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2 J. BEBERNES AND D. EBERLY

0. INTRODUCTION

The purpose of this paper is to give a precise description of the

asymptotic behavior for solutions u (z, t) of

(0 . 1 )

which blow-up in finite positive time T. We assume or

f (u) = eu, and where R is sufficiently large to

guarantee blow-up.
Giga and Kohn ([8], [11]) recently characterized the asymptotic behavior

of solutions u (z, t) of (0 . 1) with f(u)=uP near a blow-up singularity
assuming a suitable upper bound on the rate of blow-up and provided

n = 1 , 2, or n >_ 3 and p ~ n + 2 . For using recent a priori bounds> > _ n- R_ g

established by Friedman-McLeod [7], this implies that solutions u (z, t) of
(0. 1) with suitable initial-boundary conditions satisfy

provided !z ~C(T-t)~ for arbitrary and 

For/(M)=~ and ~=1 or 2, Bebernes, Bressan, and Eberly [1] proved
that solutions u (z, t) of (0.1) satisfy

provided I z I  C ( T - t) 1 ~2 for arbitrary C >_ o.
The real remaning difficulty in understanding how the single point

blow-up occurs for (0.1) rests on determining the nonincreasing globally
Lipschitz continuous solutions of an associated steady-state equation

where or or eY respectively and where
~(0)>0 and/(0)=0.

, we give

a new proof of a special case of a known result ([8], Theorem 1) that the
only such positive solution of (0.4) is y (x) = (~. For F (y) = and

~=1, Bebernes and Troy [3] proved that the only such solution is ~(x)=0.
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3SELF-SIMILAR BLOWUP

Eberly [5] gave a much simpler proof showing y (x) = 0 is the only solution
for the same nonlinearity valid for n = 1 and 2.
For 3  n _ 9, Troy and Eberly [6] proved that (0 . 4) has infinitely many

nonincreasing globally Lipschitz continuous solutions on [0, oo) for

F (y) = e’’ -1. Troy [10] proved a similar multiplicity result for (0 . 4) with

for 3n9 and/?> n+2for _ _ and p> -2.
This multiple existence of solutions complicates the stability analysis

required to precisely describe the evolution of the time-dependent solutions
u (z, t) of (0.1) near the blow-up singularity.

In this paper we extend the results of Giga-Kohn [8] and Bebernes-
Bressan-Eberly [1] to the dimensions n >_ 3 by proving that, in spite of the
multiple existence of solutions of (0. 4), the asymptotic formulas (0. 2) and
(0.3) remain the same as in dimensions 1 and 2. The key to unraveling
these problems is a precise understanding of the behavior of the noncon-
stant solutions relative to a singular solution of (0. 4) given by

for f(u)=eu and n >_ 3, and

This will be accomplished by

counting how many times the graphs of a nonconstant self-similar solution
crosses that of the singular solution. 

1. STATEMENT OF THE RESULTS

We consider the initial value problem

Vol. 5, n° 1-1988.



4 J. BEBERNES AND D. EBERLY

where cp is nonnegative, radially symmetric,
nonincreasing ( cp (z) > cp (x) for and on Q. The

two nonlinearities considered are

or

We assume R > 0 and cp (z) >_ 0 are such that the radially symmetric
solution u (z, t) blows-up in finite positive time T. By the maximum princi-
ple, u (., t) is radially decreasing for each t E [0, T) and ut (z, t) > 0 for
( z, T). °

Friedman and McLeod [7] proved that blow-up occurs only at z=0.
The following arguments are essentially those used in [7] to obtain the
needed a priori bounds.

Let U (t) = u (0, t). Since Au (0, t)  0 because u is radially symmetric and
decreasing, from ( 1. 1 ) it follows that U’ (t) _ f (U ( t)). Integrating, we have

and

for F (u) = uP
Define the radially symmetric function J (z, t) = u~ - ~ f (u) where 8 > 0 is

to be determined. Then For let

be the ball of radius R -11 centered at Let
= x ( ~, T). Since blow-up occurs only at z = 0, u (z, t) is bounded on

the parabolic boundary of and there. Since on

Qx(0, T), we have ut >_ C > 0 on the parabolic boundary of Hence,
for 03B4>0 sufficiently small, there. By the maximum prin-
ciple, J > 0 on An integration yields the following upper bound on

1

forf(u)=eu, and

In fact, since ut ( . , t) >_ 0 for t E [0, T), these bounds are true
for all t E [0, T).
As in [7], we also have the existence of t  T such that
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5SELF-SIMILAR BLOWUP

for/(M)==~ and

for f (u) = up.
In this paper we prove the following two theorems which describe the

asymptotic self-similar blow-up of u (z, t).

THEOREM 1. - (a) For n >_ 3, the solution u (z, t) of ( 1. 1 )-( 1. 2) satisfies
u (z, t) + In (T - t) - 0 uniformly on ~(z, t) : ( z I  C (T - t)1~2~ for arbitrary
CO as t-~T-.

( b) For n >_ 3 and p > n , , the solution u(z, t) of ( 1. 1 )-( 1. 3) satisfies
n-2

(T - u (z, t) - ~3~ uniformly on ~(z, t) : I z I  C (T- t)1~2~ for arbitrary
as t -~ T-.

THEOREM 2. - Let r = I z l and v (r, t) = u (z, t). There is a value rl E (0, R)
such that the following properties hold.

(a) v (rl, 0) = S* (rl) where S* is the singular solution given in (0. 5) or
(0. 6).

(b) v (r, O)S*(r)for 0  r  r 1.
(c) For each r E (0, rl) there is a t = t(r) E (O, T) such that v (r, t) > S* (r)

for t E (t, T).

2. THE SELF-SIMILAR PROBLEM

Since the solution u (z, t) of ( 1.. 1) is radially symmetric, the initial-

boundary value problem can be reduced to a problem in one spatial
dimension.

Let II’ _ ~(r, t) : OrR, If r = I z I, then v (r, t) = u (z, t) is
well-defined on n’ and satisfies

Vol. 5, n° 1-1988.



6 J. BEBERNES AND D. EBERLY

To analyze the behavior of v as t - T , we make the following change
of variables:

Then II’ transforms into II where

set

set

Then w (x, o) solves

where c (x) _ ( n -1 )/x - x/2; then

and if f(u) = uP, then

Using the a priori bounds established in section I for u (z, t) using the
ideas of [7], we have the following a priori estimates for w (x, ?). For
F ( w) == e W - 1 , from ( 1. 4) and ( 1. 6)

For from (1.5) and (1.7)

The estimates ( 1. 8) and ( 1. 9) imply that

for some positive constant y, and combining this with (2.7) and (2.8)
yields

Annales de I’Institut Henri Poincaré - Analyse non linéaire



7SELF-SIMILAR BLOWUP

where y and Jl are positive constants depending on 8. In fact, for

since and

vt (r, 

3. BEHAVIOR NEAR SINGULAR SOLUTIONS

The partial differential equation (2. 3) has a time-independent solution
fro certain choices of n and p. More precisely, if n > 2 and 

then

is a singular solution of (2 . 3). If n > 2 and p > n, then
n-2

is a singular solution of (2. 3). These solutions are in fact singular solutions
of (2. 1) because

and

for Ox 00.

Consider first the singular solution Se (x) of (2 . 3) with F (w) = e"’ -1.
Then Se(O+) = oo > w (0, 0) and

0)
since 2 (n - 2)  R 2 for blow-up in finite time (Lacey [9], Bellout [4]). This
proves that w (x, 0) intersects Se (x) at least once for 0  x  RT -1~2.

Similarly for and Sp(x), we can make the following
observations: 0) and 0). If
w(x, on [0, RT-1~2], we conclude by the maximum principle
that w (x, on n. By the result of Troy [10] (see part b of
Lemma 4. 4), any positive global nonincreasing time-independent solution
y (x) associated with ( 2 . 3) must interest Sp (x) transversally at least once.
By the argument given in Giga-Kohn [8] (or see our theorem 5 . 1 ),

Vol. 5, n° 1-1988.



8 J. BEBERNES AND D. EBERLY

w (x, a) - 0 as oo for each x ~ 0. In particular, w (0, 6) -~ 0, a contrad-
iction to (2. 8).

In either case, we can conclude that there exists a first 

such that w (Xl’ 0) = S * (x 1 ) and w (x, 0)  S * (x) on (0, Xi).

LEMMA 3 . 1. - There is a continuously differentiable function x 1 with

domain [0, oo) such that xl (0) = xl and w (xl (~), 6) = S* (xl (6)) for all

Proo f - Define We first claim that

0) whenever D=0. We had vt(r, t) > 0 on TI’. For f (v) = e",

and f or f (v) = vp,

If VD=(0, 0) at a point in II where D=0, then implies that

w03C3 = 0. For Dx = 0 implies that 1 For f (v) = vP, Dx = 0Q f( ) x p 
2 

x f( )

implies that In either case, is forced at some point

in TI’, a contradiction.

Secondly, we claim that at any value (x, 6) E II where D (x, d) = 0
and D (x, d)  0 in a left neighborhood of x.

If D (x, d)=0 and Dx (x, d)=0, then equations ( 2 . 3), ( 3 . 3), and ( 3 . 4)
imply that Dxx (x, d). In addition, since vt > 0 we have

Dcr (x, c~) > o. Thus Dxx {x, d) > 0, which implies that (x, d) is a local

minimum point for D, a contradiction to D  0 on a left neighborhood of
x. Thus, Dx (x, ~) > o.

Recall that v (r, 0) = cp (r) where A(p + f ~ 0. This implies

for x in a left neighborhood of xi. On a left neighborhood of xl, this in
turn yields Dx (x, 0))x >_ o. An integration yields Dx (xl, 0) > o. By the

implicit function theorem, there is a continuously differentiable function

x 1 (a) such that x 1 (0)=Xi and D (xi (o), o)=0 for some maximal interval

[0, Oo). If 60  oo, then by continuity D (x (60), 60) _ ~~

Annales de l’Institut Henri Poincaré - Analyse non linéaire



9SELF-SIMILAR BLOWUP

But Dx(x1 (60), 60) > o, so the implicit function theorem allows an
extension of the domain past a contradiction to the maximality of
[0, Thus, 60 = oo. D

For f(u) = uP, since w (R T -1 ~2, 0)  Sp ( R T -1 ~2), and
transversally, there must be a last point of intersection

between w (x, 0) and Sp (x), say RT-1/2). A construction similar
to Lemma 3. 1 leads to the existence of a continuously differentiable
function XL (cr) with domain [0, oo) such that and

for 

Let II1= ~(x, 0’): 6 > o, (a)~. We can now prove the following
comparison result on this set.

LEMMA 3 . 2. - D (x, ~)  0 for (x, cr) E II1.

Proof - By Lemma 3 . 1, we have shown that D - 0 on the parabolic
boundary of TI 1. Since F (w) is a local one-sided Lipschitz continuous
function, we can apply the Nagumo-Westphal comparison result to obtain

on TI1.
If D (xo, = 0 for some (xo, E II1, then Dx (xo, 60) _ 0,

Dxx (xo, and Da (xo, ~o) ~ 0 [since 0) when D = o]. But
implies D(xo, o) is positive for some a near cro. This

contradicts D  0 on 03A01.
Let for and

Dx (xl, 0) > 0, the supremum exists. For f(u)=eu, x2 _ RT-1~2, and for
f (u) = up, x2  xL  RT-1~2. Define x2 (6) = x2 e1~2 ~ and IIZ = ~(x, 6) :
cr>O, 

LEMMA 3.3. - D (x2 (~), Moreover, D (x, ~) > 0 for
(x, 

Proof - Let E (03C3) = D (x2 (03C3), 03C3). By definition of x2,

0)_->0. Also, E’(03C3)=D03C3(x2(03C3), a + 1 x a D x 6 a .0) > 0. Also, E’ ( «) a( 2( ) ) 2 (03C3), )

We had earlier that vt (r, t) >_ 0 on TI’. Via the change of variables
(r, t) -~ (x, ~), this implies E’ ( 6) >-- 0 in the case f (v) = e" and

e - ~~ d [ e~~ E ~ ( )] = E’ ( ) a + [i E ~ ( ) - >- 0 in the case f (v) = v . An integration
yields E ( ~) >_ 0 f or ~ > o.
On the parabolic boundary of TI2, we now have that By the

Nagumo-Westphal comparison theorem, on TI2. A similar argument
as in Lemma 3. 2 shows that D > 0 on TI2. D

Vol. 5, n° 1-1988.
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COROLLARY 3 . 4. - For each N > 0 there is a such that for each
w (x, a) intersects S,~ (x) at most once for x E [0, N].

Proof - For each N > 0 choose 6 N such that 

Lemma 3 . 2 guarantees that D (x, a)  0 for x E [0, xl (a)) and Lemma 3 . 3
guarantees that D (x, ~) > 0 for E (xl (a), x2 (6)]. For a> 6N,

[0, N] ~ [0, x2 (~)] by definition of so D = 0 at most once on this

interval. D
In section 5 we will see that xi (a) - l as a --+ 00 where or

Sp (1) = [3~.

4. ANALYSIS OF THE STEADY-STATE PROBLEM

The time-independent solutions of (2. 3)-(2.4) satisfy

In this section we will analyze the behavior of a particular class of solutions
of (4. 1) which are possible members of the co-limit set for the initial-

boundary value problems (2. 3)-(2. 4)-(2. 5) or (2. 3)-(2. 4)-(2. 6).
By the a priori bounds stated in section 2, we have that w (0, a) is

bounded More precisely for F(w)=ew-l, w(0, a) E [o, - In 6],
and for w (o, ([3/b)~], We also had

on fI and, for wO on TI.
If F (w) = ew - l, we need to consider those solutions y (x) of (4 .1)-(4 . 2)

which satisfy
for y’ (x) bounded below. (4 . 3)

For n =1 or 2, (4 . 1)-(4 . 2)-(4 . 3) has only the solution y (x) --- 0 ([3], [5]).
For 3 - n -_ 9, (4 . 1)-(4 . 2)-(4 . 3) has infinitely many nonconstant solutions

[6]. In this section we prove that all nonconstant solutions of (4. 1)-(4. 2)-
(4 . 3) must intersect the singular solution Se (x) at least twice. Hence, the

only solution intersecting Se (x) exactly once is y (x) = 0.
For we consider those solutions y (x) of (4.1)-(4.2)

which satisfy
and y(x»O for (4 . 4)

Annales de I’Institut Henri Poincaré - Analyse non linéaire
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For ~= 1, 2, or ~3 with ~~ 20142014 we prove a special case of the known

result [8] that the only solution to (4.1)-(4.2)-(4.4) is ~(x)=(~. Troy [10]
showed that, for ~3 and p> ~2014, (4.1)-(4.2)-(4.4) has infinitely many

n - 2

nonconstant solutions. In this section we show that any nonconstant
solution y (x) of (4.1)-(4.2)-(4.4) must intersect SpM at least twice.
Hence, the only solution intersecting Sp (x) exactly once is y (x) = (~.
LEMMA 4.1. - Consider initial ualue problem (4.1)-(4.2).
(a) Any solution to (4.1)-(4.2)-(4.3) must satisfy y(2n)~0.
(b) Any solution to (4.1)-(4.2)-(4.4) must satisfy y(2n)~ 03B203B2.
Proof - (a) In this case, so equation (4.1) implies

Let Then M"+c(x)M’+M=0,
and i/(0)=./(0). Define W(x)=u(x)y’(x)-u’(x)y(x). While

M(x)>0, W’+c(x)WO and W(0)=0, so an integration yields that
But so integrating from 0 to /2~

yields y (~/2M) ~ u =0.
Note that for a>0, if ~(z)=0, then ./(z)0 by uniqueness to initial

value problems, so for x>z.

(b) The function in convex, so and equation
(4.1) implies that v" + c (x) v’ + ~ 0 where v (x) = y (x) - P~. A similar argu-
ment as in part (a) shows that ~(/2~)~0, thus, Note that for (x>(~, if~(z)=~ then ~(z)0 by uniqueness to initial
value problems, for x > z. D

Define h (x) = y" + ~20142014j/. For F(~)=~-1, define g (x) = 1 + ~x~ and
x 2

for define It can be shown that h and g

satisfy the following equations:

Vol. 5, n° 1-1988.
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Also define W(x)=g(x)h’(X)_g’(X)h(x). Then

and

where I(x)~0, while g>0 on (0, x). Note that t - ) (x)=W(x)/[g(x)]2,
so while g > 0 on (0, x), we have

LEMMA 4. 2. - Consider initial value problem (4. 1)-(4. 2).
(a) If y (x) is a solution to (4 . 1)-(4 . 2)-(4 . 3) with a > 0, then g (x) must

have a zero.

(b) If y (x) is a solution to (4 . 1)-(4 . 2)-(4 . 4) with a > [3~, then g (x) must
have a zero.

Proo f - Suppose that for all xO. Note that 
because (X>O [part (a)] or a > [ia [part (b)]. Then (4 . 9) implies that

since h (0)/g (0)  0 and since Mul-

tiplying by xn - and integrating This contradicts the
n

boundedness of y’ in equation (4. 3) and forces y to be negative eventually,
contradicting equation (4 . 4). Thus, g (x) cannot be bounded away from
zero.

Suppose that g (x) > 0 for xO and that g is not bounded away from
zero. Suppose there is an increasing unbounded sequence { xk } i such
that g’ (x~) = 0. Equation (4. 5) implies that g" (xj = [1 - F’ (y (xk))] g 
However, Lemma 4 . 1 implies that 1- F’ (y (xk)) > 0 for k sufficiently large.
This forces g" 0 for k sufficiently large, a contradiction, since this
would imply that g has two local minimums without a local maximum
between. It must be the case that g’ (x)  0 for x sufficiently large and

g (x) -~ 0 as x -~ oo .

Suppose there is an increasing unbounded sequence { xk } ~ such that
g" (Xk) = 0 and g’ (xk) _ - L  o. Then equation (4 . 5) implies that

0 = c (Xk) g’ (Xk) + [F’ (y (xk)) -1 ] g (Xk) where c (Xk) --~ - oo, g’ (xk)  - L,
F’ (y (x~)) 2014 1 is bounded, and g (Xk) -~ 0. But then the right-hand side of

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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the last equality must become infinite, a contradiction. Thus, g’ (x)  0 for
x large and g’ (x) - 0.

In equation (4. 9), take the limit as x - oo to obtain

where we have used L’H6pital’s rule. This implies that ~(x)~ 201480 for
x sufficiently large. Multiplying by x"’~ and integrating yields

for x sufficiently large. As before, this contradicts the
n

boundedness of y’ in equation (4.3) and forces y to be negative eventually,
contradicting equation (4.4).

In all of the above cases, we arrived at contradictions, so there must be
a value Xo such g’ (xo)  0, on [0, xo). D

LEMMA 4 . 3 . - Consider problem (4.1)-(4.2)-(4.3).
(a) If 1 ~~~2, then the only solution is 
(b) If n > 2, then the only solution which intersects S~ (x) exactly once is

~(x)=0.

Proof - (a) Let 1~~~2, then -(2-~)~0. Let x~ be the first zero for
g(x). Suppose there is an x1>x0 such that and on

(Xo, xj. Equation (4.7) implies that

which is a contradiction. Thus, g’ (x)  0 for x >_ xo and so g (x) _ -s  0
for x~x>xo. But Multiplying by and

integrating yields y’ (x)  K - E x, contradicting equation (4. 3). As a result,
n

the only solution of (4 . 1)-(4. 2)-(4. 3) for these values of n is y (x) _-- o.
(b) Let n > 2. Define D (x) = y (x) - Se (x) where Se is the singular solution

discussed in section 3. Then

Vol. 5, n° 1-1988.
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Note that D’ > 0 while D  0 on (0, x]. Suppose that D (x)  0 for all xO.
Then eD -1  0 and Integrating this last equation yields

xn-1 e-~1~4~"2D’(x)>_xn-1 e-~1~4~x2D’(x)=:p>o.
Consequently,

But the right-hand side of this inequality must be positive for x sufficiently
large, contradicting our assumption. Thus, D(x) must have a first zero ~
and D’(x)>0 on(0, xj.
By Lemma 4.2, g (x) must have a zero xo. But then

D’(x0)=2g(x0)=0 and If D(xo)O, then there must have been
xo

a second zero x~ for D. Otherwise, D(x)>0 on xo], Suppose that
D>O for all Then there is an x sufficiently large such that D(x»O,
D’(x)0, D"(x)>0, and c(x)0. Evaluating equation (4.10) at x yields
0  (D" + c D’ + ~ -1) (x) = 0, a contradiction. Thus, D must have a second
zero x~.

We have shown that there are at least two points of intersection between
the graphs of y (x) and Se (x) for a>0. Thus, the only solution to (4.1)-
(4.2)-(4.3) which intersects Se(x) exactly once is y(x)~0. D

LEMMA 4 . 4. - 

(a) If 1 ~n~n~2, or ifn>2 and 03B2+1 2(2-n)~0, then the only solutions

(b) Ifn>2 and p + - (2 2014 ~)  0, then the only solution which intersects

S (x) exactly once is y (x) = P~.

Proof - (a) In this case, ~+-(22014~)~0. Let x~ be the first zero for
g(x). Suppose there is an X1>X0 such that g’(x1)=0 and g(x)0 on
(xo, xj. Equation (4. 8) implies that

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



15SELF-SIMILAR BLOWUP

which is a contradiction. Thus g’ (xo)  0 for x >_ xo and so g (x) _ - E  0

for But Multiplying by 

and integrating yields y’ (x)  K - E x, which f orces y (x) to have a zero.
n

This contradicts equation (4.4). As a result, the only solution for these
cases is y (x) --_ [3~.

(b) Lct n>2 and f+1 2(2-n)0(p>n n+2). The result for the cases

p > n + 2 is proved by Troy [10]. For the larger range p > n we have
n-2 n-2

the following proof. Define and

Q ( u) = F ( u)/u. Then W’+c(x)W=ySp[Q(y)-Q(Sp)]. Note that Q ( u) is

an increasing function. Also note that 

where Thus, xn -1 W (x) _ - 2 K x" - 2 - 2 ~ g (x) where

result, W ( x) - 0 as x -~ 0 + . Integrating the equa-
tion for W (x), we obtain

If for all xO, then since Q ( u) is increasing, W ( x)  0 for all x.
But then g(x»0 for all x is forced, a contradiction to Lemma 4 . 2.

Consequently, there must be a value z such that y (z) = Sp (z).
Also, W (x)  0 for XE[O, xo). At xo, 0  W’ (xo) which implies that

y (xo) > Sp (xo). [Note that W’ (xo) = 0 and y (xo) = Sp (xo) imply that

y’ (xo) = S’ (xo) which in turn would imply, by uniqueness to initial value
problems, that y (x) --_ Sp (x), a contradiction. So z  xo is necessary.

Let be small enough so that W (x 1 ) > o. Suppose that y> Sp for
all x > z. Then integrating the equation for W (x), we have W’ +c(x)WO
and

But ( S p/y)’ (x) = W ( x)/[y (x)J 2, so

For x sufficiently large, the right-hand side must become larger than 1, in
which case ( S/y) (x) ~ 1. That is, there is another value q where y (q) = S p (q).

Vol. 5,n° 1-1988.
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We have shown that there are at least two points of intersection between
the graphs of y (x) and Sp (x) for Thus, the only solution to (4.1)-
(4 . 2)-(4 . 4) which intersects Sp (x) exactly once is y (x) - 03B203B2. D

5. THE CONVERGENCE RESULTS

We are now able to precisely describe how the blowup asymptotically
evolves in dimensions n >_ 3. Let w (x, a) be the solution of (2.3)-(2.4)-
(2. 5) or (2. 3)-(2. 4)-(2. 6) depending on the nonlinearity being considered.
By Corollary 3. 4 we know that for each N > 0 there is a such that

w (x, a) intersects S*(x) at most once on [0, N] for each a> aN. By
Lemmas 4. 3 and 4. 4, the only possible steady-state solution of (2. 3) with

which intersects Se (x) at most once is y (x) --_ 0, and for
F (w) = wp - [3 w, the only possible steady-state solution of (2. 3) intersecting
Sp (x) at most once is y (x) = [3~.

Because of these observations we are now able to prove a convergence

or stability result similar to those given in [8] and [1] which prove that
the (o-limit set for (2. 3)-(2. 4)-(2. 5) consists of the singleton critical point
y (x) --_ 0, and for (2 . 3)-(2 . 4)-(2 . 6), y (x) = [3~.

For the sake of completeness, we include the proof of the following
theorem which is influenced by the ones given in [1] and [8].

THEOREM 5. 1. - Let n >_ 3.
(a) As a  00, the solution w (x, a) of (2 . 3)-(2 . 4)-(2 . 5) converges to

uniformly in x on compact subsets of [0, oo).
(b) As ~ -~ o~o, the solution w (x, a) of (2 . 3)-(2 . 4)-(2 . 6) converges to

y (x) --- [3~ uniformly in x on compact subsets of [0, oo).

Proof - Define w~ (x, a):=w(x, 6 + i) as the function obtained by
shifting w in time by the amount t. We will show that as t - oo, w’(x, a)
converges to the solution y (x) uniformly on compact subsets of f~ + 

Provided that the limiting function is unique, it is equivalent to prove that

given any unbounded increasing sequence {nj}, there exists a subsequence
such that wnj converges to y (x) uniformly on compact subsets of

~ + 
Let For i sufficiently large, the rectangle given by Q2N = ~ (x, ~):

0 _ x -- 2 N, ~ ~ (  2 N ~ lies in the domain of The radially symmetric
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17SELF-SIMILAR BLOWUP

function w (~, a) solves the parabolic equation

on the cylinder given by r2N = ~ (~, with

- 2 N y _ w ( ~, ~) _ ~, using ( 2 . 10) .
By Schauder’s interior estimates, all partial derivatives of w can be

uniformly bounded on the subcylinder r N  r 2N. Consequently, wai,
and wii are uniformly Lipschitz continuous on QN ~ Q2N. Their Lipschitz
constants depend on N but not on i. By the Arzela-Ascoli theorem, there
is a subsequence {nj}~1 and a function w such that wnj, wij converge
to w, wa, and wxx, respectively, uniformly on QN.

Repeating the construction for all N and taking a diagonal subsequence,
we can conclude that w"~ - w, w~ --~ w, and wxx uniformly on every
compact subset in IR+ x R. Clearly w satisfies (2. 3)-(2 . 4) 
For n _> 3 and the limiting function w intersects Se(x) at
most once since, by Corollary 3 . 4, wnj (x, o) intersects Se (x) at most once
on [0, N] for and For n >_ 3,

03B2+1 2(2-n)0, and

Corollary 3 . 4 guarantees that w intersects Sp (x) at most once. By (2 . 8)
we have 03B203B2~w(0, 03C3)~(03B2/03B4)03B2 for 03C3 >_ o.
We now prove that w is independent of 6. For the solution w (x, or) of

(2. 3)-(2. 4)-(2. 5) or (2. 6), define the energy functional

where G (w) = e"’ - w if F (w) = e"’ - I , and G (w) = /(p+ 1)-103B2 w2 if
2
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18 J. BEBERNES AND D. EBERLY

Multiplying equation ( 2 . 3) by p w6 and integrating f rom 0 to v yields
the equation

Moreover,

Therefore, for all a, b with 0 _ a  b, integrating ( 5 . 2) with respect to a
from a to b, and using (5.3), we have

Recalling that and observing that

for f (u) = eu, or w~ (v, 6) _ - R ur ( R, T ( 1- e - a)) for f (u) = uP, we see that
in either case the quantity is uniformly bounded ~. We conclude

that

For any fixed N, we shall prove that
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19SELF-SIMILAR BLOWUP

Note that it is not a restriction to assume that lim (nj+ 1- nj) = ~. For

all j large enough, and nj+1-nj~2N. Hence,all j J large e enough, N~RT-1/2[1 2(nj-N)] and Hence

by ( 5 . 4). As a consequence of (5. 5), we have

Fix any K arbitrarily large. For j sufficiently large, we have

In ( 5 . 7), the first two integrals on the right-hand side converge to zero as
j --~ oo . Recalling that - N) _ ~,, we see
that the sum of the absolute values of the last two integrals is bounded

by M ~kxn-1e-(1/4)x2dx where M is a positive constant. This integral

can be made arbitrarily small by choosing K large enough.

This proves that IN 03C1w203C3dxd03C3=0 and hence Thus,

w (x, 0) = y (x) where y (x) is a nonincreasing globally Lipschitz
continuous solution of (4. 1)-(4. 2) which intersects S* (x) at most once. If
f (u) = eu, then - In 6] and so y (x) - 0 is the only solution which
intersects Se (x) exactly (and thus at most) once on [o, oo). Similarly for
f (u) = up, y (0) E [[i~, ( [i/~) ~] and the only possible solution is y (x) -_- [i~.
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20 J. BEBERNES AND D. EBERLY

Since the limiting solution y (x) is unique in either case, ~T (x, ~) -~ y (x)
as T - oo and we have the result asserted. D

Proof of Theorem l. - The last theorem shows that w (x, ~) --~ y (x)
uniformly in x on compact subsets of [0, oo ) as j -~ 00.

(a) In the case f (u) = eu, changing back to the variables (r, t), we have
that v (r, t) + ln (T - t) -~ 0 as t --~ T - provided for arbitrary

In particular, v (0, t) + In (T - t) - 0 as t - T -.
(b) In the case f (u) = up we obtain t) -~ [3~ as t --> T - pro-

vided r  C (T- t)1~2 for arbitrary C  O. In particular, (T - t)p v (0, t) - ~i~
as t-~T-.

Proof of Theorem 2. - Theorem 5. 1 guarantees that the first branch
of zeros of D ( x, ~) = w ( x, ~) - S * * (x) is bounded and converges
to where Se (l) = 0 or Sp (1) _ [3~.

Define rl = xl T1~2. Then D (xl, 0) = 0 implies that v (rl, 0) = S* (rl). In
addition, v (r, 0)  S * (r) for re(0, r 1).

Since Xl (0) is bounded and since d d03C3D(rT-1/2e1/203C3,03C3)~0 for each

there is a value 6 > 0 such that

and 6) > 0 for Changing back to the variables ( r, t)
with we obtain v (r, t) > S* (r) for T).

Remark. - After this paper was completed we received the preprint
[11] of Giga and Kohn. In the introduction there is a detailed discussion
of self-similar solutions and their importance in describing the behavior
of solutions near a blow up point. The referee pointed out a number of

papers ([12] to [18]) which are related to the ideas used in this paper.
Their relevance is discussed in [11]. The referee also pointed out a briefer
proof of Lemma 4. 1 which we have used.
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