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2 J. BEBERNES AND D. EBERLY

0. INTRODUCTION

The purpose of this paper is to give a precise description of the
asymptotic behavior for solutions u(z, t) of

u,=Au-+f (1) ©.1)

which blow-up in finite positive time T. We assume f (u)=u?(p>1) or
f(w=e" and zeBy={zeR":|z|<R} where R is sufficiently large to
guarantee blow-up.

Giga and Kohn ([8], [11]) recently characterized the asymptotic behavior
of solutions u(z, t) of (0.1) with f (u)=u®? near a blow-up singularity
assuming a suitable upper bound on the rate of blow-up and provided

2 .
n=1,2,orn=3and p< iz For By = R" using recent a priori bounds
n_
established by Friedman-McLeod [7], this implies that solutions u(z, t) of
(0. 1) with suitable initial-boundary conditions satisfy

(T—0Pu(z,t)> B ast—->T" 0.2

1
provided |z| SC(T —1)"/? for arbitrary C20 and where f= T
p._
For f(u)=¢€" and n=1 or 2, Bebernes, Bressan, and Eberly [1] proved
that solutions u(z, t) of (0. 1) satisfy

u(z, )+In(T—) >0 ast—T" (0.3)

provided | z| < C(T —1)*/? for arbitrary C20.

The real remaning difficulty in understanding how the single point
blow-up occurs for (0. 1) rests on determining the nonincreasing globally
Lipschitz continuous solutions of an associated steady-state equation

y”+(g—§>y’+F(y)=O, O<x<w (0.4
X

where F(y)=y"~By or e*—1 for f(y)=»”" or ¢’ respectively and where
y(0)>0 and y’ (0)=0.

For F(y)=yP~Byin the cases n=1, 2, or n=23 and p= —n—z, we give

a new proof of a special case of a known result ([8], Theorem 1) that the
only such positive solution of (0.4) is y(x)=pP. For F(y)=¢’—1 and
n=1, Bebernes and Troy [3] proved that the only such solution is y (x)=0.
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SELF-SIMILAR BLOWUP 3

Eberly [5] gave a much simpler proof showing y (x)=0 is the only solution
for the same nonlinearity valid for n=1 and 2.

For 3<n=<9, Troy and Eberly [6] proved that (0.4) has infinitely many
nonincreasing globally Lipschitz continuous solutions on [0, co) for
F(y)=¢e"—1. Troy [10] proved a similar multiplicity result for (0.4) with
F(y)=y?*—Byfor3<n<9and p> n+§.

n—

This multiple existence of solutions complicates the stability analysis
required to precisely describe the evolution of the time-dependent solutions
u(z, t) of (0.1) near the blow-up singularity.

In this paper we extend the results of Giga-Kohn [8] and Bebernes-
Bressan-Eberly [1] to the dimensions n=3 by proving that, in spite of the
multiple existence of solutions of (0.4), the asymptotic formulas (0.2) and
(0.3) remain the same as in dimensions 1 and 2. The key to unraveling
these problems is a precise understanding of the behavior of the noncon-
stant solutions relative to a singular solution of (0.4) given by

Se(x)zlnz(nzz) (0.5)
X
for f(u)=e* and n=3, and
S, (x)={ —4B[B+ %(z—n)]/ﬂ}ﬁ 0.6)

1
for f (w)=u” and B+ E(Z—n)<0, n=3. This will be accomplished by

counting how many times the graphs of a nonconstant self-similar solution
crosses that of the singular solution.

1. STATEMENT OF THE RESULTS

We consider the initial value problem
u,—Au=f(u), (z, HeQx (0, T)
u(z, 0)=o0(z2), zeQ) (1.1
u(z, 1)=0, (z, )edQ x (0, T)

Vol. 5, n® 1-1988.



4 J. BEBERNES AND D. EBERLY

where Q=B ={zeR": |z|z|<R}, ¢ is nonnegative, radially symmetric,
nonincreasing (¢ (z) 2 @ (x) for |z|<|x|<R), and A¢ +f (¢)=0 on Q. The
two nonlinearities considered are

fw=e (1.2)

or
fw=u®, uz0, p>1. (1.3)

We assume R>0 and ¢(z)=0 are such that the radially symmetric
solution u(z, t) blows-up in finite positive time T. By the maximum princi-
ple, u(.,t) is radially decreasing for each te[0, T) and u,(z, t)>0 for
(z, ) eQ2x (0, T).

Friedman and McLeod [7] proved that blow-up occurs only at z=0.
The following arguments are essentially those used in [7] to obtain the
needed a priori bounds.

Let U (t)=u(0, t). Since Au (0, 1) £0 because u is radially symmetric and
decreasing, from (1. 1) it follows that U’ (¢) </ (U (¢)). Integrating, we have

—In(T—0)Zu(, 1), tel0, T) (1.4)
for f (u)=¢", and

BP(T—1) " P<u(, 1), tel0, T) (1.5)
for F (w)=u?

Define the radially symmetric function J(z, t)=u,—9 f (1) where 6>0 is
to be determined. Then J,—AJ—f (¥)J=0. For 0<n<min(R, T), let
Q,=Bg_, be the ball of radius R—n centered at O0eR" Let
I, =Q, x(n, T). Since blow-up occurs only at z=0, u(z, t) is bounded on
the parabolic boundary of I, and f(4)<C,<oo there. Since 4,>0 on
Qx(0, T), we have 4,=C>0 on the parabolic boundary of II,. Hence,
for 8>0 sufficiently small, J=C—8C,>0 there. By the maximum prin-
ciple, J>0 on II,. An integration yields the following upper bound on
u (0, t) :

u(0, ) —In[3(T—1)], te[n, T) (1.6)
for f (u)=¢" and
B

u(0, t)g<g>B(T—:)*B, te[n, T) (1.7

for f (u)=u?. In fact, since u,(., t) =0 for t€[0, T), these bounds are true
for all te[0, T).

As in [7], we also have the existence of t<T such that

|Vu(z, |<[2e*@ 72, (2, 0eQx[1, T) (1.8)
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SELF-SIMILAR BLOWUP 5

for f(u)=¢" and
Vu, o)< [i[u«), t)]P“Jm, @ 0edxET)  (1.9)
p+1

for f (W) =u”.
In this paper we prove the following two theorems which describe the
asymptotic self-similar blow-up of u(z, 1).

THEOREM 1. — (a) For n=3, the solution u(z, t) of (1.1)-(1.2) satisfies
u(z, ) +In(T—1t) - 0 uniformly on {(z, 1):|z|<C(T—0)'?} for arbitrary
C=20ast->T".

(b) For n23 and p> _LZ’ the solution u(z, t) of (1.1)~(1.3) satisfies

n—
(T—0)Pu(z, 1) > B* uniformly on {(z, t):|z|<C(T—t)*?} for arbitrary
Cz0ast->T".

THEOREM 2. — Let r=|z|and v(r, t)=u(z, t). There is a value r, € (0, R)
such that the following properties hold.

(@) v(ry, 0)=Sx(r,) where Sy is the singular solution given in (0.5) or
(0.6).

(b) v(r, 0)<S«(r) for O<r<r,.

(c) For each re(0, ry) there is a t=1(r)e(0, T) such that v(r, t)>Sx(r)
for te(t, T).

2. THE SELF-SIMILAR PROBLEM

Since the solution u(z, r) of (1.1) is radially symmetric, the initial-
boundary value problem can be reduced to a problem in one spatial
dimension.

Let I'={(r, 1): 0<r<R, 0<t<T}. If r=|z|, then v(r, H=u(z, ©) is
well-defined on IT’ and satisfies

n—1
v,=0,+——0v,+f(v), (r, Hell’ (2.1)
r
v(r, 0)=¢(r), re(0,R)

(2.2
v, (0, 1)=0, v(R, t)=0, te(0, T)
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6 J. BEBERNES AND D. EBERLY

To analyze the behavior of v as t —» T~, we make the following change
of variables:

o=In[T/(T—1)], x=r(T—p) 2

Then IT” transforms into IT where
M={(x, 0): 6>0, 0<x<RT 12¢l/20}
If f(u)=e¢" set
w(x, o)=v(r, £)+In(T—1).
If f(W)=uP, set
w(x, o)=(T—=0Po(r, ?).
Then w(x, o) solves

wo=w, +c(x)w,+F(w), (x, o)ell (2.3)

w_ (0, 6)=0, ce(0, w) (2.9
where ¢ (x)=(n—1)/x—~x/2; if f(u)=¢", then
Fwy=e*—1

w(RT 12120 5)= —5+InT, ce(0, w) (2.5

w(x, 0)=0(xT'*)+InT, xe(0, RT 1/}
and if f (u)=uP, then
Fw=w—fw
W(RT 26125 5)=0,  oe(0, ) (2.6)
w(x, 0)=TP@(xT¥?), xe(0, RT3

Using the a priori bounds established in section I for u(z, t) using the
ideas of [7], we have the following a priori estimates for w(x, c). For
F(w)y=e"—1, from (1.4) and (1. 6)

0=w(0, o)L —In3, c=0. 2.7

For F(w)=wP—Bw, from (1.5) and (1.7)
BP=w(0, o) <(B/3)’, o0 (2.8)

The estimates (1. 8) and (1.9) imply that
—v=w,(x, 6)<0 onll (2.9)

for some positive constant y, and combining this with (2.7) and (2.8)
yields

—yxZw(x, o)Su onll (2.10)

Annales de I'Institut Henri Poincaré - Analyse non linéaire



SELF-SIMILAR BLOWUP 7

where vy and p are positive constants depending on &. In fact, for
Fw)=w?—Bw, w(x, o)=(T—t)Pov(r,t)=0 since v(r, 0)=20 and
v, (r, )=0.

3. BEHAVIOR NEAR SINGULAR SOLUTIONS

The partial differential equation (2.3) has a time-independent solution
fro certain choices of n and p. More precisely, if n>2 and F(w)=e"—1,
then

S, (x)=In[2 (n—2)/x] (3.1)

is a singular solution of (2.3). If F(w)=w”—Bw, n>2 and p> —n—z, then
n_

S,,<x>={—4ﬁ[ﬁ+é(z—m]/ﬁ}B (3.2

is a singular solution of (2. 3). These solutions are in fact singular solutions
of (2. 1) because

1 —1
1+ x8(=0, S/+ 728 +exp(S,) =0 (3.3)
x
and
1 rs 7 r’ n_ll p
BS,+x8,=0.  §;=0,  S{+=—S+(5);=0 (.4

for 0<x < c0.
Consider first the singular solution S,(x) of (2.3) with F(w)=¢e*—1.
Then S,(0%) =00 >w(0, 0) and

S,(RT"Y?)=In[2(n—2) TR "2 <In T=w(RT" 12, 0)

since 2 (n—2)<R? for blow-up in finite time (Lacey [9], Bellout {4]). This
proves that w(x, 0) intersects S, (x) at least once for 0<x <RT ~ /2,
Similarly for F(w)=w’—Bw and S,(x), we can make the following
observations: S,(0")=00>w(0, 0) and S,(RT""*)>0=w((RT 2 0). If
w(x, 0)<S,(x) on [0, RT '], we conclude by the maximum principle
that w(x, 6)<S,(x) on II. By the result of Troy [10] (see part b of
Lemma 4.4), any positive global nonincreasing time-independent solution
y(x) associated with (2.3) must interest S, (x) transversally at least once.
By the argument given in Giga-Kohn [8] (or see our theorem 5.1),

Vol. 5, n® 1-1988.



8 J. BEBERNES AND D. EBERLY

w(x, ) > 0 as o — co for each x=0. In particular, w(0, o) - 0, a contrad-
iction to (2. 8).

In either case, we can conclude that there exists a first x, (0, RT1/%)
such that w(x;, 0)=Sx(x;) and w(x, 0) <Ss(x) on (0, x,).

LemMa 3.1. — There is a continuously differentiable function x, (o) with
domain [0, c0) such that x, (0)=x, and w(x, (), 6)=S«(x, (c)) for all
cz=0.

Proof. — Define D(x, o)=w(x, 0)—Sx«(x). We first claim that
VD =#(0, 0) whenever D=0. We had v,(r, t)>0 on IT". For f(v)=e",

v,=(T—1)~! <w0+ 1+ %xw,C),
and for f (v)=0v7,
v,=(T—1) " F! <w0+Bw+ %xwx)

If VD=(0, 0) at a point in IT where D=0, then D,=0 implies that
w,_=0. For f (v)=¢", D,=0 implies that 1+ %xwx=0. Forf (v)=0v7,D,=0

_— 1 . . .
implies that Bw+ Exwxzo. In either case, v,=0 is forced at some point

in IT’, a contradiction.

Secondly, we claim that D, 50 at any value (X, 6) e Il where D (x, 6)=0
and D(x, 6)<0 in a left neighborhood of x.

If D(x, §)=0 and D, (%, 6)=0, then equations (2.3), (3.3), and (3.4)
imply that D, (%, §)=D,(%, 6). In addition, since v,>0 we have
D, (%, 6)>0. Thus D, (x, 6)>0, which implies that (X, &) is a local
minimum point for D, a contradiction to D <0 on a left neighborhood of
x. Thus, D, (%, 6)>0.

Recall that v (r, 0)= ¢ (r) where Ap+f (¢) =0. This implies

D,.(x, 0)+ EDX (x, )+ F(w(x, 0)—F(S«(x))20
X

for x in a left neighborhood of x;. On a left neighborhood of x;, this in
turn yields (x* ! D, (x, 0)),20. An integration yields D, (x;, 0)>0. By the
implicit function theorem, there is a continuously differentiable function
x, (o) such that x, (0)=x, and D(x, (o), 6)=0 for some maximal interval
[0, 6,). If 64< 0, then by continuity D(x, (c,), 6,)=0.

Annales de Ulnstitut Henri Poincaré - Analyse non linéaire



SELF-SIMILAR BLOWUP 9

But D, (x, (oy), 64)>0, so the implicit function theorem allows an
extension of the domain past o, a contradiction to the maximality of
[0, 6y). Thus, ocy=00. []

For f(u)=u”, since w(0, 0)<S,(0%), w(RT "2, 0)<S,(RT~"?), and
w(x;, 0)=S,(x,) transversally, there must be a last point of intersection
between w(x, 0) and S, (x), say x €(x,, RT~'?). A construction similar
to Lemma 3.1 leads to the existence of a continuously differentiable
function x;(c) with domain [0, «v) such that x;(0)=x, and
w(x,(0), 6)=S,(x, (o)) for 520.

Let IT, ={(x, 6): 6>0, 0<x<x, (5)}. We can now prove the following
comparison result on this set.

Lemma 3.2, — D(x, 6)<0 for (x, o)eIl,.

Proof. — By Lemma 3.1, we have shown that D <0 on the parabolic
boundary of IT,. Since F(w) is a local one-sided Lipschitz continuous
function, we can apply the Nagumo-Westphal comparison result to obtain
D<0on I,.

If D(xy 09)=0 for some (x4 0o)€ll;,, then D,_(x,, c,)=0,
D,. (%o, 69)=<0 and D, (x,, 6,)#0 [since VD (0, 0) when D=0]. But
D, (x, 0,)#0 implies D(x,, o) is positive for some o near G,- This
contradicts D<0 on IT,.

Let x,=sup{xe(x,, RT"'?*}: D(s, 0)=0 for se[x,, 0)=0 and
D, (x4, 0)>0, the supremum exists. For f(u)=e* x,<RT /2 and for
f@=uP, x,<x, <RT "2 Define x,(c)=x,e'?° and IT,={(x, o):
>0, x; (6)<x<x, (c)}.

Lemma 3.3. — D(x,(0), 6)20 for all 6=0. Moreover, D (x, c)>0 for
(x, o)ell,.
Proof. — Let E(o)=D(x,(c), ). By definition of X,
1
E(0)=D(x,, 0)20. Also, E’'(c)=D,(x,(c), o)+ 2% (0) D, (x, (o), o).
We had earlier that v,(r, )20 on II". Via the change of variables
(r,t) > (x, 0), this implies E’(c)=0 in the case f()=e" and

s 4 . . .
e B"d—[e“"E(o)]=E’(G) +BE(0)20 in the case f (v)=0v". An integration
c
yields E(o) 20 for 620.
On the parabolic boundary of IT,, we now have that D>0. By the
Nagumo-Westphal comparison theorem, D >0 on IT,. A similar argument
as in Lemma 3.2 shows that D>0 on I, O
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10 J. BEBERNES AND D. EBERLY

CoROLLARY 3.4. — For each N>0 there is a ox>0 such that for each
0 > Oy, W(X, o) intersects S« (x) at most once for xe[0, N].

Proof. — For each N>0 choose oy such that N=x, exp(%cN).

Lemma 3.2 guarantees that D(x, o) <0 for x€[0, x, (o)) and Lemma 3.3
guarantees that D(x, o)>0 for e(x,(0), x,(0)] For o>o0y,
[0, N] £ [0, x, ()] by definition of oy, so D=0 at most once on this
interval. [J

In section 5 we will see that x, (c) >/ as o - co where S,(I)=0 or

S, ()=P".

4. ANALYSIS OF THE STEADY-STATE PROBLEM

The time-independent solutions of (2. 3)-(2. 4) satisfy
V' +c(x)y'+F(y)=0, 0<x<w 4.1
yO)=o, Yy (0)=0 (4.2)

In this section we will analyze the behavior of a particular class of solutions
of (4.1) which are possible members of the ®-limit set for the initial-
boundary value problems (2. 3)-(2.4)-(2.5) or (2.3)-(2.4)-(2.6).

By the a priori bounds stated in section 2, we have that w(0, o) is
bounded for c=0. More precisely for F(w)=e¢"—1, w(0, 0)e[0, —In3],
and for F(w)=w?P—Bw, w(0, o)e[BP, (B/3)F], for c=0. We also had
—y=w,(x, 5)£0 on IT and, for F(w)=w?—Bw, w=0 on IL.

If F(w)=e"—1, we need to consider those solutions y (x) of (4.1)-(4.2)
which satisfy

y@)=az0, ¥y (x)Z0 for x=0, y (x)boundedbelow. (4.3)

For n=1 or 2, (4.1)-(4.2)-(4.3) has only the solution y (x}=0 ([3], [5]).
For 3<n<9, (4.1)-(4.2)«(4.3) has infinitely many nonconstant solutions
[6]. In this section we prove that all nonconstant solutions of (4.1)-(4.2)-
(4.3) must intersect the singular solution S,(x) at least twice. Hence, the
only solution intersecting S, (x) exactly once is y (x)=0.

For F(w)=w”—Bw, we consider those solutions y(x) of (4.1)-(4.2)
which satisfy

y@)=a=pf, ¥y (x)Z0 and  y(x)>0 for x=20. (4.4)

Annales de UInstitut Henri Poincaré - Analyse non linéaire



SELF-SIMILAR BLOWUP 11

) n .
For n=1, 2, or n23 with p< —— we prove a special case of the known

result [8] that the only solution to (4.1)-(4.2)-(4.4) is y (x)=pP. Troy [10]
showed that, for n>3 and p> n—+—§, (4.1)-(4.2)-(4.4) has infinitely many
n—

nonconstant solutions. In this section we show that any nonconstant
solution y(x) of (4.1)-(4.2)-(4.4) must intersect S,(x) at least twice.
Hence, the only solution intersecting S, (x) exactly once is y (x)=BP.

LemMA 4. 1. — Consider initial value problem (4.1)-(4.2).

(a) Any solution to (4.1)~(4.2)~(4.3) must satisfy y(\/ﬂ)go.

(b) Any solution to (4.1)-(4.2)-(4.4) must satisfy y(\/Z_ﬁ)é BE.

Proof. — (a) In this case, F(y)=e’—12y, so equation (4.1) implies
that y”+c(x)y' +y=<0. Let u(x)=o(1—x%/2n). Then u”" +c(x)u’ +u=0,
u(0)=y(0), and u’ (0)=y"(0). Define W (x)=u (x)y’ (x) —u’ (x)y (x). While
u(x)>0, W+c(x)W=0 and W(0)=0, so an integration yields that
W (x)<0. But (y/u)’ (x)=W (x)/[u(x)]*£0, so integrating from 0 to \/ﬂ
yields y(\/ﬁ)§u(\/ﬂ)=0.

Note that for a>0, if y(z)=0, then y’(z)<0 by uniqueness to initial
value problems, so y (x) <0 for x> z.

(b) The function F (y) =y"— By in convex, so F(y)=y—pP and equation
(4.1) implies that v +c (x) v’ +v<0 where v (x) =y (x) — B*. A similar argu-
ment as in part (a) shows that v ( \/ﬂ)éo, thus, y ( \/ﬁ)§ BP.

Note that for a> B, if y(z)=pP, then )’ (z)<0 by uniqueness to initial
value problems, so y(x)<BP for x>z. [J

. —1 . 1
Define h(x)=y" + Ly’. For F(y)=e"—1, define g(x)=1+ Exy’ and
X

. 1
for F(y)=y?—By, define g(x)=By+§xy’. It can be shown that % and g

satisfy the following equations:

g +c() g +[F'(»)—-11g=0, g(0)>0, g (0)=0. 4.5
W' +c(x)W+[F' (y)—11h=~F"(») ()%, h(0)<0, K (0)=0. 4.6)
For F(y)=e"—1,

1 1 1
——xg=—-xe’+=-(2—-n)y. 4.7
g—3xe 5 2( )y 4.7
For F(y)=y"—By,
1 1 1
——xg=——xyP+ | B+ -(2— “. 4.8
- xe 5% [B 2( n)]y (4.8)

Vol. 5, n° 1-1988.



12 J. BEBERNES AND D. EBERLY

Also define W (x)=g (x)h’' (x)—g" (x)h(x). Then

Wt+e(x)W=—F"(»)(")*g, W(0)=0,
and

w<x)=—x1‘"e‘”‘”"zrs"1‘?“/4”2F”[y(s)][y’<s)12g<s)ds (10

[

=:—x1 7"l (x)

where 1(x)=0, while g >0 on (0, x). Note that (h> (x)=W (x)/lg ()]
g
so while g>0 on (0, x), we have

h<x>=”—@g<x>—g<x>fxt“""“"‘“zI(t)[g(t)]*dt (4.9)
2(0) 0

LemMA 4.2. — Consider initial value problem (4.1)-(4.2).
(a) If y(x) is a solution to {4.1)-(4.2)-(4.3) with a>0, then g(x) must
have a zero.

(b) If y(x) is a solution to (4.1)-(4.2)-(4.4) with o> BP, then g(x) must
have a zero.

Proof. — Suppose that g(x)=e>0 for all x=0. Note that h(0)<0
because a>0 [part (a)] or a>pP [part (b)]. Then (4.9) implies that
h(x)<[h(0)/g (0)] g (x) < —8 <0 since h(0)/g (0)<0 and since I{x) 20. Mul-

tiplying by x*~ ! and integrating yields y’ (x)< — —x. This contradicts the
n

boundedness of ¥’ in equation (4. 3) and forces y to be negative eventually,
contradicting equation (4.4). Thus, g(x) cannot be bounded away from
ZeTo.

Suppose that g(x)>0 for x>0 and that g is not bounded away from
zero. Suppose there is an increasing unbounded sequence { x, }§° such
that g’ (x,)=0. Equation (4.5) implies that g (x,)=[1—F"(y (x,))] g (x}).
However, Lemma 4. 1 implies that 1 —F'{y (x,)) >0 for k sufficiently large.
This forces g (x,)>0 for k sufficiently large, a contradiction, since this
would imply that g has two local minimums without a local maximum
between. It must be the case that g’ (x)<0 for x sufficiently large and
g(x)>0as x— 0.

Suppose there is an increasing unbounded sequence { x, }° such that
g (x)=0 and g’ (x,)<—L<0. Then equation (4.5) implies that
0=c(x) g (x)+[F' (y (x))—1lg (x,) where c(x)—> —c0, g(x)=-L,
F’(y(x,))—1 is bounded, and g(x,) — 0. But then the right-hand side of
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the last equality must become infinite, a contradiction. Thus, g’ (x) <0 for
x large and g’ (x) — 0.
In equation (4.9), take the limit as x — oo to obtain

lim h(x)=— lim g(x) xtl‘"e‘”‘“‘zI(t)[g(t)]‘zdt

x = @ x = 0

= lim x' eV [(x)[g’ (x)] = —o0
where we have used L’Hdpital’s rule. This implies that h(x)< —8<0 for
x sufficiently large. Multiplying by x" ! and integrating yields

y (x)§K—§x for x sufficiently large. As before, this contradicts the
n

boundedness of y* in equation (4. 3) and forces y to be negative eventually,
contradicting equation (4. 4).

In all of the above cases, we arrived at contradictions, so there must be
a value x, such that g(x,) =0, g'(x,) <0, and g(x)>0on [0, x,). [J

LemMA 4.3. — Consider problem (4.1)-(4.2)-(4.3).

(a) If 1=n<2, then the only solution is y (x)=0.

(b) If n>2, then the only solution which intersects S,(x) exactly once is
y(x)=0.

Proof. — (a) Let 1<n<2, then %(2—n)§0. Let x, be the first zero for

g(x). Suppose there is an x,>x, such that g’(x,)=0 and g(x)<0 on
(X0, X1]. Equation (4.7) implies that

1 i 1 1 1 ,
0<— £x1g(x1)=g (xy)— £x1g(x1)= - 5x1 e 4 5(2_'1))’ (x;)<0

which is a contradiction. Thus, g’(x)<0 for x=x, and so g(x)< —e<0
for x2x>x,. But h(x)=g(x)—e* @< g (x)< —e. Multiplying by x" ! and

. . . € - .
integrating yields y"(x) <K — — x, contradicting equation (4. 3). As a result,
n

the only solution of (4.1)-(4.2)-(4.3) for these values of n is y (x)=0.

(b) Let n> 2. Define D(x)=y (x)—S, (x) where S, is the singular solution
discussed in section 3. Then
2(n—2)

x2

D" +c¢(x)D’'+ (€—-1)=0, O<x<oo,

D(0*)=—00, D'(0*)=00. } (4.10)
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14 1. BEBERNES AND D. EBERLY

Note that D’>0 while D<0 on (0, x]. Suppose that D(x)<0 for all x>0.
Then ¢®—1<0 and D +c¢ (x) D’ 20. Integrating this last equation yields
X1~ 1 o~ (1/4) 22 D’ (x)g;n- L ,—(1/4) %2 D’(f)::p>0.

Consequently,

X

D(x)gD(f)+j prir e gy

X

But the right-hand side of this inequality must be positive for x sufficiently
large, contradicting our assumption. Thus, D (x) must have a first zero x,
and D’(x)>0 on (0, x,].

By Lemma 4.2, g(x) must have a =zero x, But then
2
D’ (xp) =—g (xq)=0 and x,>x,. If D(x,) <0, then there must have been
Xo
a second zero x, for D. Otherwise, D(x)>0 on (x,, x,], Suppose that
D >0 for all x=x,. Then there is an x sufficiently large such that D (x) >0,
D’ (x)<0, D”(x)>0, and c(x)<0. Evaluating equation (4. 10) at x yields
0<(D”+c¢D’+e”—1)(x)=0, a contradiction. Thus, D must have a second
ZEr0 X,.

We have shown that there are at least two points of intersection between
the graphs of y(x) and S,(x) for a>0. Thus, the only solution to (4. 1)-
(4.2)-(4.3) which intersects S, (x) exactly once is y(x)=0. [

Lemma 4.4. — Consider initial value problem (4.1)-(4.2)-(4.4).

(a) If1€n=nZL2, orifn>2 and B+ %(2—n)§0, then the only solutions
is y (x)=p".

(b) If n>2 and B+ %(2—n)<0, then the only solution which intersects

S, (x) exactly once is y (x)=pF.

Proof. — (a) In this case, B+ %(2—n)§0. Let x, be the first zero for

g(x). Suppose there is an x,;>x, such that g’(x,;)=0 and g(x)<0 on
(xg> x;1. Equation (4. 8) implies that

1 1
0<— §x1g(x1)=g/ (x)— §x1g(x1)

- %xl b ()P + [B+ %(%n)}y'(xl)go
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which is a contradiction. Thus g’ (x,) <0 for x=x, and so g{x)< —e<0
for x=x>x, But h(x)=g (x)—[y (x)]’<g(x) < —e&. Multiplying by x" !

and integrating yields y’ (x) <K — Ex, which forces y(x) to have a zero.
n

This contradicts equation (4.4). As a result, the only solution for these
cases is y (x)=pP.

n

(b) Let n>2 and f-+-%(2—n)<0(p> ) The result for the cases

n

p> n+2 is proved by Troy [10]. For the larger range p > we have

n—2 n—
the following proof. Define W(x)=y(x)S,(x)—y"(x)S,(x) and
Q()=F (u)/u. Then W' +c(x) W=yS,[Q(y)—Q(S,)]. Note that Q(u) is
an increasing function. Also note that W{(x)=—-2Kx 2P 1g(x)
where S, (x)=K x72F.  Thus, x"'W(x)=-2Kx""272Fg(x) where
n—2—2B>0. As a result, x" ! W(x) » 0 as x - 0*. Integrating the equa-
tion for W(x), we obtain

X

X" le MR W (x) = f e UMy (0)S, () [Q(y (1) —Q(S, (D)) dt.

4]
If 0<y<S, for all x=0, then since Q(u) is increasing, W(x) <0 for all x.
But then g(x)>0 for all x is forced, a contradiction to Lemma 4.2.
Consequently, there must be a value z such that y(z)=S, (2).

Also, W(x)<0 for xe[0, xo). At x5, 0<W’(x,) which implies that
Y(x0)>S,(xo). [Note that W’'(x,)=0 and y(x,)=S,(x,) imply that
Y (x¢)=8"(xy) which in turn would imply, by uniqueness to initial value
problems, that y (x)=S§,(x), a contradiction.] So z < x, is necessary.

Let x; > x, be small enough so that W (x,)>0. Suppose that y>S5, for

all x>z. Then integrating the equation for W (x), we have W' +¢ (x) W=0
and

X" TleT UM W(x) Xt~ e~ Wt W (x )= p>0.

But (S,/y) (x)=W (x)/ly (x)I, so

X

(Sp/») ()2 (5,/y) (x1)+pj £ e N Ty (1)] 2 dr.

X1

For x sufficiently large, the right-hand side must become larger than 1, in
which case (S/y) (x) 2 1. That is, there is another value g where y (@=S,(q).
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16 J. BEBERNES AND D. EBERLY

We have shown that there are at least two points of intersection between
the graphs of y(x) and S, (x) for a>PBP. Thus, the only solution to (4. 1)-
(4.2)-(4.4) which intersects S, (x) exactly once is y (x)= B. O

5. THE CONVERGENCE RESULTS

We are now able to precisely describe how the blowup asymptotically
evolves in dimensions n=3. Let w(x, o) be the solution of (2.3)-(2.4)-
(2.5) or (2.3)-(2.4)-(2. 6) depending on the nonlinearity being considered.
By Corollary 3.4 we know that for each N >0 there is a o> 0 such that
w(x, o) intersects Si(x) at most once on [0, N] for each oc>oy. By
Lemmas 4.3 and 4. 4, the only possible steady-state solution of (2. 3) with
F(w)=e¢"—1 which intersects S,(x) at most once is y(x)=0, and for
F (w)=wP — B w, the only possible steady-state solution of (2. 3} intersecting
S, (x) at most once is y (x)=pF.

Because of these observations we are now able to prove a convergence
or stability result similar to those given in [8] and [1] which prove that
the @-limit set for (2.3)-(2.4)«(2.5) consists of the singleton critical point
y(x)=0, and for (2.3)-(2.4)-(2.6), y (x)=p".

For the sake of completeness, we include the proof of the following
theorem which is influenced by the ones given in 1] and [8].

THEOREM 5.1. — Let n=3.

(a) As 6 — o0, the solutionw(x, c) of (2.3)-(2.4)-(2.5) converges to
¥ (x)=0 uniformly in x on compact subsets of [0, o).

(b) As c — o0, the solution w(x, o) of (2.3)-(2.4)-(2.6) converges to
y (x)= PP uniformly in x on compact subsets of {0, o).

Proof. — Define w*(x, o):=w(x, c+1) as the function obtained by
shifting w in time by the amount t. We will show that as t — oo, w'(x, o)
converges to the solution y(x) uniformly on compact subsets of R* xR
Provided that the limiting function is unique, it is equivalent to prove that
given any unbounded increasing sequence { n; }, there exists a subsequence
{n;} such that w" converges to y(x) uniformly on compact subsets of
R* xR,

Let NeZ*. For i sufficiently large, the rectangle given by Q,n={(x, o):
0<xZ2N, lclg 2N} lies in the domain of w". The radially symmetric
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function w(, o)=w" (||, ©) solves the parabolic equation

I

W, AW—%(C, Vw)+F(w)

on the cylinder given by T')n={(, 0)eR"xR:[{|<2N, |c|<2N} with
—2Ny<w({, o)<y using (2. 10).

By Schauder’s interior estimates, all partial derivatives of w can be
uniformly bounded on the subcylinder I'y=TI',5. Consequently, w™, whi,
and w7 are uniformly Lipschitz continuous on Qu< Q,n. Their Lipschitz
constants depend on N but not on i. By the Arzela-Ascoli theorem, there
is a subsequence {n;}7 and a function w such that w", wjj, wij converge
to w, w,, and w,,, respectively, uniformly on Qy.

Repeating the construction for all N and taking a diagonal subsequence,
we can conclude that w" — w, w% — w, and w", - w__ uniformly on every
compact subset in R* x R. Clearly w satisfies (2. 3)-(2. 4) with —y<w_<0.
For n>3 and F(w)=e"—1, the limiting function w intersects S,(x) at
most once since, by Corollary 3.4, w" (x, o) intersects S, (x) at most once
on [0, N} for each 6> oy, and 0Sw(0, )< —Ind for 620. For n=3,

1
B+E(2—n)<0, and

F(w)=w?—Bw,

Corollary 3.4 guarantees that w intersects S,(x) at most once. By (2.8)
we have BP<w(0, o)< (B/8)P for o =0.

We now prove that w is independent of . For the solution w(x, &) of
(2.3)4(2.4)(2.5) or (2.6), define the energy functional

E(o)= f P(x)[lwﬁ—G(w)}dx,
¥ 2 5.1
pv=RT 2el29  p(x)=x""1le 4> -1

where G(w)=e"—w if F(w)=¢"—1, and G(W)=w?*!/(p+ 1)—%Bw2if

Fwy=w?P—pBw.
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18 J. BEBERNES AND D. EBERLY

Multiplying equation (2.3) by pw, and integrating from 0 to v yields
the equation

fpwidx=jvwc<pwx>xdx+J"ﬁ[pG(w>1dx
oo

0 0 0
x=p

v o 1
=J [ G(w)——pwﬁ]dx+pwcwx (5.2
000 2
Moreover,
, voll
E'(c)=] —|-pwi—pG(w) |dx
0 00| 2

+%v{p(v)|}w§(v, 6)—G(w(v, o'))jl} (5.3)

Therefore, for all a, b with 0<a<b, integrating (5.2) with respect to ©
from a to b, and using (5. 3), we have

r jvaxdxdc=—rE’(c)dc+pr(v)wc(v, o)w, (v, o)do

a JO a a

+% Jb p(v) [% w2 (v, 6)—G W (v, 0)):| do

a

=:E(@)—E(b)+V(a, b) 5.9
Recalling that |w,| <y and observing that
w,(v, 0)=—1—Ru, (R, T(1—e™ %)

for f (w)y=¢*, or w, (v, 6)=~Ru, (R, T(1—e ) for f (u)=u?, we see that
in either case the quantity is uniformly bounded as o — 0. We conclude
that

lim {sup\y(a, b)}=0 (5.53)

a— o b>a

For any fixed N, we shall prove that

J fpﬁidxdc: him f Jp(wgf)zdxd0'=0.
N nj7 ®© JON
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Note that it is not a restriction to assume that lim (n;,, —n;)=oco. For

j= o

1
all j large enough, NSRT 2 exp [E (nj—N)J and n;, ,—n;=22N. Hence,

N N —N+njiq—n; RT~1/2 exp(1/2 n)
J j p(wh)?dxdc £ p (wh)?dxdo
-N Jo

-N 0

=En;—N)-E@®;,;, —N)+¥(n,—N, n;,, —N)

by (5.4). As a consequence of (5.5), we have

f fpﬁgdxdcglim sup[E(n;—N)—E (n;,, —N)]. (5.6)
QN

i o
Fix any K arbitrarily large. For j sufficiently large, we have

E@®;—N)—E(n;,,—N)

K
=J P (x, NP~ (5, —N)P

0

—fxp[G(w"f(x, —N) -G Ww"i+1(x, —N)]dx

0

RT 12 exp[1/2 (n;—N)] 1
+J p {E[Wif (x, =N)* -G (w" (x, —N)) }dx

K

RT~1/2 exp[1/2 (n;~N)] 1
j P{E[W';f“ (x, =N)J* =G (w"+1(x, —N)) }dx (5.7)
K

In (5.7), the first two integrals on the right-hand side converge to zero as
Jj— . Recalling that |w% (x, —N) |<y and —yx<w" (x, —N) Sy, we see
that the sum of the absolute values of the last two integrals is bounded

a0
by M J x""1e~ (=" dx where M is a positive constant. This integral

can be made arbitrarily small by choosing K large enough.
N
This proves that J pw2dxdo=0 and hence w,=0. Thus,
-N
w(x, o)=w(x, 0)=y(x) where y(x) is a nonincreasing globally Lipschitz
continuous solution of (4. 1)-(4.2) which intersects S (x) at most once. If
S (w)=e" then y(0)e[0, —Ind] and so y(x)=0 is the only solution which
intersects S, (x) exactly (and thus at most) once on [0, c0). Similarly for
fw=u?, y(0)e[p, (B/8)"] and the only possible solution is y (x)= BP.
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20 I. BEBERNES AND D. EBERLY

Since the limiting solution y (x) is unique in either case, o*(x, 6) — y (x)
as T — o0 and we have the result asserted. [J

Proof of Theorem 1. — The last theorem shows that w(x, 6) —» y(x)
uniformly in x on compact subsets of [0, o0) as ¢ — 0.

(a) In the case f (u) =¢*, changing back to the variables (r, t), we have
that v(r, t)+In(T—t) > 0 as t » T~ provided r <C(T—t)*? for arbitrary
Cc=0.

In particular, v(0, t)+In(T—t)—>0ast—-T".

(b) In the case f(u)=u” we obtain (T—t)Pv(r, t)— B? as t T~ pro-
vided r <C(T—1)'? for arbitrary C=0. In particular, (T—t)®0(0, t) - p?
ast—->T".

Proof of Theorem 2. — Theorem 5.1 guarantees that the first branch
of zeros x, (o) of D(x, 0)=w(x, 6) —S«*(x) is bounded and converges
to | where S, (1)=0 or S, () ="

Define r, =x, T"2 Then D(x,, 0)=0 implies that v(r;, 0)=S(r;). In
addition, v(r, 0) <Sx(r) for re(0, r)).

Since x, (o) is bounded and since diD(rT””2 el?°, 5)>0 for each

o
re(0, r,), there is a value 6> 0 such that

rT-121% =x, (3) D (x, (3), 3)=0,

and D(rT~Y2e'?°, 5)>0 for 6> o. Changing back to the variables (r, t)
with 6 =In[T//(T —t)], we obtain v (r, t)>Sx(r) for te(t, T).

Remark. — After this paper was completed we received the preprint
[11] of Giga and Kohn. In the introduction there is a detailed discussion
of self-similar solutions and their importance in describing the behavior
of solutions near a blow up point. The referee pointed out a number of
papers ([12] to {18]) which are related to the ideas used in this paper.
Their relevance is discussed in [11]. The referee also pointed out a briefer
proof of Lemma 4.1 which we have used.
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