Vol. 5, n° 1, 1988, p. 1-21.

A description of self-similar Blow-up for dimensions $n \ge 3$

by

J. BEBERNES

Department of Mathematics, University of Colorado, Boulder, CO 80309 U.S.A.

and

D. EBERLY

Department of Mathematics, University of Texas, San Antonio, TX 78285 U.S.A.

ABSTRACT. — A precise description of the asymptotic behavior near the blowup singularity for solutions of $u_t - \Delta u = f(u)$ which blowups in finite time T is given.

Key words : Blowup, self similar, nonlinear parabolic equation, thermal runaway.

RÉSUMÉ. – On établie une description précise de la conduite asymptotique autour de la singularité de l'explosion totale pour la solution de l'équation $u_t - \Delta u = f(u)$.

Annales de l'Institut Henri Poincaré - Analyse non linéaire - 0294-1449 Vol. 5/88/01/01/21/\$ 4.10/

© 1988 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Classification A.M.S.: 35 B 05, 35 K 55, 35 K 60, 34 C 15.

Research supported by U.S. Army Research Office under contract number DAAG 29-85-K-0209.

0. INTRODUCTION

The purpose of this paper is to give a precise description of the asymptotic behavior for solutions u(z, t) of

$$u_t = \Delta u + f(u) \tag{0.1}$$

which blow-up in finite positive time T. We assume $f(u) = u^p (p > 1)$ or $f(u) = e^u$, and $z \in B_R = \{z \in \mathbb{R}^n : |z| < R\}$ where R is sufficiently large to guarantee blow-up.

Giga and Kohn ([8], [11]) recently characterized the asymptotic behavior of solutions u(z, t) of (0.1) with $f(u) = u^p$ near a blow-up singularity assuming a suitable upper bound on the rate of blow-up and provided n=1, 2, or $n \ge 3$ and $p \le \frac{n+2}{n-2}$. For $B_R \subseteq \mathbb{R}^n$ using recent a priori bounds established by Friedman-McLeod [7], this implies that solutions u(z, t) of (0.1) with suitable initial-boundary conditions satisfy

$$(\mathbf{T}-t)^{\beta} u(z, t) \rightarrow \beta^{\beta} \text{ as } t \rightarrow \mathbf{T}^{-}$$
 (0.2)

provided $|z| \leq C(T-t)^{1/2}$ for arbitrary $C \geq 0$ and where $\beta = \frac{1}{p-1}$.

For $f(u) = e^u$ and n = 1 or 2, Bebernes, Bressan, and Eberly [1] proved that solutions u(z, t) of (0.1) satisfy

$$u(z, t) + \ln(T-t) \to 0 \text{ as } t \to T^{-}$$
 (0.3)

provided $|z| \leq C(T-t)^{1/2}$ for arbitrary $C \geq 0$.

The real remaining difficulty in understanding how the single point blow-up occurs for (0.1) rests on determining the nonincreasing globally Lipschitz continuous solutions of an associated steady-state equation

$$y'' + \left(\frac{n-1}{x} - \frac{x}{2}\right)y' + F(y) = 0, \qquad 0 < x < \infty$$
 (0.4)

where $F(y) = y^p - \beta y$ or $e^y - 1$ for $f(y) = y^p$ or e^y respectively and where y(0) > 0 and y'(0) = 0.

For $F(y) = y^p - \beta y$ in the cases n = 1, 2, or $n \ge 3$ and $p \le \frac{n}{n-2}$, we give a new proof of a special case of a known result ([8], Theorem 1) that the only such positive solution of (0.4) is $y(x) \equiv \beta^{\beta}$. For $F(y) = e^{y} - 1$ and n = 1, Bebernes and Troy [3] proved that the only such solution is $y(x) \equiv 0$. Eberly [5] gave a much simpler proof showing $y(x) \equiv 0$ is the only solution for the same nonlinearity valid for n=1 and 2.

For $3 \le n \le 9$, Troy and Eberly [6] proved that (0.4) has infinitely many nonincreasing globally Lipschitz continuous solutions on $[0, \infty)$ for $F(y) = e^y - 1$. Troy [10] proved a similar multiplicity result for (0.4) with $F(y) = y^p - \beta y$ for $3 \le n \le 9$ and $p > \frac{n+2}{n-2}$.

This multiple existence of solutions complicates the stability analysis required to precisely describe the evolution of the time-dependent solutions u(z, t) of (0.1) near the blow-up singularity.

In this paper we extend the results of Giga-Kohn [8] and Bebernes-Bressan-Eberly [1] to the dimensions $n \ge 3$ by proving that, in spite of the multiple existence of solutions of (0.4), the asymptotic formulas (0.2) and (0.3) remain the same as in dimensions 1 and 2. The key to unraveling these problems is a precise understanding of the behavior of the nonconstant solutions relative to a singular solution of (0.4) given by

$$S_e(x) = ln \frac{2(n-2)}{x^2}$$
 (0.5)

for $f(u) = e^u$ and $n \ge 3$, and

$$S_{p}(x) = \left\{ -4\beta \left[\beta + \frac{1}{2}(2-n) \right] / x^{2} \right\}^{\beta}$$
(0.6)

for $f(u) = u^p$ and $\beta + \frac{1}{2}(2-n) < 0$, $n \ge 3$. This will be accomplished by counting how many times the graphs of a nonconstant self-similar solution crosses that of the singular solution.

1. STATEMENT OF THE RESULTS

We consider the initial value problem

$$u_t - \Delta u = f(u), \qquad (z, t) \in \Omega \times (0, T)$$

$$u(z, 0) = \varphi(z), \qquad z \in \Omega$$

$$u(z, t) = 0, \qquad (z, t) \in \partial\Omega \times (0, T)$$

$$(1.1)$$

Vol. 5, n° 1-1988.

where $\Omega = B_R = \{z \in \mathbb{R}^n : |z| |z| < R\}$, φ is nonnegative, radially symmetric, nonincreasing $(\varphi(z) \ge \varphi(x) \text{ for } |z| \le |x| \le R)$, and $\Delta \varphi + f(\varphi) \ge 0$ on Ω . The two nonlinearities considered are

$$f(u) = e^u \tag{1.2}$$

or

$$f(u) = u^p, \quad u \ge 0, \quad p > 1.$$
 (1.3)

We assume $\mathbf{R} > 0$ and $\varphi(z) \ge 0$ are such that the radially symmetric solution u(z, t) blows-up in finite positive time T. By the maximum principle, u(., t) is radially decreasing for each $t \in [0, T)$ and $u_t(z, t) > 0$ for $(z, t) \in \Omega \times (0, T)$.

Friedman and McLeod [7] proved that blow-up occurs only at z=0. The following arguments are essentially those used in [7] to obtain the needed *a priori* bounds.

Let U(t) = u(0, t). Since $\Delta u(0, t) \leq 0$ because u is radially symmetric and decreasing, from (1.1) it follows that $U'(t) \leq f(U(t))$. Integrating, we have

$$-\ln(\mathbf{T}-t) \le u(0, t), \qquad t \in [0, \mathbf{T}) \tag{1.4}$$

for $f(u) = e^u$, and

$$\beta^{\beta} (\mathbf{T} - t)^{-\beta} \leq u(0, t), \qquad t \in [0, \mathbf{T})$$
(1.5)

for $F(u) = u^p$

Define the radially symmetric function $J(z, t) = u_t - \delta f(u)$ where $\delta > 0$ is to be determined. Then $J_t - \Delta J - f'(u) J \ge 0$. For $0 < \eta < \min(\mathbb{R}, \mathbb{T})$, let $\Omega_{\eta} = B_{\mathbb{R}-\eta}$ be the ball of radius $\mathbb{R}-\eta$ centered at $0 \in \mathbb{R}^n$. Let $\Pi_{\eta} = \Omega_{\eta} \times (\eta, \mathbb{T})$. Since blow-up occurs only at z = 0, u(z, t) is bounded on the parabolic boundary of Π_{η} and $f(u) \le C_0 < \infty$ there. Since $u_t > 0$ on $\Omega \times (0, \mathbb{T})$, we have $u_t \ge C > 0$ on the parabolic boundary of Π_{η} . Hence, for $\delta > 0$ sufficiently small, $J \ge C - \delta C_0 > 0$ there. By the maximum principle, J > 0 on Π_{η} . An integration yields the following upper bound on u(0, t):

$$u(0, t) \leq -\ln [\delta (T-t)], \quad t \in [\eta, T)$$
 (1.6)

for $f(u) = e^{u}$, and

$$u(0, t) \leq \left(\frac{\beta}{\delta}\right)^{\beta} (T-t)^{-\beta}, \qquad t \in [\eta, T)$$
(1.7)

for $f(u) = u^p$. In fact, since $u_t(., t) \ge 0$ for $t \in [0, T)$, these bounds are true for all $t \in [0, T)$.

As in [7], we also have the existence of $\overline{t} < T$ such that

$$|\nabla u(z, t)| \leq [2 e^{u(0, t)}]^{1/2}, \quad (z, t) \in \overline{\Omega} \times [\overline{t}, T)$$
 (1.8)

for $f(u) = e^{u}$, and

$$\left|\nabla u(z, t)\right| \leq \left[\frac{2}{p+1}[u(0, t)]^{p+1}\right]^{1/2}, \quad (z, t) \in \overline{\Omega} \times [\overline{t}, T) \quad (1.9)$$

for $f(u) = u^p$.

In this paper we prove the following two theorems which describe the asymptotic self-similar blow-up of u(z, t).

THEOREM 1. - (a) For $n \ge 3$, the solution u(z, t) of (1.1)-(1.2) satisfies $u(z, t) + \ln(T-t) \rightarrow 0$ uniformly on $\{(z, t): |z| \le C(T-t)^{1/2}\}$ for arbitrary $C \ge 0$ as $t \rightarrow T^-$.

(b) For $n \ge 3$ and $p > \frac{n}{n-2}$, the solution u(z, t) of (1.1)-(1.3) satisfies $(T-t)^{\beta}u(z, t) \rightarrow \beta^{\beta}$ uniformly on $\{(z, t): |z| \le C(T-t)^{1/2}\}$ for arbitrary $C \ge 0$ as $t \rightarrow T^{-}$.

THEOREM 2. – Let r = |z| and v(r, t) = u(z, t). There is a value $r_1 \in (0, \mathbb{R})$ such that the following properties hold.

(a) $v(r_1, 0) = S_*(r_1)$ where S_* is the singular solution given in (0.5) or (0.6).

(b) $v(r, 0) < S_*(r)$ for $0 < r < r_1$.

(c) For each $r \in (0, r_1)$ there is a $\overline{t} = \overline{t}(r) \in (0, T)$ such that $v(r, t) > S_*(r)$ for $t \in (\overline{t}, T)$.

2. THE SELF-SIMILAR PROBLEM

Since the solution u(z, t) of (1, 1) is radially symmetric, the initialboundary value problem can be reduced to a problem in one spatial dimension.

Let $\Pi' = \{(r, t): 0 < r < \mathbb{R}, 0 < t < T\}$. If r = |z|, then v(r, t) = u(z, t) is well-defined on Π' and satisfies

$$v_t = v_{rr} + \frac{n-1}{r} v_r + f(v), \qquad (r, t) \in \Pi'$$
 (2.1)

$$v(\mathbf{r}, 0) = \varphi(\mathbf{r}), \quad \mathbf{r} \in (0, \mathbf{R}) v_{\mathbf{r}}(0, t) = 0, \quad v(\mathbf{R}, t) = 0, \quad t \in (0, \mathbf{T})$$
(2.2)

Vol. 5, n° 1-1988.

To analyze the behavior of v as $t \to T^-$, we make the following change of variables:

$$\sigma = \ln [T/(T-t)], \quad x = r (T-t)^{-1/2}$$

Then Π' transforms into Π where

$$\Pi = \{ (x, \sigma) : \sigma > 0, 0 < x < \mathbf{R} \mathbf{T}^{-1/2} e^{1/2 \sigma} \}.$$

If $f(u) = e^u$, set

$$w(x, \sigma) = v(r, t) + \ln(T-t)$$

If $f(u) = u^p$, set

$$w(x, \sigma) = (T-t)^{\beta} v(r, t)$$

Then $w(x, \sigma)$ solves

$$w_{\sigma} = w_{xx} + c(x)w_{x} + F(w), \qquad (x, \sigma) \in \Pi$$
 (2.3)

$$\mathbf{w}_{\mathbf{x}}(0, \sigma) = 0, \qquad \sigma \in (0, \infty)$$
 (2.4)

where c(x) = (n-1)/x - x/2; if $f(u) = e^{u}$, then

$$F(w) = e^{w} - 1$$

$$w(RT^{-1/2} e^{1/2\sigma}, \sigma) = -\sigma + \ln T, \quad \sigma \in (0, \infty)$$

$$w(x, 0) = \phi(xT^{1/2}) + \ln T, \quad x \in (0, RT^{-1/2})$$
(2.5)

and if $f(u) = u^p$, then

$$F(w) = w^{p} - \beta w$$

$$w(RT^{-1/2}e^{1/2\sigma}, \sigma) = 0, \quad \sigma \in (0, \infty)$$

$$w(x, 0) = T^{\beta} \varphi(xT^{1/2}), \quad x \in (0, RT^{-1/2})$$
(2.6)

Using the *a priori* bounds established in section I for u(z, t) using the ideas of [7], we have the following *a priori* estimates for $w(x, \sigma)$. For $F(w) = e^w - 1$, from (1.4) and (1.6)

$$0 \leq w(0, \sigma) \leq -\ln \delta, \qquad \sigma \geq 0. \tag{2.7}$$

For $F(w) = w^{p} - \beta w$, from (1.5) and (1.7)

$$\beta^{\beta} \leq w(0, \sigma) \leq (\beta/\delta)^{\beta}, \quad \sigma \geq 0.$$
 (2.8)

The estimates (1.8) and (1.9) imply that

$$-\gamma \leq w_x(x, \sigma) \leq 0$$
 on $\overline{\Pi}$ (2.9)

for some positive constant γ , and combining this with (2.7) and (2.8) yields

$$-\gamma x \leq w(x, \sigma) \leq \mu \quad \text{on } \overline{\Pi}$$
 (2.10)

where γ and μ are positive constants depending on δ . In fact, for $F(w) = w^p - \beta w$, $w(x, \sigma) = (T-t)^{\beta} v(r, t) \ge 0$ since $v(r, 0) \ge 0$ and $v_t(r, t) \ge 0$.

3. BEHAVIOR NEAR SINGULAR SOLUTIONS

The partial differential equation (2.3) has a time-independent solution fro certain choices of *n* and *p*. More precisely, if n>2 and $F(w)=e^{w}-1$, then

$$S_e(x) = \ln [2(n-2)/x^2]$$
 (3.1)

is a singular solution of (2.3). If $F(w) = w^p - \beta w$, n > 2 and $p > \frac{n}{n-2}$, then

$$\mathbf{S}_{p}(x) = \left\{ -4\beta \left[\beta + \frac{1}{2}(2-n)\right]/x^{2} \right\}^{\beta}$$
(3.2)

is a singular solution of (2.3). These solutions are in fact singular solutions of (2.1) because

$$1 + \frac{1}{2}xS'_{e} = 0, \qquad S''_{e} + \frac{n-1}{x}S'_{e} + \exp(S_{e}) = 0 \qquad (3.3)$$

and

$$\beta S_p + \frac{1}{2} x S'_p = 0, \qquad S'_p = 0, \qquad S''_p + \frac{n-1}{x} S'_p + (S_p)^p = 0 \qquad (3.4)$$

for $0 < x < \infty$.

Consider first the singular solution $S_e(x)$ of (2.3) with $F(w) = e^w - 1$. Then $S_e(0^+) = \infty > w(0, 0)$ and

$$S_e(RT^{-1/2}) = \ln [2(n-2)TR^{-2}] < \ln T = w(RT^{-1/2}, 0)$$

since $2(n-2) < \mathbb{R}^2$ for blow-up in finite time (Lacey [9], Bellout [4]). This proves that w(x, 0) intersects $S_e(x)$ at least once for $0 < x < \mathbb{R}T^{-1/2}$.

Similarly for $F(w) = w^p - \beta w$ and $S_p(x)$, we can make the following observations: $S_p(0^+) = \infty > w(0, 0)$ and $S_p(RT^{-1/2}) > 0 = w(RT^{-1/2}, 0)$. If $w(x, 0) \leq S_p(x)$ on $[0, RT^{-1/2}]$, we conclude by the maximum principle that $w(x, \sigma) \leq S_p(x)$ on $\overline{\Pi}$. By the result of Troy [10] (see part b of Lemma 4.4), any positive global nonincreasing time-independent solution y(x) associated with (2.3) must interest $S_p(x)$ transversally at least once. By the argument given in Giga-Kohn [8] (or see our theorem 5.1), $w(x, \sigma) \rightarrow 0$ as $\sigma \rightarrow \infty$ for each $x \ge 0$. In particular, $w(0, \sigma) \rightarrow 0$, a contradiction to (2.8).

In either case, we can conclude that there exists a first $x_1 \in (0, \mathbb{RT}^{-1/2})$ such that $w(x_1, 0) = S_*(x_1)$ and $w(x, 0) < S_*(x)$ on $(0, x_1)$.

LEMMA 3.1. – There is a continuously differentiable function $x_1(\sigma)$ with domain $[0, \infty)$ such that $x_1(0) = x_1$ and $w(x_1(\sigma), \sigma) = S_*(x_1(\sigma))$ for all $\sigma \ge 0$.

Proof. – Define $D(x, \sigma) = w(x, \sigma) - S_*(x)$. We first claim that $\nabla D \neq (0, 0)$ whenever D = 0. We had $v_t(r, t) > 0$ on Π' . For $f(v) = e^v$,

$$v_t = (T-t)^{-1} \left(w_{\sigma} + 1 + \frac{1}{2} x w_x \right),$$

and for $f(v) = v^p$,

$$v_t = (\mathbf{T} - t)^{-\beta - 1} \left(w_{\sigma} + \beta w + \frac{1}{2} x w_x \right).$$

If $\nabla \mathbf{D} = (0, 0)$ at a point in Π where $\mathbf{D} = 0$, then $\mathbf{D}_{\sigma} = 0$ implies that $w_{\sigma} = 0$. For $f(v) = e^{v}$, $\mathbf{D}_{x} = 0$ implies that $1 + \frac{1}{2}xw_{x} = 0$. For $f(v) = v^{p}$, $\mathbf{D}_{x} = 0$

implies that $\beta w + \frac{1}{2}xw_x = 0$. In either case, $v_i = 0$ is forced at some point in Π' , a contradiction.

Secondly, we claim that $D_x \neq 0$ at any value $(\bar{x}, \bar{\sigma}) \in \Pi$ where $D(\bar{x}, \bar{\sigma}) = 0$ and $D(x, \bar{\sigma}) < 0$ in a left neighborhood of \bar{x} .

If $D(\bar{x}, \bar{\sigma})=0$ and $D_x(\bar{x}, \bar{\sigma})=0$, then equations (2.3), (3.3), and (3.4) imply that $D_{xx}(\bar{x}, \bar{\sigma})=D_{\sigma}(\bar{x}, \bar{\sigma})$. In addition, since $v_t>0$ we have $D_{\sigma}(\bar{x}, \bar{\sigma})>0$. Thus $D_{xx}(\bar{x}, \bar{\sigma})>0$, which implies that $(\bar{x}, \bar{\sigma})$ is a local minimum point for D, a contradiction to D<0 on a left neighborhood of \bar{x} . Thus, $D_x(\bar{x}, \bar{\sigma})>0$.

Recall that $v(r, 0) = \varphi(r)$ where $\Delta \varphi + f(\varphi) \ge 0$. This implies

$$D_{xx}(x, 0) + \frac{n-1}{x} D_x(x, 0) + F(w(x, 0)) - F(S_*(x)) \ge 0$$

for x in a left neighborhood of x_i . On a left neighborhood of x_1 , this in turn yields $(x^{n-1}D_x(x, 0))_x \ge 0$. An integration yields $D_x(x_1, 0) > 0$. By the implicit function theorem, there is a continuously differentiable function $x_1(\sigma)$ such that $x_1(0) = x_1$ and $D(x_1(\sigma), \sigma) = 0$ for some maximal interval $[0, \sigma_0)$. If $\sigma_0 < \infty$, then by continuity $D(x_1(\sigma_0), \sigma_0) = 0$.

8

But $D_x(x_1(\sigma_0), \sigma_0) > 0$, so the implicit function theorem allows an extension of the domain past σ_0 , a contradiction to the maximality of $[0, \sigma_0)$. Thus, $\sigma_0 = \infty$.

For $f(u) = u^p$, since $w(0, 0) < S_p(0^+)$, $w(RT^{-1/2}, 0) < S_p(RT^{-1/2})$, and $w(x_1, 0) = S_p(x_1)$ transversally, there must be a last point of intersection between w(x, 0) and $S_p(x)$, say $x_L \in (x_1, RT^{-1/2})$. A construction similar to Lemma 3.1 leads to the existence of a continuously differentiable function $x_L(\sigma)$ with domain $[0, \infty)$ such that $x_L(0) = x_L$ and $w(x_L(\sigma), \sigma) = S_p(x_L(\sigma))$ for $\sigma \ge 0$.

Let $\Pi_1 = \{(x, \sigma): \sigma > 0, 0 < x < x_1(\sigma)\}$. We can now prove the following comparison result on this set.

LEMMA 3.2. $- D(x, \sigma) < 0$ for $(x, \sigma) \in \Pi_1$.

Proof. – By Lemma 3.1, we have shown that $D \leq 0$ on the parabolic boundary of Π_1 . Since F(w) is a local one-sided Lipschitz continuous function, we can apply the Nagumo-Westphal comparison result to obtain $D \leq 0$ on $\overline{\Pi}_1$.

If $D(x_0, \sigma_0) = 0$ for some $(x_0, \sigma_0) \in \Pi_1$, then $D_x(x_0, \sigma_0) = 0$, $D_{xx}(x_0, \sigma_0) \le 0$ and $D_{\sigma}(x_0, \sigma_0) \ne 0$ [since $\nabla D \ne (0, 0)$ when D = 0]. But $D_{\sigma}(x_0, \sigma_0) \ne 0$ implies $D(x_0, \sigma)$ is positive for some σ near σ_0 . This contradicts $D \le 0$ on $\overline{\Pi}_1$.

Let $x_2 = \sup \{ x \in (x_1, \mathbb{RT}^{-1/2}] : D(s, 0) \ge 0 \text{ for } s \in [x_1, 0) = 0 \text{ and } D_x(x_1, 0) > 0, \text{ the supremum exists. For } f(u) = e^u, x_2 \le \mathbb{RT}^{-1/2}, \text{ and for } f(u) = u^p, x_2 \le x_L < \mathbb{RT}^{-1/2}.$ Define $x_2(\sigma) = x_2 e^{1/2\sigma}$ and $\Pi_2 = \{(x, \sigma) : \sigma > 0, x_1(\sigma) < x < x_2(\sigma) \}.$

LEMMA 3.3. $- D(x_2(\sigma), \sigma) \ge 0$ for all $\sigma \ge 0$. Moreover, $D(x, \sigma) > 0$ for $(x, \sigma) \in \Pi_2$.

Proof. – Let $E(\sigma) = D(x_2(\sigma), \sigma)$. By definition of x_2 , $E(0) = D(x_2, 0) \ge 0$. Also, $E'(\sigma) = D_{\sigma}(x_2(\sigma), \sigma) + \frac{1}{2}x_2(\sigma)D_x(x_2(\sigma), \sigma)$.

We had earlier that $v_t(r, t) \ge 0$ on $\overline{\Pi}'$. Via the change of variables $(r, t) \to (x, \sigma)$, this implies $E'(\sigma) \ge 0$ in the case $f(v) = e^v$ and $e^{-\beta\sigma} \frac{d}{d\sigma} [e^{\beta\sigma} E(\sigma)] = E'(\sigma) + \beta E(\sigma) \ge 0$ in the case $f(v) = v^p$. An integration yields $E(\sigma) \ge 0$ for $\sigma \ge 0$.

On the parabolic boundary of Π_2 , we now have that $D \ge 0$. By the Nagumo-Westphal comparison theorem, $D \ge 0$ on $\overline{\Pi}_2$. A similar argument as in Lemma 3.2 shows that D > 0 on Π_2 .

COROLLARY 3.4. – For each N>0 there is a $\sigma_N > 0$ such that for each $\sigma > \sigma_N$, $w(x, \sigma)$ intersects $S_*(x)$ at most once for $x \in [0, N]$.

Proof. - For each N>0 choose
$$\sigma_N$$
 such that $N = x_2 \exp\left(\frac{1}{2}\sigma_N\right)$.

Lemma 3.2 guarantees that $D(x, \sigma) < 0$ for $x \in [0, x_1(\sigma))$ and Lemma 3.3 guarantees that $D(x, \sigma) > 0$ for $e(x_1(\sigma), x_2(\sigma)]$. For $\sigma > \sigma_N$, $[0, N] \subseteq [0, x_2(\sigma)]$ by definition of σ_N , so D=0 at most once on this interval. \Box

In section 5 we will see that $x_1(\sigma) \to l$ as $\sigma \to \infty$ where $S_e(l) = 0$ or $S_p(l) = \beta^{\beta}$.

4. ANALYSIS OF THE STEADY-STATE PROBLEM

The time-independent solutions of (2.3)-(2.4) satisfy

$$y'' + c(x)y' + F(y) = 0, \qquad 0 < x < \infty$$
 (4.1)

$$y(0) = \alpha, \quad y'(0) = 0$$
 (4.2)

In this section we will analyze the behavior of a particular class of solutions of (4.1) which are possible members of the ω -limit set for the initial-boundary value problems (2.3)-(2.4)-(2.5) or (2.3)-(2.4)-(2.6).

By the *a priori* bounds stated in section 2, we have that $w(0, \sigma)$ is bounded for $\sigma \ge 0$. More precisely for $F(w) = e^w - 1$, $w(0, \sigma) \in [0, -\ln \delta]$, and for $F(w) = w^p - \beta w$, $w(0, \sigma) \in [\beta^{\beta}, (\beta/\delta)^{\beta}]$, for $\sigma \ge 0$. We also had $-\gamma \le w_x(x, \sigma) \le 0$ on $\overline{\Pi}$ and, for $F(w) = w^p - \beta w$, $w \ge 0$ on $\overline{\Pi}$.

If $F(w) = e^{w} - 1$, we need to consider those solutions y(x) of (4.1)-(4.2) which satisfy

$$y(0) = \alpha \ge 0, \quad y'(x) \le 0 \text{ for } x \ge 0, \quad y'(x) \text{ bounded below. } (4.3)$$

For n=1 or 2, (4.1)-(4.2)-(4.3) has only the solution $y(x) \equiv 0$ ([3], [5]). For $3 \leq n \leq 9$, (4.1)-(4.2)-(4.3) has infinitely many nonconstant solutions [6]. In this section we prove that all nonconstant solutions of (4.1)-(4.2)-(4.3) must intersect the singular solution $S_e(x)$ at least twice. Hence, the only solution intersecting $S_e(x)$ exactly once is $y(x) \equiv 0$.

For $F(w) = w^p - \beta w$, we consider those solutions y(x) of (4.1)-(4.2) which satisfy

$$y(0) = \alpha \ge \beta^{\beta}, \quad y'(x) \le 0 \quad \text{and} \quad y(x) > 0 \quad \text{for } x \ge 0.$$
 (4.4)

10

For n=1, 2, or $n \ge 3$ with $p \le \frac{n}{n-2}$ we prove a special case of the known result [8] that the only solution to (4.1)-(4.2)-(4.4) is $y(x) \equiv \beta^{\beta}$. Troy [10] showed that, for $n \ge 3$ and $p > \frac{n+2}{n-2}$, (4.1)-(4.2)-(4.4) has infinitely many nonconstant solutions. In this section we show that any nonconstant solution y(x) of (4.1)-(4.2)-(4.4) must intersect $S_p(x)$ at least twice. Hence, the only solution intersecting $S_p(x)$ exactly once is $y(x) \equiv \beta^{\beta}$.

LEMMA 4.1. – Consider initial value problem (4.1)-(4.2).

- (a) Any solution to (4.1)-(4.2)-(4.3) must satisfy $y(\sqrt{2n}) \leq 0$.
- (b) Any solution to (4.1)-(4.2)-(4.4) must satisfy $y(\sqrt[n]{2n}) \leq \beta^{\beta}$.

Proof. - (a) In this case, $F(y) = e^{y} - 1 \ge y$, so equation (4.1) implies that $y'' + c(x)y' + y \le 0$. Let $u(x) = \alpha (1 - x^2/2n)$. Then u'' + c(x)u' + u = 0, u(0) = y(0), and u'(0) = y'(0). Define W(x) = u(x)y'(x) - u'(x)y(x). While u(x) > 0, $W' + c(x)W \le 0$ and W(0) = 0, so an integration yields that $W(x) \le 0$. But $(y/u)'(x) = W(x)/[u(x)]^2 \le 0$, so integrating from 0 to $\sqrt{2n}$ yields $y(\sqrt{2n}) \le u(\sqrt{2n}) = 0$.

Note that for $\alpha > 0$, if y(z) = 0, then y'(z) < 0 by uniqueness to initial value problems, so y(x) < 0 for x > z.

(b) The function $F(y) = y^p - \beta y$ in convex, so $F(y) \ge y - \beta^{\beta}$ and equation (4.1) implies that $v'' + c(x)v' + v \le 0$ where $v(x) = y(x) - \beta^{\beta}$. A similar argument as in part (a) shows that $v(\sqrt{2n}) \le 0$, thus, $y(\sqrt{2n}) \le \beta^{\beta}$. Note that for $\alpha > \beta^{\beta}$, if $y(z) = \beta^{\beta}$, then y'(z) < 0 by uniqueness to initial

Note that for $\alpha > \beta^{\beta}$, if $y(z) = \beta^{\beta}$, then y'(z) < 0 by uniqueness to initial value problems, so $y(x) < \beta^{\beta}$ for x > z. \Box

Define
$$h(x) = y'' + \frac{n-1}{x}y'$$
. For $F(y) = e^y - 1$, define $g(x) = 1 + \frac{1}{2}xy'$ and

for $F(y) = y^p - \beta y$, define $g(x) = \beta y + \frac{1}{2}xy'$. It can be shown that h and g satisfy the following equations:

 $g'' + c(x)g' + [F'(y) - 1]g = 0, \qquad g(0) > 0, \quad g'(0) = 0.$ (4.5) $h'' + c(x)h' + [F'(y) - 1]h = -F''(y)(y')^{2}, \qquad h(0) \le 0, \quad h'(0) = 0.$ (4.6) For $F(y) = e^{y} - 1$,

$$g' - \frac{1}{2}xg = -\frac{1}{2}xe^{y} + \frac{1}{2}(2-n)y'.$$
(4.7)

For $F(y) = y^p - \beta y$,

$$g' - \frac{1}{2}xg = -\frac{1}{2}xy^{p} + \left[\beta + \frac{1}{2}(2-n)\right]y'.$$
(4.8)

Also define W(x) = g(x) h'(x) - g'(x)h(x). Then

$$W' + c(x) W = -F''(y)(y')^2 g, W(0) = 0,$$

and

$$W(x) = -x^{1-n} e^{(1/4)x^2} \int_0^x s^{n-1} e^{-(1/4)s^2} F''[y(s)][y'(s)]^2 g(s) ds \quad (10)$$
$$= :-x^{1-n} e^{(1/4)x^2} I(x)$$

where $I(x) \ge 0$, while g > 0 on (0, x). Note that $\left(\frac{h}{g}\right)'(x) = W(x)/[g(x)]^2$, so while g > 0 on (0, x), we have

 $h(x) = \frac{h(0)}{g(0)}g(x) - g(x) \int_0^x t^{1-n} e^{(1/4)t^2} \mathbf{I}(t) [g(t)]^{-2} dt \qquad (4.9)$

LEMMA 4.2. – Consider initial value problem (4.1)-(4.2).

(a) If y(x) is a solution to (4.1)-(4.2)-(4.3) with $\alpha > 0$, then g(x) must have a zero.

(b) If y(x) is a solution to (4.1)-(4.2)-(4.4) with $\alpha > \beta^{\beta}$, then g(x) must have a zero.

Proof. — Suppose that $g(x) \ge \varepsilon > 0$ for all $x \ge 0$. Note that h(0) < 0 because $\alpha > 0$ [part (a)] or $\alpha > \beta^{\beta}$ [part (b)]. Then (4.9) implies that $h(x) \le [h(0)/g(0)]g(x) \le -\delta < 0$ since h(0)/g(0) < 0 and since $I(x) \ge 0$. Multiplying by x^{n-1} and integrating yields $y'(x) \le -\frac{\delta}{n}x$. This contradicts the boundedness of y' in equation (4.3) and forces y to be negative eventually,

boundedness of y in equation (4.3) and forces y to be negative eventually, contradicting equation (4.4). Thus, g(x) cannot be bounded away from zero.

Suppose that g(x) > 0 for $x \ge 0$ and that g is not bounded away from zero. Suppose there is an increasing unbounded sequence $\{x_k\}_1^\infty$ such that $g'(x_k) = 0$. Equation (4.5) implies that $g''(x_k) = [1 - F'(y(x_k))]g(x_k)$. However, Lemma 4.1 implies that $1 - F'(y(x_k)) > 0$ for k sufficiently large. This forces $g''(x_k) > 0$ for k sufficiently large, a contradiction, since this would imply that g has two local minimums without a local maximum between. It must be the case that g'(x) < 0 for x sufficiently large and $g(x) \to 0$ as $x \to \infty$.

Suppose there is an increasing unbounded sequence $\{x_k\}_1^\infty$ such that $g''(x_k) = 0$ and $g'(x_k) \leq -L < 0$. Then equation (4.5) implies that $0 = c(x_k)g'(x_k) + [F'(y(x_k)) - 1]g(x_k)$ where $c(x_k) \to -\infty$, $g'(x_k) \leq -L$, $F'(y(x_k)) - 1$ is bounded, and $g(x_k) \to 0$. But then the right-hand side of

the last equality must become infinite, a contradiction. Thus, g'(x) < 0 for x large and $g'(x) \to 0$.

In equation (4.9), take the limit as $x \to \infty$ to obtain

$$\lim_{x \to \infty} h(x) = -\lim_{x \to \infty} g(x) \int_0^x t^{1-n} e^{(1/4)t^2} \mathrm{I}(t) [g(t)]^{-2} dt$$
$$= \lim_{x \to \infty} x^{1-n} e^{(1/4)x^2} \mathrm{I}(x) [g'(x)]^{-1} = -\infty$$

where we have used L'Hôpital's rule. This implies that $h(x) \leq -\delta < 0$ for x sufficiently large. Multiplying by x^{n-1} and integrating yields $y'(x) \leq K - \frac{\delta}{n}x$ for x sufficiently large. As before, this contradicts the boundedness of y' in equation (4.3) and forces y to be negative eventually, contradicting equation (4.4).

In all of the above cases, we arrived at contradictions, so there must be a value x_0 such that $g(x_0)=0$, $g'(x_0)<0$, and g(x)>0 on $[0, x_0)$.

- LEMMA 4.3. Consider problem (4.1)-(4.2)-(4.3).
- (a) If $1 \le n \le 2$, then the only solution is $y(x) \equiv 0$.

(b) If n > 2, then the only solution which intersects $S_e(x)$ exactly once is $y(x) \equiv 0$.

Proof. -(a) Let $1 \le n \le 2$, then $\frac{1}{2}(2-n) \ge 0$. Let x_0 be the first zero for g(x). Suppose there is an $x_1 > x_0$ such that $g'(x_1) = 0$ and g(x) < 0 on $(x_0, x_1]$. Equation (4.7) implies that

$$0 < -\frac{1}{2}x_1g(x_1) = g'(x_1) - \frac{1}{2}x_1g(x_1) = -\frac{1}{2}x_1e^{y(x_1)} + \frac{1}{2}(2-n)y'(x_1) < 0$$

which is a contradiction. Thus, g'(x) < 0 for $x \ge x_0$ and so $g(x) \le -\varepsilon < 0$ for $x \ge \overline{x} > x_0$. But $h(x) = g(x) - e^{y(x)} \le g(x) \le -\varepsilon$. Multiplying by x^{n-1} and integrating yields $y'(x) \le K - \frac{\varepsilon}{n}x$, contradicting equation (4.3). As a result, the only solution of (4.1)-(4.2)-(4.3) for these values of n is $y(x) \equiv 0$.

(b) Let n > 2. Define $D(x) = y(x) - S_e(x)$ where S_e is the singular solution discussed in section 3. Then

$$D'' + c(x)D' + \frac{2(n-2)}{x^2}(e^{D} - 1) = 0, \quad 0 < x < \infty,$$

$$D(0^+) = -\infty, \quad D'(0^+) = \infty.$$
 (4.10)

Vol. 5, n° 1-1988.

Note that D'>0 while D<0 on (0, x]. Suppose that D(x)<0 for all $x \ge 0$. Then $e^{D} - 1 < 0$ and D'' + c(x) D' ≥ 0 . Integrating this last equation yields

$$x^{n-1} e^{-(1/4)x^2} \mathbf{D}'(x) \ge \overline{x}^{n-1} e^{-(1/4)\overline{x}^2} \mathbf{D}'(\overline{x}) =: p > 0.$$

Consequently,

$$\mathbf{D}(x) \ge \mathbf{D}(\bar{x}) + \int_{\bar{x}}^{x} p t^{1-n} e^{(1/4)t^2} dt.$$

But the right-hand side of this inequality must be positive for x sufficiently large, contradicting our assumption. Thus, D(x) must have a first zero x_1 and D'(x) > 0 on $(0, x_1]$.

By Lemma 4.2, g(x) must have a zero x_0 . But then $D'(x_0) = \frac{2}{x_0}g(x_0) = 0$ and $x_0 > x_1$. If $D(x_0) < 0$, then there must have been a second zero x_2 for D. Otherwise, D(x) > 0 on $(x_1, x_0]$, Suppose that D > 0 for all $x \ge x_0$. Then there is an \overline{x} sufficiently large such that $D(\overline{x}) > 0$, $D'(\overline{x}) < 0$, $D''(\overline{x}) > 0$, and $c(\overline{x}) < 0$. Evaluating equation (4.10) at \overline{x} yields $0 < (D'' + c D' + e^D - 1)(\overline{x}) = 0$, a contradiction. Thus, D must have a second zero x_2 .

We have shown that there are at least two points of intersection between the graphs of y(x) and $S_e(x)$ for $\alpha > 0$. Thus, the only solution to (4.1)-(4.2)-(4.3) which intersects $S_e(x)$ exactly once is $y(x) \equiv 0$.

LEMMA 4.4. – Consider initial value problem (4.1)-(4.2)-(4.4).

(a) If $1 \le n \le n \le 2$, or if n > 2 and $\beta + \frac{1}{2}(2-n) \ge 0$, then the only solutions is $y(x) \equiv \beta^{\beta}$.

(b) If n > 2 and $\beta + \frac{1}{2}(2-n) < 0$, then the only solution which intersects $S_p(x)$ exactly once is $y(x) \equiv \beta^{\beta}$.

Proof. - (a) In this case, $\beta + \frac{1}{2}(2-n) \ge 0$. Let x_0 be the first zero for g(x). Suppose there is an $x_1 > x_0$ such that $g'(x_1) = 0$ and g(x) < 0 on $(x_0, x_1]$. Equation (4.8) implies that

$$0 < -\frac{1}{2} x_1 g(x_1) = g'(x_1) - \frac{1}{2} x_1 g(x_1)$$
$$= -\frac{1}{2} x_1 [y(x_1)]^p + \left[\beta + \frac{1}{2}(2-n)\right] y'(x_1) \le 0$$

which is a contradiction. Thus $g'(x_0) < 0$ for $x \ge x_0$ and so $g(x) \le -\varepsilon < 0$ for $x \ge \overline{x} > x_0$. But $h(x) = g(x) - [y(x)]^p \le g(x) \le -\varepsilon$. Multiplying by x^{n-1} and integrating yields $y'(x) \le K - \frac{\varepsilon}{n}x$, which forces y(x) to have a zero. This contradicts equation (4.4). As a result, the only solution for these cases is $y(x) \equiv \beta^{\beta}$.

(b) Let
$$n > 2$$
 and $f + \frac{1}{2}(2-n) < 0\left(p > \frac{n}{n-2}\right)$. The result for the cases

 $p > \frac{n+2}{n-2}$ is proved by Troy [10]. For the larger range $p > \frac{n}{n-2}$ we have the following proof. Define $W(x) = y(x) S'_p(x) - y'(x) S_p(x)$ and Q(u) = F(u)/u. Then $W' + c(x) W = y S_p[Q(y) - Q(S_p)]$. Note that Q(u) is an increasing function. Also note that $W(x) = -2 K x^{-2\beta-1} g(x)$ where $S_p(x) = K x^{-2\beta}$. Thus, $x^{n-1} W(x) = -2 K x^{n-2-2\beta} g(x)$ where $n-2-2\beta > 0$. As a result, $x^{n-1} W(x) \to 0$ as $x \to 0^+$. Integrating the equation for W(x), we obtain

$$x^{n-1} e^{-(1/4) x^2} \mathbf{W}(x) = \int_0^x t^{n-1} e^{-(1/4) t^2} y(t) \mathbf{S}_p(t) \left[\mathbf{Q}(y(t)) - \mathbf{Q}(\mathbf{S}_p(t)) \right] dt.$$

If $0 < y < S_p$ for all $x \ge 0$, then since Q(u) is increasing, W(x) < 0 for all x. But then g(x) > 0 for all x is forced, a contradiction to Lemma 4.2. Consequently, there must be a value z such that $y(z) = S_p(z)$.

Also, W(x) < 0 for $x \in [0, x_0)$. At x_0 , $0 < W'(x_0)$ which implies that $y(x_0) > S_p(x_0)$. [Note that $W'(x_0) = 0$ and $y(x_0) = S_p(x_0)$ imply that $y'(x_0) = S'(x_0)$ which in turn would imply, by uniqueness to initial value problems, that $y(x) \equiv S_p(x)$, a contradiction.] So $z < x_0$ is necessary.

Let $x_1 > x_0$ be small enough so that $W(x_1) > 0$. Suppose that $y > S_p$ for all x > z. Then integrating the equation for W(x), we have $W' + c(x) W \ge 0$ and

$$x^{n-1}e^{-(1/4)x^2}W(x) \ge x_1^{n-1}e^{-(1/4)x_1^2}W(x_1) =: p > 0.$$

But $(S_p/y)'(x) = W(x)/[y(x)]^2$, so

$$(\mathbf{S}_{p}/y)(x) \ge (\mathbf{S}_{p}/y)(x_{1}) + p \int_{x_{1}}^{x} t^{1-n} e^{(1/4)t^{2}} [y(t)]^{-2} dt.$$

For x sufficiently large, the right-hand side must become larger than 1, in which case $(S/y)(x) \ge 1$. That is, there is another value q where $y(q) = S_p(q)$.

We have shown that there are at least two points of intersection between the graphs of y(x) and $S_p(x)$ for $\alpha > \beta^{\beta}$. Thus, the only solution to (4.1)-(4.2)-(4.4) which intersects $S_p(x)$ exactly once is $y(x) \equiv \beta^{\beta}$.

5. THE CONVERGENCE RESULTS

We are now able to precisely describe how the blowup asymptotically evolves in dimensions $n \ge 3$. Let $w(x, \sigma)$ be the solution of (2.3)-(2.4)-(2.5) or (2.3)-(2.4)-(2.6) depending on the nonlinearity being considered. By Corollary 3.4 we know that for each N>0 there is a $\sigma_N > 0$ such that $w(x, \sigma)$ intersects $S_*(x)$ at most once on [0, N] for each $\sigma > \sigma_N$. By Lemmas 4.3 and 4.4, the only possible steady-state solution of (2.3) with $F(w) = e^w - 1$ which intersects $S_e(x)$ at most once is $y(x) \equiv 0$, and for $F(w) = w^p - \beta w$, the only possible steady-state solution of (2.3) intersecting $S_n(x)$ at most once is $y(x) \equiv \beta^{\beta}$.

Because of these observations we are now able to prove a convergence or stability result similar to those given in [8] and [1] which prove that the ω -limit set for (2.3)-(2.4)-(2.5) consists of the singleton critical point $y(x) \equiv 0$, and for (2.3)-(2.4)-(2.6), $y(x) \equiv \beta^{\beta}$.

For the sake of completeness, we include the proof of the following theorem which is influenced by the ones given in [1] and [8].

THEOREM 5.1. – Let $n \ge 3$.

(a) As $\sigma \to \infty$, the solution $w(x, \sigma)$ of (2.3)-(2.4)-(2.5) converges to $y(x) \equiv 0$ uniformly in x on compact subsets of $[0, \infty)$.

(b) As $\sigma \to \infty$, the solution $w(x, \sigma)$ of (2.3)-(2.4)-(2.6) converges to $y(x) \equiv \beta^{\beta}$ uniformly in x on compact subsets of $[0, \infty)$.

Proof. — Define $w^{\tau}(x, \sigma) := w(x, \sigma + \tau)$ as the function obtained by shifting w in time by the amount τ . We will show that as $\tau \to \infty$, $w^{\tau}(x, \sigma)$ converges to the solution y(x) uniformly on compact subsets of $\mathbb{R}^+ \times \mathbb{R}$. Provided that the limiting function is unique, it is equivalent to prove that given any unbounded increasing sequence $\{n_j\}$, there exists a subsequence $\{n_j\}$ such that w^{n_j} converges to y(x) uniformly on compact subsets of $\mathbb{R}^+ \times \mathbb{R}$.

Let $N \in \mathbb{Z}^+$. For *i* sufficiently large, the rectangle given by $Q_{2N} = \{(x, \sigma): 0 \le x \le 2N, |\sigma| \le 2N\}$ lies in the domain of w^{n_i} . The radially symmetric

function $\widetilde{w}(\zeta, \sigma) = w^{n_i}(|\zeta|, \sigma)$ solves the parabolic equation

$$\widetilde{w}_{\sigma} = \Delta \widetilde{w} - \frac{1}{2} \langle \zeta, \nabla \widetilde{w} \rangle + F(\widetilde{w})$$

on the cylinder given by $\Gamma_{2N} = \{(\zeta, \sigma) \in \mathbb{R}^n \times \mathbb{R} : |\zeta| \leq 2N, |\sigma| \leq 2N \}$ with $-2N\gamma \leq \tilde{w}(\zeta, \sigma) \leq \mu$ using (2.10).

By Schauder's interior estimates, all partial derivatives of \tilde{w} can be uniformly bounded on the subcylinder $\Gamma_N \subseteq \Gamma_{2N}$. Consequently, w^{n_i} , $w^{n_j}_{\sigma}$, and $w^{n_i}_{xx}$ are uniformly Lipschitz continuous on $Q_N \subseteq Q_{2N}$. Their Lipschitz constants depend on N but not on *i*. By the Arzela-Ascoli theorem, there is a subsequence $\{n_j\}_1^{\infty}$ and a function \bar{w} such that w^{n_j} , $w^{n_j}_{\sigma}$, $w^{n_j}_{xx}$ converge to \bar{w} , \bar{w}_{σ} , and \bar{w}_{xx} , respectively, uniformly on Q_N .

Repeating the construction for all N and taking a diagonal subsequence, we can conclude that $w^{n_j} \to \overline{w}$, $w^{n_j}_{\sigma} \to \overline{w}$, and $w^{n_j}_{xx} \to \overline{w}_{xx}$ uniformly on every compact subset in $\mathbb{R}^+ \times \mathbb{R}$. Clearly \overline{w} satisfies (2.3)-(2.4) with $-\gamma \leq \overline{w}_x \leq 0$. For $n \geq 3$ and $F(w) = e^w - 1$, the limiting function \overline{w} intersects $S_e(x)$ at most once since, by Corollary 3.4, $w^{n_j}(x, \sigma)$ intersects $S_e(x)$ at most once on [0, N] for each $\sigma > \sigma_N$, and $0 \leq \overline{w}(0, \sigma) \leq -\ln \delta$ for $\sigma \geq 0$. For $n \geq 3$, $\beta + \frac{1}{2}(2-n) < 0$, and

$$\mathbf{F}(w) = w^{p} - \beta w,$$

Corollary 3.4 guarantees that \overline{w} intersects $S_p(x)$ at most once. By (2.8) we have $\beta^{\beta} \leq w(0, \sigma) \leq (\beta/\delta)^{\beta}$ for $\sigma \geq 0$.

We now prove that \overline{w} is independent of σ . For the solution $w(x, \sigma)$ of (2.3)-(2.4)-(2.5) or (2.6), define the energy functional

$$E(\sigma) = \int_{0}^{v} \rho(x) \left[\frac{1}{2} w_{x}^{2} - G(w) \right] dx,$$

$$v = R T^{-1/2} e^{1/2\sigma}, \qquad \rho(x) = x^{n-1} e^{-(1/4)x^{2}}$$
(5.1)

where G (w) = $e^w - w$ if F (w) = $e^w - 1$, and G (w) = $w^{p+1}/(p+1) - \frac{1}{2}\beta w^2$ if F (w) = $w^p - \beta w$.

Vol. 5, n° 1-1988.

Multiplying equation (2.3) by ρw_{σ} and integrating from 0 to v yields the equation

$$\int_{0}^{v} \rho w_{\sigma}^{2} dx = \int_{0}^{v} w_{\sigma} (\rho w_{x})_{x} dx + \int_{0}^{v} \frac{\partial}{\partial \sigma} [\rho G(w)] dx$$
$$= \int_{0}^{v} \frac{\partial}{\partial \sigma} \left[\rho G(w) - \frac{1}{2} \rho w_{x}^{2} \right] dx + \rho w_{\sigma} w_{x} \Big|_{x=0}^{x=v} (5.2)$$

Moreover,

$$E'(\sigma) = \int_{0}^{v} \frac{\partial}{\partial \sigma} \left[\frac{1}{2} \rho w_{x}^{2} - \rho G(w) \right] dx + \frac{1}{2} v \left\{ \rho(v) \left[\frac{1}{2} w_{x}^{2}(v, \sigma) - G(w(v, \sigma)) \right] \right\}$$
(5.3)

Therefore, for all a, b with $0 \le a < b$, integrating (5.2) with respect to σ from a to b, and using (5.3), we have

$$\int_{a}^{b} \int_{0}^{v} \rho w_{x} dx d\sigma = -\int_{a}^{b} E'(\sigma) d\sigma + \int_{a}^{b} \rho(v) w_{\sigma}(v, \sigma) w_{x}(v, \sigma) d\sigma$$
$$+ \frac{1}{2} \int_{a}^{b} \rho(v) \left[\frac{1}{2} w_{x}^{2}(v, \sigma) - G(w(v, \sigma)) \right] d\sigma$$
$$=: E(a) - E(b) + \psi(a, b) \qquad (5.4)$$

Recalling that $|w_x| \leq \gamma$ and observing that

$$w_{\sigma}(v, \sigma) = -1 - \mathbf{R} u_{r}(\mathbf{R}, \mathbf{T}(1 - e^{-\sigma}))$$

for $f(u) = e^u$, or $w_{\sigma}(v, \sigma) = -R u_r(R, T(1-e^{-\sigma}))$ for $f(u) = u^p$, we see that in either case the quantity is uniformly bounded as $\sigma \to \infty$. We conclude that

$$\lim_{a \to \infty} \left\{ \sup_{b > a} \psi(a, b) \right\} = 0 \tag{5.5}$$

For any fixed N, we shall prove that

$$\int_{\mathbf{Q}_{\mathbf{N}}} \int \rho \, \overline{w_{\sigma}^2} \, dx \, d\sigma = \lim_{n_j \to \infty} \int_{\mathbf{Q}_{\mathbf{N}}} \int \rho \, (w_{\sigma}^{n_j})^2 \, dx \, d\sigma = 0.$$

Annales de l'Institut Henri Poincaré - Analyse non linéaire

Note that it is not a restriction to assume that $\lim_{j \to \infty} (n_{j+1} - n_j) = \infty$. For all *j* large enough, $N \leq RT^{-1/2} \exp\left[\frac{1}{2}(n_j - N)\right]$ and $n_{j+1} - n_j \geq 2N$. Hence, $\int_{-N}^{N} \int_{0}^{N} \rho(w_{\sigma}^{n_j})^2 dx d\sigma \leq \int_{-N}^{-N+n_{j+1}-n_j} \int_{0}^{RT^{-1/2} \exp(1/2n_j)} \rho(w_{\sigma}^{n_j})^2 dx d\sigma$ $= E(n_j - N) - E(n_{j+1} - N) + \psi(n_j - N, n_{j+1} - N)$

by (5.4). As a consequence of (5.5), we have

$$\int_{Q_N} \int \rho \, \overline{w_\sigma^2} \, dx \, d\sigma \leq \limsup_{j \to \infty} \left[E \left(n_j - N \right) - E \left(n_{j+1} - N \right) \right]. \tag{5.6}$$

Fix any K arbitrarily large. For *j* sufficiently large, we have

$$E(n_{j}-N)-E(n_{j+1}-N)$$

$$=\int_{0}^{K}\frac{1}{2}\rho\left\{\left[w_{x}^{n_{j}}(x,-N)\right]^{2}-\left[w_{x}^{n_{j+1}}(x,-N)\right]^{2}\right\}dx$$

$$-\int_{0}^{K}\rho\left[G\left(w^{n_{j}}(x,-N)-G\left(w^{n_{j+1}}(x,-N)\right)\right]dx$$

$$+\int_{K}^{RT^{-1/2}\exp\left[1/2(n_{j}-N)\right]}\rho\left\{\frac{1}{2}\left[w_{x}^{n_{j}}(x,-N)\right]^{2}-G\left(w^{n_{j}}(x,-N)\right)\right\}dx$$

$$\int_{K}^{RT^{-1/2}\exp\left[1/2(n_{j}-N)\right]}\rho\left\{\frac{1}{2}\left[w_{x}^{n_{j+1}}(x,-N)\right]^{2}-G\left(w^{n_{j+1}}(x,-N)\right)\right\}dx \quad (5.7)$$

In (5.7), the first two integrals on the right-hand side converge to zero as $j \to \infty$. Recalling that $|w_{x'}^{n_j}(x, -N)| \le \gamma$ and $-\gamma x \le w_{x'}^{n_j}(x, -N) \le \mu$, we see that the sum of the absolute values of the last two integrals is bounded by $M \int_{K}^{\infty} x^{n-1} e^{-(1/4)x^2} dx$ where M is a positive constant. This integral can be made arbitrarily small by choosing K large enough.

This proves that $\int_{-N}^{N} \rho \, \overline{w_{\sigma}^2} \, dx \, d\sigma = 0$ and hence $\overline{w_{\sigma}} = 0$. Thus, $\overline{w}(x, \sigma) = \overline{w}(x, 0) = y(x)$ where y(x) is a nonincreasing globally Lipschitz continuous solution of (4.1)-(4.2) which intersects $S_*(x)$ at most once. If $f(u) = e^u$, then $y(0) \in [0, -\ln \delta]$ and so $y(x) \equiv 0$ is the only solution which intersects $S_e(x)$ exactly (and thus at most) once on $[0, \infty)$. Similarly for $f(u) = u^p$, $y(0) \in [\beta^{\beta}, (\beta/\delta)^{\beta}]$ and the only possible solution is $y(x) \equiv \beta^{\beta}$. Since the limiting solution y(x) is unique in either case, $\omega^{\tau}(x, \sigma) \rightarrow y(x)$ as $\tau \rightarrow \infty$ and we have the result asserted. \Box

Proof of Theorem 1. — The last theorem shows that $w(x, \sigma) \rightarrow y(x)$ uniformly in x on compact subsets of $[0, \infty)$ as $\sigma \rightarrow \infty$.

(a) In the case $f(u) = e^u$, changing back to the variables (r, t), we have that $v(r, t) + \ln(T-t) \rightarrow 0$ as $t \rightarrow T^-$ provided $r \leq C(T-t)^{1/2}$ for arbitrary $C \geq 0$.

In particular, $v(0, t) + \ln(T-t) \rightarrow 0$ as $t \rightarrow T^-$.

(b) In the case $f(u) = u^p$ we obtain $(T-t)^{\beta} v(r, t) \rightarrow \beta^{\beta}$ as $t \rightarrow T^-$ provided $r \leq C (T-t)^{1/2}$ for arbitrary $C \geq 0$. In particular, $(T-t)^{\beta} v(0, t) \rightarrow \beta^{\beta}$ as $t \rightarrow T^-$.

Proof of Theorem 2. – Theorem 5.1 guarantees that the first branch of zeros $x_1(\sigma)$ of $D(x, \sigma) = w(x, \sigma) - S_*(x)$ is bounded and converges to l where $S_e(l) = 0$ or $S_p(l) = \beta^{\beta}$.

Define $r_1 = x_1 T^{1/2}$. Then $D(x_1, 0) = 0$ implies that $v(r_1, 0) = S_*(r_1)$. In addition, $v(r, 0) < S_*(r)$ for $r \in (0, r_1)$.

Since $x_1(\sigma)$ is bounded and since $\frac{d}{d\sigma} D(r T^{-1/2} e^{1/2\sigma}, \sigma) \ge 0$ for each

 $r \in (0, r_1)$, there is a value $\overline{\sigma} > 0$ such that

$$r \operatorname{T}^{-1/2} e^{1/2\sigma} = x_1(\overline{\sigma}) \operatorname{D}(x_1(\overline{\sigma}), \overline{\sigma}) = 0,$$

and $D(rT^{-1/2}e^{1/2\sigma}, \sigma) > 0$ for $\sigma > \overline{\sigma}$. Changing back to the variables (r, t) with $\overline{\sigma} = \ln[T//(T-\overline{t})]$, we obtain $v(r, t) > S_*(r)$ for $t \in (\overline{t}, T)$.

Remark. — After this paper was completed we received the preprint [11] of Giga and Kohn. In the introduction there is a detailed discussion of self-similar solutions and their importance in describing the behavior of solutions near a blow up point. The referee pointed out a number of papers ([12] to [18]) which are related to the ideas used in this paper. Their relevance is discussed in [11]. The referee also pointed out a briefer proof of Lemma 4.1 which we have used.

REFERENCES

- J. BEBERNES, A. BRESSAN and D. EBERLY, A Description of Blow-Up for the Solid Fuel Ignition Model, Indiana Univ. Math. J., Vol. 36, 1987, pp. 295-305.
- [2] J. BEBERNES and D. KASSOY, A Mathematical Analysis of Blow-up for Thermal Reactions, S.I.A.M. J. Appl. Math., Vol. 40, 1981, pp. 476-484.

Annales de l'Institut Henri Poincaré - Analyse non linéaire

20

- [3] J. BEBERNES and W. TROY, On the Existence of Solutions to the Kassoy Problem in Dimension 1, S.I.A.M. J. Math. Anal., Vol. 18, 1987, pp. 1157-1162.
- [4] H. BELLOUT, A Criterion for Blow-Up of Solutions to Semilinear Heat Equations, S.I.A.M. J. Math. Anal., Vol. 18, 1987, pp. 722-727.
- [5] D. EBERLY, On the Existence of Solutions to the Kassoy Problem on Dimensions 1 and 2, J. Math. Anal. Appl. (to appear).
- [6] D. EBERLY and W. TROY, On the Existence of Logarithmic-Type Solutions to the Kassoy Problem in Dimension 3, J. Differential Equations (to appear).
- [7] A. FRIEDMAN and B. MCLEOD, Blow-Up of Positive Solutions of Seminlinear Heat Equations, Indiana Univ. Math. J., Vol. 34, No. 2, 1985, pp. 425-447.
- [8] Y. GIGA and R. V. KOHN, Asymptotically Self-Similar Blow-Up of Semilinear Heat Equations, Comm. Pure and Appl. Math., Vol. 38, 1985, pp. 297-319.
- [9] A. LACEY, Mathematical Analysis of Thermal Runaway for Spatially Inhomogeneous Reactions, S.I.A.M. J. Appl. Math., Vol. 43, 1983, pp. 1350-1366.
- [10] W. TROY, The Existence of Bounded Solutions for a Semilinear Heat Equation, S.I.A.M. J. Math. Anal., Vol. 18, 1987, pp. 332-336.
- [11] Y. GIGA and R. V. KOHN, Characterizing Blowup Using Similarity Variables, Indiana Univ. Math. J., Vol. 36, 1987, pp. 1-40.
- [12] V. A. GALAKTIONOV and S. A. POSASHKOV, The Equation $u_i = u_{xx} + u^{\beta}$. Localization and Asymptotic Behavior of Unbounded Solutions, *Diff. Uravnen*, Vol. 22, 1986, pp. 1165-1173.
- [13] Y. GIGA, On Elliptic Equations Related to Self-Similar Solutions for Nonlinear Heat Equations, *Hiroshima Math. J.*, Vol. 16, 1986, pp. 541-554.
- [14] L. M. HOCKING, K. STEWARTSON and J. T. STUART, A Nonlinear Instability Burst in Plane Parallel Flow, J. Fluid Mech., Vol. 51, 1972, pp. 705-735.
- [15] A. KAPILA, Reactive-Diffusive Systems with Arrhenius Kinetics: Dynamics of Ignition, S.I.A.M. J. Appl. Math., Vol. 39, 1980, pp. 21-36.
- [16] D. KASSOY and J. POLAND, The Thermal Explosion Confined by a Constant Temperature Boundary: I. The Induction Period Solution, S.I.A.M. J. Appl. Math., Vol. 39, 1980, pp. 412-430.
- [17] F. B. WEISSLER, Single Point Blowup of Semilinear Initial Value Problems, J. Diff. Eq., Vol. 55, 1984, pp. 204-224.
- [18] F. B. WEISSLER, An L[∞] Blowup Estimate for a Nonlinear Heat Equation, Comm. Pure Appl. Math., Vol. 38, 1985, pp. 291-296.

(Manuscrit reçu le 23 octobre 1986.)