Vol. 5, n° 1, 1988, p. 23-36.

A continuous version of Liapunov's convexity theorem

Ъy

Arrigo CELLINA, Giovanni COLOMBO and Alessandro FONDA International School for Advanced Studies (S.I.S.S.A.), Trieste, Italy

ABSTRACT. – Given a continuous map $s \mapsto \mu_s$, from a compact metric space into the space of nonatomic measures on T, we show the existence of a family $(A^s_{\alpha})_{\alpha \in [0, 1]}$, increasing in α and continuous in s, such that

 $\mu_s(\mathbf{A}^s_{\alpha}) = \alpha \mu_s(\mathbf{T}) \qquad (\alpha \in [0, 1]).$

Key words : Liapunov's convexity theorem - Measure theory - Selections.

RÉSUMÉ. – Étant donnée une application continue $s \mapsto \mu_s$, d'un espace métrique compact dans l'espace des mesures nonatomiques sur T, nous montrons l'existence d'une famille $(A^s_{\alpha})_{\alpha \in [0, 1]}$, croissante avec α et continue en s, telle que

 $\mu_s(\mathbf{A}^s_{\alpha}) = \alpha \mu_s(\mathbf{T}) \qquad (\alpha \in [0, 1]).$

1. INTRODUCTION

Let μ be a non-atomic finite measure on a measurable space T. A result of measure theory states the existence of a family $(A_{\alpha})_{\alpha}$ of subsets of T, increasing with α in [0, 1] and such that

$$\mu(\mathbf{A}_{\alpha}) = \alpha \mu(\mathbf{T}).$$

Classification A.M.S.: 28 A 10, 54 C 65.

Annales de l'Institut Henri Poincaré - Analyse non linéaire - 0294-1449 Vol. 5/88/01/23/14/\$ 3.40/

© 1988 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

According to Liapunov's Convexity Theorem on the range of vector measures (see Halmos [2], [3] and Liapunov [4]) the above result holds for a finite family of nonatomic measures μ_i , $i=1,\ldots,n$: there exists an increasing family $(A_{\alpha})_{\alpha}$ such that

$$\mu_i(\mathbf{A}_{\alpha}) = \alpha \mu_i(\mathbf{T}), \qquad i = 1, \ldots, n.$$

In general, the above is not true for an infinite family $(\mu_s)_s$ of measures (see Liapunov [5]). In this paper we consider a map $s \to \mu_s$, continuous for s in a compact metric space S. Denoting by $\mathscr{A}(\mu_s)$ the set of increasing families $(A_s^{\alpha})_{\alpha}$ satisfying

$$\mu_s(\mathbf{A}^s_\alpha) = \alpha \mu_s(\mathbf{T}),$$

we show the existence of a selection $(\tilde{A}_{\alpha}^{s})_{\alpha}$ of the multivalued map $\mathscr{A}(\mu_{s})$ continuously depending on s in the sense of Definition 2 of the following section.

2. NOTATIONS AND PRELIMINARY RESULTS

We consider a measure space (T, \mathscr{F}, μ_0) where μ_0 is a non-atomic positive measure on a σ -algebra \mathscr{F} and $\mu_0(T) = 1$. Denote by \mathscr{M} the set of positive finite measures μ on T which are absolutely continuous with respect to μ_0 , hence non-atomic. The metric in \mathscr{M} is induced by the norm $\|\mu\|$ given by the variation of μ .

DEFINITION 1. - A family $(A_{\alpha})_{\alpha \in [0, 1]}$, $A_{\alpha} \in \mathscr{F}$, is called *increasing* if $A_{\alpha} \subseteq A_{\beta}$ when $\alpha \leq \beta$.

An increasing family is called *refining* $A \in \mathscr{F}$ with respect to the measure $\mu = (\mu_1, \ldots, \mu_n) \in \mathscr{M}^n$ if $A_0 = \emptyset$, $A_1 = A$ and

$$\mu(\mathbf{A}_{\alpha}) = \alpha \mu(\mathbf{A}) \qquad (\alpha \in [0, 1]).$$

The set of the families refining T with respect to μ is denoted by $\mathscr{A}(\mu)$.

The proofs of Lemmas 1 and 2 are based on Liapunov's theorem (see Fryszkowski [1]).

LEMMA 1. — Consider a vector measure $\mu \in \mathcal{M}^n$. For each $A \in \mathcal{F}$ there exists a family $(A_{\alpha})_{\alpha \in [0, 1]}$ refining A with respect to μ . In particular, the set $\mathscr{A}(\mu)$ is nonempty.

In what follows, S is a compact metric space with distance d.

LEMMA 2. – Let $s \to \mu_s$ be a continuous map from S into \mathcal{M}^n . Then for every $\varepsilon > 0$ there exists an increasing family $(A_\alpha)_\alpha$ satisfying

- (i) $\mu_0(A_{\alpha}) = \alpha \ (\alpha \in [0, 1]);$
- (ii) $|\mu_s(\mathbf{A}_{\alpha}) \alpha \mu_s(\mathbf{T})| < \varepsilon \ (\alpha \in [0, 1], s \in \mathbf{S}).$

DEFINITION 2. – A map $s \to (A_{\alpha}^{s})_{\alpha}$ is called *continuous* on S if for every $s^{0} \in S$ and $\varepsilon > 0$ there exists a $\delta > 0$ such that: s, s' and s'' in B (s'^{0}, δ) implies

$$\sup_{\alpha \in [0, 1]} \mu_s(\mathbf{A}^{s'}_{\alpha} \bigtriangleup \mathbf{A}^{s''}_{\alpha}) < \varepsilon.$$

Analogously we set

DEFINITION 3. — The set valued map $s \to \mathscr{A}(\mu_s)$ is called *continuous* if for every $s^0 \in S$ and $\varepsilon > 0$ there exists a $\delta > 0$ such that: s, s' and s'' in $B(s^0, \delta)$ implies $\forall (A'_{\alpha}) \in \mathscr{A}(\mu_{s'}), \exists (A''_{\alpha}) \in \mathscr{A}(\mu_{s''})$ such that

$$\sup_{\alpha \in [0, 1]} \mu_s(A'_{\alpha} \bigtriangleup A''_{\alpha}) < \varepsilon.$$

We will use the symbol $\dot{\cup}$ to denote the union of disjoint sets. Finally, we recall that $\rho(.,.)$ defined as $\rho(A, B) = \mu(A \Delta B) \ (\mu \in \mathcal{M})$ is a pseudometric on \mathcal{F} .

Remarks. - (a) In [5], Liapunov considers a sequence μ_n of measures on $[0,2\pi]$ defined by a family of densities f_n converging strongly in L¹ to zero. He shows that there cannot exist any Borel subset A of $[0,2\pi]$ such that for every n, $\mu_n(A) = \frac{1}{2}\mu_n([0,2\pi])$. By associating μ_n to the point 1/nand $\mu_{\infty} = 0$ to the point 0, we have a map $s \mapsto \mu_s$ from the compact metric space $S = \{1/n : n \in N\} \cup \{0\}$ into the space of nonatomic measures. The continuity at 0 follows from the strong convergence of (f_n) . This example shows that the assumptions of Theorem 1 below do not guarantee the existence of a constant selection.

(b) A further example is taken from Valadier [7]. Let S and T be the real interval [0, 1], and set $\mu_s(A) = \int_A e^{-st} dt$. Assume there exists a set $\overline{A} \subseteq T$ such that

$$\forall s, \quad \mu_s(\mathbf{A}) = \frac{1}{2} \,\mu_s(\mathbf{T}).$$

Then

$$\int_{-\infty}^{+\infty} \chi_{\mathbf{A}}(t) e^{-st} dt = \int_{-\infty}^{+\infty} \frac{1}{2} \chi_{\mathbf{T}}(t) e^{-st} dt.$$

Since the Laplace transformations of χ_A and $\frac{1}{2}\chi_T$, both of compact support, are analytic and coincide on [0,1], they are identical. By the injectivity of the Lapalce Transformation, we have

$$\chi_{\rm A} = \frac{1}{2} \chi_{\rm T},$$

a contradiction. Hence again we have an example where there exist no constant selections.

(c) It seems more natural to express the continuity in terms of the pseudometric $\rho(A, B) = \mu_0(A, B)$. However, Definition 2 is not necessarily equivalent to the continuity with respect to this pseudometric when μ_0 is not absolutely continuous with respect to μ_{0} .

3. MAIN RESULTS

In order to prove our main theorem we need three additional Lemmas.

LEMMA 3. – Consider a 1-dimensional measure $\mu \in \mathcal{M}$ and an increasing family $(A^1_{\alpha})_{\alpha}$ such that for some $\varepsilon > 0$,

$$\left| \mu(\mathbf{A}^{1}_{\alpha}) - \alpha \mu(\mathbf{T}) \right| < \varepsilon \qquad (\alpha \in [0, 1]).$$

There exists an increasing family $(A_{\alpha}^2)_{\alpha}$ such that

- (i) $\mu(A_{\alpha}^2) = \alpha \mu(T)$ ($\alpha \in [0, 1]$) (ii) $\mu(A_{\alpha}^1 \triangle A_{\alpha}^2) < 6\epsilon$ ($\alpha \in [0, 1]$).

Proof. - Fix M so that $\frac{1}{M} \ge \frac{\varepsilon}{\mu(T)} \ge \frac{1}{M+1}$. We begin by defining recursively an increasing family $(A_{\alpha}^2)_{\alpha}$ for $\alpha = i/M$, i = 0, ..., M, such that (i) holds and $A_{i/M}^2 \subseteq A_{(i+1)/M}^1$. Set $A_0^2 = \emptyset$ and assume $A_{i/M}^2$ has been defined for i = 0, ..., n < M.

Case 1. – When $\mu(A_{(n+1)/M}^1) \ge \frac{n+1}{M}\mu(T)$, define $A_{(n+1)/M}^2$, by Lemma 1, as a set such that $A_{n/M}^2 \subseteq A_{(n+1)/M}^2 \subseteq A_{(n+1)/M}^1$ and

$$\mu(A_{(n+1)/M}^2) = \frac{n+1}{M}\mu(T).$$

Case 2. – When $\mu(A_{(n+1)/M}^1) < \frac{n+1}{M}\mu(T)$, we first notice that by the

choice of M we have that $\mu(A_{(n+2)/M}^1) \ge \frac{n+1}{M}\mu(T)$; hence we can define $A_{(n+1)/M}^2$ as a set such that $A_{(n+1)/M}^1 \subseteq A_{(n+1)/M}^2 \subseteq A_{(n+2)/M}^1$ and

$$\mu(A_{(n+1)/M}^2) = \frac{n+1}{M} \mu(T).$$

Notice that $A_{(n+1)/M}^2 \supseteq A_{n/M}^2$, since $A_{(n+1)/M}^1 \supseteq A_{n/M}^2$ by the inductive hypothesis.

In either case, we have

$$\mu(A_{(n+1)/M}^2 \bigtriangleup A_{(n+1)/M}^1) = \left| \mu(A_{(n+1)/M}^2) - \mu(A_{(n+1)/M}^1) \right|$$

$$\leq \left| \mu(A_{(n+1)/M}^2) - \frac{n+1}{M} \mu(T) \right|$$

$$+ \left| \mu(A_{(n+1)/M}^1) - \frac{n+1}{M} \mu(T) \right|$$

$$< \varepsilon.$$

By Lemma 1 it is now easy to define a family $(A^2_{\alpha})_{\alpha \in [0, 1]}$ such that

(a)
$$A_{i/M}^2 \subseteq A_{\alpha}^2 \subseteq A_{\beta}^2 \subseteq A_{(i+1)/M}^2$$
 for $\frac{i}{M} \leq \alpha \leq \beta \leq \frac{i+1}{M}$;

(b)
$$\mu(A_{\alpha}^2) = \alpha \mu(T).$$

Now we check that (ii) holds for $\frac{i}{M} \leq \alpha \leq \frac{i+1}{M}$. We can as well assume that $\mu(T) \geq 6\varepsilon$ otherwise (ii) trivially holds.

$$\begin{split} \mu(\mathbf{A}_{\alpha}^{1} \bigtriangleup \mathbf{A}_{\alpha}^{2}) &= \mu(\mathbf{A}_{\alpha}^{1} \searrow \mathbf{A}_{\alpha}^{2}) + \mu(\mathbf{A}_{\alpha}^{2} \searrow \mathbf{A}_{\alpha}^{1}) \\ &\leq \mu(\mathbf{A}_{(i+1)/M}^{1} \searrow \mathbf{A}_{i/M}^{1}) + \mu(\mathbf{A}_{i/M}^{1} \bigtriangleup \mathbf{A}_{i/M}^{2}) \\ &+ \mu(\mathbf{A}_{(i+1)/M}^{2} \bigtriangleup \mathbf{A}_{i/M}^{2}) + \mu(\mathbf{A}_{i/M}^{2} \searrow \mathbf{A}_{i/M}^{1}) \\ &\leq \frac{1}{M}\mu(\mathbf{T}) + 2\varepsilon + \frac{1}{M}\mu(\mathbf{T}) + \varepsilon \\ &\leq 2\frac{\varepsilon\mu(\mathbf{T})}{\mu(\mathbf{T}) - \varepsilon} + 3\varepsilon = \frac{2\varepsilon}{1 - (\varepsilon/\mu(\mathbf{T}))} + 3\varepsilon \\ &\leq \left(\frac{12}{5} + 3\right)\varepsilon < 6\varepsilon. \quad \blacksquare \end{split}$$

COROLLARY. – The set-valued map $s \rightarrow \mathscr{A}(\mu_s)$ is continuous.

Proof. – Choose s^0 and $\varepsilon > 0$. Let $\delta > 0$ be such that $d(s, s^0) < \delta$ implies $\|\mu_s - \mu_{s^0}\| < \varepsilon/26$. Fix s, s' and s'' in $B(s^0, \delta)$ and $A'_{\alpha} \in \mathscr{A}(\mu_{s'})$. Since

$$| \mu_{s^{0}}(\mathbf{A}_{\alpha}') - \alpha \mu_{s^{0}}(\mathbf{T}) | = | \mu_{s^{0}}(\mathbf{A}_{\alpha}') - \mu_{s'}(\mathbf{A}_{\alpha}') + \mu_{s'}(\mathbf{A}_{\alpha}') - \alpha \mu_{s'}(\mathbf{T}) + \alpha \mu_{s'}(\mathbf{T}) - \alpha \mu_{s^{0}}(\mathbf{T}) |$$
$$\leq 2 || \mu_{s'} - \mu_{s^{0}} || < \varepsilon/13,$$

by Lemma 3 there exists $A^0_{\alpha} \in \mathscr{A}(\mu_{s^0})$ such that $\mu_{s^0}(A'_{\alpha} \bigtriangleup A^0_{\alpha}) \leq 6 \varepsilon/13$. Analogously, given A^0_{α} , there exists $A''_{\alpha} \in \mathscr{A}(\mu_{s''})$ such that $\mu_{s''}(A^0_{\alpha} \bigtriangleup A''_{\alpha}) \leq 6 \varepsilon/13$.

Hence

$$\begin{split} \mu_{s}(\mathbf{A}_{\alpha}^{\prime} \bigtriangleup \mathbf{A}_{\alpha}^{\prime\prime}) &\leq \left| \mu_{s}(\mathbf{A}_{\alpha}^{\prime} \bigtriangleup \mathbf{A}_{\alpha}^{\prime\prime}) - \mu_{s}\circ(\mathbf{A}_{\alpha}^{\prime} \bigtriangleup \mathbf{A}_{\alpha}^{\prime\prime}) \right| + \mu_{s}\circ(\mathbf{A}_{\alpha}^{\prime} \bigtriangleup \mathbf{A}_{\alpha}^{\prime\prime}) \\ &\leq \left\| \mu_{s} - \mu_{s}\circ \right\| + \mu_{s}\circ(\mathbf{A}_{\alpha}^{\prime} \bigtriangleup \mathbf{A}_{\alpha}^{0}) + \mu_{s}\circ(\mathbf{A}_{\alpha}^{0} \bigtriangleup \mathbf{A}_{\alpha}^{\prime\prime}) \\ &\leq \varepsilon/26 + 6\varepsilon/13 + \left\| \mu_{s}\circ - \mu_{s^{\prime\prime}} \right\| + \mu_{s^{\prime\prime}}(\mathbf{A}_{\alpha}^{0} \bigtriangleup \mathbf{A}_{\alpha}^{\prime\prime}) \\ &\leq \varepsilon. \quad \blacksquare \end{split}$$

In the following Lemmas, the symbol $\sup_{\lambda_j(s)>0}$ is a shorthand notation

for $\sup_{\{j \in \mathbb{N} : \lambda_j(s) > 0\}}$.

LEMMA 4. — Let $s \to \mu_s$ be a continuous map from a metric space S into the space \mathcal{M} and let $(\mathbf{B}(s_j, \eta_j))_{j=1, ..., N}$ be a finite open covering of S. Let $(\lambda_j(.))_{j=1, ..., N}$ be a continuous partition of unity subordinate to it such that $\lambda_j(s_j) = 1$.

For any center s_j , j = 1, ..., N, let be defined a finite increasing family $(\bar{A}_{i|M}^{s_j})_{i=0,...,M}$ such that

$$\mu_{s_j}(\bar{\mathbf{A}}_{i/\mathbf{M}}^{s_j}) = \frac{i}{\mathbf{M}} \mu_{s_j}(\mathbf{T}) \qquad (i \in \{0, \ldots, \mathbf{M}\}).$$

Then for each $s \in S$ there exists an increasing family $(A^s_{\alpha})_{\alpha}$ that extends the family $(\bar{A}^{s_j}_{i/M})_i$ in the sense that $A^{s_j}_{i/M} = \bar{A}^{s_j}_{i/M}$ for every *i* and *j*, and such that the following properties hold:

(i) $|\mu_{s}(A^{s}_{\alpha}) - \alpha\mu_{s}(T)| \leq 6 \sup_{\lambda_{j}(s) > 0} ||\mu_{s} - \mu_{s_{j}}|| (\alpha \in [0, 1]);$ (ii) for $\alpha \in \left[\frac{i}{M}, \frac{i+1}{M}\right]$ and any center $s_{j},$ $\mu_{s_{j}}(A^{s}_{\alpha} \bigtriangleup A^{s_{j}}_{\alpha}) \leq \sup_{\lambda_{k}(s) > 0} \mu_{s_{j}}(\bar{A}^{s_{k}}_{(i+1)/M} \bigtriangleup \bar{A}^{s_{j}}_{(i+1)/M})$ + $\sup_{\lambda_k(s)>0} \|\mu_{s_j} - \mu_{s_k}\| + \frac{1}{M} (\sup_{\lambda_k(s)>0} \mu_{s_k}(T) + \mu_{s_j}(T));$

(iii) $\lim_{s \to s^*} \sup_{\alpha \in [0,1]} \mu_0 \left(A^s_{\alpha} \bigtriangleup A^{s^*}_{\alpha} \right) = 0.$

Proof. — For each $s \in S$, first we will define the sets $(A_{i/M}^i)_i$ by interpolating among the given families $(\bar{A}_{i/M}^{s_j})_i$, taking from each set a subset having measure proportional to the corresponding $\lambda_i(s)$. Then we extend the construction for $\alpha \in]i/M$, (i+1)/M[. Finally we check that (i)-(iii) hold.

I. For any set $A \subseteq T$, we define $A^1 = A$ and $A^0 = T \setminus A$. We denote by \mathscr{K} the set of all $N \times (M-1)$ matrices $\Gamma = (\gamma_{ij})$ whose elements are in $\{0,1\}$. Now we define

$$\begin{split} \mathbf{A}\left(\Gamma\right) = & (\bar{\mathbf{A}}_{1/M}^{s_1})^{\gamma_{11}} \cap \ldots \cap (\bar{\mathbf{A}}_{1/M}^{s_N})^{\gamma_{1N}} \\ & \cap (\bar{\mathbf{A}}_{2/M}^{s_1})^{\gamma_{21}} \cap \ldots \cap (\bar{\mathbf{A}}_{2/M}^{s_N})^{\gamma_{2N}} \\ & \cdots \\ & \cap (\bar{\mathbf{A}}_{(M-1)/M}^{s_1})^{\gamma_{M-1,1}} \cap \ldots \cap (\bar{\mathbf{A}}_{(M-1)/M}^{s_N})^{\gamma_{M-1,N}}. \end{split}$$

Note that:

(a) since the family $(\bar{A}_{i|M}^{s_j})_i$ is increasing in *i*, $A(\Gamma) = \emptyset$ if $\exists i, j: \gamma_{ij} = 1$, $\gamma_{i+1,j} = 0$; moreover, if $\Gamma_1 \neq \Gamma_2$, then $A(\Gamma_1) \cap A(\Gamma_2) = \emptyset$;

(b) for any i, j

$$\bar{\mathbf{A}}_{i/\mathbf{M}}^{s_j} = \bigcup_{\substack{\Gamma \in \mathscr{K} \\ \gamma_{ij} = 1}} \mathbf{A}(\Gamma),$$

i. e. the family at the r. h. s. is a partition of $\bar{A}_{i/M}^{s_i}$;

$$(c) \bigcup_{\substack{\Gamma \in \mathscr{K} \\ \gamma_{ij} = 0, \ \gamma_{ik} = 1}} A(\Gamma) = A_{i/M}^{s_k} A_{i/M}^{s_j}, \bigcup_{\substack{\Gamma \in \mathscr{K} \\ \gamma_{ij} = 1, \ \gamma_{ik} = 1}} A(\Gamma) = A_{i/M}^{s_j} \cap A_{i/M}^{s_k}$$

By lemma 1, for each $\Gamma \in \mathscr{K}$ there exists a family $(A(\Gamma)_{\alpha})_{\alpha \in [0, 1]}$ refining $A(\Gamma)$ with respect to the measure $(\mu_0, \mu_{s_1}, \ldots, \mu_{s_N})$. Define

$$\beta_{\Gamma}^{i}(s) = \sum_{k=1}^{N} \gamma_{ik} \lambda_{k}(s)$$

and

$$\mathbf{A}_{i/\mathbf{M}}^{s} = \bigcup_{\Gamma \in \mathscr{K}} \mathbf{A}(\Gamma)_{\boldsymbol{\beta}_{\Gamma}^{i}(s)}$$
(1)

(see Fig., where the case N = M = 3 is described).

The family $(A_{i/M}^s)_i$ coincides with $(\overline{A}_{i/M}^{s_j})_i$ for $s=s_j$; in fact we have $\beta_{\Gamma}^i(s_j) = \gamma_{ij}$ so that, by (b),

$$\mathbf{A}_{i/\mathsf{M}}^{s_j} = \bigcup_{\Gamma \in \mathscr{K}} \mathbf{A} \left(\Gamma \right)_{\gamma_{ij}} = \bigcup_{\substack{\Gamma \in \mathscr{K} \\ \gamma_{ij=1}}} \mathbf{A} \left(\Gamma \right) = \bar{\mathbf{A}}_{i/\mathsf{M}}^{s_j}.$$

Next we have:

$$\mu_{s_{j}}(\mathbf{A}_{i/M}^{s}) = \sum_{\Gamma \in \mathscr{K}} \mu_{s_{j}}(\mathbf{A}(\Gamma)_{\beta_{\Gamma}^{i}(s)}) = \sum_{\Gamma \in \mathscr{K}} \beta_{\Gamma}^{i}(s) \mu_{s_{j}}(\mathbf{A}(\Gamma))$$
$$= \sum_{\Gamma \in \mathscr{K}} \left(\sum_{k=1}^{N} \gamma_{ik} \lambda_{k}(s)\right) \mu_{s_{j}}(\mathbf{A}(\Gamma))$$
$$= \sum_{k=1}^{N} \lambda_{k}(s) \sum_{\Gamma \in \mathscr{K}} \gamma_{ik} \mu_{s_{j}}(\mathbf{A}(\Gamma))$$
(2)

$$= \sum_{k=1}^{N} \lambda_{k}(s) \mu_{s_{j}}(\bigcup_{\substack{\Gamma \in \mathscr{K} \\ \gamma_{ik}=1}} A(\Gamma))$$
$$= \sum_{k=1}^{N} \lambda_{k}(s) \mu_{s_{j}}(A_{i/M}^{s_{k}}).$$

II. Set, for $\alpha = (1-t)i/M + t(i+1)/M$ ($t \in [0, 1]$) and $s \in S$,

$$\mathbf{A}_{\alpha}^{s} = \bigcup_{\Gamma \in \mathscr{K}} \mathbf{A} \left(\Gamma \right)_{(1-t) \beta_{\Gamma}^{i}(s) + t \beta_{\Gamma}^{i+1}(s)}$$

Remark that by the above definition and (1), it follows that

$$\mu_{s_j}(\mathbf{A}^s_{\alpha}) = (1-t)\,\mu_{s_j}(\mathbf{A}^s_{i/M}) + t\,\mu_{s_j}(\mathbf{A}^s_{(i+1)/M}).$$

We claim that

$$\mu_{s_j}(\mathbf{A}^{s}_{\alpha}) = \sum_{k=1}^{N} \lambda_k(s) \, \mu_{s_j}(\mathbf{A}^{s_k}_{\alpha}) \qquad (j = 1, \ldots, N; \, \alpha \in [0, 1]; \, s \in \mathbf{S}).$$

In fact, for α as above, we have:

$$\begin{split} \mu_{s_j}(\mathbf{A}^s_{\alpha}) &= \sum_{\Gamma \in \mathscr{K}} \left[(1-t) \ \beta^i_{\Gamma}(s) + t \ \beta^{i+1}_{\Gamma}(s) \right] \mu_{s_j}(\mathbf{A}(\Gamma)) \\ &= (1-t) \sum_{k=1}^{N} \lambda_k(s) \sum_{\Gamma \in \mathscr{K}} \gamma_{ik} \mu_{s_j}(\mathbf{A}(\Gamma)) \\ &+ t \sum_{k=1}^{N} \lambda_k(s) \sum_{\Gamma \in \mathscr{K}} \gamma_{i+1,k} \mu_{s_j}(\mathbf{A}(\Gamma)) \\ &= (1-t) \sum_{k=1}^{N} \lambda_k(s) \ \mu_{s_j}(\mathbf{A}^{s_k}_{i/M}) + t \sum_{k=1}^{N} \lambda_k(s) \ \mu_{s_j}(\mathbf{A}^{s_k}_{(i+1)/M}) \\ &= \sum_{k=1}^{N} \lambda_k(s) \left[(1-t) \ \mu_{s_j}(\mathbf{A}^{s_k}_{i/M}) + t \ \mu_{s_j}(\mathbf{A}^{s_k}_{(i+1)/M}) \right] \\ &= \sum_{k=1}^{N} \lambda_k(s) \ \mu_{s_j}(\mathbf{A}^{s_k}_{\alpha}). \end{split}$$

III. We are now in the position of proving (i). Fix $s \in S$ and $\alpha \in [0, 1]$ and set $\omega_s = \sup \{ \|\mu_s - \mu_{s_j}\| : \lambda_j(s) > 0 \}$. We have:

$$\begin{aligned} \left| \mu_{s}(\mathbf{A}_{\alpha}^{s}) - \alpha \mu_{s}(\mathbf{T}) \right| &\leq \left| \mu_{s}(\mathbf{A}_{\alpha}^{s}) - \mu_{s_{j}}(\mathbf{A}_{\alpha}^{s}) \right| \\ &+ \left| \mu_{s_{j}}(\mathbf{A}_{\alpha}^{s}) - \alpha \mu_{s_{j}}(\mathbf{T}) \right| + \alpha \left| \mu_{s_{j}}(\mathbf{T}) + \mu_{s}(\mathbf{T}) \right| \end{aligned}$$

$$\leq 2 \omega_s + \left| \sum_{k=1}^{N} \lambda_k(s) \mu_{sj}(A_{\alpha}^{s_k}) - \alpha \mu_{sj}(T) \right|$$

$$\leq 2 \omega_s + \sum_{k=1}^{N} \lambda_k(s) \left[\left| \mu_{sj}(A_{\alpha}^{s_k}) - \mu_{sk}(A_{\alpha}^{s_k}) \right| \right.$$

$$+ \alpha \left| \mu_{sk}(T) - \mu_{sj}(T) \right| \right]$$

$$\leq 6 \omega_s.$$

In order to prove (ii), note first that

$$A_{i/M}^{s} \triangle A_{i/M}^{s_{j}} = (\bigcup_{\Gamma \in \mathscr{K}} A(\Gamma)_{\beta_{\Gamma}^{i}(s)}) \triangle (\bigcup_{\Gamma \in \mathscr{K}} A(\Gamma)_{\beta_{\Gamma}^{i}(s_{j})})$$

$$= \bigcup_{\Gamma \in \mathscr{K}} (A(\Gamma)_{\beta_{\Gamma}^{i}(s)} \triangle A(\Gamma)_{\beta_{\Gamma}^{i}(s_{j})})$$
(3)

•

and that, by a calculation similar to (2) and by (c),

$$\mu_{s_j}(\bigcup_{\substack{\Gamma \in \mathscr{K} \\ \gamma_{ij}=0}} A(\Gamma)_{\beta_{\Gamma}^i(s)}) = \sum_{k=1}^{N} \lambda_k(s) \, \mu_{s_j}(A_{i/M}^{s_k} \setminus A_{i/M}^{s_j}), \tag{4}$$

$$\mu_{s_j}(\bigcup_{\substack{\Gamma \in \mathscr{K} \\ \gamma_{ij}=1}} (A(\Gamma) \setminus A(\Gamma)_{\beta_{\Gamma}^i(s)})) = \sum_{k=1}^N \lambda_k(s) \, \mu_{s_j}(A_{i/M}^{s_j} \setminus A_{i/M}^{s_k}).$$
(5)

Therefore, for any *i*, *j*, from (3) and recalling that $\beta_{\Gamma}^{i}(s_{j}) = \gamma_{ij}$, we have

$$\mu_{s_{j}}(A_{i/M}^{s} \bigtriangleup A_{i/M}^{s_{j}}) = \mu_{s_{j}}(\bigcup_{\substack{\Gamma \in \mathscr{K} \\ \gamma_{i_{j}}=0}} A(\Gamma)_{\beta_{\Gamma}^{i}(s)}) + \mu_{s_{j}}(\bigcup_{\substack{\Gamma \in \mathscr{K} \\ \gamma_{i_{j}}=1}} (A(\Gamma) \diagdown A(\Gamma)_{\beta_{\Gamma}^{i}(s)})$$

and from (4), (5) this last expression is

$$\begin{split} \sum_{k=1}^{N} \lambda_{k}(s) \, \mu_{s_{j}}(\mathbf{A}_{i/\mathbf{M}}^{s_{k}} \setminus \mathbf{A}_{i/\mathbf{M}}^{s_{j}}) + \sum_{k=1}^{N} \lambda_{k}(s) \, \mu_{s_{j}}(\mathbf{A}_{i/\mathbf{M}}^{s_{j}} \setminus \mathbf{A}_{i/\mathbf{M}}^{s_{k}}) \\ &= \sum_{k=1}^{N} \lambda_{k}(s) \, \mu_{s_{j}}(\mathbf{A}_{i/\mathbf{M}}^{s_{k}} \bigtriangleup \mathbf{A}_{i/\mathbf{M}}^{s_{j}}) \\ &\leq \sup \left\{ \, \mu_{s_{j}}(\mathbf{A}_{i/\mathbf{M}}^{s_{k}} \bigtriangleup \mathbf{A}_{i/\mathbf{M}}^{s_{j}}) : \lambda_{k}(s) > 0 \, \right\}. \end{split}$$

Hence (ii) holds for $\alpha = i/M$.

In order to prove (ii) for α in]i/M, (i+1)/M[, let us note that $A^{s}_{\alpha} \land A^{s'}_{\alpha} \subseteq [(A^{s}_{(i+1)/M} \land A^{sj}_{(i+1)/M}) \land A^{s'}_{\alpha}] \cup [A^{sj}_{(i+1)/M} \land A^{s'}_{\alpha}]$ $\subseteq (A^{s}_{(i+1)/M} \land A^{sj}_{(i+1)/M}) \cup (A^{sj}_{(i+1)/M} \land A^{s'}_{i/M}),$

so that

$$\mu_{s_j}(\mathbf{A}^{s}_{\alpha} \mathbf{A}^{s_j}_{\alpha}) \leq \mu_{s_j}(\mathbf{A}^{s}_{(i+1)/M} \mathbf{A}^{s_j}_{(i+1)/M}) + \mu_{s_j}(\mathbf{A}^{s_j}_{(i+1)/M} \mathbf{A}^{s_j}_{i/M})$$

and

$$\mu_{s_j}(\mathbf{A}_{\alpha}^{s_j} \mathbf{A}_{\alpha}^{s}) \leq \mu_{s_j}(\mathbf{A}_{(i+1)/M}^{s_j} \mathbf{A}_{(i+1)/M}^{s}) + \mu_{s_j}(\mathbf{A}_{(i+1)/M}^{s} \mathbf{A}_{i/M}^{s}).$$

Hence

$$\begin{split} \mu_{s_{j}}(A_{\alpha}^{s} \bigtriangleup A_{\alpha}^{s_{j}}) &\leq \mu_{s_{j}}(A_{(i+1)/M}^{s} \bigtriangleup A_{(i+1)/M}^{s_{j}}) + \mu_{s_{j}}(A_{(i+1)/M}^{s} \leftthreetimes A_{i/M}^{s_{j}}) \\ &+ \mu_{s_{j}}(A_{(i+1)/M}^{s_{j}} \leftthreetimes A_{(i+1)/M}^{s_{j}}) + \mu_{s_{j}}(A_{(i+1)/M}^{s} \leftthreetimes A_{i/M}^{s_{j}}) \\ &\leq \sup \left\{ \mu_{s_{j}}(A_{(i+1)/M}^{s_{k}} \bigtriangleup A_{(i+1)/M}^{s_{j}}) + (1/M) \mu_{s_{j}}(S) > 0 \right\} \\ &+ (1/M) \mu_{s_{j}}(T) + \sum_{k=1}^{N} \lambda_{k}(s) \mu_{s_{j}}(A_{(i+1)/M}^{s_{k}} \leftthreetimes A_{(i+1)/M}^{s_{k}}) \\ &\leq \sup_{\lambda_{k}(s) > 0} \mu_{s_{j}}(A_{(i+1)/M}^{s_{k}} \bigtriangleup A_{(i+1)/M}^{s_{j}}) + (1/M) \mu_{s_{j}}(T) \\ &+ \sum_{k=1}^{N} \lambda_{k}(s) \left| \mu_{s_{j}}(A_{(i+1)/M}^{s_{k}} \leftthreetimes A_{i/M}^{s_{k}}) - \mu_{s_{k}}(A_{(i+1)/M}^{s_{k}} \leftthreetimes A_{i/M}^{s_{k}}) \right| \\ &+ \sum_{k=1}^{N} \lambda_{k}(s) \mu_{s_{k}}(A_{(i+1)/M}^{s_{k}} \leftthreetimes A_{i/M}^{s_{k}}) \\ &\leq \sup_{\lambda_{k}(s) > 0} \mu_{s_{j}}(\overline{A}_{(i+1)/M}^{s_{k}} \bigtriangleup A_{(i+1)/M}^{s_{k}}) \\ &+ \sup_{\lambda_{k}(s) > 0} \left\| \mu_{s_{j}} - \mu_{s_{k}} \right\| \\ &+ (1/M) \sup_{k=1, \dots, N} \mu_{s_{k}}(T). \end{split}$$

This proves (ii).

Finally we prove (iii); for $\alpha = (1-t) i/M + t (i+1)/M$ we have

$$\begin{split} \mu_{0} \left(\mathbf{A}_{\alpha}^{s} \bigtriangleup \mathbf{A}_{\alpha}^{s^{*}} \right) &= \sum_{\Gamma \in \mathscr{K}} \mu_{0} \left(\mathbf{A} \left(\Gamma \right)_{(1-t) \beta_{\Gamma}^{i}(s) + t \beta_{\Gamma}^{i+1}(s)} \right) \\ & \bigtriangleup \mathbf{A} \left(\Gamma \right)_{(1-t) \beta_{\Gamma}^{i}(s^{*}) + t \beta_{\Gamma}^{i+1}(s^{*})} \\ &= \sum_{\Gamma \in \mathscr{K}} \left\{ \left| \left[(1-t) \beta_{\Gamma}^{i}(s) + t \beta_{\Gamma}^{i+1}(s) \right] \right. \right. \\ & - \left[(1-t) \beta_{\Gamma}^{i}(s^{*}) + t \beta_{\Gamma}^{i+1}(s^{*}) \right] \left| \mu_{0} \left(\mathbf{A} \left(\Gamma \right) \right) \right. \right\} \\ & \le (1-t) \sum_{\Gamma \in \mathscr{K}} \left| \beta_{\Gamma}^{i}(s) - \beta_{\Gamma}^{i}(s^{*}) \right| \mu_{0} \left(\mathbf{A} \left(\Gamma \right) \right) \\ & + t \sum_{\Gamma \in \mathscr{K}} \left| \beta_{\Gamma}^{i+1}(s) - \beta_{\Gamma}^{i+1}(s^{*}) \right| \mu_{0} \left(\mathbf{A} \left(\Gamma \right) \right). \end{split}$$

By taking the limit as s tends to s^* we conclude the proof.

LEMMA 5. — Let $s \to \mu_s$ be a continuous map from a compact metric space S into the space \mathcal{M} and, for each $s \in S$, let $(\bar{A}_{\alpha}^s)_{\alpha}$ be an increasing family, continuous with respect to s and such that, for some $\varepsilon > 0$,

$$|\mu_s(\bar{A}^s_{\alpha}) - \alpha \mu_s(T)| < \varepsilon$$
 $(\alpha \in [0, 1], s \in S).$

For every $s \in S$ there exists an increasing family $(A^s_{\alpha})_{\alpha}$ continuous with respect to s and such that

- (i) $| \mu_s(\mathbf{A}^s_{\alpha}) \alpha \mu_s(\mathbf{T}) | < \varepsilon/10$ ($\alpha \in [0, 1]$);
- (ii) $\sup_{\alpha \in [0, 1]} \mu_s(\bar{A}^s_{\alpha} \bigtriangleup A^s_{\alpha}) < 10 \varepsilon.$

Proof. — By continuity, for each $s \in S$ there is a $\eta_s > 0$ such that $d(s, s') < 2 \eta_s$ implies $\|\mu_s - \mu_{s'}\| < \varepsilon/60$ and $\mu_{s'}(\bar{A}^s_{\alpha} \bigtriangleup \bar{A}^{s'}_{\alpha}) < \varepsilon$. The open balls $B(s, \eta_s)$ cover S. Let $\{B(s_j, \eta_j): j = 1, \ldots, N\}$ be a finite sub-covering and $\{\lambda_j: j = 1, \ldots, N\}$ be a continuous partition of unity subordinate to it and such that $\lambda_j(s_j) = 1, \ldots, N$.

Let $(A_{\alpha}^{s_j})_{\alpha}$ be the families defined by Lemma 3 by taking $\mu = \mu_{s_i}$.

Fix j such that $\mu_{s_j}(T) = \max \{ \mu_{s_k}(T) : k = 1, ..., N \}$ and choose $M \ge 2 \mu_{s_j}(T)/\epsilon$. By Lemma 4, extend the collection $(A_{i/M}^{s_k})_{i=0,...,M}$ (k=1, ..., N) to the family $(A_{\alpha}^s)_{\alpha \in [0,1]}(s \in S)$.

The continuity of $s \to (A_{\alpha}^{s})_{\alpha \in [0, 1]}$ follows from (iii) of Lemma 4, recalling that $\mu_{s} \leq \mu_{0}$ for each $s \in S$.

The choice of η_s and (i) of Lemma 4 imply that (i) holds. Moreover

$$\mu_{s_j}(\bar{\mathbf{A}}^s_{\alpha} \bigtriangleup \mathbf{A}^s_{\alpha}) \leq \mu_{s_j}(\bar{\mathbf{A}}^s_{\alpha} \bigtriangleup \bar{\mathbf{A}}^{s_j}_{\alpha}) + \mu_{s_j}(\bar{\mathbf{A}}^{s_j}_{\alpha} \bigtriangleup \mathbf{A}^{s_j}_{\alpha}) + \mu_{s_j}(\mathbf{A}^{s_j}_{\alpha} \bigtriangleup \mathbf{A}^{s}_{\alpha}).$$

By the choice of η_s and (ii) of Lemma 3, the r. h. s. is bounded by

 $\varepsilon + 6 \varepsilon + \mu_{s_i} (\mathbf{A}^{s_j}_{\alpha} \bigtriangleup \mathbf{A}^{s}_{\alpha}),$

which, by (ii) of Lemma 4 and the choice of M, yields

$$\mu_{s_j}(\bar{\mathbf{A}}^s_{\alpha} \bigtriangleup \mathbf{A}^s_{\alpha}) \leq \left(9 + \frac{1}{60}\right)\varepsilon.$$

Since $\|\mu_{s_i} - \mu_s\| < \varepsilon/60$, (ii) follows.

The following theorem shows the existence of a selection (\tilde{A}_{α}^{s}) from $\mathscr{A}(\mu_{s})$, continuously depending on s.

THEOREM 1. — Let $s \to \mu_s$ be a continuous map from a compact metric space S into the space \mathcal{M} . For every $s \in S$ there an increasing family $(\tilde{A}^s_{\alpha})_{\alpha}$ of measurable subsets of T satisfying

$$\mu_s(\tilde{A}^s_\alpha) = \alpha \mu_s(T) \qquad (\alpha \in [0, 1]) \tag{6}$$

and such that the map $s \to (\tilde{A}^s_{\alpha})_{\alpha}$ is continuous.

Proof. — We assume that we have defined for s in S an increasing family $(A_{\alpha}^{s,n})_{\alpha}$ which is continuous with respect to s and satisfies

$$\left| \mu_s(\mathbf{A}^{s,n}_{\alpha}) - \alpha \mu_s(\mathbf{T}) \right| < 10^{-n}.$$

By Lemma 2, the above is true for n=1 taking a family $(A_{\alpha}^{s, 1})_{\alpha}$ constant with respect to s.

We obtain the existence of an increasing family $(A_{\alpha}^{s, n+1})_{\alpha}$ continuous with respect to s and such that

$$\left| \mu_{s}(\mathbf{A}_{\alpha}^{s,\,n+1}) - \alpha \mu_{s}(\mathbf{T}) \right| < 10^{-(n+1)} \tag{7}$$

and

$$\mu_s(\mathbf{A}^{s,n+1}_{\alpha} \bigtriangleup \mathbf{A}^{s,n}_{\alpha}) < 10^{-(n-1)}.$$
(8)

In fact, set in Lemma 5 \bar{A}^s_{α} to be $A^{s,n}_{\alpha}$ and ε to be 10^{-n} to infer the existance of a family, denoted by $(A^{s,n+1}_{\alpha})_{\alpha}$, satisfying (7) and (8).

Consider now the sequence $((A_{\alpha}^{s,n})_{\alpha})_{n \in \mathbb{N}}$ defined by the above recursive procedure: we wish to show that it converges to a family $(\tilde{A}_{\alpha}^{s})_{\alpha}$ which is continuous with respect to s and satisfies (6).

Property (8) implies that the sequence $(A_{\alpha}^{s,n})_n$ (s and α fixed) is a Cauchy sequence in \mathscr{F} supplied with the pseudometric $\rho_s(A, B) = \mu_s(A \triangle B)$. The procedure in Oxtoby [6], Chap. 10, defines a limit family $(\tilde{A}_{\alpha}^s)_{\alpha}$, which is increasing: $\tilde{A}_{\alpha}^s = \bigcup \cap A_{\alpha}^{s,m}$.

 $n \in \mathbb{N} \ m \ge n$

By the inequality

$$|\mu_s(\mathbf{A}) - \mu_s(\mathbf{B})| \leq \mu_s(\mathbf{A} \bigtriangleup \mathbf{B})$$

and (7) we have

$$\mu_s(\tilde{\mathbf{A}}^s_{\alpha}) = \lim_{n \to \infty} \mu_s(\mathbf{A}^{s, n}_{\alpha}) = \alpha \mu_s(\mathbf{T}).$$

In order to check the continuity of the map $s \to (\tilde{A}^s_{\alpha})_{\alpha}$, fix $\varepsilon > 0$ and $s^0 \in S$. Since the inequality (8) is uniform with respect to s and α , there exists an \overline{n} such that $\mu_s(A^{s,\overline{n}}_{\alpha} \bigtriangleup \tilde{A}^s_{\alpha}) < \varepsilon/5$ for every s in S and α in [0, 1]. Let $\delta > 0$ be such that

$$\|\mu_s - \mu_{s^0}\| < \varepsilon/10$$
 [s in B(s⁰, δ)]

 $\sup_{\alpha \in [0, 1]} \mu_s(A_{\alpha}^{s', \overline{n}} \triangle A_{\alpha}^{s'', \overline{n}}) < \varepsilon/5 \qquad [s, s' \text{ and } s'' \text{ in } B(s^0, \delta)].$

Then for every $\alpha \in [0, 1]$, s, s' and s'' in B(s⁰, δ), we have:

$$\mu_{s}(\tilde{A}_{\alpha}^{s'} \bigtriangleup \tilde{A}_{\alpha}^{s''}) \leq \mu_{s}(\tilde{A}_{\alpha}^{s'} \bigtriangleup A_{\alpha}^{s',\bar{n}}) + \mu_{s}(A_{\alpha}^{s',\bar{n}} \bigtriangleup \tilde{A}_{\alpha}^{s''})$$

$$\leq \mu_{s}(\tilde{A}_{\alpha}^{s'} \bigtriangleup A_{\alpha}^{s',\bar{n}}) + \mu_{s}(A_{\alpha}^{s',\bar{n}} \bigtriangleup A_{\alpha}^{s'',\bar{n}}) + \mu_{s}(A_{\alpha}^{s'',\bar{n}} \bigtriangleup \tilde{A}_{\alpha}^{s''})$$

Vol. 5, n° 1-1988.

and

$$\leq \left\| \mu_{s} - \mu_{s'} \right\| + \mu_{s'} (\tilde{A}_{\alpha}^{s'} \bigtriangleup A_{\alpha}^{s'}, \bar{n}) + \mu_{s} (A_{\alpha}^{s'}, \bar{n} \bigtriangleup A_{\alpha}^{s''}, \bar{n}) + \left\| \mu_{s} - \mu_{s''} \right\| + \mu_{s''} (A_{\alpha}^{s''}, \bar{n} \bigtriangleup \tilde{A}_{\alpha}^{s''}) < \varepsilon.$$

COROLLARY. – Under the same assumptions, for every $\eta > 0$ and for every increasing family $(A_{\alpha})_{\alpha}$ satisfying

 $|\mu_s(\mathbf{A}) - \alpha \cdot \mu_s(\mathbf{T})| < \eta$ ($\alpha \in [0, 1], s \in \mathbf{S}$),

the family $(\tilde{A}^{s}_{\alpha})_{\alpha}$ of Theorem 1 can be chosen as to satisfy, in addition,

 $\mu_s(\tilde{A}^s_{\alpha} \bigtriangleup A_{\alpha}) < \eta \qquad (\alpha \in [0, 1], s \in S).$

Proof. – Set $A_{\alpha}^{s, 1}$ to be A_{α} in the proof of Theorem 1.

REFERENCES

- A. FRYSZKOWSKI, Continuous Selections for a Class of Non-Convex Multivalued Maps, Studia Mathematica, T. LXXVI, 1983, pp. 163-174.
- [2] P. HALMOS, The Range of a Vector Measure, Bull. Am. Math. Soc., Vol. 54, 1948, pp. 416-421.
- [3] P. HALMOS, Measure Theory, Van Nostrand, Princeton, 1950.
- [4] A. LIAPUNOV, Sur les fonctions-vecteurs complètement additives, Bull. Acad. Sci. U.R.S.S., Ser. Math., Vol. 4, 1940, pp. 465-478 (Russian).
- [5] A. LIAPUNOV, same as above, Vol. 10, 1946, pp. 277-279 (Russian); for an English version, see J. DIESTEL and J. J. UHL, Vector Measures, 1977, A.M.S., Providence, Rhode Island, p. 262.
- [6] J. OXTOBY, Measure and Category, Second Edition, Springer Verlag, New York, 1980.
- [7] M. VALADIER, Une mesure vectorielle sans atoms dont l'ensemble des valeurs est non convexe, Boll. U.M.I., Serie VI, Vol. II-C, No. 1, 1983, pp. 293-296.

(Manuscrit reçu le 5 septembre 1986) (corrigé le 17 décembre 1986.)