the form

Au + V F (u) = 0. In this and two subsequent papers we find conditions on
F ( u) to guarantee that this system has infinitely many radial solutions.
We also define a notion of winding number for each radial solution and
prove that for each positive integer K there exists a radial solution with
winding number K.

RESUME. - L’on considère un systeme d’equations de la forme

u + F ( u) = ~. Dans cet article et dans deux articles a paraitre, l’on trouve
des conditions sur F (u) qui garantissent que le systeme a une infinite de
solutions radiales. L’on definit egalement un nombre d’enlacements pour
chaque solution radiale et l’on demontre que pour tout entier K non nul
il existe une solution radiale dont le nombre d’enlacements est K.
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1

A. Introduction

In recent years a number of authors have considered the question of
the existence of radial solutions of the scalar equation

Here A is the usual Laplace operator and u is a function of x E n > 1.

By a radial solution of ( lA.1) we mean a nonconstant, bounded solution
of the form u (x) = U (r), r = II x We also assume that each radial solution

satisfies lim U r) = 0. Two questions related to this problem are

( 1) find conditions-on g (u) to guarantee that ( lA.1) has a positive radial
solution;

(2) find conditions on g (u) to guarantee that ( lA.1) has infinitely many
radial solutions.

There have been two general approaches to answering these questions.
The first approach has been to use variational methods. For references to
this approach see [2], [3], [8]. The second approach for studying the
existence of radial solutions of (1.A1) has been topological or phase space
techniques. Using these methods, Atkinson and Peletier [1] have proven
the existence of a positive solution of (lA.1) under very weak conditions
on g (u). Jones and Kupper [7] .use topological methods to find conditions
on g (u) which guarantee the existence of infinitely many radial solutions
of ( lA.1). Moreover, they were able to characterize the radial solutions
by their nodal properties; that is, under appropriate conditions on g (u),
for each nonnegative integer K there exists a radial solution of ( lA.1)
with precisely K zeroes.

Recently, Brezis and Lieb [4] have shown how the variational approach
can be generalized to systems of elliptic equations. They consider systems
of the form

where the m functions f i : [Rm -~ R are gradients of some function

FE C1 that is, for each i,
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551INFINITELY MANY RADIAL SOLUTIONS

They prove that there is a function u (x) which minimizes the action
associated with ( 1 A . 2) .

In this paper we show how topological methods can be used to prove
the existence of infinitely many radial solutions for a system of equations.
We consider a system of the form (lA.2), ( 1A.3) and find conditions of
F (U) which guarantee the existence of infinitely many radial solutions.
We are also able to define a notion of winding number for each radial
solution, and prove that for each positive integer K there exists a radial
solution with winding number K.

B. Precise statement
of the problem and the first main result

The system we consider is

where ul and u2 are functions of x E n > 1. We assume that there exists
a function F E C2 ( (~2) such that for i = 1, 2,

for u2) ~ By a radial solution of (1B.1) we mean a nonconstant
bounded solution of the form

We always assume that a radial solution satisfies, for i =1, 2,

If (U1 (r), U2 (r)) is a radial solution of ( 1 B.1 ), and
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then (U 1, U2, Vi, V2) satisfies the first order systems of ordinary differen-
tial equations, for r > o,

together with the boundary conditions

for some real numbers U~ and U2. The equalities in ( 1 B.4) are meant to
be taken componentwise. We prove the existence of radial solutions of

( 1 B.1 ) by proving the existence of solutions of ( 1 B. 3) and ( 1 B. 4) .

NOTATION. - For convenience we set

and

ASSUMPTIONS ON F. - We wish to assume that F looks someting like
what is shown in Figure 1. The precise assumptions on Fare :

(F1) FEC2 (2).
(F2) F has at least three nondegenerate local maxima. These are at

A = (A 1, A 2) _ (o, 0), B = (B 1, B2), and C = (C 1, C2). F also has two

saddles. These are at D = ( D 1, D~) and E = ( E 1, E2) .
(F3) F (A)  F (B)  F (C) and B1 D1 A1 E1 C1. Moreover, there

exists ao such that if a is any critical point of F with {A, B, C}, then
F (a)  F (A) - ao. For convenience, we assume that F (A)=0.

(F4) There exists W such that if K  W, then the level set {U: F (U) >_ K~
is convex.
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553INFINITELY MANY RADIAL SOLUTIONS

(F6) Let

and

Suppose that (U (r), V (r)) is a bounded solution of ( 1B.3) with n =1
which satisfies, for i =1, 2, or 3,

and

Then U (r) is identically equal to one of the critical points A, B, or C,
and V (r) _ (0,0) for all r > 0.
Remarks concerning these assumptions are certainly in order. These

remarks will be given shortly. We first state our first main result.

Vol. 4, n° 6-1987.
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THEOREM 1. - Assume that fl and f2 satisfy (lB.2) where F (U2, U2)
satisfies (F1)-(F6). Then there exists infinitely many radial solutions of
(1B.1).
We also prove another theorem which is stated explicitly in Section 1 E.

For that Theorem we define a notion of winding number for each radial
solution. Our second Theorem states that for each positive integer K there
exists a radial solution with winding number K.
The proof of these two results is split into three papers. In this paper

we introduce a family of equations which depend on a small parameter E.
As E -~ 0, the family of equations approach (lB.1). We prove, in this

paper, that for each E there exists infinitely many solutions of the new

equations. In [10] we reduce the problem of proving that for each ~ > 0
and positive integer K there exists a solution of the new equation with

winding number K to an algebraic problem. In [9] we solve the algebraic
problem. Hence, [9] together with [10] prove that for each ~ > 0 and positive
integer K there does indeed exist a solution of the new equations with

winding number K. In Section 6 of this paper we prove that as E - 0,
some sequence of the set of solutions with winding number K for the new

’ 

equations converge to a solution of (lB.1) with winding number K.

C. Remarks on the assumptions on F

Remark 1. - ( F4) will be used to prove that the set of bounded solutions

of ( 1 B. 3) is compact.

Remark 2. - (F6) guarantees that the set of bounded solutions of

( 1B.3) is not too bizarre. One may think of ( lB. 3) with n =1 as describing
the motion of a ball rolling along the landscape defined by the graph of

F without friction. There may exist bounded solutions of ( lB.3) because

the ball may roll back and forth between the mountain peaks given by
F ( A), F (B), and F (C). Assumption (F6) implies that these are the only
bounded solutions of ( lB.3) with n =1, besides the critical points, which

lie above F (A) - ao for some r. We are not interested in bounded solutions

which lie below F (A) - ao for all r, because if U (r)=(Ui (r), U 2 (r)) is a

radial solution, then lim U (r) = A implies that F (U (r)) > A - oco for r

sufficiently large.
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Remark 3. - (F5) is the most unreasonable assumption. It can be
weakened slightly as follows. Let

and

I

Then (F5) implies that if U E ID n N 1 or then VF(U) is

tangent to lD or lE, respectively. Our result remains valid if this property
holds for some line lD and lE through D and E, not necessarily the ones
given by ( 1C.1). We choose lD and lE as in (lC.1) only for convenience.
We do feel that our method of proof should carry over to more general
assumptions than (F5). The main place where (F5) is used is to define the
notion of winding number. In Appendix B we comment how one should
be able to weaken this assumption.

D. The winding number

Recall that for the scalar equation ( lA.1) it has been proven that under
appropriate conditions on g (u), for each nonnegative integer K there
exists a radial solution with K zeroes. We wish to prove an analogous
result for the system (lB.1). However, instead of counting the number of
zeroes we introduce a notion of winding number which measures how
many times a trajectory (U 1 (r), U2 (r), V1 (r), V2 (r)) winds around in
phase space.
For the scalar equation, the notion of winding number is simple because

it makes sense to count the number of times a trajectory winds around a
point (the origin, for example). For ( lB.3) the phase space is four dimen-
sional (or five dimensional if one includes r as a dependent variable as we
shall do shortly), and it does not make sense to count how many times a
trajectory winds around a point. Instead, we define two, two dimensional
planes, PD and PE, and count how many times the solutions wind around
these objects. PD and PE are defined as follows:

and
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Clearly, PD and PE are two dimensional. Perhaps the most important
property of PD and PE is

PROPOSITION 1.D.1. - PD and PE are invariant with respect to the flow
defined by ( 1 B. 3) . That is, if

for some ro, then

for all r.

Proof - From ( lB. 3) and (F5) we conclude that on PD or PE,

and

These two equalities prove the proposition.

It now makes sense to count the number of times a radial solution

winds around PD and P~. This is done as follows. Let

and

DEFINITION. - Suppose that U (r) is a radial solution of ( 1 B.1 ) . Then
the winding number of U is defined by

By card X we mean the cardinality of the set X.
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Remark. - The notion of winding number may seem complicated
because it involves trajectories in four dimensional phase space which is
difficult to picture. However, one can easily compute the winding number
by just considering U (r) _ (U 1 (r), U~ (r)) in the two dimensional state
space. Recall that h (U) equals to the number of times U (z) intersects Qo
or Q. Now U (zo) E QD if and only if U and V 1 (zo)  o. Since

this implies that U (zo) E Qo if and only if U (zo) E lD, and at
Z = Z 0’ U (z) crosses 10 from right to left. Similarily, U (zo) E QE if and

only if U (zo) E lE and at Z=Zo, U (z) crosses lE from left to right. Of
course, this remark depends on our assumption (F5). In Appendix B, we
will discuss how one should be able to weaken (F5). Under the weaker
assumptions we will still be able to define two surfaces, PD and PE, which
do not intersect the radial solutions. Hence, we will still be able to define
the notion of winding number. However, we will not be able to compute
the winding number by just considering the trajectories in the state space.

E. The second main result

THEOREM 2. - Let K be any positive integer. Then there exists a radial
solution, U (r), of ( 1 B.1) such that either h (U) = K or h (U) = K + 1.

Remark 1. - The fact that we have either h (U) = K or h (U) = K + 1
may be disturbing because one would expect there to exist a radial solution
with h (U) = K. The reason that we obtain the weaker result is that we
are counting the number of times solutions wind around two objects,
namely PD and P~.

Remark 2. - We actually prove that for each integer K there exists at
least two radial solutions of (lB.1), each with winding number K or K + 1.
We explain why this is true in Appendix C.

F. Reduction to a connection problem

The boundary conditions (lB.4) state that we must find a trajectory in
phase space which begins (at r = o) on the U-plane and ends (at r = oo) at
the origin. These boundary conditions are awkward to work with because
we don’t really know where to begin on the U-plane. It will be more
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convenient to transform ( 1 B. 3), ( 1 B. 4) to a problem where we look for a

trajectory which connects two critical points. This is done as follows.
We first consider r as a dependent variable by introducing z = r as the

new independent variable. We compactify by letting

Then ( 1 B. 3) becomes

where

A radial solution must satisfy

and

for some Uo. Now for E > 0 let

where Pt satisfies
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Consider the system

together with the boundary conditions

and

It will be convenient to make the change in variables

Then ( 1 F. 2), (IF. 3) become, after dropping the hats,

and

In this paper we prove

THEOREM 3. - There exists go such that if 0  s  go, then there exists

infinitely many solutions of ( lF. 5), (IF.6).
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Of course, if we make the change in variables ( lF.4), then this implies
that there exists infinitely many solutions of (IF.2), (IF.3).

In two subsequent papers, [9] and [10], we prove

THEOREM 4. - There exists Eo such that if 0  E  Eo and K is any

positive integer, then there exists a solution

of( lF.2), (IF.3) such that either h (UE) = K or h (UE) = K + 1. In Section 6

of this paper we prove, assuming Theorem 4,

THEOREM 5. - Let K be a positive integer. Then there exists a sequence
such that as k - 00, {Uek (z)} converges to a radial solution, U (z), of

( 1 B.1 ) . Moreover, either h ( U) = K or h ( U) = K + 1.

G. Description of the proof

The proof of Theorem 3 is quite geometrical. The purpose of this

subsection is to introduce the basic geometrical features of the proof. Each
solution of (IF. 5) corresponds to a trajectory in five dimensional phase
space. The boundary conditions (IF. 6) imply that we are looking for a
trajectory which approaches (A, U, -1) as z - - oo and (B, (9, + 1) as
z - + oo. Hence, we are looking for a trajectory which lies in both W~,
the unstable manifold at (A, C~, -1), and WB, the stable manifold at

(B, U, + 1).
The first step in the proof of Theorem 3 is to obtain a priori bounds

on the bounded solutions of (IF. 5). This is done in Section 2. We construct
a five dimensional box, N, which contains all of the bounded solutions of

(IF. 5). We then construct, in Section 4B, a subset ~ of the boundary of
N with the property that each nontrivial trajectory in WA can only leave
N through ~. The most interesting feature of ~ is that it has four

topological holes.
We then analyze the unstable manifold at (A, (~, -1 ) . Because the

dimension of WA is three, we show that it is possible to parametrize the
nontrivial trajectories in WA be the points in the disc

That is, to each d E ~ there corresponds a unique trajectory, y (d, z),
which lies in WA. This parametrizations is defined in Section 3A. To each
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trajectory in WA there is a winding number, as described in Section ID.
Hence, to each d~D we can assign the integer h (d) which is equal to the

winding number of y (d, z).
Now the solutions of (IF. 5), (IF. 6) correspond to a certain subset of

~, which we denote by X. That is,

Let Y = D~X. We shall prove that for each y E Y, y (y, z) must leave N
(see Proposition 2C.1). Because y (y, z) can only leave N through ~, we
have a (continuous) mapping A : Y --~ ~ defined by, A (y) is equal to the
place where y (y, z) leaves N.

Suppose that g (s) is a continuous function from I = [o,1] to Y such that
g (o) = g ( 1 ). The ( A . g) (I) defines a continuous, closed curve in G. In
Section 4B we define an algebraic object, r (g), which describes how
(A. g) (I) winds around the four holes in G. r (g) will be an element of
F~, the free group on four elements. It will have the following important
property:

PROPOSITION A (see Proposition 4 B). - If gl is homotopic to g2 relative
to Y, then r (gl)=r 
The next step in the proof of Theorem 3 is to assign to each element

0393~F4 a positive integer We prove

PROPOSITION B (see Proposition 5 A.1). - Let M be a positive integer.
There exists a continuous function g : I -~ Y such that g (o) = g ( 1 ) and

Theorem 3 will then follow from Propositions A and B.
The key steps in the proof of Proposition B are Propositions 3B.1 and

4C.1. In Proposition 4C.1 we derive a relationship between I~‘ (g) f and
the winding number of the various trajectories y (g (s), . ), 0 - s __ 1. In

Proposition 3B.1 we show that there must exist trajectories in WA with
arbitrarily high winding number.
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2. THE ISOLATING NEIGHBORHOOD

A. Basic definitions

Until stated otherwise we fixE>O. Our immediate goal is to define a
set N in phase space which contains all of the bounded solutions of (IF. 5).
Recall the set N 1 defined in ( lB. 5). Let

where V is a large number to be determined, and

Remark. - N is topologically a five dimensional box with two "tubes",
PD and PE, removed. This is topologically equivalent to a two dimensional
disc with two points removed.
We wish to prove

PROPOSITION 2A. I. - IfV-, appearing in (2A.1), is sufficiently large, then
all solutions of (IF.5), ( 1 F. 6) lie in N.

This result is proved in the next section. The proof is broken up .into a
number of lemmas.

B. Proof of Proposition 2A.1

LEMMA 2B.1. - The projection onto U-space of every bounded solution

of ( lF. 5) lies in N l. Moreover, there cannot exist a solution of ( lF. 5) whose

projection onto U-space is internally tangent to a N1, the boundary of N1.

Proof - The proof follows Conley [5]. Choose K _ W and suppose
that (U (z), V (z), p (z)) is a solution of (IF.5) which satisfies for some

zo~
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and

Then

since the assumption that the level set {F (U)=K} is convex implies that

This implies that there cannot be any internal tangencies on the level set

{F (U) = K} for all K _ W.
On any solution which leaves the set where F > W there is a point where

F  W and either dFjdzO or dFjdz>O. Suppose that

Then (2B.1) implies that F (U (z)) is strictly decreasing for There-

fore, if the solution were bounded, it would have to go to a rest point ~.

where F .W.Since there aren’t any such rest points, the solution must be
unbounded in forward time. A similar argument shows that if

then the solution is unbounded in backward time.

Remark. - The proof of this last result shows that if U (z) leaves N 1
in forwards or backwards time, it can never return to N~.

LEMMA 2B.2. - V, as in (2A.1), can be chosen so that if

then U (z) leaves N1 in backwards time.
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Proof. - Suppose that II V (zo) II> V, where V is to be determined.
Then either

We assume that V~ (zo) > 1 /2 V, and, for convenience, Zo=0. Choose M~
so that ( ~J) ~ ~  M 1 in N 1. Then, from ( 1 F. 5),

as long as V 1 >__ o. Therefore, if V 1 >_ o, then

to obtain

or

which we assume to be true. Therefore,

f or -1 - z ~ 0, which implies, upon integration, that

Let M2 =diameter of N1 and choose V so that
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Then (2B . 3) and (2B . 4) imply that U ( -1) ~ N1. Similar arguments hold
for the other cases in (2B. 2).
We assume throughout the rest of the paper that V is chosen so that

Lemma 2B. 2 is valid. We can now present the

Completion of the proof of Proposition 2A. l. - Suppose that

(U (z), V (z), p (z)) is a solution of (IF. 5), (IF. 6). From Lemma 2B. 1 and
2B. 2 we conclude that

for all z. From Corollary 1D . 2 it follows that

for all z. From the definitions this implies that

for all z. Together with (2B. 5) and the definition of N, this implies the
desired result.

C. The energy H and the critical point C

Consider the function .

where  V, V) is the usual inner product in 1R2. If (U (z), V (z), p (z)) is a
solution of (IF. 5) we write H (z) = H (U (z), V (z)). Note that on a solution
of ( l F . 5),

Therefore,

and H (z) is increasing on solutions. An immediate consequence of this is

PROPOSITION 2C . 1. - The only bounded solutions of ( 1 F . 5) which lies
in the set ~ p ~ -1 ~ are the critical points and trajectories which connect
the critical points.
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We conclude from (2C. 3) and (2C. 4) that on a solution of (IF. 5), (IF. 6),

This immediately implies

LEMMA 2C. 2. - There exists 6 such that if (U (z), V (z), p (z)) is a

solution of ( l F . 5), (IF.6), z.

This lemma demonstrates that, since we are only interested in solutions
of (IF. 5), (IF. 6), the values of F in Cs = { U : ~ ~ U-C ~) I  S ~ do not matter.
In particular, F (U) may be chosen to be arbitrarily large in Cs. We change
F (U) in Cs so that if (U (z), V (z), p(Z))EWA, the unstable manifold at
(A, (~, -1), then U (z) ~ C for all z. This is possible for the following
reason. Suppose that (U (z), V (z), and U (zo) = C for some zo.
If F ( C) is very large, then we must have is very
large for some z 1  zo. However, as Lemma 2B. 2 shows, if II is too

large, then U (z) will leave N~ in backwards time. The remark following
Lemma 2B. 1 implies that U (z) can then never return to Ni, in backwards
time, after leaving N~. This contradicts the assumption that

(U (z), V (z), p (z)) E WA. To make this all precise would be very tedious
so we do not give the details.

3. THE LOCAL UNSTABLE MANIFOLD AT A

A. A parametrization of the trajectories
in the unstable manifold at (A, C~, -1 )

Let WA be the unstable manifold at A = ( A, (~, -1) . We assume
throughout that if (U, V, p) E W A’ then p> -1. The behavior of WA near
A is determined by linearizing (IF. 5) at A. If we set
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then the linear system at A is

To compute the eigenvalues and eigenvectors of this system let

be the Hessian matrix of F at A. Since F has a local maximum at A, it

follows that M has negative eigenvalues, which we denote and

- ~,2, with corresponding eigenvectors wi E R2 and 0)2 E 1R2. The eigenvalues
of (3A. 1) are then

where, for f=l,2,

Eigenvectors corresponding to i =1, 2, are

An eigenvector corresponding to ~3 is

We conclude from the Stable Manifold Theorem (see [6]),

THEOREM 3A , .1. - Near A, WA is a C2 injectively immersed, three

dimensional manifold. Moreover, the tangent space to WA at A is the linear
subs pace spanned by pi , and p3.

Let

and let loc WA equal to the local unstable manifold at A. An important
consequence of Theorem 3A. 1 is

PROPOSITION 3A. 2. - 6 can be chosen so that

Vol. 4, n° 6-1987.
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(a) for each (Uo, po) E As there exists a unique V0~R2 such that

(Uo, Vo, po) ~loc03A9A, and

(b) if (U (z), V (z), p (z)) is any nontrivial trajectory in WA which satisfies
P (z) ~ -1 for some z, then there exists a unique Zo such that

(U(zo), V (zo), P (zo)) E loc WA and (U (zo), P (zo)) E Ag.

Proof. - This result follows immediately from Theorem 3A. 1 and the
fact that not each of the U or p components of p2 , and p3 are zero.
We assume throughout that 8 is chosen so that the proposition is true.

The result implies that we may parametrize the nontrivial trajectories in
WA by the points on the hemisphere As. Let

and

the bijection given by the Proposition. Let

and let

be the projection map. That is

Let L3 : qfi 1 - G be defined by

We have now parametrized the nontrivial trajectories in WA by the disc
~ 1. Instead it will be more convenient to work with the unit disc

~ defined by

Let L4 : ~ --~ be the map

and Lo : ~ - G the map
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Then to each point there corresponds a point Lo (d) E loc W A. Let

be the trajectory in WA which passes through the point For

(x, y) define the polar coordinates

Suppose that From Proposition 2G. 1, either

(a) y (d, z) is a solution of (IF. 6)
or

(b) y (d, z) eventually leaves N.
We write

where

and

For d we define

where h (U ( d, z)) is defined as in (ID. 1).
Note that Theorem 3 is equivalent to proving that X is an infinite set.

close to 1

The following result is crucial to the proof of the theorems.

PROPOSITION 3B . 1. - Given M > 0 there exists 1) such that if

for some z, then h (d) >_ M. Moreover, iM does not depend on ~.
Because the proof of this result is extremely long and technical we save

the proof for Appendix A.
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4. AN ALGEBRAIC INVARIANT

A. A preliminary result

PROPOSITION 4A. 1. - There exists Eo> 0 such that if 0  E  Eo, then the

following is true. Fix i E (0, 1) and q E Then there exists 8 = 8 (q, i) such
that U((r, 8), zo)=qfor some zo and U((T, 9), z)~X2 for z  zo. Moreover,
8 (q, r) can be chosen to depend continuously on q and i.

Remark. - X 2 was defined in (lB. 5).

Proof. - Let I equal to the set of Te(0,1) for which the first part of
the lemma is true. That is, for each 03C4~I and there exists 8 (q, r)
such that if d=(T, t)), then U (d, zo) = q for some zo and U (d, 
for z  zo. We prove that I is open, closed, and nonempty.
We first demonstrate why I is open. Note that if Te(0,l), then

U ((i, e), z) must leave X2. This is because of (2C. 2). Moreover, if we set
Q(r, e) equal to the place where U((r, 8), z) leaves X 2, then Q(r, 8) is

continuous. This is because assumption (F5) and Lemma 2B. 1 imply that
U((T, e), z) cannot be tangent to aX2. It now easily follows that I is open.
This also shows that r) can be chosen to be continuous.

It is trivial to show that I is closed, so it remains to prove that I is

nonempty. We prove that rel if r and E are sufficiently small. We will

prove that there exists Eo > 0 and io E (0,1) such that if 0  E  Eo, 0  i  io,
and 0  9  2 ~, I is increasing as long as

U((r, 8), Z)EX2. Because U((r, 8), z) must eventually leave X 2 this implies
the desired result.

Recall that A = (0,0). Because A is a nondegenerate local maximum of

F (U), there exists bo > 0 such that

We shall now show that if re(0,1) and 8), z) ‘)  ~o for z  zo, then

)) U (r, e), z) ~) is increasing for z  zoo Fix (r, o) E ~, set U(z)==U((r, e), z),
and assume for z  zo. For z  zo,

Integrating this equation from - oo to z we find that
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It then follows that

for z  zo. Hence, II U (z) ~ is increasing as long as ~ U (z) (I  03B40.
Since we are trying to prove something about t very small, it is natural

to consider what happens when T==0. If i = o, 0  9  2 ~, and d = (i, 9),
then, from (IF. 5),

and p (d, z) is governed by the equation

In particular,

Note that if r=0 then all values of e determine the same trajectory
y ((o, 6), z). From continuous dependence of solutions of ordinary differen-
tial equations on initial data we conclude

LEMMA 1. - Let any neighborhood of A’. Then there exists to
such that and 0 - 8  2 ~t, then y ((i, e), Zo)E% for some zo.

This lemma demonstrates that if t is small, then y ((i, 9), z) will pass
close to the critical point A’. After passing close to A’, y((r, e), z) will
leave a given neighborhood of A’ close to the unstable manifold of A’.
This will be made precise shortly. We first discuss the behavior of WA,,
the unstable manifold at A’. We first prove

LEMMA 2. - Given Ao, there exists Eo such that if 0  c  Eo,

Remark. - Note that if (U (z), V(z), P (z)) E W A’, then p (z) =1 for all z.

Proof. - Let

and
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We prove that there exists Eo such that if 0  E  Eo, then y(z)eS’ for each
z. This certainly implies the desired result.
We first prove that there exists Eo such that if 0  E  Eo, then S is

positively invariant; that is, if for some zl, then y(z)eS for all
This is proven by showing that on the boundary of S, the vector

field given by the right side of ( 1 F . 5) points into S.
There are many cases to consider. Suppose, for example, that V 1= ~, U 1,

U1 > o, and Let n = (~,, -1) be a vector outwardly normal to

if Eo is sufficiently small. A similar proof works in the other cases.
To complete the proof of Lemma 2, we show that Eo can be chosen so

that if 0  E  Eo and Y(Z)EWA, then there exists zl such that Y(Z)EWA,
for This is proved by linearizing (IF. 5) at A’ and showing that the
eigenvectors corresponding to the positive eigenvalues point into S. These
eigenvectors are given as follows. Let

and

be the Hessian matrix of F at A. Because F (U) has a nondegenerate local
maximum at A it follows that M has negative eigenvalues, which we
denote by - ~,l and - ~,Z. The positive eigenvalues of ( lF . 5) linearized at
A’ are a 1 and a2 where ai, i = 1,2, is the positive root of the polynomial

Let w;, i =1, 2, be the eigenvector of M corresponding Then the

eigenvector of (IF. 5) corresponding to (Ji is

Because each CJi -~ oo as s - 0, it follows that each p~ points into S if E is
sufficiently small. Because W A’ is tangent to the linear space spanned by
pi and p2 this completes the proof of Lemma 2.
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Proof. - Let

By Lemma 2, there exists Eo such that if 0  E  Eo,

II for z  zo, As before,
because  U, O F (U) ~  0 it follows is

increasing for We assume that Eo  1. Then for E  Eo,

as long and U(Z)EX2. However, at and

(4A. 1) implies that ~V~ is then increasing. for z > zo,

U (z) E X2. Another computation shows that if z >__ zo, E  Eo, and U (z) E X 2,
then

Since at zo,

we conclude, by integrating (4A. 2), that ~ U, V) is increasing for z > zo,
U(Z)EX2. Theref ore, ~ U, V) > 0 for z > zo, U(Z)EX2. Finally, if z > zo,
U(Z)EX2, then

which completes the proof of the lemma.
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We now return to the proof of Proposition 4A .1. Introduce new

variables (xl, x2, yi, y2, P) so that near A’,

where Ws is the stable manifold at A’. In these new coordinates, the

equations become near A’,

where x2), y2),

and -03B31, 03B32, -03B33, and y4 are the eigenvalues of (IF. 5) at A’.

Choose 81 so that then in the old coordinates,

By choosing bl smaller, if necessary, and choosing A small, we may
assume, from (4A . 3), that trajectories can only leave .;V). through N +.
Now points in .;V+ lie close to points in WA,. It then follows from

Lemma 3 and the continuous dependence of solutions on initial data.

LEMMA 4. - Assume that 0  E  Eo where Eo is given in Lemma 3. Then
A can be chosen so that if y (z) = (U (z), V (z), p (z)) is a solution of ( 1 F . 5)
and then there exists such that U(z)eX2 for

z2), U (z2) E aX 2, increasing for z E (z 1, z2).
We are now ready to complete the proof of Proposition 4A. 1. Choose

À so small that trajectories can only leave .~V’~, through .N’ +, and that
Lemma 4 holds. From Lemma 1, there exists ro such that if 0  i  io,
0 _ 8  2 ~, and d = (i, 8), then y ( d, for some Zl.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



575INFINITELY MANY RADIAL SOLUTIONS

Now fix i E (o, to), 9 E [o, 2 ~], and let d = (r, e). We prove that there exists
zo such that U (zo) e U (z) e X 2 for z  zo, and ) ) U (z) ~ ~ is increasing for
z  zo. Choose z 1 so that y ( d, We have already proven that
(jU(z)jj is increasing as long as I I U (z) I I  b. By assumption,

Hence, y (d, z) must leave ~V’~. Because ~y {d, z) can only leave ~V’~ through
~V’ +, there exists such that y (d, Z2)E%+, and is increasing
for z  z2. The result now follows from Lemma 4.

Let q 1 be a point on the top side of X 2, and q2 a point on the bottom
side of X2. Let e1 (r) and e2 (t) be continuous functions such that for each
i E (o,1), there exists zi, i =1, 2, such that

and

We assume, without loss of generality, that for each r, 81 (i)  82 (i).
Let

B. r and r*

Recall that if y e Y, then ~y (y, z) leaves N. Let

It follows from Lemma 2B . 2 that if yeY, z) must leave N
through 8. Hence, we have a mapping

defined by A where y (y, z) leaves N. From Lemma 2B . 1 it
follows that A is continuous.

Let I be the unit interval and % the set of functions g : I - Yo such that
(a) g is continuous;
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Note that 8 is topologically equivalent to an annulus with four holes
removed. For g E, we shall define two algebraic objects, r* (g) and r (g),
which indicate how the curve ( A . g) ( I) winds around the four holes. They
will be elements of F4, the set of words on the four letters a, P, y, and 8.
We begin with the same notation. For convenience we assume that N1

is the square:

Let

Assume that Choose E [0, 1], k = 1, 2, ..., K, such that

We refer to r~* _ ~ ~1, ..., r~k } as a g-partition. It is not hard to prove
that a g-partition does exist.
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We now define r* (g, r~ *). First we define

and

These quantities are determined by the following Table. In the Table, we
let, for se [o,1],

crosses
03A6(~k)~ 03A6(~k+1)~ for 

~ E ~~k~ ~k+ 1)

1 la a 1

~i ~2 C a - i

’~ 2 ~3 3 lj P 1

tf 2 ~ P - 1

~3 ~4 ly Y - I

~4 t~3 ~ Y 1

~4 ~1 1/ 8 1

~1 ~4 l+03B4 8 - 1

For each case not shown in the chart we let For this case

we do not define ~,k = ~, (~k) because, as we shall see, since ek = 0 the choice
of 03BBk doesn’t matter. Then define

Here is an example.
In Figure 2, For this example

Note that there may be cancellations in r* (g, r~ *). By we mean

the element of F~ obtained by making all cancellations in r* (g, r~ *). We
shall see later that does not depend on r~ *. In the above example
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By r* (g) we mean the subset of F~ consisting of all elements which
yield, after all cancellations, r (g). Note that, for each r~ *,

For the above example, r* (g) includes the elements

The following two Propositions will be important for the rest of the
paper. Their proofs are tedious but straightforward. We do not give the
details.

PROPOSITION 4B . 1. - I-‘ (g) does not depend on the choice 
Before stating the next proposition we need the following definition.

DEFINITION. - Suppose that gl, g2 E ~. We say that gl is homotopic to
g2 relative to Yo, and write if there exists a continuous map

Annales de l’Institut Henri Poincaré - Analyse non linéaire



579INFINITELY MANY RADIAL SOLUTIONS

such that

PROPOSITION 4B . 2. - then I-’ (gl ) = I~’ (g2).

C. A formula for the Winding number

Recall that for each d=(r, 9) E ~o there corresponds a trajectory
"((d, Moreover, there is a winding number, h(d), which was
defined in (3A .12). Suppose that g (s) E ~ and so e I. In this section we
derive a formula for

in terms of r* (g, ~*) for some g-partition ~*. First we need some notation.
Suppose that rEF 4 is given by

where each ~,~ p, y, b ~ and ei e { -1,1}. Let

Let g E ~ and r~ * be a g-partition. Define the map

as follows. Suppose that ..., Then define

where the 03BBi and ei were defined in Table. Finally, define

where Z + is the set of nonnegative integers, by
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PROPOSITION 4C. 1. - Assume that g E ~ and r~ * _ ~ ~ 1, ..., is a

g-partition. If r~~  so  ~k + 1, then either

Proof - The proof is by induction on k. First assume that k = l. That
iS,

By assumption, 111 = 0 and where ~2 was defined in the
previous section. There are a number of cases to consider. Suppose, for
example, that

Because (A. g) (r~ 2) E ~2, it follows from Table, that el = 0 and, therefore,
. , _._.. / , .. , _._, . , -

Hence, we need to prove that h 1 (so) = 0. Suppose that h 1 (so) > 0.
Let QD and QE be as in Section l, and

-_...__ __ . ___ __. _ , , _

If hl (so) > 0, then Y (g (so), z) must intersect QD U QE at least once, sup-
pose, for example, that y ( g (so), z) intersects QD. Because (A. g) (so) E ~2,
it follows that y (g (so), z) must also intersect

Jet

- ~ - -~ ~ J’ "= OJ 1 ..... OJ;¿ ~L. ~.~.~a.......,~~

,his, however, contradicts (4B . l~ in the definition of a g-partition.
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There are other cases to consider besides (4C.2). We only consider one
more. The rest are similar. Suppose that

Then, using Table, we find that Ai(g, r~ *) (~ 1) = 0 and A1(g, rl *) (rl 2) =1.
We claim that h 1 (so) =1.

Because (A. g) it is clear that y (g (so), z) must intersect QD at
least once. Hence, hl (so) >_ 1. Suppose that hl (so) > 1. Then ’Y (g (so), z)
must intersect Qp U QE at least twice. Because y (g (0), z) does not intersect
Qo ~QE at all, this implies that there exists sl, s2 with

such that and with i ~ j. This, again, contradicts
(4B. Id) in the definition of a g-partition.
To complete the proof we must prove the induction step. That is, we

assume that the proposition is true if for j  k, and then
prove the result for j = k. The proof of this is very similar to the proof
just given so we . do not include the details.

5. COMPLETION OF THE PROOF OF THEOREM 3 .

A. Preliminaries

Suppose that g E  1 and

Let

In the next subsection we prove

PROPOSITION SA.1. - Let M be a positive integer and i M be as in

Proposition 3B .1. Suppose that gE is given by g (s) _ (i (s), 9 (s)) and
each s. Then I h (g) I > M.

Vol. 4, n° 6-1987.



582 D. TERMAN

We now show how this proposition is used to prove Theorem 3.
Suppose that Theorem 3 is not true; that is Xo is a finite set. Suppose

that Xo = {d1, ..., where, for each j, 8j). Let

Then i°  1. Choose go (s) _ (i° (s), 8° (s)) E ~ so that to=to for each s.

From Proposition 5A. 1 there exists r* > to such that if

g 1 (s) = (i 1 (s), 81 (s)) E ~ satisfies g 1 (s) > T* for each s, then

~ r (gl) ~ > ~ r (go) I + l. But go (s) and gi (s) are clearly homotopic relative
to Yo. From Proposition 4B . 2 it follows that r (g°) = r (g 1 ). Hence

This is clearly impossible, thus proving the Theorem.

B. Proof of Proposition 5A. 1

Let y(g(s), z) _ (U (g (s), z), z), p(g(s), z)). Now U (g (o), z) lea-
ves X 2 through its top side and U (g ( 1 ), z) leaves X 2 through its bottom
side. Moreover, by the remarks in Section 2C, U (g (s), z) ~ C for all sand
z. Since the curves U (g (s), . ) vary continuously with s, this implies that
there exists so and zo such that U (g (so), zo) = B. Because i (so) > i M,
Proposition 3B. 1 implies that hi (so) = h (g (so)) > M. By Proposition 4C. 1,
if r~ * is any g-partition, and then either

From the definitions, this implies that

We must show that this implies that r (g) ~ > M.
Note that r(g) is obtained from r*(g, r~*) by a finite number of

cancellations. We show that after each cancellation the index, ( . ~, is still

greater than M. More precisely, suppose that r* (g, r~ *) is of the form
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We prove that r’) > M. Since r (g) is obtained from r* (g, r~ *) by a finite
number of such cancellations, this will prove the desired result.

If ek = - l, then I r’ = r* (~, T~*) ~ > M. Hence, we assume that ek = + 1.
There are four cases to consider. These are, either ~,k = a, P, y, or 8.

First assume that ~,k = a. We then consider two subcases. These are

Suppose (SB . 2a). Choose jk-1 so that Then, from Pro-
position 4C. 1, either

In either case, it follows that ( r’ ~ > M.
Now suppose that (5B. 2b) holds. We first show that (5B . 2b) implies

that U (g (s), z)#B for all z and Suppose, for the sake of a
contradiction, that U (g (so), zo) = B for some zo and Let

Because lim U (g (so), z) = A and U (g (so), zo) = B, it is clear that 03C8 (so

is well defined. For s close to so there exists a continuous function B)/(.s)
such that U (g (s), ~r (s)) E lD. Let J be the maximal subset of [o,1] such that
~ (s) is a well defined, continuous function. Let

Because U (g (so), zo) = B and we conclude that h (g (so)) > M. It
follows that h (g (s)) > M for all s e J. In particular, h (g (~)) > M. 
then (5B. 2b) is contradicted. So assume that r~k _ ~ __ ~  ’~k + 1 ~

Clearly U (g (~), z) leaves N 1 through In n 8N i . Hence, ( A . g) (~) E 14 U l6
where 14 and l6 were defined in Section 4B. However, from (4B . la~,
(A. g) (s) can cross at most one of the lines ll - l8 for 
Because 03BBk = 03BBk+1 = a we find, from Table, that (A. g) (s) crosses 11 for some

l1k) and another This gives the desired contradic-
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tion. We have now shown that if and (5B.2b) holds, then
U (g (s), z) ~ B for all z and 

However, U (g (so), zo) = B for some so and some zo. If (SB . 2b) holds,
then Suppose that for Because
U (g (so), zo) = B, it follows that h (g (so)) > M. From Proposition 4C. I we
conclude that either A1 (g, r~ *) (~~) > M or A1 (g, r~ *) (~~+ 1) > 1VI. Because
j >__ k + 1, this implies that I > M.

It remains to consider the cases ~,k = ~i, y, and b. The proofs of each of
these cases is similar to the one just given so we do not give the details.

6. PROOF OF THEOREM 5

We now prove Theorem 5. We assume that there exists Eo > 0 such that
if 0  E  Eo and K is any positive integer, then there exists a solution

of (IF. 5), (IF. 6) such that either or h ( UE) = K + 1. Fixing K,
we prove that there exists a sequence such that, oo,

~ UEk ( -z) ~ converges to a solution, U (z), of ( 1B . 1). Moreover, either
h(U)=K or h(U)=K+I.
The first step is to obtain an a priori estimate on WE (z), independent of

E. We do know that for each E, WE (z) EN, however V appearing in the
definition of N, depends on s. Note that for each E, UE (z) E N1, which
does not depend on E, and I _ 1. Hence, we need to obtain an a
priori bound on VE (Z).

LEMMA 6.1. - There exists a constant V* such that II V£ (z) (I  V* for
each E and z.

Proof Recall that UE (z) ~N1 for each E and z. We prove that there
exists a constant V* such that if y (z) _ (U (z), V (z), p (z)) is a solution of
(IF.5) for any E > o, U(zo)EN1, and >V*, then U(z)N1 for
some z > zo.

Suppose that (I V (zo) I~ > V* where V* is to be determined. Then either
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We assume that V 1 (zo) > 1 /2 V*, and, for convenience, zo = o. Choose M 1
so in N 1. Then, from (IF. 5),

as long as V1 (z) > o. Therefore,

as long as Ozl, and V*>2M1, which we assume to be true. For

Hence,

If we let

the result follows. A similar argument holds for the other cases in (6.1).
It is now clear that some subsequence {Wk (z) ~, of (z) ~ converges

to a function W(z)=(U(z), V (z), p (z)). Recalling (IF. 4), we let
(U (z), V (z)) _ (U ( - z), - V ( - z)). We shall then prove

To prove ( 6 . 2a) we show

LEMMA 6. 2. - Given b, there exists 0, ps  0, such that if 0  E  Es,
then

Proof - Note that -~ oo as p --~ 0 and E -~ 0. Assume that
for U E X 2, and choose Es > 0, ps  0 so that
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Assume for some p (zo) > ps. We assume that
V1£ (z) > ~/2. The other cases are similar. Then, for z > zo,

as long as V1£ (z) > b/2. However, we are assuming that V1E (zo) > b/2.
Hence, (6 . 3) implies that ViE (z) > 0 for all z > zoo This, in turn, implies
that V1£ (z) > S/2 for all z > zo. This is impossible because lim V1~ (z) = 0.

An immediate consequence of this result is

COROLLARY 6. 3: 1 lim V (Z) _ (O, O).
z - o -

Because V (z) _ - V ( - z), we have

COROLLARY 6 . 4 : lim V (Z) _ (0, 0).
z -> 0 +

We now prove ( 6 . 2b) . That is,

LEMMA 6 . 5. - (U (z), V (z)) is a solution (lB. 3) for z > 0.
Proo f - Fix zo > 0. Then is uniformly bounded

for z > zo. Hence,

is uniformly bounded in E for z>zo. Passing to the limit, E - 0, in ( 1 F . 2)
for z > zo gives the desired result.

LEMMA 6 . 6. - Either h (8) = K or K + I .
Proof - There are two things that can go wrong. These are
(a) Some oscillations in U£ (z) run off to z = oo as E -~ 0,
(b) Some oscillations become smaller and smaller and then ( 6 . 4)

disappear at some finite value of z as E ~ 0.

Now, (6.4b) is impossible because if it did happen, then there must
exist a zo such that

However, because (U, V) is a solution of (lB. 3), this together with
assumption (F5) implies that U 1 (z) = D1 or E ~ for all z. This is impossible,
because we will prove in the next lemma that lim IJ (z) = A.
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Now suppose (6.4a) were true. This implies that some oscillations in
(Us (z), Vg(z), approach the surface p = -1 as E ~ 0. Recall that

each trajectory is parametrized by a point 8J in ~. Because
h (U~) = K or K + 1, Proposition 3B . 1 implies that there exists 1),
which does not depend on E, such that This certainly implies the
desired result, because if some of the oscillations did accumulate on the
surface p = -1 as E - 0, then we must have that r~ - 1 as c -~ 0.
We now verify (6. 2C), thus completing the proof of Theorem 5.

LEMMA 6. 7. - (U (z), V (z)) satisfies (lB . 4).
Proof - (IB. 4a) follows from Corollary 6.4. In order to prove

(lB.4b), we show that lim (U (z), V (z)) _ (C~, (~). This however follows
z - - 00

from the fact, which was proved in the preceeding Lemma, that there
exists a constant i K E (0, 1). which does nor depend on E, such that 

APPENDIX A.

PROOF OF PROPOSITION 3B.l

Idea of the Proof - Suppose that

satisfies U (zo) = B for some zo. Then

Therefore, while y (z) E N, H (z) must increase from F (A) to F (B). Recall
from (2C . 2) that

Since as long as U(z)eN we have that

If i =1, 0  o  2 ~, and d = (i, 8), then p (d, z)= -1 for all z. Hence,
cpE ( p (z)) = 0 for all z. If i is close to one, then, in some sense, y (d, z) will
remain close to the hyperplane {03C1=-1} for a long time, and (z))
will remain small. From (A.I) this implies that H (z) will increase very
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slowly. Since H (z) must increase from F (A) to F (B) this implies that y(z)
must spend a long time in N. We then use hypothesis (F6) to conclude
that U (d, z) must move back and forth between the mountain peaks
defined by F ( A), F ( B) and F ( C) a large number of times. Together with
the remark in Section 1. D this implies the desired result.

Remark. - Many of the ideas in the proof of this result may be found
in the paper of Jones and K3pper [7].

Proof of Proposition 3B I. - Introduce new variables (xl, x2, yl, y2, p)
so that near A,

and

where WS is the stable manifold at A. In these new coordinates, the

equations become, near A,

where X==(xi, x2), Y =(yl, y2), ~’i is defined in (3A. 3), and

In what follows we assume that ~y (z) _ (U (z), V(z), p (z)) is a solution of

(IF. 5). In the new variables we use the same notation; that is,

and

Let
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For each b>o, 0rb, let

In the definitions of Dr and recall that F(A)=0. From (2C . 2) we
conclude that on the sets

we have that H (X, Y, p) = 0.

LEMMA 1. - There exists k > 0 with the following property. Given a > 0,
there exists 6 (a) such that if

then
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Proof - First consider the old (U, V, p) coordinates. There exist
smooth functions

such that if (U, V, p) E WA and II (U, V, p)-A ~ is sufficiently small, then

Note that G~ ( A, p) = 0 for each p, i =1, 2. Hence, at (U, p)=(A, -1),

Moreover, at (A, -1),

for i = 1, 2 and j = 1, 2. Hence, there exists a constant §1 such that if

then for i = 1, 2 and j = 1, 2,

It follows that if (A. 3) holds, and

then

Now suppose (A. 3) holds and

That is,
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From (2C. 2) and the assumption that F(A)=0, it follows that

Subtracting (A. 7) from (A. 6) we obtain

or

where K is chosen so that

in Together with (A. 4), (A. 8) implies that if (A. 3), (A. 5) hold, then

Assume Therefore, if (A. 4), (A. 5) hold, then

Because for each i,j in Ms, this implies that there exists
ki, which depends on K and a, such that if (A. 4), (A. 5) hold, then

Since WA is given in the new coordinates by {II X this implies that
for some k which depends on kl,

A similar argument shows that k can be chosen so that

which completes the proof.
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Proof - Let 6 (a) be as in Lemma 1. We assume that

and H (Y (o)) > ah (p (0)). From Lemma I it follows that

Therefore, either

We assume, without loss of generality, that

g2 (X, Y, Y, p) =o. Therefore, we may assume
that b is so small that in Ms,

Therefore, in Ms, 

or integrating,

If we let

then there exists a Zo  T such that and for

Ozzo’
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On the other hand, in Mo, if y 1 > 0,

If y(0) E D~ r2, then J~1 ~O~ C Y2 so

A similar argument shows that if r2, 
then in Ms, for 8 small,

This demonstrates that oo as r2 -~ 0. Choose r2 so small that

We assume that 8 is chosen so that in Ms,

A similar argument holds if xi  0 for ~=1 or 2. Therefore if I~ y (0) II  ~,
then which implies, by Lemma 1, that 

It remains to prove 0  1 + if r2 is sufficiently small. However,

which implies that

Since zo  T, it follows from (A. 9) that
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because of our choice of h (p) given in (A. 2).

LEMMA 3. - Given b, there exists ps, Ts such that if

then U(z)Xifor some ZE(O, Ts).

Proof - First suppose that p (o) _ -1, 0  H (o)  1/2 F (B), and

U (0) EX l’ From assumption F (6), there exists T1 such that y (z)  X 1 for
some ze(0, From continuous dependence of solutions on initial data
we can choose po such that if -1  p (o)  -1 + po, 0  H (o)  1/2 F (B),
and U (0) then U (z) ~ X 1 for some z E (0, 2 By a similar argument,
po and Tl can be chosen so that if 

0  H (o)  1/2 F (B), and U(0)EX3, then U(z)X3 for some 
Finally, if then the only problem is if y (z) gets close to A.

We rule this out, however, by (A. l lc). Hence, an argument similar to the
one just given shows that the lemma is true if U(0) E X 2.

COROLLARY 4. - Given b, M, there exists po, TM such that if

then U (z) crosses lD and lE as least M times for 0 - z _ TM.

Proof - Let To and Po be as in Lemma 3, and

If I p (0) + 1  po, then the equation p’ === 1 2014 p2 implies that

The result now follows from Lemma 3.
Recall that we are assuming that A=(0, 0). For ~, > o, let
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LEMMA 5. - T’here exists ~,a > 0 such that if ~,  ~,o and

then there exists Zo such that U (zo) rt X2 and 

Proof - Because A is assumed to be nondegenerate local maximum of
F, there exists ~,1 such that if then (U, O F (U) ~  o. It then

follows that if ~, > ~,1, and  U (o), V (o) ~ > o, then ] is

increasing for z > 0, at least until 
If the lemma is not true, then there exist sequences {qn}, {pn}, and

~ z" ~, zn> 0 for each n, such that

and if Y" (z) is the solution of (IF. 5) satisfying p", -1 ), then
and for Since and

I I  it follows that 0 as n - ~. Let

From the remarks at the beginning of the proof we know that

Choose ~,2 so that F (U) > 1/2 y if 
Suppose that Y" (z) = (U" (z), V" (z), -1 ). We reparametrize y" (z) so that

~ U" (0)~ = 03BB2, and and {~n} so that 03B6n  0  ~n,

and
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Let

Then at least some subsequence converges. We suppose, for
convenience, that it is the entire sequence. Let

One easily checks that

This all contradicts assumption (F6), thus proving the Lemma.
By continuous dependence of solutions on a parameter we conclude

then there exists zo such that U(zo)X2 and 

LEMMA 7. - Let po and ~,o be as in Corollary 6. There exists il E (0, 1)
and ~,1 E (0, ~,o) such that if il  i _ 1 , 0 _ 8 _ 2 ~, and d = (i, 8), then
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Proof - Near A, the behavior of WA is determined by the linearized
system (3A). One can solve the linearized system explicitly in terms of the
eigenvalues and eigenvectors given in (3A. 3), ( 3A . 4) . The lemma follows
because the U components of the eigenvalues /?*, i =1, 2, are nonzero.
Combining Corollary 6 and Lemma 7 we conclude

COROLLARY 8. - There exists 03C41~(0, 1), 03BB1>0 such that 
0 _ 9 _ 2 ~, and d = (r, 9), then y (d, z) = (U (z), V (z), p (z)) satisfies, for some

Remark 1. - To each there corresponds d=(r, 8) E ~ such
that y(z)=’Y(d, z). Surely, ~, can be chosen so that if 
then i 1  i  1. This is because small and t close to one both describe
trajectories close to the surface { p = -1 ~.

Let 03BB1 be as in Corollary 8,

Note that Let

LEMMA 9. - Let M be a positive integer. Then a and b3 can be chosen
so that given rl, there exists r2 such that if y (0) E D 2, for
z E (0, zo), y (zo) E and y (z) crosses lD and lE, fewer than M times for
z E (0, zo), then y (zo) ~ D-a,r1. We write r2 = E2 (rl).
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Proof - Choose S2 so that if y (z) E Ms, then H (z)  rl. By Corollary
4, there exists TM, which depends on M and b2, such that From
Proposition 2A. 1 we conclude that

Now

Therefore,

We now wish to obtain a lower bound on H (zo). Now y (z) corresponds
to a trajectory y (d, z) for some Suppose that d = (i, o). By choosing
r2 sufficiently small we may assume that i 1  i  1 where i 1 was defined
in Corollary 8. Then Corollary 8 implies that there exists z 1  z2 such that

It is clear that zl  z2  zo. For z2),

Moreover, because

it follows that, for all z,

Therefore, if z E (zl, z2), then

Because I I U (z2) - U (zl) ~~ > 11, (A. 12) implies that
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Recall that

for p  pE which we assume to be true. Therefore,

Recall, from (2C. 2), that

Then (A. 14), (A. 15), (A. 16) and (A. 17) imply that

Together with (A. 2) it follows that

Choose such that if

From (A. 13) it follows that there exists r2 such that

Together with (A .19) and the definition of Da, ,l this implies the desired
result.

LEMMA lo. - Fix 03B4>0 and let TM be as in Corollary 4. Then there
exists ro such that if y (0) E DE, then H (z)  1/2 F (B) for 0  z 

Proof - Recall that

From (A. 13) we have that if then
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Since tpE ( p) -~ -1 as p --~ -1 this implies that if r is sufficiently small and
-1p(0) -1+r, then

Together with (A. 20) this implies that if then

Therefore, it suffices to prove that if r is sufficiently small and 
then H ( 0)  1 /4 F ( B) .

However, H (0) depends continuously on y (0). As r -~ 0, y (z) approaches
a trajectory in the unstable manifold of A lying entirely in the surface
~ p = -1 ~ . On such a trajectory, H (z) = 0 for all z. This is because when
p = -1, cp ( p) = 0, and therefore H’ (z) = 0. By continuity we conclude that
H (0) is as small as we please by choosing r close to 0.

Completion of the proof of Proposition 3B .1. - Let a be as in Lemma 9,
and 03B4=inf{03B41, 03B42, 03BB} where 61 appeared in Lemma 2, b 2 appeared in
Lemma 9, and ~, appeared in Remark 1. Let po be as in Corollary 4, and
ro as in Lemma 10. Define rk, k = 1, ..., 2M by

That is, if rk has been defined and k is odd, then rk+ 1= E2 (rk)~ If k is

even, then Let r = r2 M and assume that From

Corollary 4, Lemma 10, and the assumption that U (zo) = B for some z 1,
it follows that either

(a) U (z) crosses lD and lE at least M times

or (A. 21)

If (A. 21 a) holds, then we are done. So suppose that (A. 21 b) holds.

Corollary 8 implies that U (z) must cross either lD or lE at least once
for some ze(0, T M)’
From Lemma 9, From Lemma 2, there exists 

such that for and 

Continuing in this way we conclude that for each k, 1 _ k _ M, there
exists zk such that either U (z) crosses lD and lE at least M times for Z  Zk,
or and U (z) crosses lD and IE at least k times for ze(0, z~).
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Setting k = M we conclude that U (z) must cross ID and lE at least M times.
From the Remark in Section 1 D we conclude that h (U) >__ M.
To complete the proof we note that iM can be chosen so that if iM  t  1,

0 - 9 - 2 ~c, and d = (i, 8), then ~y (d, z) E Dr for some z.
It is clear that iM does not depend on E, because all of our analysis was

near p = -1 where the equations do not depend on E.

APPENDIX B.

WEAKENING ASSUMPTION (F5)

The main place where assumption (F5) was used was to define the
notion of winding number. That is, if we let PD and PE be as in Section
ID and

then our theorem states that for each positive integer K there exists a
solution of (IF. 1) which winds around PD and PE, K or K + 1 times. We
now demonstrate how one can significantly weaken (F5) and still define a
notion of winding number. We then comment how one must alter the
proof of the theorems if one uses the weaker assumptions.
Note that PD and PE are three dimensional manifolds which do not

intersect the unstable manifold at A. Because the phase space is five
dimensional it then makes sense to count the number of times trajectories
wind around PD and PE. We shall now show how to weaken (F5) so that
it is still possible to define three dimensional manifolds which do not
intersect We first motivate the construction as follows.

Let us think of the graph of F (U) as a landscape with three mountain
peaks given by F (A), F (B), and F (C). Then ( lF . .1) describes the motion
of a ball rolling along the landscape with a certain friction cp ( p). A
consequence of (F5) is the following. Suppose we place, at z=0, the ball
on the mountainside with

Recall that 10 and lE were defined in ( 1C . 1). If U E, then the ball
will fall off the mountainside in forward and backwards time. Moreover,
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U (z) ~lD ~lE for all z. Our new assumption will state that there exist two
curves lD and l’E, which lie in N1, pass through D and E, and each divides
N 1 into two regions, such that if

then the ball will roll off the mountainside in a reasonable fashion. By a
"reasonable fashion" we mean that there exists zo > 0 such that U 

U ( - zo) ~ N1, and U (z) ~ ~ A, B, C } for f z I  zo. We now proceed to make
this all precise. We also show how this condition gives rise to two, three
dimensional manifolds with which we can define the notion of winding
number.

For convenience we assume that

Instead of (F5), we assume that there exists smooth curves 
and which, to begin with, satisfy

Let lD be the curve given by ~ (~rD (U2), U2) : ( U2 ( _ W f and lE the curve
given U2) ~ ~ Let

We assume that if y (z) _ (U (z), V (z), p (z)) is a solution of (IF. la), and

y (0) ~,J ~E, then there exists zo > 0 such that U N1,
and U (z) ~ A, B, or C for I z I  zo.

We now show how this assumption is used to define two, three dimen-
sional manifolds do not intersect In what follows, we assume that

y(z)=(U(z), V ( z), p (z)) is a solution of (IF. 1 a) . Let N 2 be as in (2A. 1),

Annales de l’Institut Henri Poincaré - Analyse non linéaire



603INFINITELY MANY RADIAL SOLUTIONS

and

It is not hard to see that P’D and P’E are smooth, three dimensional

manifolds. Moreover, our new assumption implies that

We feel that our theorems remain valid if we replace (F5) by this weaker
assumption, if in the definition of winding number we replace PD and PE
by P’D and P’E.

APPENDIX C.

EXPLANATION OF REMARK 2 IN SECTION IE

We can actually prove that for each integer K there exists at least two
radial solutions of (lB. 1), each with winding number K or K+l. This is
because the radial solutions we considered in this paper each corresponded
to parameters (r, 8) E ~o. Recall that in the definition of ~o, given in
Section 4A, we assumed that

If we let D1 = {(03C4, 8) : 03B8~ [81 (i), 92 (03C4)]}, then the same proof shows that
for each integer K there exists a radial solution with winding number K
or K + I which corresponds to parameters (r, 9) E ~1. Hence, we obtain
another solution.
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