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ABSTRACT. — To every solution of an elliptic PDE there corresponds a quasiharmonic field
F = [B, E] — a pair of vector fields with di8 = 0 and curl E = 0 which are coupled by
a distortion inequality. Quasiharmonic fields capture all the analytic spirit of quasiconformal
mappings in the complex plane. Among the many desirable properties, we give dimension fre
and nearly optimalL”-estimates for the gradient of the solutions to the divergence type elliptic
PDEs with measurable coefficients. However, the core of the paper deals with quasiharmoni
fields of unbounded distortion, which have far reaching applications to the non-uniformly elliptic
PDEs. As far as we are aware this is the first time non-isotropic PDEs have been successfull
treated. The right spaces for such equations are the Orlicz—Zygmund dld$sg% L. Examples

we give here indicate that one cannot go far beyond these classes.
© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME. — A chaque solution d’'une équation elliptique correspond un champ quasiharmo-
niqueF = [B, E], un couple de champs de vecteurs qui vérifientBli¥ 0 et rotE = 0 et qui
sont couplés par une inégalité de distorsion. Les champs harmoniques capturent I'esprit anal
tique des applications quasiconformes dans le plan complexe. Dans cet article sont fournies d
estimationsL” concernant le gradient de solutions faibles d’'une équation elliptique aux déri-
vées partielles, indépendantes de la dimension et presque optimales. Sont aussi considérés
champs quasiharmoniques avec distorsion non bornée, hypothése non sans conséquences su
équations non uniformément elliptiques. A notre connaissance c’est la premiére fois que sor
obtenus des résultats significatifs pour des équations non-isotropiques. Les bons espaces poulr
telles équations sont les espaéésog® L. Des exemples montrent qu'il est difficile de s’éloigner

de cette classe.
© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction
Quasiharmonic fields grew out of our study of the Leray—Lions equation
divA(x,Vu) =0 in2 CR" (1.2)

using methods from quasiconformal geometry. In dimension 2 the relevance of this
equation to quasiconformal mappings has been evident to researchers for more the
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fourty years, beginning with R. Caccioppoli [12], R. Finn and J. Serrin [30], L. Bers and
L. Nirenberg [7], I.N. Vekua [74], B. Bojarski [9], etc. The definitions we shall introduce
here stress these ideas. When the equation is linear

divA(x)Vu =0, (1.2)

then it is customary to state the ellipticity condition as the double inequality for the
eigenvalues of the symmetric matu(x) € R™*"

KYUEPP < (AW)E, &) < KIE% (1.3)

The factorK here can be a constant or a measurable functiaf2 gihat is,K = K (x) >
1. Itis possible to express (1.3), equivalently, by using just one inequality

1
@F+mma%(K+?yMwaa (1.4)

for almost everyx € 2 and all§ € R*. We will adopt this inequality to clarify the
ellipticity bounds for the nonlinear equation (1.1), namely

1
@F+M&£W<(K+§)M@£L8- (1.5)

There are two vector fields associated with a solution of the equation (1.1). The firs
one, denoted b¥ = Vu(x), is curl free while the secon® = A(x, Vu), is divergence
free. Now, any pairF = [B, E] of vector fieldsB, E € L%C(Q,R") with divB =0
and curl E = 0 will be referred to agliv-curl couple To follow closely the ideas of

guasiconformal mappings we introduce the norm and the Jacobian of
\FI2=|B|?+|E|?> and J(x,F)=(B,E). (1.6)

The termK -quasiharmonic fieldof distortionK = K (x) > 1, pertains to those div-curl
couples which satisfy

IFOP<SK®) I F), K=K+K™ (1.7)

We call K = K (x) the distortion functionof F. Needless to say, the natural domain
for quasiharmonic fields is the spaég (2, R" x R"). However, the matters being
discussed in this paper will also require otligt-spaces and some Orlicz classes, such
as

L? =L%logL and L?=L%log L. (1.8)

Continuing this theme from a perspective of the complex function theory, we introduce
the & components ofF

}"‘:%(E—B) and ]:+=%(E+B)- (1.9)
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In many ways, these vector fields can be viewed as analogues of the Cauchy—Riemar
partialsdf/9z andaf/az of a complex functionf = f(z). Recall that quasiconformal
mappings in the planar domains are governed by the complex Beltrami equation

of of K —
- = —, where <
P wu(z) 3z [ ()] K11~

(1.10)

The following result ties quasiharmonic fields to this PDE.

THEOREM 1. —To eachK -quasiharmonic fieldF in 2 there corresponds a measur-
able matrix-valued functiop : 2 — R"*" of the form

wx) =1l —2a ® al, (.11

wherea = a(x) is a unit vector field and

B _ K(x)—1
Ax) = lux) |l = ‘Zlili (&[] < Ko+l < (1.12)
Furthemore,F solves the linear equation
F(x) = pnx)Fr(x). (1.13)

Observe thaju(x) is a multiple of the orthogonal matrix— 2a ® a, a legitimate
reason for calling (1.13) thBeltrami equationWe refer tou as the distortion tensor, or
the Beltrami matrix ofF. ThatF satisfies (1.13) for suitable choice pfx) € R"*" is
almost a tautology. Nevertheless, it is advantageous to investigate quasiharmonic fielc
by viewing them as solutions to this system of PDEs with measurable coefficients (the
entries ofi). When there is no distortion, then(x) = 0, and in this case we are reduced
to the generalized Cauchy—Riemann system for the coordinate fun¢fiéns ., f”) of
the vector fieldF™,

ot _aff o
_ P

8)6]' o 8xl~ ’ 8xl~

0.

i=1
ThusF* consists of conjugate harmonic functions while the minus component is zero.
Quasiharmonic fields provide a suitable framework for better understanding and creatiol
of new types of the second order elliptic PDEs. Every Beltrami system gives rise to ar
equation for the potential function of the curl free component. That is, for the funetion
determined locally bWwu = E, we have a linear PDE of divergence form

divA(x)Vu =0, (1.14)
K1 ()17 < (A)E, &) < K()IEI

where K (x) is precisely the distortion ofF. It is a striking consequence of our
consideration that every solution to the nonlinear Leray—Lions equation actually satisfie:
its own linear equation (1.14). While gaining linearity we compromise no ellipticity
bounds. When the original equation (1.1) happens to be linear, then the coefficient matri
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of the new equation enjoys rather special structure, namely

I — n(x) _ 1—)»(x)| 4)0(x)

Al = I +p(x) 14 Ai(x) 1—kz(x)a (1.15)
It is interesting to note that
1=
detA(x) = {1 n k(X)} (1.16)

which equals 1 in two dimensions. Integral estimates for quasiharmonic fields lear
heavily on properties of a singular integral operator

S:L”(R",R") — L?(R",R"), 1< p < oo, (1.17)

which we refer to as Hilbert transform iR". By the definition,S acts as identity on
gradient fields and as minus identity on divergence free fields. We will also consider
this operator in wider classes of vector functions, as the need will arise. Based on recel
studies of Riesz transforms [42,6] we obtain a dimension free estimate pfriloem of

this operator. One inference of this estimate is the following dimension free improvemen
of Meyers’ regularity result [55] for the divergence elliptic equations with measurable
coefficients.

THEOREM 2. —Let a Holder conjugate paiy < 2 < p be given by

14K — 12 14K - 12

=== and p=—1—-°, 1.18
q and p=—— (1.18)

7K —5

whereK > 1is a constant.
(@) EveryK-quasiharmonic field irL{l (2, R" x R") actually belongs td.,.(£2, R"
x R™).
(b) All solutions to the Leray—Lions equatigh.1) of the Sobolev cIaszﬁ’cq (£2) are
in the spaceW,o” (£2).

One could probably extend the range of these exponents by only requiring that

2K 2K
< < < .
K+1 9P~k _1

As yet, this has been proved only in dimension two [53] by using Astala’s area distortion
theorem [1,2,28], see also [4] for interesting results at the end-points. We shall refer t
the numbers

2K 2K
_K+1<2 and g<_K_122 (12.19)
as thecritical exponentdor the K-quasiharmonic fields. In higher dimensions, finding
the critical exponents remains one of the outstanding problems in elliptic PDEs with
measurable coefficients.

dk
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We can now discuss the Dirichlet problem

divA(x)Vu = divF,
{ (1.20)

ue Wy (82),

whereF is a given vector field in.”(£2, R"). In view of the above results the Sobolev
exponent will be in the interval

14K — 12 14K — 12
<r< , K>1 (1.21)
7K -5 7K —7

If the domains? is sufficiently regular (for instance a ball, cube or the entire spaé)n
then the above problem admits unique solution. The solution verifies a uniform bound

IVull, < CEIF, (1.22)

Estimates with exponents smaller thaly open the way to a study of the equation with
measure in the right hand side

divA(x)Vu =v. (1.23)

Here,v is a Radon (signed) measure of finite total variatiofanVhens?2 is a bounded
regular domain one may use Green’s function to express divF', whereF belongs to
all Lebesgue spacds'(£2, R") with 1 < s < ~*=. Standard estimates for the Newtonian
potential will reveal that

n—1
sup [a][ |F|ﬁ} ’ <c(n)][ dv]. (1.24)
0<e<1

2
As always,{, stands for the integral mean ove. Because of (1.24) we say that
lies in thegrand Lebesgue spaceii(£2, R"). This is a Banach space in which the
supremum at (1. 24) provides us with the nornmFofParallel to this concept is thgrand

Sobolev spacWo 1 (£2). Itis at this stage where our results which depend critically on
the exponent first make their implications.

THEOREM 3. —Let 2 be a cube inR" and suppose that the distortion function for
the equation(1.23)is bounded by a constait smaller than2=1%, that is

n —12

1< Kx)<K< .
n—2

(1.25)

Then Eq(1.23)admits unique solution in the spaceWé’ﬁ (£2). This solution verifies
a uniform bound

Vil ) < e K) f Jdl. (1.26)
2
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On account of (1.19) one may conjecture that Theorem 3 still holds for

1<K < (1.27)

n—
and that this bound foK is sharp.

Matters are quite different if the distortion functidi = K (x) is unbounded. It is
more or less clear that without restrictions &fix) the quasiharmonic fields will not
retain their higher integrability properties. While it is certainly not apparent at this point
it will be necessary to assume that

X ecLl(2) forsomey > 0. (1.28)

In order to fully benefit from the estimates for quasiharmonic fields one needs
to investigate them under minimal possible integrability hypotheses. In PDEs it is
customary to assume that the solutions have finite energy, that is

Elu] = /(A(x, Vu), Vu) < o0. (1.29)
2

Associated with this integral is the so-callsibred energyf the div-curl field

ELF] :/J(x,f)dx < oo (1.30)
2

As the distortion function is unbounded, we observe that finite energ¥ okither

requires nor implies itsl.2-integrability. Nevertheless, the exponential integrability

assumption orK at (1.28) place -quasiharmonic fields of finite energy in the Orlicz

spacel.?log™! L. This follows from (1.7) by Young’s inequality. For the converse, recent

advances in the theory of the Jacobians [60,17,43,34,59], etc. prove extremely helpful.

can be shown that the energy (stored on a compact set) of a quasiharmonic field of cla:

L?log~t L, regardless of its distortion function, is always finite [43,65]. Even moi&, if

is in the exponential class, then for every> 0 we have

2 m -1

{I}'I e L(loglogL)"log™" L, (1.31)
J(x,F) e L(loglogL)™,

on compact subsets. We shall not pursue these methods further because in this way o
cannot reach even the natural domainfgrwhich is the spacé? (22, R" x R").

Before jumping to any conclusion, we emphasize the need for the expprem(n)
at (1.28) to be sufficiently large. How large this exponent ought to be will be determined
by the forthcoming estimates. Although our estimates vary with the sections, at the en
y = v (n) will be fixed. With suchy, we prove not only thaF € L2 (2, R" x R"), but
also reach the Zygmund spatélog L.

THEOREM 4 (Integrability theorem). # &% e L _(£2) with sufficiently largey =
¥ (n), then everyk -quasiharmonic field of clasé?log™! L(£2, R" x R") is locally in
L?logL(£22,R" x R").
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Theorem 4 is in effect special case of the general fact that for ewery-1 there is
y =y (n, a) > 0 with the following properties

ek e Ll (2) implies |F|e L?l0g” Lioc(£2), (1.32)

see the forthcoming paper [57].
In quest of the smallest such exponentcalled thecritical point for regularity, we
are faced with a challenging conjecture.

CONJECTURE 1.1. —The critical pointy = y (n, «) for which the implication(1.32)
holds is independent of the dimension and equals

y@=1+a. (1.33)

One may ask how Theorem 4 translates into estimates for Eq. (1.1). When trying tc
answer this question it is important to realize that the associated quasiharmonic fiel
F =[A(x, Vu), Vu] belongs toL2log™? Lioc(£2, R* x R") if and only if the solutioru
has locally finite energy. Our next result seems to be the first of its kind; both bounds or
uniform ellipticity from below and from above are relaxed.

THEOREM 5 (Local regularity). -Every finite energy solution of the Leray—Lions
equation(1.1) satisfies

IVulZ2109. ) + 1A Vi 172100, ) (1.34)
< Ck (A, Vu), Vu)ll f1og2 Lo

< Ck(82',02) /(A(x, Vu), Vu)dx
2

for compact subset®’ C 2.

Let us stress explicitely that we are dealing with genuine anisotropic equations; the
ratio of the largest eigenvalue to the smallest one is equ&fta) and, therefore, need
not to be bounded. For results concerning isotropic equations we refer the reader to [2¢
51,58]. Special nonisotropic equations were studied by [72,15]. As a note of warning,
no higher integrability conclusion, evdrf-integrability of the gradient, can be drawn if
the exponeny = y (n) fails to be sufficiently large, see Section 6.

To make clear meaning of the Dirichlet problem

{ divA(x)Vu =divA(x)F, (1.35)

u(x)=0 onas2,

one needs right function spaces. Denote?bérA(.Q) the Sobolev class of functions
with finite energy&[u] = [(A(x)Vu, Vu)dx, which vanish ond$2 in the sense of
distributions. If (A(x)F, F) € L1(£2) the existence and uniqueness of such solutions
follows by variational principles, and the energy estimate is straightforward

/(A(x)Vu, Vu)dx < /(A(x)F, F)dx. (1.36)
2 2
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However, under slightly stronger assumption taF e L?(£2, R"), we obtain the
desiredL?-integrability of the gradient and more

[Vulla + [[AVull2 < Co(n, K)IIKF|2. (1.37)

Here,$2 stands for a cube iR".
A device for obtaining integral estimates for quasiharmonic fields and the governing
PDEs is theBeltrami operator

| —uS:L?(R",R") - L?(R",R") (1.38)
acting in suitable Orlicz spaces, where

Kx)—-1

m. (1-39)

@) <

The goal is to invert this operator. It is obvious that 4Sis invertible in all Lebesgue
spaced.” (R", R") for which |||l ||SIl; < 1. Theorem 2 is an immediate consequence
of this observation. Ik = K (x) is only in the exponential class, say*ec L} (R"),

the question whethdr— 1S has inverse brings us to one more restrictiorka@k) near
infinity. It will be required that

&k e LY(R") + L™ (R") (1.40)

which is certainly the case K is bounded outside a compact set.

THEOREM 6 (Invertibility theorem). -There exists a bounded linear operator
IT: L?log* (R", dw) — L?log® (R", dx) (1.41)

such that
Do(l—puS)=(-uSoMlM=I (1.42)
forall« =—1,0, 1.

Here we have used Orlicz classes of vector fieldRinwith respect to the Lebesgue
measure/x and the weighted measwf@ = K?(x) dx. Note that the Beltrami operator
| — S acts boundedly in either space.

While two recently appeared preprints [39] and [3] touch on similar themes, our
results here are new and undoubtedly interesting. There has been some earlier al
related work on mappings with unbounded distortion in the plane by G. David [21],
P. Tukia [73], T. lwaniec and V. Sverak [47] and more recent one by M.A. Brakalova and
J.A. Jenkins [10], V. Ryazanov, U. Srebro, and E. Yakubov [64]. In higher dimensions,
we refer to J. Manfredi and E. Villamor [54], J. Heinonen and P. Koskela [37], and
L. Migliaccio and G. Moscariello [56]. No attempt has been made in this paper to provide
complete theory of the quasiharmonic fields. But at least one might notice that thes
fields are crucial for understanding the elliptic PDEs with measurable coefficients.
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Part One:
Requisitesfrom the Field Theory in R”

Essential to our development is establishing notation, some technical details and a
exposition of the vector fields iR". The book by E. Stein [69] is particularly useful
here.

2. Div-curl couples

Let 2 be a domain ilR", n > 2. We shall consider Schwartz distributions @nwith
values inR”, that is,n-tuplesF = (f1,..., f") € D'(£2, R") whose coordinate terms
are inD’(£2). Itincludes the Lebesgue spalé(s2, R"), 1 < p < oo, which we supply

with the norm
1/p
IF|, = (/|F(x>|!’dx> .
22

Let R**" denote the linear space af x n-matrices with real entries. As usual, for
X = [x;] and Y = [y;] in R™" the inner product is defined byX,Y) = Trace
(X'Y)=Zx;;y;;. If FeD'(£2,R") we can speak of its differential

DF = [3f'/ox;] e D' (2, R™").

Then F is said to be in the Sobolev clags™?(£2, R") providedDF e LP(£2, R"™").
Let us emphasize explicitely that in this definition we do not requirdo be in
L?(£2,R"). Modulo constant vector fieldgV:?(£2, R") is a Banach space equipped

with the seminorm
1/p
IFl, = (/IDF(x)Ipdx) .
2

The following two differential operators on the fields € D'(£2, R") will be of
fundamental importance in this paper. The divergence @iys2, R") — D'(£2, R) is
a scalar distribution
_ aft af"
0x1 0x,

and the rotation curtP’(£2, R") — D’'(£2, R"*") is a matrix-valued distribution

CurlF = [8fi — af]}.

Xj 8)6,'

Both operators owe much of their importance to the theory of Maxwell’s equations and
our notation reflects this relevance. Hore D'(£2, R") andg € C*(£2) the following
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formulas will be useful
D(pF) =¢DF+ F®Vop,
div(eF) = @divF + (F, V), (2.1)
curli¢F) = gcurl F + F x Vg,

where the tensor product, inner product and curl product are defined by

3
F®Ve= [f%} i,j=1....n,
J

-0
(F.V9) =3 f' 5% =Tracd F @ Vo).
i

9 0
F*Vg{):[fl—(p—f] (p
an 8)6,'
Spaces of divergence free and curl free (irrotational fields) distributions will be denoted
by using script letters

}:F@ch—ch@F.

{B(Q):{BGD/(Q,R”); divB =0}, 2.2)

E(2) ={E €D'(£2,R"); curlE =0}.

Note that the coordinates of a distributidh= (%, ..., ") in the spacé3(2) N £(2)
satisfy the generalized Cauchy—Riemann system

art afn

d d 0
1 O (2.3)
aft _aft ..
= , L,j=1,...,n.
8)6]' 8)6,'

Locally, such a fieldF is the gradient of a harmonic function and, therefore, &*&
smooth vector field in2. However, distributions which are only i8(£2) or £(£2) need

not be represented by locally integrable functions. We denot8iyy2) and £7($2)

the spaces of divergence free and curl free vector fields’(12, R"), respectively. Of
particular relevance to the boundary value problems is the space of gradient fields witl
vanishing tangential component

EH(R2) = {Vu; ue Wy (2)} C E7(R2), (2.4)

whereWS’p(.Q) stands for the completion af§°(£2) in WLr(£2). Now, the duality
between div and curl can be stated as

/ (B(). E(x)) dx =0, 2.5)
2

wheneverE € £J(§2) and B € B9(£2), where 1< p, g < oo is any Holder conjugate
pair. We skip discussing other possibilities for boundary constraints in (2.5) since a nee
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will not arise. Let us point out, however, thgf (R") = £7(R") and

/(B(x), E(x))dx =0 (2.6)

]Rn

for Be BIR") and E € EP(R"), 1/p + 1/q = 1. A central fact, hidden behind the
forthcoming computation, is that the div-curl produ@®, E) actually belongs to the
Hardy spacer*(R") [17]. This will be extended further to suitable pairs of conjugate
Orlicz spaces.

DEFINITION 2.1. —A div-curl couple o2 is a pair 7 = [B, E] with B € B(£2) and
E € £(2).

The caseB = E reduces to the Cauchy—Riemann equations (2.3), and because of thi
we refer to such couples aarmonic fields

3. Quasiharmonic fields

If a div-curl coupleF = [B, E] consists of locally integrable vector fields we can
speak of its modulus

F()l = (1B +E@)2)"* (3.2)
and the Jacobian
J(x,F)=(B(x), E(x)). (3.2)
Clearly, 27 (x, F) < |F(x)|? and equality occurs only for harmonic fields.
DEFINITION 3.1.—A div-curl couple F = [B, E] € L%C(Q,R" x R") is called
K -quasiharmonic field, with the distortioki = K (x) > 1, if
|IFx) 2 < K@) J(x, F), whereK(x)=K(x)+ K 1(x). (3.3)

In terms of thet components ofF the distortion inequality reads as

Kx)—1

IF~ ()] < Ko+ 1

|F(x)], (3.4)

where we recall thatZ* = E + B, respectively. Hence, harmonic fields are precisely
those with the vanishing minus component.
We are now in a position to prove Theorem 1. For this, we introduce the notation

|F~ ()l

H +
oo if 7H(x)£0

AMx) =

and puti(x) = 0, otherwise. As the vector$ (x) and A(x)F*(x) have the same
length, there exists an isometry which takeg™ into 7~. There are of course many
such isometries. However, for reasons to be discussed later, it will be advantageous
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choose the reflection about the hyperplane bisecting the angle between these vecto
More precisely, the reflection we have chosen is represented by the orthogonal matrix

I —2a®a, (3.5)

wherea = a(x) is the unit normal vector to the hyperplane in question. The tensor
producta ® a € R™" is a symmetric matrix defined by the rule ® alv = (a, v)a
for v € R". More explicitely, if 7~ (x) # A(x)F T (x), then we have

F~(x) — Ax)FF(x)
|F=(x) = A(x)FH(x)|

a(x) =

Otherwisea(x) will be any unit vector perpendicular t6 (x). The latter ensures that
[a ® a]lF™ = 0. In either case, we obtain the Beltrami equation

F~(x) = u(x)F*(x) (3.6)

with u(x) = A(x)[l — 2a ® a], establishing Theorem 1.

It is worth noting that the Beltrami matrix of this form is unique except for the
points whereF~ (x) = A(x)F " (x). In dimension 2 the cas& (x) = A(x)F " (x) still
leads to the uniqueness pfx).

Locally we can always writeF = [B, Vu] with B € BL. andu € Wig+. The Beltrami
equation yields

A(x)Vu = B(x), (3.7)
where the matrix4(x) takes the form

_ 1—A 4
Ax) = (1 — p() (I + n(x)) 1o 1+)»Ei;| + 1= )E;C()x)a ®a. (3.8)

It is a simple matter of multiplying matrices to verify this explicit expressionAgk).
An elementary computation shows that

1-2\" 4).
det.A(X) = <m> det[l + ma ® a:|

(1—A>"{ 4 } [1—A(x)r‘2
1+ 1—-2)2 1+A(x)
establishing formula (1.16).

The only point remaining concerns the ellipticity bounds. It is immediate from (3.8)
that

1-—A(x) 4)(x)

2
(A(0§, &) = 17 )Iél +1—A2(x)

12\ 2 1—4 4\,
(1+x>|‘§| (A(x)E, &) < <1+A+ )IEI

(a(x), £)2.
We thus get
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From the above and by(x) < (K(x) — 1)/(K (x) + 1), we conclude with the desired
lower and upper bounds for the eigenvaluesigk)

K (0)IE1P < (AM)E, &) < K(x)[EI% (3.9)

Next we put on stage quasiconformal mappings in the complex flage{z = x +
iy, x,y € R} and link them with the concept of quasiharmonic field&

4. Quasiconformal mappings

One of the first things we wish to point out is the Hodge star operator

_ 10 1] .2 2
*_{_1 O}R — R°. 4.2)
Itisimmediate thatx = —I. The Hodge operator transforms curl-free fields into div-free

fields. If E = Vu = (uy, u,), thenxE = (u,, —u,) and hence dixE) = 0.

Locally, a pairF = [B, E] is a div-curl couple if and only i£ = Vu and B = V.
Assuming thais, v € Wé’cp(.(?), we obtain a complex functiofi(z) = u(x, y) +iv(x, y)
in the Sobolev cIaszﬁ’c”(Q, C). Recall thatf is K -quasiregular, with X K = K (z) <
oo, if and only if

IDf()P<K@JIz ), K=K+K* (4.2)

whereJ (z, f) = u,vy, —u,v, = (B, E) and

Df(2) = [”x ”y]

Uy Uy

The Hilbert—Schmidt norm of the Jacobian matrix is being used here, thaxfig;)|* =
TracelD” f(z) Df (z)] = u? 4 u’ + vZ + v2. Of particular relevance to quasiconformal

geometry is a distortion tensét: 2 — R?*?, defined by

_ DT f()Df()
G(iz)= —J(Z, ) .

Here at some pointg(z, /) may vanish and, as a convention, we understandGtiat
is the unit matrix in such cases. We then define

(4.3)

1 us 4 v? —lylly — Vy Uy

A) =Gt = (4.4)

UyVy — UyVy [ —UxUy — VyVy u? +v?
and notice that

K (@)I€1° < (A(2)5,8) <K ()57, (4.5)
We also find thatB and E are coupled by the equation

A(z)E = B. (4.6)
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The same equation holds for the dual cougfé= [B’, E’], with E/ = —Vv and
B’ =xVu. This is due to the following identity

*Ax=—A"1, 4.7)
In particular, the real and the imaginary partjokatisfy the same second order PDE
divA(z)Vu=0 and divd(z)Vv=0. (4.8)

Observe that in two dimensions the Beltrami matrix= A(I — 2a ® a) takes the
following special form{g‘ fa}. Under the usual identification of points iR with
the complex numbers, we see that the linear transformatio — C mapsé into

(@ +ip)E.
We can now identify the complex partiafs = 3(f. +if,) and f; = 3(f; —if,) with
the+ components ofF by the rules

1
F@=5E-B)=f

¢ B (4.9)
Fr@)= S(E+B) = f.

This leads us to the familiar complex Beltrami equatin= (« + i8) f.

5. Radial stretching

One particulark -quasiconformal mapping proves useful, as it is extremal for various
problems in PDEs. This is the radial stretching

f (@) =zlz|, a=%—1<0. (5.1)

An elementary computation shows that
2f;=Q+a)zl* and 2f=alz|* %

which brings us to the complex Beltrami equation:

. 1-Kz
fr=pr@)f. with u(z) = 11K= (5.2)
The coefficient matrix in (4.8) takes the form
1 1\z®z
=—I K—-——|— 5.3
M@=+ (k- %) = (5.3)

where we record the following ellipticity bounds

1 .
© = Min(AR@E, §) <MaxA@E, §) = K.
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The real and imaginary parts gfare:

1-K
K

1-K
ux,y)=x(x*+y*)* and v(x,y) =yx*+y)*. (5.4)
These are none other than J. Serrin's [66] solutions to Egs. (4.8). They belong to th
Sobolev spacéVé’C”(Rz) forall1< p <2K/(K —1), butnotforp > 2K/(K —1). The
Beltrami equation (5.2) also holds for the functiofnf1z), which gives us another set of
solutions to Egs. (4.8), namely

AN

K+ K+1

W(x,y)=x(x%+y%)"F and v'(x,y)=y(x*+y?) *. (5.5)

Note that we have simply replacdd by —K in (5.4). However, these latter ones are

only very weak solutions. They belong Wé’cq(Rz) forall 1<q < Kz—fl but not for

q = Kz—fl Finally, regarding, v, ', v' and.A as functions of: variables we conclude

that in any dimension the critical exponegts and pk, defined in (1.19), are sharp.

6. Thefailure of higher integrability

Consider more general radial stretching

f (@) =zx(z)). (6.1)

Here we assume that the functian— ¢y (z) is strictly increasing whiley(¢) is
decreasing. Elementary computation gives

|l + 1zl = x(zD,

|fol = 1fzl = x (zD) + |zlx (2.
Hence the distortion function takes the form

VAR x(zD)

A=A x Uz +lzlxdzD

K(z)

We apply this formula to

x(zl) = ﬁ for|z] <€, o >0.
Thus
K (z2) :;Ioggl| (6.2)
and
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in the open balk2 = {z; |z| < €°}. We see at once that& e L1(£2) for all exponents
y < 20. On the other handF| ¢ L?log*(£2) if 20 < 1+ «. In conclusion, for the
implication at (1.32) it is necessary to assume that 1 + «, whenevera > —1,
confront with Conjecture 1.1.

7. Other examples

There are more examples directly linked with the quasiharmonic fields

Example7.1. — Letf = (f%, ..., f"): 2 — R” be a mapping whose coordinatgs
are inWi7i(2), 1< p1,...,pn <00, i =1,2,...,n. With f we associate two vector
fields

E=Vfl and B=Vf%x...x Vf"

The latter stands for the cross productiof 1 gradient fields irR”. It is well known
that

divB=0

provided-L =t 4L o < 1.By the Laplace expansion formula we see that the dot product
(B, E) equals the Jacoblan determinantfofThat is,(B, E) =de{Df (x)] = J (x, f).
Now, the coupleF =[B, E] is a K-quasiharmonic field if and only if

VP + [V f2x - x V1P < K defDf]. (7.1)

This inequality provides a method for constructing elliptic equations and their particular
solutions, without getting into a lengthy calculation of the second order distributional
derivatives. For a treatment of more general constructions we refer the reader to [44].

Example7.2. —Let #:2 x R* — R be a Carathéodory function such that
£ eR" — d(x, &) is convex. Denote byp*(x, n) =sup(n, &) — @(x,&); &€ € R"} the
Young conjugate ofP (x, .). Throughout this example we assume the quadratic growth
and coercivity condition. This can be expressed by a single inequality

1
g+ i< (K + ) [0, 6)+ 0" o) (7.2)
whereK > 1. Letu € W12(£2) be a local minimizer of the variational integral

I[vl= | &(x,Vv)dx.
/

Precisely we mean that[u] = min{I[v]; v € u + W3?(£2)}. Consider the solution
B € B?(2) of the dual problem in the sense of Ekeland—Temam [27]. That i%, €i\D
in 2 and

/[(B,Vu) — ®*(x, B)] :max{/[(x, Vu) — @*(x, X)]; X EBZ(Q)} (7.3)
2 2
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Then the extremality relations take the form
(B,Vu) = ®(x, Vu) + ®*(x, B) a.e. ins2. (7.4)

SettingE = Vu € £2(£2) we obtain ak -quasiharmonic fieldF = [B, E] satisfying the
distortion inequality

|B|?> + |E|> < (K—i—%)(B,E). (7.5)

8. Hodge decomposition and Poincaré lemmas

For our purpose it will be sufficient to review div-curl decomposition in the entire
spaces2 = R". In this case we can make explicit calculations by means of the Riesz
transforms

R=(Ry....R):L’(R") - L?(R",R"), 1< p<oo,

where

M= X — d

R = ij) ( lxy_);(nyfl g

The book by E. Stein [69] is a particularly good reference. Consider a vector field

F=(f% ..., f" eLP@R" R"). We first solve the Poisson equation
F=AU=(Aul,..., Au") (8.1)

forU =, ..., u") e D'(R",R"). Note the identities

92U

8)6,'8)6]'

=—-R;(F)e L’(R"xR") fori,j=1,...,n, (8.2
whereR;; = R; o R; are the second order Riesz transforms. Eq. (8.1) yields div-curl
(also known as Hodge) decompositionfof

F=B+E, (8.3)

where
B=AU-VdivU and E=VdivU. (8.4)

These fields are easily seen to be divergence and curl free, respectively. More explicitel:
with the aid of (8.2) we find that

B=(+R®R)F and E=—(R®R)F. (8.5)

Hereafter, we use the notatidh® R = [R;;] for the matrix of the second order Riesz
transforms. We refer to the operators

B=I+R®R and E=-R®R (8.6)
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as projections of.” (R", R") onto the spaceB”(R") and&£?(R"), respectively. For the
use in the sequel we note that

kerB=¢E7(R") and kelE = BP(R"), (8.7)

which is clear from the uniqueness of the Hodge decomposition. Mexfn also be
written as

F=v(divU) +div(curlU). (8.8)

Here, we have applied the divergence operator to the matrix functio/curhe result

is a vector field whose components are obtained by computing the divergence of the ro\
vectors. Now, ifF € D'(R", R") and curlF' happens to be ih* (R", R"*"), then we can
solve Poisson’s equation for cdfl, that is

A(curlU) =curl(AU) =curl F. (8.9)
Hence
a2(curlU)
——~ =—R;i(curl F) e L*(R", R™"). 8.10
8)6,'8)6]' ]( ) < ( ) ( )

In other words, the second term at (8.8) belongs to the SoboleVialas&R”, R") while
the first term, denoted b¥, = V(divU), is a curl free distribution. We then conclude
with the following Poincaré type Lemma:

LEMMA 8.1. —For each distributionF € D'(R", R"), with curl F € L*(R", R"*")
and 1 < s < oo, there existsEp € £(R”", R") such thatF — Eg € WH(R", R"). We
also have a uniform bound

IF = Eolls = IDF — DEolly < Cs(n)|lcurl F ;. (8.11)

The following formula for the transposed differential Bf— E, couldn’t have been
more explicit
D'(F — Eo) = (R®R)(curl F) € L°(R", R"™™). (8.12)

Here the notatiorR ® R = [R;;] is being used for the operator acting on matrix-
functions, in analogy with the multiplication of matrices. We argue similarly for the
dual statement:

LEMMA 8.2. —For each distributionF € D'(R", R"), with div F € L*(R", R") and
1< s < 00, there existB, € B(R”, R") such thatF — By € W' (R”, R"”) and we have

IF = Bollis = IIDF — DBoll; < Cs(n)||div F ;. (8.13)
This follows from another explicit formula for the differential 6f— By, namely

D(F — Bg) = —(R®R)(div F). (8.14)
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In each lemma, if the distributioff happens to be in some spat&(R”,R"), 1 < s’ <

oo, then so do the distributiong&y and By. This is because botlty and By can be
expressed in terms df via Riesz transforms. Orlicz—Sobolev variants of these lemmas
are also available, but we shall pursue this matter later. Concerning local fields, with the
aid of formulas (2.1), we obtain

COROLLARY 8.3.—-Let F = [B, E] be a div-curl couple inL{ (£2,R" x R"),
1l<s <oo, and ¢ € C§°(£2). Then there exists a div-curl coupl& = [Bg, Eo] €
L*(R", R" x R") such thatpF — Fo € WH(R”, R") and

lpF — Follrs < Cn, ) |[IVol 1FI |- (8.15)

As Fy is obtained via Riesz transforms ¢fF it may be concluded that ifF
s (2, R" x R") for some other exponent 4 s’ < oo, thenFy € L*' (R", R" x R").

loc
Furthermore, we have the following singular integral expressions for the differential of

(p.7:—.7:0:
D(¢pB — Bo) = —(R®R) (Vg, B),
D'(pE — Eg) = (R®R)[E * Vg.
In either of these expressions we notice that

/(ch,B)zo and /[E*w]:o.
R® R”

Hence, if$2 is a cube or a ball centered & € R”, then forx € R” — 2£2 we have the
point-wise inequality

C(n)diams2
|D(pF — Fo)(x)| < WH Vol | F] HLl(Rn)-
This also gives
C(n)diams2
|(@F — Fo)(x)] <TX_7XO|HH|V<P||~7'—|HL1(R")- (8.16)

9. Hilbert transform

When studying quasiconformal mappings in the complex plane an analogue of the
Hilbert transform was introduced by Beurling, nowadays known as the Beurling—Ahlfors
transform. This is a singular integral operator of the form

1 &) dE ndE

AN =5~ G JEVO© 1<p<co 9.1)

We wish to argue by analogy with this operator and its higher dimensional counterparts
introduced in [41].
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Let F € LP(R",R"), 1 < p < oo, be a given vector field. We decompose it as
F =B+ E,whereB € B?(R") andE € £7(R"). Then we seS(F) = E — B. In terms
of the projection operators, we can write

~S=B-E=1+2R®R. (9.2)

This operator in dimension 2 is not exactly the sama adevertheless, it captures basic
algebraic and analytic features &f Before discussing more advanced results, let us list
some properties of particular interest

() Sis an involution, thatisSo S=1;

(i) Sis self adjoint, that is

/ (SF, G) = / (F, SG) 9.3)
R7 R”
for Fe LP(R",R") andG € LY(R*, R"),with1< p,q <00, p+ g = pq.
Thus, forp = ¢ = 2, we find that
(i) S:L?@R",R™) — L?(R",R") is an isometry.
This operator seems to be an excellent generalization of the Hilbert transform on the
real line. When raised to the level of differential forms one obtains even more genera
operatorS: LP(R", A"y — LP(R", A"). The latter has proven to be extremely useful
in the study of quasiconformal mappings [26,41]. But the calculation op4iteorms
remains one of the outstanding problems in the area, even in the ea2 There have
been several attempts to identify these norms [42,6,5,38], which have led to the followinc

CONJECTURE 9.1. —For all dimensions: > 2 and1 < p < oo, we have

isi, =max{p -1, = 1. (9.9)

See next section for much more general setting.
So far, the best estimate belongs to R. Bafiuelos and A. Lindeman [6], which assert
that

1
IS, < 6max{p lp—l} (9.5)

Note that this estimate is dimension free, but, in view of the property (iii) it does not
exhibit correct upper bound fgr close to 2. Riesz—Thorin Interpolation Theorem comes
to the rescue, details being left for the reader.

LEMMA 9.1. —Forapairl < ¢ <2< p of Holder conjugate exponentg+q = pq,
we have

ISy =1ISll, < 7p —13. (9.6)

Let us point out that the equatiofS||, = [|S||, is straightforward by a duality
argument.

We have reserved our final section of Part One for comments concerning possibls
extensions of these ideas.
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10. Thedliptic complex setting

There is always further to go. One way is by looking at the exact sequences of firs
order differential operators, generalizing the previously considered sequence

curl

D'(R",R) - D'(R", R") 25 D/ (R", R™"). (10.1)

Let A_, A andA_ be arbitrary finite dimensional inner product spaces. Consider a short
elliptic complex

D(R", A_) 25 D'(R", A) 25 D'(R", A,), (10.2)

whereD_ and D, are first order partial differential operators with constant coefficients.
More precisely, the sequence of symbols

A DAL AL forger (o) (103)

is supposed to be exact; I (&) =kerD, (§).
Note that the dual complex

/ Dr / Dj— /
D'(R", A_) «— D'(R", A) «— D'(R", A}) (10.4)
is elliptic if and only if the original complex is. Then the elliptic second order operator
A=D_D* +DiD,:D'(R", A) » D'(R", A) (10.5)

is a natural tool to various estimates.
With the aid of singular integrals one can solve the Poisson equation

AU=FeL’(R", A), 1<p<oo, (10.6)

uniquely forU e W?»?(R", A). The basic estimate is

This gives rise to the Hodge decomposition of a vector field L” (R", A), nhamely

02U
8x,~8xj

<CoIFl,. ij=1.....n. (10.7)
p

F=D_a+ Dip (10.8)
with « € WEP(R", A_) and B € WEP(R", A,), which are explicitely expressed in
terms of the first order derivatives &f. Then the Hilbert transform is defined by the
rule

SF=D_a—DB,  SLP(R,A)—LP(R", A), l<p<oco.  (10.9)
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On the analogy of the div-curl couples one might consider the pgies [X, Y] e
LP(R", A x A), with X = D_a andY = D3 g, and also their Jacobias(x, F) =
(X(x), Y (x)).
We trust that the further resemblance to the quasiharmonic fields is selfexplanatory.
Finding the norms of the Hilbert transform associated with the elliptic complex (10.2)
is central to the.”-theory of PDEs. Numerous examples suggest the following

CONJECTURE 10.1. —For a Holder conjugate pail < g < p < o0, p+q = pg, we
have

ISy =1SIl,=p -1 (10.10)

The expected lower bound f§||, is easily seen to be true. What remains is to show
the estimate

IF5 N, <(p—DIF I, 2<p<oc. (10.11)

Without getting into technicalities, this reduces to showing that

1F) = [ (0 = DIF 1= IFDF |+ 177 > 0 (10.12)

Rn

see D. Burkholder [11] and [38,5,2] for further developments. It is in this way that we
become interested in the variational integrals of the form

I[F]= /<D(.7:(x)) dx, (10.13)
R,

where@ is a continuous function orl. Such integrals are well defined on the pairs
F=[X,Y]1eCF[R", A x A).

We say that?d is quasiconvexf

/ [®(Fo+ F(x)) — ®(Fo)]dx =0 (10.14)
Rn

for every 7o € A x A and F(x) = [X (x), Y (x)], wheneverX € D_C§*(R", A_) and
Y € DXCSR", Ay).

It is of great interest to characterize quasiconvexity by imposing only algebraic
conditions on the integrandd. Note that Burkholder’s functional (10.12) is convex in the
so-called singular directions, zeros of the Jacobian. For a general functional (10.13), thi
simply means that the real variable function> @ (Fo+ ¢ F) with Fo e A x A andF =
[X, Y]is convex, wheneveX andY are orthogonal vectors in. If we confine ourselves
to the elliptic complexes such thigh;,_; kerD, (§) = A, then condition (10.14) implies
convexity in singular directions, see the forthcoming paper [33]. A puzzling thing about
an analogous conjecture in the multidimensional Calculus of Variations is its failure, for
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n > 3, as shown by V. Sveréak [71]. Conjecture 10.2 is likely to be true in all dimensions
since it assumes convexity in more directions.

For relevant literature we refer to [20]. We are now left with a challenging conjecture
for the converse:

CONJECTURE 10.2. —Convexity in singular directions implies quasiconvexity.

Part Two:
Bounded Distortion
This part is dedicated to quasiharmonic fields of bounded distortion, say
1<Kx)<Ka.e. (10.15)

Just as quasiconformal mappings in the plane Khguasiharmonic fields will be used
for the study of the second order elliptic equation&in

11. The Bédtrami operator and critical exponents

Let u be a measurable function R* valued in symmetric matrices such that

Kx)—1
@)l =max|u(x)§| < —————+

may Ko+ 1 (11.1)

where 1< K(x) < oo a.e. The central question that we want to address here is the
invertibility of the Beltrami operator

| —uS:L?(R",R") - L?(R",R"), 1l<p<oo, (11.2)
and its adjoint
| —Su:L?(R",R") - LY(R",R"), p+q=pgq. (11.3)
The latter being characterized by the identity
/((I _ uS)F, G) = /(F, (I — S1)G) (11.4)
R” R”

for F e L?(R",R") and G € LY(R",R"). Basic estimates df — Sy can be obtained
from those off — uSvia the identity

| —Su=So(l —uS oS (11.5)

Both operators are certainly invertible i’ (R", R”) and L7(R",R"), for 1< g < p
< 00, With p 4+ ¢ = pg, such that

[illoolISHlg = lltlloolISH < 1. (11.6)
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Recall that our basic assumption is1K (x) < K. To each such constakt we associate
a pair of Holder conjugate exponents<ljx < 2 < px < oo, determined implicitely by
the equation

K+1
ISllge = 1Sk = —7- (11.7)
As ||S||2 = 1, standard interpolation arguments give strict inequality
K+1
ISl < % > forallr € (gx. pr). (11.8)

Thus the critical intervalgx, px) consists of the exponentsfor which the operators
| — uSandl — Sy are invertible inL" (R", R™). To facilitate explicit estimates we record
the following dimension free bounds for tlegtical exponents

14K —12 14K — 12

gk <

which is immediate from Lemma 9.2. An affirmative answer to Conjecture 9.1 would
yield invertibility of the operators

| —uS, | —=Sp:L"(R",R") - L"(R",R")
for all exponents in the interval

2K 2K
—<r< .
K+1 K-1

(11.10)

As an interesting note this is true in dimension 2 [4], thoughytherms ofS still remain
unknown.

12. Caccioppoli inequalities

Our next objective is to estimate div-curl solutions of the nonhomogeneous Beltrami
eqguation

F~(x) = u(@)F(x) + Gx). (12.1)

We will be working under the assumption th&te Lj,.(£2, R" x R") for at least one

exponent’ in the critical interval(gx, pg). Fix an exponent such that

n

—1} <r < pg. (12.2)

maX{LIK»

The following Caccioppoli type estimate holds

r (2.R") and F e L7 (2. R" x R")
(£2,R" x R") and for each test functiow e C5°(£2)

PROPOSITION 12.1. —Suppose thatG € L
satisfy (12.1) ThenF € L

b
loc
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we have
lpFll, < Cn, K)llgGll, + C(n, K)| Vol | F| ar . (12.3)
Proof. —Multiplying (12.1) by¢ leads to an equation in the entire sp&ce
(pF7) = ul@F) " +¢G, (12.4)

wherep : R" — R™*" is defined to be zero outside. Although¢F is no longer a div-
curl couple we can find one which is close¢d . Indeed, by Corollary 8.3 there exists
a div-curl couple

Foe L (R, R" x R") N L* (R", R" x R"), (12.5)

which satisfies

For the couple® = ¢ F — Fy, one may use Sobolev's theorem to find thiate
L"(R",R" x R") and its norm is controlled by

@], <Cn,r)| Vel 1F| . (12.6)
Eqg. (12.4) takes the form
Fo —uFg =G +pudt — o~
or, equivalently
(I —pnSFy =G+ pndt —@~. (22.7)

The right hand side belongs ' (R", R"), while F; € LY (R", R"). Both exponents
r ands’ are in the critical intervalgg, px). It is at this point that we make use of
the inverse operatat — uS)~*: L*(R*, R") — L*(R", R"). We recall that this operator
exists and is bounded whenevgr < s < px. ConsequentlyZ, belongs taL” (R", R")
and so doesy = S(F; ). Moreover, we have

5ol < C(n, K)[9G + u®* — &~ |,
HencepF = @ + Fo e L"(R", R” x R"), and by this latter estimate it follows that
leFll, =P + Fol, < C(n, K)||®|, + C(n, K)| @Gl

When combined with (12.6) this implies the inequality (12.3), completing the proof of
Proposition 12.1.

Now the proof of Theorem 2 is straightforward. Indeed, kbmquasiharmonic fields
we have EqQ. (12.1) withG = 0 in (12.1). Proposition 12.1 gives Caccioppoli type
inequality

lpFll, < Cn, K) [ Vol F

(12.8)

_nr_-.
n+r
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Repeated application of this estimate results in the improvement of the degree o
integrability of F, exactly as stated in part (a) of Theorem 2. The second part is
immediate, details being left to the reader.

One inference from (12.8) is the reverse Holder inequality for integral means over the
cubesQ in the domains2

(][m’f <C(n,K)<][|f|n"_+rr>7. (12.9)
0 20

Here, the double cube, denoted b@ s also assumed to be containedidn

13. An estimate for nonhomogeneous equations
We now turn to an elliptic PDE of the form
divA(x)Vu=divF in2 CR", (13.1)

whereF is a given vector field irLj,.(£2, R") and the coefficient matrix verifies

|rOC
1 2 2
EISI <{A(X)E. ) < K&

The div-curl coupleF = [B, E] = [A(x)Vu — F,Vu] solves a honhomogeneous
Beltrami equation

F(x) = u(x)Fr(x) + Gx). (13.2)
Here the Beltrami matrix is explicitely expressed in termgiof
| — A(x)
| +A(x)’

while the vector field5 is given in terms ofF by

ux) =

Gx)=[l+AX)] F.
As the eigenvalues of (x) lie betweenk ~ and K it follows that

1—)\’_1(—1
1+Ar| K41

)< sup
K-1<<K

This makes it legitimate to apply Proposition 12.1. We forgo possibly more general
implications, just only extract the following useful estimate:

PROPOSITION 13.1. —Suppose: € Wig2(£2) satisfies Eq(13.1) with F € L{,.(£2,
R"), where2 < r < pg. Thenu € W5/ (2) and

leVul, < C@n, K)llgFl, + C(n, K)||[Ve| [Vul

(13.3)

nr_ .
n+r
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_2

Recall thatPx is not smaller than 2- KD

14. TheDirichlet problem in therange of critical exponents

This section is devoted to a qualitative analysis of the boundary value problem

0 ou .
y> — (A,,- (x)—) =divF
fz1 0% dx; (14.1)
ue Wy (),

whereF € L (£2,R") and A verifies the usual ellipticity bounds
KHEP < (AW)E &) < KIEZ (14.2)

The natural space here is of cou(@é’z(.{?). The case = 2 poses no difficulty since
the existence and uniqueness follow by variational principles. We have

IVullz < K| Fll2. (14.3)

Thus Eq. (14.1) defines a bounded oper#or.?(£2, R") — L?(£2, R") which takes a
given vector fieldF into the gradient of the solution. Like for the Laplace operator, the
L"-bounds withr # 2 need some regularity @2. For the sake of simplicity we confine
ourselves to only three types of domaiid=R", 2 =R/, ands? is a cube inR".

THEOREM 14.1. —The operatorA extends continuously tb"(£2, R") for all expo-
nentsr in the interval(1.21)

Proof. —It suffices to prove the uniform estimate
Vull, < C(n, K)||F||;. (14.4)

We shall derive it from the Beltrami equation (13.2). F@r= R" there is no need
to multiply this equation by a test functiop € C5°(R"). In this case estimate (12.3)
remains valid withp = 1. Hence (14.4) is immediate.

We next consider the half space = R} = {(x1,...,x,);x, > 0}. Let p:R" —
R" denote the reflection about the hyperplane= 0, that is,p(x1, ..., x,—1, x,) =
(x1,...,X,_1, —x,). The task is now to extend equation (14.1) ®. We define
u(x) = —u(px) for x € R". Obviously Vu(x) = —(pVu)(px) for x € R". Hence,
u € WH(R") and we have

/IVu(x)Ir dx:2/|Vu(x)|r dx. (14.5)
Rn R
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Guided by the above extension wix we find out how to extend” to R”". Likewise,
F(x)=—pF(px) for x € R". Hence

/|F(x)|rdx=2/|F(x)|rdx. (14.6)
R7 R"

+

The coefficient matrixA = A(x) can be extended tB” by settingA(x) = A(px) for
x € R", which leads to the same ellipticity bounds as in (14.2), fox &lR". Although
it is not obvious at this point it is nevertheless true that

divA(x)Vu =divF inR" (14.7)

in the sense of distributions. On account of the already established estiniitewe
conclude with the inequality

1/r 1/r
IVl =(3) IVulen < (5) CoOIFl@ (14.8)

=C(n, K)|Fller e

with the same constant as for the entire sgate

The case whew? is a regular bounded domain, such as a cube or b&"imneeds
handling with additional arguments. We begin, as before, by extending Eq. (14.1) slightly
beyondd 2. For instance if2 is a cube one can reflegt F and the coefficient matriX
across the faces ¢ in much the same way as we did f&f, . New cubes emerge in this
process and we continue reflecting across their faces. At the end we Ipasat local
solution to the extended equation in the double cube

divA(x)Vu =divF in28. (14.9)
The point is that the norms &fu and F are controlled by those over the original domain,
namely
IVullLs2e) < Cn, K)[|Vul 152 (14.10)
and
| Fllrs20) < Cn, K)F s (14.11)

forall1<s<r.

Let us first assume that r < pg. Proposition 13.1 applies to the cutoff function
@ € Cg(282) such that 0< ¢ (x) <1, ¢(x) =1 0n$2 and|Ve(x)| < C(n) diam1(£2).
It results in the following estimate

n+r

(][wur)? <Cn, K)(fwm%) +C(n,K)(][ |F|’)7 (14.12)
2 252 22

ntr

<C(n,K)< |Vu|n"—lr> nr+C(n,K)< |F|’>;.
/ /
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The latter are due to (14.10) and (14.11). Applying Holder’s and then Young’s inequality
we see that for every positive

1

wtr = i
(Jmu)® (o) fo)
Q Q Q

1 1
n—1 r 1 2\ 2
8(][|Vu|r + I ][|Vu| .
n net—
Q Q

On substituting this into (14.12) withsufficiently small we obtain

(][ |Vu|’>l/r e K)(][|F|’)
2 2

On the other hand, the?-bound at (14.3) yields

(jlvulz)l/2<K<:]z[|F|2)

1/r
x(fim)”
2
Hence the desired estimate (14.4) follows.
By duality, we can easily pass to the cage < r < 2. Here are some details. Let
r’ denote the Holder conjugate i@ which is obviously in the interval X r’ < pg.
According to the previous case, we can solve uniquely the equatioa div) = div F’
for a functionu’ € Wol”/(.(z), whereF’ = |Vu|~2Vu is regarded as a given vector field
in L” (£2,R"). On account of the already established estimate (14.4), with expehent
in place ofr, we can write

Z|Vu|r:/(Vu,F/) =/(Vu, AVu')

2 2

<

1/r

1/2
+C(n,K)(][|Vu|2> . (14.13)
2

1/2

- / (AVu, V') = / (F, Vi) < | FIl, |Vl
2 2
<C, K FIl |l = Cln, K I, [Vl

Hence the desired inequality

IVull, <Cn, K)|FIl-. O (14.14)

15. Measurein theright hand side
This section will be devoted to the equation
divA(x)Vu =v, (15.1)

wherev is a Radon (signed) measure of finite total variation in a c@be R". Some
novelties ought to be mentioned here. First by G. Stampacchia [68] who introducec
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the so-called duality solutions, then L. Boccardo and T. Gallouet [8] who defined
approximation solutions and F. Murat [61] who proposed to study the entropy solutions,
and others [50,22]. All of these concepts ensure the existence and uniqueness of tt
solutions for to the Dirichlet problem. However, these ideas do not apply if one wants to
investigate the usual solutions, in the sense of Schwartz distributions. Precise conditior
for the existence and uniqueness of the distributional solutions (in terms of the ellipticity
constantK) depend on the norms of the Hilbert transformRA. That is why it is
impossible to give definite answers at present. However, we are able to give here at lea
good bounds foK to ensure those properties. Critical to our approach is the introduction
of the so-called grand*-space:

L'(R,R)c () L(2R"), s=

O<e<s—1 n—= 1’
which we supply with the norm
n%l
IF|l, = sup (s][|F|Z—i> < 00. (15.2)
O<e<1 o

Every measurer can be written ag = div F, with some F € L*(£2,R") and s =
n/(n — 1). Explicitely, we can write

F(x) = / V,G(x.y)dv(y). (15.3)
2

whereG is the Green’s function for the Laplacian &h. Theorem 3 is a consequence
of (1.22) applied to = —¢)/(n — 1).

We close this section with similar questions for the nonlin@aharmonic type
eqguation

divA(x,Vu)=v=divVF, (15.4)

where K~Y&|P < (A(x,£),&) < K|€]P. The uniqueness problem for distrbutional
solutions is far more complicated. What we need first of all are the estimates of the
form

(p=D(n—e) n—e
/|Vu| <C<n,p)/|F|H (15.5)
22 2

for at least some small positive numbersrhese estimates are known only wheg: n

[35], in which case the distributional solutions actually belong to the grand Sobolev
spacewol’”)(.Q). The equations with measure in the right hand side have been subjectec
to a great deal of investigation by G. Dolzmann, N. Hungerbuehler and S. Miiller,
see [25] and more references given there. Finally, an approach to the nonlinear theor
of harmonic fields and related PDEs of the Cauchy—Riemann type, referred to as Hodg
systems, is presented in [46].
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Part Three:
Quasiharmonic Fieldswith Distortion in Exp (R")

In the sections to follow, we will address the questions of regularity of quasiharmonic
fields with unbounded distortion. The results have profound consequences for the ellipti
PDEs with anisotropic degeneracy. We will continue this theme later in the paper. Since
the L?-integrability fails when & is not locally integrable, we must assume that

kel (2)

for somey > 1. To get the higher integrability theory off the ground we will actually
assume thay = y (n) is sufficiently large. The theory of BMO-functions and some
Orlicz spaces are a major prerequisite which we must outline here for completenes
of the arguments in the sequel.

16. Majorization and commutatorswith BM O-functions

A function K : 2 — R, on a measurable s& c R” is said to be BMO-majorized if
there existsk’ ¢ BMO(IR") such thatk (x) < K'(x) for a.e.x € £2.

PROPOSITION 16.1. —A necessary and sufficient condition that= K (x) should be
BMO-majorized ins2 is that
&K@ dx

T 16.1
Q 14 [xjrtt = ( )

for some positive number.

The proof is based on a result of R. Coifman and R. Rochberg [18], which we state a:
follows.

LEMMA 16.2. -Let M u denote the Hardy-Littlewood maximal function of a Radon
measurey in R”, and suppose thd#l . (x) is finite and positive at some poiat Then

[log(M 1) lBmo®y < C (n). (16.2)

Proof of Proposition 16.1. Suppose (16.1) holds. We need only consites R”,
since otherwise we look & as equal to zero outsid2. The majorizing function in
guestion can be defined as

eyK(x)

1
K'(x)==logM | —
(x) > g (1+|x|”+1

1
) + = log(1+ [x|") > K (x).
14
Itis clear that|| K’ |[smo < C(n)/y .
For the converse, suppose théaix) < K'(x) a.e. in2 with K’ € BMO(R"). Global
integrability properties of BMO-functions follow from John—Nirenberg lemma. Among
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such properties is the following inequality
g [K'(0)—Kj

. dx<AW),
J e &

wherey = % and K/, stands for theL!-mean of K’ over the unit cube. This

completes the proof of Proposition 16.1.

Neither the hypotheses nor the forthcoming conclusions will be affected if we replace
K by K'. Instead of introducing new symbols, we simply assume that the original
distortion function satisfies

Cn)
K llemo®n) < L, (16.3)

It will be convenient to introduce the weightéd-space of vector fields iR”
L*(R",dw) C L*(R", dx), (16.4)
wheredw (x) = K?(x) dx. We realize that the Hilbert transform
S:L*(R", dw) — L*(R", dw) (16.5)
is still bounded. In view of (16.2) its norm depends only on the dimension, but n&it on
Indeed, forF € L?(R”, dw) we have
ISF | L2gn dw) = 1K SF|I2
SIS(KF)ll2+ I(KS—SK) F|2
<IKF|2+ C@)|Klsmoll Fll2
<

CIF | L2wr.de)-

Here we have used an estimate for the commut&tBr— SK of S with the operator of
multiplication by K. Such estimates will be frequently employed in the sequel, thus we
state them as a lemma.

LEMMA 16.3. —Let S be a singular integral operator ifR” and letK € BMO(R").
Then KS — SK: L?(R",dx) — L’(R",dx), 1 < p < oo, has norm bounded by
Cp(m|IK llemo-

This elegant result belongs to R. Coifman, R. Rochberg and
G. Weiss [19]. We shall also discuss it in the context of Orlicz spaces later on.
17. The L?-inverse of | —uS

With the above preliminaries we can now establish the following invertibility result

THEOREM 17.1. -There is a bounded linear operatdd : L?>(R", dw) — L?*(R",
dx) such that

(I —uS)yoM=Mo (I —uS =1:L*R",do) — L*(R", dx). (17.1)
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Precisely, we have
G| L2wn ax) < 210Gl L2Rn de)- (17.2)
Proof. —We begin with a technical but very useful point-wise inequality

ISFI2 + |FI> < 2K (|SF 2 — |F?) + 4K?|(I — uS)F|*. (17.3)

To see this, we write

K-1
| —uS)F| > |F|— |ull ISF| > |F| — ———|SF
|1 = uSF| = |F|— |l ISF| > | F| K+l| |

or, equivalently
ISF| +|F| < K(ISF| = |F|) + (K + 1)|F — uSF]|.
Multiplying both sides by 2SF| + | F|) gives
2(|SF| + |F|)2 < ZK(ISF|2 — |F|2) +2(K +D|F — MSF|(|8F| + |F|)
< 2K (ISF[2— |F ) + (K + D3 F — uSF[?+ (|SF| + | F|)%.

Inequality (17.3) is now straightforward.
We shall establish the existence of the operdidry proving the following estimate

[Fll L2gn.axy < 21 — wS)Fll L2rn dw) (17.4)

for F e L?(R", dx). It is, therefore, natural to try to integrate (17.3). Some technical
difficulties arise because the product{|SF|? — | F|?) need not be integrable. For this
reason, prior to integration, we divide (17.3) byX K (x) reducing the inequality to

ISF|>+ |F|?

< 2k(|SF|? — |F|?) + 4K?|F — uSF|?. 17.5
Y (ISF|* = |F|) +4K*|F — uSF| (17.5)

Herees > 0 and we notice that the new factbe= K /(1 + ¢K) is bounded. At the end
we will let parametee go to zero. It is worth pointing out that the BMO-normiofloes
not depend om

2c(n)

lkllemo < 2[K [lmo < (17.6)

as it is easy to check.

Next, with the aid of Hodge decomposition we can write= E — B, where
B € B3(R") and E € E2(R™), ||F||3 = ||B||5 + || E|l3. By the definition of the Hilbert
transformSF = E + B and|SF|? — |F|?> = 4(B, E). Then, integrating (17.5) yields

|BI” + |E|?

2
o <4 KBEY+21F — uSF I (17.7)
Rﬂ

Rn



552 T. IWANIEC, C. SBORDONE / Ann. I. H. Poincaré — AN 18 (2001) 519-572
To effectively estimatelkB, E) we apply Hodge decomposition of the vector field
kB € L>(R", dx), that is

kB=B +E'.

Here we can use the projection operators to compute the compasieantsl £/, namely
B'=B(kB) e B(R") and E' =E(kB)ec E*(R").

Since the vector fields3’ and E are orthogonal inL?(R"*, R") we are reduced to
estimating the integral ofE’, E). By Holder’s inequality

]/(E/, E>] <IEIE]2.
RVL

The necessary bound f@E’ ||, will follow almost immediately once we express in
the form of a commutator,

E' = (Ek — kE)B. (17.8)
This is legitimate because the operdfovanishes on divergence free vector fields. Now
Lemma 16.3 yields

/ Cn)
I1E"l2< Cm)lIkllBmoll Bll2 < N B2

Therefore,

C
b )| <1 B < <2 [(BE+ 2R, (17.9)
Rﬂ

Rn

On substituting it into (17.7), we obtain

|BI?+|E|?
1+¢K

4C (n)
< Y /(|B|2+ |E|2) + 2||F - MSF”iZ(R",da))'
R~

Rn

Monotone Convergence Theorem yields the same inequality amttD. At this point
we shall chooser sufficiently large, to ensure that the integral in the right hand side is
absorbed by the left hand side. It results in the inequality:

1 1
5 [1F2=3 [(BE+IER) <21F = uSF Iz
Rn Rll

which is the same as (17.4).
To settle matters finally, we need to solve the equation

(I —uSF=G (17.10)
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for F e L?(R", dx), whereG is a given vector field il ?(R", dw). Uniqueness certainly
follows from (17.4). The only point remaining concerns the existence of the solution. To
this effect, we approximate by

. m—1
p(x) if el < o
Mo (x) = _ (17.11)
M otherwise,
diyesl|
wherem =1, 2, .... Note that||u,, (x)|| < 1-— 711 It is also important to pay attention on
the following bound independent of
Kx)—1
m < —, =12 .... 17.12
Il e GOl Ko+l " ( )

Since the operatdr— 1, Sis invertible inL?(R", dx) we can solve the Beltrami equation
Fy — 4y SF, =G € L3(R", dw) C L*(R", dx) (17.13)
for F,, € L?(R", dx). On account of (17.4) the following uniforth?>-bounds hold
I Fonll 2@ dx) < 2||G||L2(]R”,da))' (17.14)

We may certainly assume thgk,, } converges weakly to af € L?(R", dx), if not, we
consider a subsequence. It follows from the boundedneS$hait SF,, are converging to
SF, weakly in L?(R", dx). Note thatu,, (x) — w(x) and||u, (x)|| < 1, at almost every
x € R". This implies weak convergence &f, — u,,SF,, to F — uSF, proving thatF
is a solution of Eq. (17.10). Lastly, we defiflBG to be this solutionF € L?(R", dx),
completing the proof of Theorem 17.1.

Our ultimate goal will be to extend the operatlr: L?>(R", dw) — L?(R", dx) to
the Zygmund classes?log” L. But first we have to establish somewhat cumbersome
technical details associated with the Orlicz spaces.

18. Some Orlicz spaces

A continuous and increasing functiog : [0, co) — [0, c0), with @(0) = 0 and
lim; o @ () = oo, will be called an Orlicz function. Lets2, w) be aoc-finite measure
space andV a finite dimensional normed space. The generalized Orlicz £1868, W)
consists of all measurable functioifs 2 — W such that

|If||¢=inf{k>0; Q/cp(%) <1}. (18.1)

L?(£2, W) is a complete linear metric space [63]. As a note of warnjnfs is not a
norm. This nonlinear functional, also known as Luxemburg functional, is homogeneous
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but it fails to satisfy the triangle inequality wheh is not convex. In the convex case,
| llo is @a norm and.® (£2, W) becomes a Banach space.

Sometimes, to signify the dependence on the meagdurewe use the notation
L? (82, dw) in which case the target spade will be recognized from the context.

The Zygmund classe&?” log* L, corresponding tab () =t”log*(e+1), 1< p <
00, o € R, will be of particular interest to us. An elementary calculation shows that
these Orlicz functions are increasing and convex, wheneverl — p. The following
estimates are straightforward

”f”LI’IOg’lL <Ifllp <N fllzrioge (18.2)

< U|f|v|og(e+ ”']f”'pﬂl/p <20 fllriogt.

The integral expression in the middle defines a norni.fdog L, which is equivalent
to the Luxemburg norm; the triangle inequality is far from being obvious. We have the
following Holder type inequalities for real-valued functions

IABIlLctogr L < Capla, D)|AllLatog LI Bl o 1ot 1.» (18.3)

where the exponents, » > 1 anda, 8 € R are coupled by the equations

1 1 1 o
Tty ity
Thus, in particular
I fgll < C”f”LzIog’“L I|g”Lzlog‘)‘L (18.4)
and
I f&glliziogr < cll fllLziogr I8Nl L2102 - (18.5)

If W is an inner product space, then the nondegenerate bilinear ffofng) gives rise
to the duality betweeri?log™® L andL?log® L. Here is another useful estimate

LEMMA 18.1. —For f € L?logL(£2, W), we have
| f1
I f1l2

Proof. —To shorten notation, we recall the Orlicz spaces (1.8) corresponding to
P(t) = t2log(e+ 1) and Q(r) = r?log~t(e + 1). It follows from the definition of the
Luxemburg norm that

| f1? | f]
1= |
/||f||% Og(e+ ||f||p)
| £ Plog? (e+ L)
< P
/ I £1I% log[e+ f og(e+ H‘ffH‘Pﬂ

:/Q(ufnp'og[e+ |||f|||pD'

||f|og(e+ )uLz.OglL <21 ll210g1. (18.6)
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Hence, by the definition of th@-norm
| /1
£ 1P

We only need to sharpen the left hand side of this inequality in such a way fhiat
will take place of| f|| p. This goes as follows

|too(e+ |||J{|:2)HQ< |too(e+ |||ff|||p>HQ+Hf'°g(1+ i)

<Ifle+ ||f||QIog(1+ ”f””)

I1f1l2
If 1l
=2
171 If 1l

Hf|09<e+ )HQ<||fI|P-

<Iflle +1fllg

completing the proof of the lemma.

The following Orlicz space extension of the Marcinkiewicz interpolation theorem will
be useful.

LEMMA 18.2. —LetM be a sub-additive and homogeneous operator figie2, W)
+ LP(2,W),0<qg < p < o0, to the space of measurable functions@nthat is

{IM(f+g)| < IMfI+ Mgl

(18.7)
M(af)=aM(f), a=0.

Suppose thatl is simultaneously of weak tyge, ¢) and weak-typép, p). That is, for

eacha > 0, we have

q
(Lq”f”q) for feL?(2,W),
{x: IMf(x)| >a} < « (18.8)

(MY for feLP(22, W).
o

Let @ be an Orlicz function such that < @ < *, for some exponents < a < b < p.
This simply means that the functiorf @ (¢) is increasing, while & (¢) is decreasing.
ThenM is a bounded operator fromm? (£2, W) into itself, and we have

IMflle <Cliflle for € L?(£2, W). (18.9)

The constanC = Cy is determined by the equation

q p
e <2Aq> 4+ <2Af’) —1 (18.10)
a—q\ C p—b\ C

Proof. —Because of homogeneity we may assume filfdt, = 1, which gives

[earm=1 (18.11)
2
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It also involves no loss of generality in assuming that the congfartC, at (18.10)
equals 1. For, if not, we consider the operator*M instead ofM. We then mimic
the idea of Marcinkiewicz as presented in [69, pp. 21-22]. A} = |{x; M f(x)| >
t}| denote the distribution function dfl f. A slight modification of the proof of
inequality (19) in [69, p. 22] actually shows that

s < (224)" [ g+ 1P, (18.12)
B o)

IfI<t

Next, we expresg @ (|M f|) by means of the Riemann—Stieltjes integral with respect to
@ (t) and use (18.12) to obtain

/<P(|Mf|)=/k(t)d¢(t)
2 0

<(2Aq)q7</ |f|q>dt_f+(2Ap)P7(/ |f|p>dd5

0 |[fl>t 0 |fI<t

Further, changing order of integration this reads as

\f\

/<1>(||V|f|) (24 )q/|f|q(/ =)+ ea )P/|f|ﬂ(7d‘p).

Lf1

We shall now estimate the line integrals. Integrating by parts, and with the aid of the
hypothesis that® < @ (¢) < t”, we obtain

flao _aar) | fewa

Sl / 1+
_eUfD , USD [ A a (s
CoAfl [fle St a—q |f17

In much the same way we get the inequality

[ do b @(fI)

tr S p—b p
7 p |f]

Finally, we arrive at the estimate

b
JEE [L<2Aq>q + —(ZAP)P} [earn=1
2 a_q p_b 2
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Here, by virtue of the normalization of the operatdr, the constant in the square
brackets equals 1. Now the definition of Luxemburg’s norm implies

IMflle <1=Coll fllo

completing the proof of the lemma.

A few words should be said about this result. While the interpolation theory has long
been discussed in the context of Orlicz spaces [63,36,52], the detalils like in Lemma 18.
are rather new, and much unfamiliar. Also, we have found it desirable to include the
proof of (18.9) as it is easier than to combine the existing more general results scattere
throughout the research journals.

Lemma 18.2 furnishes a convenient tool for establishing boundedness of singula
integrals, maximal operators and some commutators.

LEMMA 18.3. —Letd(¢) =7 log*(e+1), 1 < p < o0o,a € R, and letT be a singular
integral operator inR”. Then

ITONeriog L < Cple)ll fllLriog - (18.13)

The same holds for the Hardy—L.ittlewood maximal function
M f(x) = sup{][ If|dy; x€QC R"} (18.14)
0

supremum being taken with respect to all cubes containiagR”.
IM flleriogr < cp(m, )|l fllLriog - (18.15)
The Orlicz space extension of Lemf&3reads as
(AT = Tk)Flizriogr < cp(n, a)|klismoll Fllriog L - (18.16)

Let us take a little time now to analyze more closely the proof of Theorem 17.1.
Although we did not emphasize it there the idea behind the calculation was that the
div-curl product(B, E) belongs to the Hardy spadé'(R"), see [17]. The key estimate
at (17.9) can actually be derived from the duality¢f and BMO

‘/k(B, E)‘ < llkllemo (B, E)llmr < Callklliemolll Bll2ll E 2. (18.17)
Rn

In the context of Orlicz norms, this fact reads as follows:

LEMMA 18.4.-Let [B,E] be a div-curl couple withB e L?log” L(R", R")
andE € L?log™ L(R",R"), « € R andk € L*(R"). Then

\/kw, E>\ < Cln.a) [Kllamol Bll21og: L1 E ll1210g 1 (18.18)
Rn
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Proof. —The arguments are much the same as those in the proof of Theorem 17.1
the only difference is that we apply Hodge decomposition to the vector fields in
L?log” L(R", dx). Here are some details

kB =B + E' =B(kB) + E(kB).

The Orlicz space version of identity (2.6) shows that the integrdlBof E) vanishes.
Thus we obtain

]/k(B, E>] _ \ [ E>\ <CONE 210 1 Ell2i0g-o .-
Rn Rn

Writing E’ = (Ek — kE)B and using Lemma 18.3, we conclude with the required
estimate

1E | 2104 1 < C(n, @)kllBmO | Bl L210g 1
completing the proof of the lemma.

Inequality (18.18) will play crucial role in the extension of the operator
:L%R",dw) — L?(R", dx) to the Orlicz spaces?log” L(R", dw).

19. A restriction at infinity

Some global integrability properties of e are necessary for the invertibility of the
operatorl — uSin spaces different fronh?(R", R").

Recall that we always requir¢’® e LL (R") for sufficiently largey = y (n). Here
we shall impose further restriction da at infinity, namely

&K =f+beL*(R")+ L®(R"). (19.1)

This condition, like (16.1), is also invariant under majorization by a BMO-function. For
this purpose, we shall need to examine the function

K = %Iog[(M | f1Y%% +Mb], (19.2)

whereM stands for the Hardy—Littlewod maximal operator. It is evident Kiatc) >
K (x), everywhere. To estimate its BMO-norm the following elementary inequality will
suit us nicely

llog(X + Y)llemo < 3|I10g X |lgmo + 3109 Y [lzmo, (19.3)

whereX andY are arbitrary positive functions. The verification of (19.3) is left to the
interested reader. Hence, by Lemma (16.2), we obtain

C(n)

, 6 3
IK'|lgmo < ;n logM| £1*%)llsmo + ;n logMb|lgmo < (19.4)
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A decomposition similar to that of (19.1) is worth noting
&K = 40 = (M fIY?)? +Mb e LY(R") + L™(R"). (19.5)
Moreover, for the new components = (M| f|/?)? andb’ = M b we have the following

uniform bounds

I = ||M (Ifll/z)H2 C)| fll, (19.6)
16100 < 151l co-
Next observe that for each culgeC R”

Iflle .
eygj[eVKg][ +][b< +infp.
| f] D] 0] )

ExpandingQ to the entire spacR” we then conclude that'(x) > e”, everywhere in
R". Thusd’ = e’Xo, for some bounded functiong Ko(x) < % Iog 16]l0o. DEeCOMposi-
tion (19.5) can be written as

ey(K’—Ko) 1= e—yKo(M |f|1/2)2 c Ll(Rn)

which shows, in particular, tha(x) < K'(x).
With these observations in mind, it is convenient (without loss of generality) to
reformulate condition (19.1) as:

) (19.7)

| K |lBmo <

and
e K—Ko _1 ¢ L1(R") (19.8)

for some Kg € L*°(R") such that 1< Kg(x) < K(x). Furthermore, to accomodate
explicit estimates the following quantity seems to be useful

1
— - (K—Kop) __
MLJWﬂm+y/W’ 1. (19.9)

This quantity is controlled in terms of the original decomposition (19.1)

C
[K]1< % [log 1blleo + €771 fll1]- (19.10)

Another useful fact is that the normi& || .» gn 4. N[ K G|l gn 4 are comparable,
whereP (1) = t?log(e+ t). More precisely, fory > 10, we have

1G 12 gy < 1K G (19.11)
< 201G 12 @ gy + SIK K G720 g1
g 25[K ” G”LP(R”,da))'
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The first inequality follows from the definition of the Luxemburg norm but the second
one needs some work. We begin by the following computation

K|G|
IKGII » gn g, </K2|G|2Io (e+ )
v = J WETIKGI,

G| -
K?G?lo (e+ )+/K|G|
/ AT

<SAGIZr @ go) + / K*(K — Ko)|GI? + IKolloo 1K Gl 72 41)-

Next, we use an elementary inequality

xy < £|Og<6+ f) +g(e”—1),
14 a 14

to find that

1 KZ G 2 KG 2
[ Kok = koG < S [ K¥HGRI0g e 1o ) + IETE [y
2 v kG "y

8 2 2
< ;IIKGIILP(Rn,dx) + ([K1 = [IKolloo) I K G5

Combining all the above gives

IKGIZp g axy < AIGIZp @ g0y + [KTIK G5 + ||KG||2P<Rn,dx)

from which (19.11) is immediate.

20. Extension of ITto L2log L

Having disposed of all the necessary requisites, we consider the question whether tf
operatorIl, originally defined inL2(R", dw) with values inL?(R", dx), extends to a
continuous operator

:L?log L(R", dw) — L?log L(R", dx). (20.1)

THEOREM 20.1. —Under the conditions orK stated above, the operatdd acts
continuously from.2log L (R", dw) into L?log L(R", dx). It also verifies the following
uniform bounds

CMIKG r210gL@n ax) + CO)VIKIIKG | 2@n,ax)

<
SCMVIKIG 21091 ®", de)- (20.2)
Proof. —The extension will be established once we prove the estimate

LG | 121091 @7, dx)

IFllp <COIKN —uSF|lp+ COIKIIFI2 (20.3)
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for all F e LY(R",dx) = L?logL(R", dx). We proceed analogously to the proof of
inequality (17.4). Before making any calculation, however, we normalize

I Fll2=1. (20.4)
Being homogeneous, inequality (20.3) is not affected by this assumptionMIEet
denote the Hardy-Littlewood maximal function &f. This function isL?-majorized
by constants depending only on the dimension
1< IMF2 < C(n), (20.5)
by Maximal Theorem in.2(R"). Finally, we introduce an auxiliary function
=log(e+MF), thus|illsmo < C(n) (20.6)
by (19.3) and Lemma 16.2.

Now, the pointwise inequality (17.3) is again our starting point. We multiply it py
divide by 1+ ¢K and integrate oveR”, to obtain

/|F|2|09(9+IFI)

<2 [ k(ISFI2 = |F])a 4/1<2F— SFIZ.  (20.7
o /(||||)+ |F — uSF2.,  (20.7)

where we recall thakt =

1+81< e L*°(R") and

Cn
Ik llamo < % (20.8)

Let us first take on the easier estimate of the second integral at the right hand sid
of (20.7). The claim is that

[ KAIF — uSFIB < COnlK( ~ wSFI} (20.9)

and follows from an elementary inequality log(e + b) < 2a?log(e + a) + b?, for
nonnegative numbers. Indeed, let us denote

G(x)=F(x) — u(x)SF(x).

On substitutingz = H,’g'GG”‘ andb =M F, we obtain

G
/AK|G| 2/K|G|2Iog(e+ o )+ IKGIBIMFIZ
IKGl»

The integral term in the right hand side equal§G| %, while the second term is no
larger thanC (n)| K G |2, completing the proof of (20.9).
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We are left with the task of estimating the integfal k(|SF|?— | F|?)A. To this effect,
we use div-curl decomposition8s = E — B andSF = E + B, with components in the
Orlicz classes. Namelyg € B (R") andE € £7 (R"). Their P-norms are controlled by
that of F

IBllp + IEllp < C(n) | Fllp. (20.10)
Now, the integral in question takes the form

/k(|SF|2 —|F[?)A =4/k(AB, E). (20.11)
R® R,

Although the vector field.B is no longer divergence free it, nevertheless, preserves
important cancellation properties, since the faételongs to BMQR"). To rigorously
explain this phenomenon let us first show th& e L2 (R", dx) = L?log™ L(R", dx).

For this, we write

|AB|=|Bllog(e+MF) < (|F|+ |SF|)log(e+ M F)
<(MF +|SF|)log(e+ MF + |SF])
MF + |SF|

IMF + [SF| |2

In the latter step we have used the obvious inequdlyF + SF|, < An)| Fll2 =
A(n). By Lemma 18.1 it follows that B € L2(R", dx), and an estimate of its norm is
also available.

quF+ﬁﬂmwG+ )+cmeF+ﬁﬂ>

IABllo <2|[MF +|SF|||, + C(n)|[MF + |SF|||Q
<[2+CWIMF +SF|| .

Since the maximal operator and the Hilbert transform are both bounde€(iR", dx),
we conclude with the inequality

IABllg < CM)|F|lp. (20.12)

Now, to measure how close BB to a divergence free vector field in the space
L2 (R", dx), we use Hodge decomposition

AB=B +E, (20.13)

whereB’ € BS(R") andE’ € £2(R"). We then estimate the divergence free component
by expressing it a8’ = B(AB). Thus

IB'llo =Cm)ABllo < C)| Flp, (20.14)

since the projection operatds is bounded inL?(R", dx). Concerning the curl-free
componentE’, we have better estimate due to the commutator representation

E'=E(B) = (Exr — AE)B, (20.15)
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since the operatoE vanishes on div-free fields. With the aid of Lemma 18.3 we see
that E’ belongs to the same space as the vector fieldoes, which isL? (R", dx) =
L?log L(R", dx). Let us record two estimates. The first reads as

IE'|lp < Cm)|Xlemo IBllp < C()|| Fllp. (20.16)
The second one (for use in the sequel) isIRER", dx) — analogue of this,
IE"|l2< C(m)|Allemoll Bllz < C(n) || Fll2= C(n). (20.17)

Returning to (20.11), we now split the integral of the right hand side in accordance with
the decomposition of B at (20.13)

/k(|SF|2 —|FPP)r = 4/k(B/, E) +4/k(E/, E). (20.18)
R” R” R
Lemma 18.4 gives a bound for the first integral in the right hand side
1 ’ C(l’l)
4 [k, )| < Conlilowol B Il £l < S2IFIE - (20.19)
Rn

by (20.8), (20.14) and (20.10). What remains is to estimate the second integral in (20.18
It is at this point that we need the restrictions &n stated in (19.7) and (19.8).
Accordingly,

‘/k(E/, E)‘ < ||K0||oo||E/”2”E”2+/(K — Ko)|E'| |E|
R” R"

|E'| |E] )

1
<CiKolwlFI3+ - [1E1ENog(e+ oLt
Ty IEEl s

1
+SNENEN [ [ ®0 - 1],
Y i
Here we have applied the elementary inequality

xy < flog(e+ f) +£(eyy—1)
Y a 14

for positive numbers. The first integral is equivalent to thimg L-norm of |E’| |E]|,
apply (18.2) withp = 1. By inequality (18.5) and by |E'| |[E||l1 < |E' 211 Ell2 <
C(n)|| F||3, we arrive at the estimate

/ 1 /
g m)| <o+ CIE N Ey (20.20)
RV!

C
<COIKFI3+ % IF1%

due to (20.16).
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Finally, combining (20.9), (20.18), (20.19) and (20.20) yields

|F|*log(e+|F)) C( )
13—81( < LNFIE + CIKFIZ+CmIKA —uS)2.

Rn
It is now legitimate to let: go to zero. In view of the normalizatiop# ||, = 1, we are
lead to the inequality claimed at (20.3). Indeed, by (18.2) it follows that

uﬂﬁ</wﬁb%§+'”)
172

C(n
<SR IF1 + COKIIFI+ Coll KO = S P

The proof of (20.3) is completed by chosipg= y (n) > 2C(n).

Having disposed of the estimate (20.3), we can now make analysis similar to that ir
the proof of Theorem 8.1 to conclude with inequality (20.2). Here are some details. We
consider the approximation,, (x) — w(x), defined by (17.11). The inverse operator
(I — u, St is bounded inL2*(R", dx) for some positivee = ¢(m). By interpolation
Lemma 18.2 this operator is also bounded.inR”, dx) = L?log L(R", dx), though we
have no control of its norm. Now, given any vector fiélde L” (R*, dw) C L* (R", dx)
we can solve the equation

(I - //LmS)Fm =G

for F, € L*(R",dx). Inequality (20.3) remains valid for the operator u,,S and
provides us with the uniform bound

[Fnllp < C) IKGlp + C)[K][|Fnll2
SCMIKGlp+2C()[K]IKG|2.

The latter step follows from th&2-estimate in (17.2). From this point the proof runs as
in Theorem 17.1 and, therefore, is omitted.

21. Extension to the dual space L?log™1L

This section is devoted to the following dual version strenghtening of Theorem 20.1.

THEOREM 21.1. -The operatorll = (I — uS)~! extends boundedly to the Orlicz
spaces.

I:L%log ! L(R", dw) — L?log  L(R", dx). (21.1)
Moreover
I HG||L2|09‘1L(R" dx) SCm)IK ”G”Lzlog‘lL(R" dw)* (21.2)

Proof. —Consider two vector fieldsF € L2(R",dx) = L%log *(R",dx) and
H e L"(R", dw) C L?logL(R",dx). As these spaces are dual to each other we can
compute the inner product
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/(F, H) =/(SRF, SH) =/(SF, (I — uS) o TISH)

Rll Rll Rll
=/<(| — Sw)SF, TISH) =/(S(I — uS)F, TISH)
n Ri‘l

=/<(| _ US)F, STISH)

<CMIK(1 —uSF|o IIK 'SOSH | »
<CM)IIK( —uSF|o K TSH| p.
Here, we have used boundedness of the opefatdSK : L” (R", dx) — LT (R", dx),
which can be verified as follows:
|K'SK|, =K' (SK —KS)+ 9|, <IISK — KS|lp + [ISllp < C(n),

by the commutator result (18.16).

However, our focus will be on the operat&IT1: L” (R", dw) — L¥ (R", dw), for
which we need to prove the inequalityk ‘¥ ||, < C(m)[K]|¥|p, for all ¥ ¢
L?(R", dw). This will give us the desired estimate

/ (F. H) < C)IKIIK( — uS)Fl ol H] . (21.3)
Rn

To this effect, consider an arbitrady € L (R", dw) and apply (20.3) t&k ~*@ in place
of F.
|[K'o|, <C)|(I — uSP + u(SK — KK ', + Cm)[K]|K |,
SCMN1 = u9@llp + CMIISK — KS|p||[K ]|,
+Cm)K1||K |,
The term with the commutator is absorbed by the left hand side, bet8&se K S||p <
C(n)|IK |lemo < C(n)/y andy is sufficiently large.
K@, <CIA = uS Pl + CIK]||K |, (21.4)
To estimate the latter term we make use of Theorem 17.1. Precisely, we use inequa
ity (17.4) with K& in place of F
Ko, <2|K( — K~ ||,
=2||( — uS)® + u(SK — KK 'o|,
<210 —uSP|2+ 2I|SK - KS||2HK‘1¢||2

L2 = uSPl2 + 7 HK o],

Hence
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K@, <410 — uS)P |, (21.5)
On substituting this into (21.4), we conclude with the estimate

K12, <CI( — uS)Pllp +4CMIKII( — nS P2
SCOIKNAT = puSPlp,

which is none other thafK ¥ ||, < C()[K]||¥ ||p, for ¥ = (I — uS)®. As said
before, this gives (21.3). Estimate (21.3) holds not only fibe L” (R", dw) but also
extends to allH € L” (R", dx), by an approximation. The final conclusion is that

[Fllo < COIKIIKN —pnSFlo, (21.6)

sinceL2(R", dx) is the dual space th” (R", dx). From this, the extendibility oflI, to
a bounded operator ab? (R", dx) is evident

MG o®wnax) S COKINKGILo®n ax (21.7)
SCM)[KTIG Lo, dw)
for all G € L2(R", dw), establishing the theorem.

22. Higher integrability

In this section we prove Theorem 4. Incidentally our proof gives also estimates for
local solutions of the nonhomogeneous Beltrami equation

F (x)=pnx)FT(x)+Gkx), (22.1)

where we assume thef is a div-curl couple of clas&?log ! L(£2, R” x R") and G
is a given vector field inL210g* Lioc($2, dw), with someae{—1, 0, +1}. The theorem
is local, thus we can confine ourselves to a cub&irc R". Our objective is to show
that 7 belongs toL?log” Lioc(£2, R” x R") and
loF |l L210g* L@n.dx) < CNOG || L210g LRr dery + C || [V |7'-||| o e (22.2)

for every test functiorp € C3°(£2).

Here the constanC = Cq(n, K) depends also o2, but not ong. We proceed
analogously to the proof of Proposition 12.1. Multiplying (22.1) by the test function
yields

(@F)” =P " +¢G inR" (22.3)

Although ¢ F = [¢B, ¢ E] is no longer a div-curl couple, we see that both, ¢ig =
(Vg - B) and curlpE = Vg « E belong toL?log™* L.

Recall from Section 8 an Orlicz—Sobolev variant of Corollary 8.3. Accordingly, there
exists a div-curl couplé/ € L2log™t L(R”, R" x R") for whichgF — Fy = @ is in the
Orlicz—Sobolev clasV:2(R”, R" x R") with Q(r) = t2log~1(e+ ). As a matter of
fact @ is explicitely given by means of the Riesz potential§é$ - B) andVe « E. Itis
from this observation that we have been able to derive the point-wise inequality (8.16).
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As before, Eqg. (22.3) takes the form
(I —pnSFy =G+ pndt —@~. (22.4)

This time, the right hand side is in the spatélog” L(R", dw), wheredw = K?dx,
which is the domain of the inverse operafr= (I — «S)~1. Therefore,7; belongs to
L?log* L(R", dx) and we have the estimate

1Fo l210g Lrm,ax) < €1y K) @G || 2109 (w7 dwy T C (1, KD PNl 210g L(R7,de)

by Theorem 20.1, it = 1, Theorem 21.1, it = —1, and Theorem 17.1, & = 0. The
same holds fofF* = SF;, and consequently fasF = F, + @. Precisely, we have

loF Nl L210g* Lrr,ax) < C(1, K) NGl 210 1w dey + C (1 KPR L210g L7, de- (22.5)

Letting G = 0 anda = 1 establishes Theorem 4.
We shall continue this proof to arrive at the uniform bound in (22.2). For this we only
need to show that

2 (22.6)

191l 12109 (&7 dew) < C2(n, K| LA

For the proof of this inequality, we fix a functiope C3°(3£2) which equals 1 on the
cube 252 We can write

1Pl 210 LR dewy < IMP N L2109 L32,dw) T 11— M Pl 210 LR —202,d0)
diamg2

<C9(H,K)||¢||L% x)-l‘c(n) m

-13R.d

X H |V(/)| |f| ||L1(Rn)a

which is due to the inequality at (8.16). Using Sobolev’s inequality the latter terms are
dominated by

L2log® L(R"—282,dw)

Cotn. KYIDDY 2+ | IVol I 1gan].

As said in Section 8D® is expressed by means of the Riesz transformévaf, B)
andVg x E. That is why its norm is controlled by that ¢¥¢| |F|. Applying Holder's
inequality to the second term results in (22.6).

23. Applicationsto the degenerate eliptic PDEs
One of the motivations for this study was to solve the Dirichlet problem

{diVA(x)Vu =divA(x)F,

23.1
ueHg*(2), (23.1)

whereA(x) is a symmetric matrix with measurable coefficients satisfying the ellipticity
bounds

K @)EP < (A)E, £) < K ()€
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Our only hypothesis concerning the eigenvalueg of) is that they are bounded in the
following average sense

/e}’K(x)dx <00

2
for sufficiently large exponent = y (n).
The function spaces we shall consider are:

1/2
L2(2.R") = {F; e (/ IF()12 dx) < oo}, (23.2)
2

where we have used the notatign, = (A(x)&, £)¥?, for £ e R".
HYA(2) = {u; [ Vull 4 < oo}, (23.3)

Here||Vu|| 4, is a seminorm which makgg’4(£2) into a Banach space modulo constant
functions. The closure of §°(§2) is a Banach space, denoted H%’A(Q), which we
supply with the norm

1/2
lulln = [Vullp = [/<A<x>w, Vu) dx
2

GivenF e Li(.Q, R™), we minimize the variational integral

I[v] :/ |F — V|3 (23.4)
2

subject to allv € Hé’A(Q). The minimizer, say € Hé’A(Q), is unique and solves the
Euler—Lagrange equation (23.1). From this interpretation of the solution the energy
estimate (1.36) is immediate. Of course, we assume here||fifa)f < oo. This is
certainly the case iK F € L?(£2,R"). As a matter of fact this latter condition implies
L?-integrability of the gradient of, as in (1.37) for2 a cube inR” or any other regular
domain. To see this fact, we first extend equation (23.1) to the double cabdike

in the proof of Theorem 14.1. The norms Irf log®(252) for the extended solutions
are controlled by those over the original culsz In this way, we look atu as

a local solution of (23.1) on the cube22 Consider the following div-curl couple
F =[A(x)(Vu — F), Vu]. Before making estimates we recall the following general
inequality

I1X 1 210g-1 . < Ck || KX 20 (23.5)
Hence
1X 1 210g-2 2 + 1AX | 210g212 < C X 1,2 (23.6)

for all vector fieldsX € L3. The constanCx depends only orf,, €%, details are left
to the reader. We see from here that is in the clasd.2log™! L(252). FurthermoreF
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solves the nonhomogeneous Beltrami equation

F(x)=pnx)Fr(x) +Gkx), (23.7)
where
_I—A(x) Kx)—1
u(x) = T AG) ()|l < Ko +1 (23.8)
and
[ —AW)
G(x) = {m} F(x), G| <[IFMX)|. (23.9)

Now, assume thak F € L?log*(£2, R") for somea = 0, 1. The same holds for the
extension of F to the double cube. That i F € L?log* (22, R"). It is, therefore,
legitimate to apply estimate (22.2) and write

leVullL2i0g20) + 19 A Vil 1210g 202
< ClloK Fll2io¢2e) + C|| IVOI K(|IF|+ |Vul) |

A
Ln+1(202)

for every test functiop € C3°(22). We can certainly take = 1 on £2. Since the norms
over 22 are dominated by the corresponding ones avewe obtain

Vull 2i0q 2y + 1AVUll L2106 (2)

S Co, K)|KFl2109(@) + Co(r, K)[|KVull 2y

What is left is to estimate the latter term by meang ofvhich can be achieved by using
the energy estimate. Indeed, with the aid of Hélder’s inequality we find that
—1/2
IIKVMII“%(!2 S CklIK™7"Vull12)
< CkllVu ”LZ o) < Ck ||F||L2 (£2)

S Cx IKFll 12106 (2)-

On substituting this into the previous inequality we conclude this paper with the
following Fundamental Estimate for the Dirichlet problem (23.1)

IVullL2t0g L + [AVU| 2109 1 < Co(n, K) [|KF| 210 1- (23.10)
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