
Ann. I. H. Poincaré – AN18, 5 (2001) 519–572

S0294-1449(00)00058-5/FLA

QUASIHARMONIC FIELDS

Tadeusz IWANIEC a, Carlo SBORDONE b

aDepartment of Mathematics, Syracuse University, Syracuse, NY 13210, USA
bDipartimento di Matematica e Applicazioni “R. Caccioppoli” Università,

Via Cintia - 80126, Napoli, Italy

Received 20 April 2000

ABSTRACT. – To every solution of an elliptic PDE there corresponds a quasiharmonic field
F = [B,E] − a pair of vector fields with divB = 0 and curlE = 0 which are coupled by
a distortion inequality. Quasiharmonic fields capture all the analytic spirit of quasiconformal
mappings in the complex plane. Among the many desirable properties, we give dimension free
and nearly optimalLp-estimates for the gradient of the solutions to the divergence type elliptic
PDEs with measurable coefficients. However, the core of the paper deals with quasiharmonic
fields of unbounded distortion, which have far reaching applications to the non-uniformly elliptic
PDEs. As far as we are aware this is the first time non-isotropic PDEs have been successfully
treated. The right spaces for such equations are the Orlicz–Zygmund classesL2 logα L. Examples
we give here indicate that one cannot go far beyond these classes.

RÉSUMÉ. – A chaque solution d’une équation elliptique correspond un champ quasiharmo-
niqueF = [B,E], un couple de champs de vecteurs qui vérifient divB = 0 et rotE = 0 et qui
sont couplés par une inégalité de distorsion. Les champs harmoniques capturent l’esprit analy-
tique des applications quasiconformes dans le plan complexe. Dans cet article sont fournies des
estimationsLp concernant le gradient de solutions faibles d’une équation elliptique aux déri-
vées partielles, indépendantes de la dimension et presque optimales. Sont aussi considérés des
champs quasiharmoniques avec distorsion non bornée, hypothèse non sans conséquences sur les
équations non uniformément elliptiques. A notre connaissance c’est la première fois que sont
obtenus des résultats significatifs pour des équations non-isotropiques. Les bons espaces pour de
telles équations sont les espacesL2 logα L. Des exemples montrent qu’il est difficile de s’éloigner
de cette classe.

1. Introduction

Quasiharmonic fields grew out of our study of the Leray–Lions equation

divA(x,∇u)= 0 inΩ ⊂R
n (1.1)

using methods from quasiconformal geometry. In dimension 2 the relevance of this
equation to quasiconformal mappings has been evident to researchers for more than
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fourty years, beginning with R. Caccioppoli [12], R. Finn and J. Serrin [30], L. Bers and
L. Nirenberg [7], I.N. Vekua [74], B. Bojarski [9], etc. The definitions we shall introduce
here stress these ideas. When the equation is linear

divA(x)∇u= 0, (1.2)

then it is customary to state the ellipticity condition as the double inequality for the
eigenvalues of the symmetric matrixA(x) ∈R

n×n

K−1|ξ |2 � 〈A(x)ξ, ξ 〉�K|ξ |2. (1.3)

The factorK here can be a constant or a measurable function onΩ , that is,K =K(x)�
1. It is possible to express (1.3), equivalently, by using just one inequality

|ξ |2+ |A(x)ξ |2 �
(
K + 1

K

)
〈A(x)ξ, ξ 〉 (1.4)

for almost everyx ∈ Ω and all ξ ∈ R
n. We will adopt this inequality to clarify the

ellipticity bounds for the nonlinear equation (1.1), namely

|ξ |2+ |A(x, ξ)|2 �
(
K + 1

K

)
〈A(x, ξ), ξ 〉. (1.5)

There are two vector fields associated with a solution of the equation (1.1). The first
one, denoted byE =∇u(x), is curl free while the second,B =A(x,∇u), is divergence
free. Now, any pairF = [B,E] of vector fieldsB, E ∈ L1

loc(Ω,R
n) with divB = 0

and curlE = 0 will be referred to asdiv-curl couple. To follow closely the ideas of
quasiconformal mappings we introduce the norm and the Jacobian ofF :

|F |2= |B|2+ |E|2 and J (x,F)= 〈B,E〉. (1.6)

The termK-quasiharmonic field, of distortionK =K(x)� 1, pertains to those div-curl
couples which satisfy

|F(x)|2 � K(x)J (x,F), K=K +K−1. (1.7)

We callK = K(x) the distortion functionof F . Needless to say, the natural domain
for quasiharmonic fields is the spaceL2

loc(Ω,R
n × R

n). However, the matters being
discussed in this paper will also require otherLp-spaces and some Orlicz classes, such
as

LP = L2 logL and LQ = L2 log−1L. (1.8)

Continuing this theme from a perspective of the complex function theory, we introduce
the± components ofF

F− = 1

2
(E −B) and F+ = 1

2
(E +B). (1.9)
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In many ways, these vector fields can be viewed as analogues of the Cauchy–Riemann
partials∂f/∂z and∂f/∂z of a complex functionf = f (z). Recall that quasiconformal
mappings in the planar domains are governed by the complex Beltrami equation

∂f

∂z
= µ(z)

∂f

∂z
, where|µ(z)|� K − 1

K + 1
< 1. (1.10)

The following result ties quasiharmonic fields to this PDE.

THEOREM 1. –To eachK-quasiharmonic fieldF in Ω there corresponds a measur-
able matrix-valued functionµ :Ω→R

n×n of the form

µ(x)= λ(x)[I− 2a⊗ a], (1.11)

wherea = a(x) is a unit vector field and

λ(x)= ‖µ(x)‖ = sup
|ξ |=1

|µ(x)ξ |� K(x)− 1

K(x)+ 1
< 1. (1.12)

Furthemore,F solves the linear equation

F−(x)= µ(x)F+(x). (1.13)

Observe thatµ(x) is a multiple of the orthogonal matrixI − 2a ⊗ a, a legitimate
reason for calling (1.13) theBeltrami equation. We refer toµ as the distortion tensor, or
the Beltrami matrix ofF . ThatF satisfies (1.13) for suitable choice ofµ(x) ∈ R

n×n is
almost a tautology. Nevertheless, it is advantageous to investigate quasiharmonic fields
by viewing them as solutions to this system of PDEs with measurable coefficients (the
entries ofµ). When there is no distortion, thenµ(x)≡ 0, and in this case we are reduced
to the generalized Cauchy–Riemann system for the coordinate functions(f 1, . . . , f n) of
the vector fieldF+,

∂f i

∂xj
= ∂f j

∂xi
,

n∑
i=1

∂f i

∂xi
= 0.

ThusF+ consists of conjugate harmonic functions while the minus component is zero.
Quasiharmonic fields provide a suitable framework for better understanding and creation
of new types of the second order elliptic PDEs. Every Beltrami system gives rise to an
equation for the potential function of the curl free component. That is, for the functionu

determined locally by∇u=E, we have a linear PDE of divergence form

divA(x)∇u= 0, (1.14)

K−1(x)|ξ |2 � 〈A(x)ξ, ξ 〉�K(x)|ξ |2,
where K(x) is precisely the distortion ofF . It is a striking consequence of our
consideration that every solution to the nonlinear Leray–Lions equation actually satisfies
its own linear equation (1.14). While gaining linearity we compromise no ellipticity
bounds. When the original equation (1.1) happens to be linear, then the coefficient matrix
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of the new equation enjoys rather special structure, namely

A(x)= I−µ(x)
I+µ(x) =

1− λ(x)

1+ λ(x)
I+ 4λ(x)

1− λ2(x)
a ⊗ a. (1.15)

It is interesting to note that

detA(x)=
[

1− λ(x)

1+ λ(x)

]n−2

(1.16)

which equals 1 in two dimensions. Integral estimates for quasiharmonic fields lean
heavily on properties of a singular integral operator

S :Lp
(
R
n,Rn

)−→ Lp
(
R
n,Rn

)
, 1< p <∞, (1.17)

which we refer to as Hilbert transform inRn. By the definition,S acts as identity on
gradient fields and as minus identity on divergence free fields. We will also consider
this operator in wider classes of vector functions, as the need will arise. Based on recent
studies of Riesz transforms [42,6] we obtain a dimension free estimate of thep-norm of
this operator. One inference of this estimate is the following dimension free improvement
of Meyers’ regularity result [55] for the divergence elliptic equations with measurable
coefficients.

THEOREM 2. –Let a Hölder conjugate pairq < 2< p be given by

q = 14K− 12

7K − 5
and p = 14K− 12

7K − 7
, (1.18)

whereK � 1 is a constant.
(a) EveryK-quasiharmonic field inLqloc(Ω,R

n×R
n) actually belongs toLploc(Ω,R

n

×R
n).

(b) All solutions to the Leray–Lions equation(1.1)of the Sobolev classW 1,q
loc (Ω) are

in the spaceW 1,p
loc (Ω).

One could probably extend the range of these exponents by only requiring that

2K

K + 1
< q < p <

2K

K − 1
.

As yet, this has been proved only in dimension two [53] by using Astala’s area distortion
theorem [1,2,28], see also [4] for interesting results at the end-points. We shall refer to
the numbers

qK = 2K

K + 1
� 2 and pK = 2K

K − 1
� 2 (1.19)

as thecritical exponentsfor theK-quasiharmonic fields. In higher dimensions, finding
the critical exponents remains one of the outstanding problems in elliptic PDEs with
measurable coefficients.
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We can now discuss the Dirichlet problem

{divA(x)∇u= divF,

u ∈W 1,r
0 (Ω),

(1.20)

whereF is a given vector field inLr(Ω,Rn). In view of the above results the Sobolev
exponent will be in the interval

14K− 12

7K − 5
� r � 14K− 12

7K − 7
, K > 1. (1.21)

If the domainΩ is sufficiently regular (for instance a ball, cube or the entire space inR
n),

then the above problem admits unique solution. The solution verifies a uniform bound

‖∇u‖r �C(K)‖F‖r . (1.22)

Estimates with exponents smaller thann
n−1 open the way to a study of the equation with

measure in the right hand side

divA(x)∇u= ν. (1.23)

Here,ν is a Radon (signed) measure of finite total variation onΩ . WhenΩ is a bounded
regular domain one may use Green’s function to expressν as divF , whereF belongs to
all Lebesgue spacesLs(Ω,Rn) with 1 � s < n

n−1. Standard estimates for the Newtonian
potential will reveal that

sup
0<ε�1

[
ε−

∫
Ω

|F | n−εn−1

] n−1
n−ε

� c(n)−
∫
Ω

|dν|. (1.24)

As always,−∫Ω stands for the integral mean overΩ . Because of (1.24) we say thatF
lies in thegrand Lebesgue spaceL

n
n−1 (Ω,Rn). This is a Banach space in which the

supremum at (1.24) provides us with the norm ofF . Parallel to this concept is thegrand

Sobolev spaceW
1, n

n−1
0 (Ω). It is at this stage where our results which depend critically on

the exponentr first make their implications.

THEOREM 3. –LetΩ be a cube inRn and suppose that the distortion function for
the equation(1.23) is bounded by a constantK smaller than7n−12

n−2 , that is

1 �K(x)�K <
7n− 12

n− 2
. (1.25)

Then Eq.(1.23)admits unique solutionu in the spaceW
1, n

n−1
0 (Ω). This solution verifies

a uniform bound

‖∇u‖ n
n−1)

� c(n,K)−
∫
Ω

|dν|. (1.26)
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On account of (1.19) one may conjecture that Theorem 3 still holds for

1 �K <
n

n− 2
(1.27)

and that this bound forK is sharp.
Matters are quite different if the distortion functionK = K(x) is unbounded. It is

more or less clear that without restrictions onK(x) the quasiharmonic fields will not
retain their higher integrability properties. While it is certainly not apparent at this point
it will be necessary to assume that

eγK ∈L1(Ω) for someγ > 0. (1.28)

In order to fully benefit from the estimates for quasiharmonic fields one needs
to investigate them under minimal possible integrability hypotheses. In PDEs it is
customary to assume that the solutions have finite energy, that is

E[u] =
∫
Ω

〈A(x,∇u),∇u〉<∞. (1.29)

Associated with this integral is the so-calledstored energyof the div-curl field

E[F] =
∫
Ω

J (x,F) dx <∞. (1.30)

As the distortion function is unbounded, we observe that finite energy ofF neither
requires nor implies itsL2-integrability. Nevertheless, the exponential integrability
assumption onK at (1.28) placesK-quasiharmonic fields of finite energy in the Orlicz
spaceL2 log−1L. This follows from (1.7) by Young’s inequality. For the converse, recent
advances in the theory of the Jacobians [60,17,43,34,59], etc. prove extremely helpful. It
can be shown that the energy (stored on a compact set) of a quasiharmonic field of class
L2 log−1L, regardless of its distortion function, is always finite [43,65]. Even more, ifK

is in the exponential class, then for everym� 0 we have{
|F | ∈ L2(log logL)m log−1L,

J (x,F) ∈ L(log logL)m,
(1.31)

on compact subsets. We shall not pursue these methods further because in this way one
cannot reach even the natural domain forF , which is the spaceL2

loc(Ω,R
n ×R

n).
Before jumping to any conclusion, we emphasize the need for the exponentγ = γ (n)

at (1.28) to be sufficiently large. How large this exponent ought to be will be determined
by the forthcoming estimates. Although our estimates vary with the sections, at the end
γ = γ (n) will be fixed. With suchγ , we prove not only thatF ∈L2

loc(Ω,R
n ×R

n), but
also reach the Zygmund spaceL2 logL.

THEOREM 4 (Integrability theorem). –If eγK ∈ L1
loc(Ω) with sufficiently largeγ =

γ (n), then everyK-quasiharmonic field of classL2 log−1L(Ω,Rn × R
n) is locally in

L2 logL(Ω,Rn ×R
n).
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Theorem 4 is in effect special case of the general fact that for everyα >−1 there is
γ = γ (n,α)> 0 with the following properties

eγK ∈ L1
loc(Ω) implies |F | ∈L2 logα Lloc(Ω), (1.32)

see the forthcoming paper [57].
In quest of the smallest such exponentγ , called thecritical point for regularity, we

are faced with a challenging conjecture.

CONJECTURE 1.1. –The critical pointγ = γ (n,α) for which the implication(1.32)
holds is independent of the dimension and equals:

γ (α)= 1+ α. (1.33)

One may ask how Theorem 4 translates into estimates for Eq. (1.1). When trying to
answer this question it is important to realize that the associated quasiharmonic field
F = [A(x,∇u),∇u] belongs toL2 log−1Lloc(Ω,R

n ×R
n) if and only if the solutionu

has locally finite energy. Our next result seems to be the first of its kind; both bounds on
uniform ellipticity from below and from above are relaxed.

THEOREM 5 (Local regularity). –Every finite energy solution of the Leray–Lions
equation(1.1)satisfies

‖∇u‖2
L2 logL(Ω ′) +‖A(x,∇u)‖2

L2 logL(Ω ′) (1.34)

�CK‖〈A(x,∇u),∇u〉‖L log2L(Ω ′)

�CK(Ω
′,Ω)

∫
Ω

〈A(x,∇u),∇u〉dx

for compact subsetsΩ ′ ⊂Ω .

Let us stress explicitely that we are dealing with genuine anisotropic equations; the
ratio of the largest eigenvalue to the smallest one is equal toK2(x) and, therefore, need
not to be bounded. For results concerning isotropic equations we refer the reader to [29,
51,58]. Special nonisotropic equations were studied by [72,15]. As a note of warning,
no higher integrability conclusion, evenL2-integrability of the gradient, can be drawn if
the exponentγ = γ (n) fails to be sufficiently large, see Section 6.

To make clear meaning of the Dirichlet problem

{
divA(x)∇u= divA(x)F,

u(x)= 0 on∂Ω,
(1.35)

one needs right function spaces. Denote byH1,A
0 (Ω) the Sobolev class of functions

with finite energyE[u] = ∫ 〈A(x)∇u,∇u〉dx, which vanish on∂Ω in the sense of
distributions. If 〈A(x)F,F 〉 ∈ L1(Ω) the existence and uniqueness of such solutions
follows by variational principles, and the energy estimate is straightforward∫

Ω

〈A(x)∇u,∇u〉dx �
∫
Ω

〈A(x)F,F 〉dx. (1.36)
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However, under slightly stronger assumption thatKF ∈ L2(Ω,Rn), we obtain the
desiredL2-integrability of the gradient and more

‖∇u‖2+ ‖A∇u‖2 �CΩ(n,K)‖KF‖2. (1.37)

Here,Ω stands for a cube inRn.
A device for obtaining integral estimates for quasiharmonic fields and the governing

PDEs is theBeltrami operator

I−µS :LΦ
(
R
n,Rn

)→ LΦ
(
R
n,Rn

)
(1.38)

acting in suitable Orlicz spaces, where

‖µ(x)‖� K(x)− 1

K(x)+ 1
. (1.39)

The goal is to invert this operator. It is obvious thatI−µS is invertible in all Lebesgue
spacesLr(Rn,Rn) for which ‖µ‖∞‖S‖r < 1. Theorem 2 is an immediate consequence
of this observation. IfK = K(x) is only in the exponential class, say eγK ∈ L1

loc(R
n),

the question whetherI−µS has inverse brings us to one more restriction ofK(x) near
infinity. It will be required that

eγK ∈L1(
R
n
)+L∞(

R
n
)

(1.40)

which is certainly the case ifK is bounded outside a compact set.

THEOREM 6 (Invertibility theorem). –There exists a bounded linear operator

� :L2 logα
(
R
n, dω

)→ L2 logα
(
R
n, dx

)
(1.41)

such that

� ◦ (I−µS)= (I−µS) ◦�= I (1.42)

for all α =−1,0,1.

Here we have used Orlicz classes of vector fields inR
n, with respect to the Lebesgue

measuredx and the weighted measuredω =K2(x) dx. Note that the Beltrami operator
I−µS acts boundedly in either space.

While two recently appeared preprints [39] and [3] touch on similar themes, our
results here are new and undoubtedly interesting. There has been some earlier and
related work on mappings with unbounded distortion in the plane by G. David [21],
P. Tukia [73], T. Iwaniec and V. Šverák [47] and more recent one by M.A. Brakalova and
J.A. Jenkins [10], V. Ryazanov, U. Srebro, and E. Yakubov [64]. In higher dimensions,
we refer to J. Manfredi and E. Villamor [54], J. Heinonen and P. Koskela [37], and
L. Migliaccio and G. Moscariello [56]. No attempt has been made in this paper to provide
complete theory of the quasiharmonic fields. But at least one might notice that these
fields are crucial for understanding the elliptic PDEs with measurable coefficients.
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Part One:

Requisites from the Field Theory in Rn

Essential to our development is establishing notation, some technical details and an
exposition of the vector fields inRn. The book by E. Stein [69] is particularly useful
here.

2. Div-curl couples

LetΩ be a domain inRn, n� 2. We shall consider Schwartz distributions onΩ with
values inR

n, that is,n-tuplesF = (f 1, . . . , f n) ∈ D′(Ω,Rn) whose coordinate terms
are inD′(Ω). It includes the Lebesgue spaceLp(Ω,Rn), 1� p <∞, which we supply
with the norm

‖F‖p =
(∫
Ω

|F(x)|p dx
)1/p

.

Let R
n×n denote the linear space ofn × n-matrices with real entries. As usual, for

X = [xij ] and Y = [yij ] in R
n×n the inner product is defined by〈X,Y 〉 = Trace

(XT Y )=1xij yij . If F ∈D′(Ω,Rn) we can speak of its differential

DF = [
∂f i/∂xj

] ∈D′(Ω,Rn×n).
ThenF is said to be in the Sobolev classW1,p(Ω,Rn) providedDF ∈ Lp(Ω,Rn×n).
Let us emphasize explicitely that in this definition we do not requireF to be in
Lp(Ω,Rn). Modulo constant vector fieldsW1,p(Ω,Rn) is a Banach space equipped
with the seminorm

‖F‖1,p =
(∫
Ω

|DF(x)|p dx
)1/p

.

The following two differential operators on the fieldsF ∈ D′(Ω,Rn) will be of
fundamental importance in this paper. The divergence div :D′(Ω,Rn)→ D′(Ω,R) is
a scalar distribution

divF = ∂f 1

∂x1
+ · · · + ∂f n

∂xn

and the rotation curl :D′(Ω,Rn)→D′(Ω,Rn×n) is a matrix-valued distribution

curlF =
[
∂f i

∂xj
− ∂f j

∂xi

]
.

Both operators owe much of their importance to the theory of Maxwell’s equations and
our notation reflects this relevance. ForF ∈ D′(Ω,Rn) andϕ ∈ C∞(Ω) the following
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formulas will be useful 

D (ϕF) = ϕDF + F ⊗∇ϕ,
div(ϕF) = ϕ divF + 〈F,∇ϕ〉,
curl(ϕF) = ϕ curlF + F 4∇ϕ,

(2.1)

where the tensor product, inner product and curl product are defined by

F ⊗∇ϕ =
[
f i

∂ϕ

∂xj

]
, i, j = 1, . . . , n,

〈F,∇ϕ〉 =∑
f i
∂ϕ

∂xi
= Trace(F ⊗∇ϕ),

F 4∇ϕ =
[
f i

∂ϕ

∂xj
− f j ∂ϕ

∂xi

]
= F ⊗∇ϕ −∇ϕ ⊗ F.

Spaces of divergence free and curl free (irrotational fields) distributions will be denoted
by using script letters{B(Ω)= {B ∈D′(Ω,Rn); divB = 0},

E(Ω)= {E ∈D′(Ω,Rn); curlE = 0}. (2.2)

Note that the coordinates of a distributionF = (f 1, . . . , f n) in the spaceB(Ω)∩ E(Ω)
satisfy the generalized Cauchy–Riemann system




∂f 1

∂x1
+ · · · + ∂f n

∂xn
= 0,

∂f i

∂xj
= ∂f j

∂xi
, i, j = 1, . . . , n.

(2.3)

Locally, such a fieldF is the gradient of a harmonic function and, therefore, is aC∞-
smooth vector field inΩ . However, distributions which are only inB(Ω) or E(Ω) need
not be represented by locally integrable functions. We denote byBp(Ω) and Ep(Ω)
the spaces of divergence free and curl free vector fields inLp(Ω,Rn), respectively. Of
particular relevance to the boundary value problems is the space of gradient fields with
vanishing tangential component

Ep0 (Ω)=
{∇u; u ∈W1,p

0 (Ω)
}⊂ Ep(Ω), (2.4)

whereW1,p
0 (Ω) stands for the completion ofC∞0 (Ω) in W1,p(Ω). Now, the duality

between div and curl can be stated as∫
Ω

〈B(x),E(x)〉dx = 0, (2.5)

wheneverE ∈ Ep0 (Ω) andB ∈ Bq(Ω), where 1� p,q �∞ is any Hölder conjugate
pair. We skip discussing other possibilities for boundary constraints in (2.5) since a need
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will not arise. Let us point out, however, thatEp0 (Rn)= Ep(Rn) and

∫
Rn

〈B(x),E(x)〉dx = 0 (2.6)

for B ∈ Bq(Rn) andE ∈ Ep(Rn), 1/p + 1/q = 1. A central fact, hidden behind the
forthcoming computation, is that the div-curl product〈B,E〉 actually belongs to the
Hardy spaceH1(Rn) [17]. This will be extended further to suitable pairs of conjugate
Orlicz spaces.

DEFINITION 2.1. –A div-curl couple onΩ is a pairF = [B,E] withB ∈ B(Ω) and
E ∈ E(Ω).

The caseB =E reduces to the Cauchy–Riemann equations (2.3), and because of this
we refer to such couples asharmonic fields.

3. Quasiharmonic fields

If a div-curl coupleF = [B,E] consists of locally integrable vector fields we can
speak of its modulus

|F(x)| = (|B(x)|2+ |E(x)|2)1/2
(3.1)

and the Jacobian

J (x,F)= 〈B(x),E(x)〉. (3.2)

Clearly, 2J (x,F)� |F(x)|2 and equality occurs only for harmonic fields.

DEFINITION 3.1. –A div-curl coupleF = [B,E] ∈ Ł1
loc(Ω,R

n × R
n) is called

K-quasiharmonic field, with the distortionK =K(x)� 1, if

|F(x)|2 � K(x)J (x,F), whereK(x)=K(x)+K−1(x). (3.3)

In terms of the± components ofF the distortion inequality reads as

|F−(x)|� K(x)− 1

K(x)+ 1
|F+(x)|, (3.4)

where we recall that 2F± = E ± B, respectively. Hence, harmonic fields are precisely
those with the vanishing minus component.

We are now in a position to prove Theorem 1. For this, we introduce the notation

λ(x)= |F
−(x)|

|F+(x)| if F+(x) �= 0

and putλ(x) = 0, otherwise. As the vectorsF−(x) and λ(x)F+(x) have the same
length, there exists an isometry which takesλF+ into F−. There are of course many
such isometries. However, for reasons to be discussed later, it will be advantageous to
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choose the reflection about the hyperplane bisecting the angle between these vectors.
More precisely, the reflection we have chosen is represented by the orthogonal matrix

I − 2a⊗ a, (3.5)

wherea = a(x) is the unit normal vector to the hyperplane in question. The tensor
producta ⊗ a ∈ R

n×n is a symmetric matrix defined by the rule[a ⊗ a]v = 〈a, v〉a
for v ∈R

n. More explicitely, ifF−(x) �= λ(x)F+(x), then we have

a(x)= F−(x)− λ(x)F+(x)
|F−(x)− λ(x)F+(x)| .

Otherwise,a(x) will be any unit vector perpendicular toF+(x). The latter ensures that
[a⊗ a]F+ = 0. In either case, we obtain the Beltrami equation

F−(x)= µ(x)F+(x) (3.6)

with µ(x)= λ(x)[I− 2a⊗ a], establishing Theorem 1.
It is worth noting that the Beltrami matrixµ of this form is unique except for the

points whereF−(x) = λ(x)F+(x). In dimension 2 the caseF−(x) = λ(x)F+(x) still
leads to the uniqueness ofµ(x).

Locally we can always writeF = [B,∇u] with B ∈ B1
loc andu ∈W1,1

loc . The Beltrami
equation yields

A(x)∇u= B(x), (3.7)

where the matrixA(x) takes the form

A(x)= (
I−µ(x))(I+µ(x)

)−1= 1− λ(x)

1+ λ(x)
I+ 4λ(x)

1− λ2(x)
a⊗ a. (3.8)

It is a simple matter of multiplying matrices to verify this explicit expression forA(x).
An elementary computation shows that

detA(x)=
(

1− λ

1+ λ

)n

det
[
I+ 4λ

(1− λ)2
a⊗ a

]

=
(

1− λ

1+ λ

)n[
1+ 4λ

(1− λ)2
]
=

[
1− λ(x)

1+ λ(x)

]n−2

establishing formula (1.16).
The only point remaining concerns the ellipticity bounds. It is immediate from (3.8)

that

〈A(x)ξ, ξ 〉 = 1− λ(x)

1+ λ(x)
|ξ |2+ 4λ(x)

1− λ2(x)
〈a(x), ξ 〉2.

We thus get (
1− λ

1+ λ

)
|ξ |2 � 〈A(x)ξ, ξ 〉�

(
1− λ

1+ λ
+ 4λ

1− λ2

)
|ξ |2.
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From the above and byλ(x) � (K(x) − 1)/(K(x)+ 1), we conclude with the desired
lower and upper bounds for the eigenvalues ofA(x)

K−1(x)|ξ |2 � 〈A(x)ξ, ξ 〉�K(x)|ξ |2. (3.9)

Next we put on stage quasiconformal mappings in the complex planeC = {z = x +
iy, x, y ∈ R} and link them with the concept of quasiharmonic fields inR

2.

4. Quasiconformal mappings

One of the first things we wish to point out is the Hodge star operator

4=
[

0 1
−1 0

]
:R2→R

2. (4.1)

It is immediate that44=−I. The Hodge operator transforms curl-free fields into div-free
fields. IfE =∇u= (ux, uy), then4E = (uy,−ux) and hence div(4E)= 0.

Locally, a pairF = [B,E] is a div-curl couple if and only ifE = ∇u andB = ∗∇v.
Assuming thatu, v ∈W 1,p

loc (Ω), we obtain a complex functionf (z)= u(x, y)+ iv(x, y)
in the Sobolev classW 1,p

loc (Ω,C). Recall thatf isK-quasiregular, with 1�K =K(z) <

∞, if and only if

|Df (z)|2 � K(z)J (z, f ), K=K +K−1, (4.2)

whereJ (z, f )= uxvy − uyvx = 〈B,E〉 and

Df (z)=
[
ux uy
vx vy

]
.

The Hilbert–Schmidt norm of the Jacobian matrix is being used here, that is,|Df (z)|2=
Trace[DT f (z)Df (z)] = u2

x + u2
y + v2

x + v2
y . Of particular relevance to quasiconformal

geometry is a distortion tensorG :Ω→R
2×2, defined by

G(z)= DT f (z)Df (z)

J (z, f )
. (4.3)

Here at some pointsJ (z, f ) may vanish and, as a convention, we understand thatG(z)

is the unit matrix in such cases. We then define

A(z)=G−1(z)= 1

uxvy − uyvx

[
u2
y + v2

y −uxuy − vxvy

−uxuy − vxvy u2
x + v2

x

]
(4.4)

and notice that

K−1(z)|ξ |2 � 〈A(z)ξ, ξ 〉�K(z)|ξ |2. (4.5)

We also find thatB andE are coupled by the equation

A(z)E = B. (4.6)
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The same equation holds for the dual coupleF ′ = [B ′,E′], with E′ = −∇v and
B ′ = 4∇u. This is due to the following identity

4A4=−A−1. (4.7)

In particular, the real and the imaginary part off satisfy the same second order PDE

divA(z)∇u= 0 and divA(z)∇v = 0. (4.8)

Observe that in two dimensions the Beltrami matrixµ = λ(I − 2a ⊗ a) takes the
following special form

[
α β

β −α
]
. Under the usual identification of points inR2 with

the complex numbers, we see that the linear transformationµ :C → C mapsξ into
(α+ iβ)ξ̄ .

We can now identify the complex partialsfz = 1
2(fx + ify) andfz = 1

2(fx − ify) with
the± components ofF by the rules


F−(z)= 1

2
(E −B)= fz,

F+(z)= 1

2
(E +B)= fz.

(4.9)

This leads us to the familiar complex Beltrami equationfz = (α+ iβ)fz.

5. Radial stretching

One particularK-quasiconformal mapping proves useful, as it is extremal for various
problems in PDEs. This is the radial stretching

f (z)= z|z|α, α = 1

K
− 1� 0. (5.1)

An elementary computation shows that

2fz = (2+ α)|z|α and 2fz = α|z|α−2z2

which brings us to the complex Beltrami equation:

fz = µ(z)fz with µ(z)= 1−K
1+K

z

z
. (5.2)

The coefficient matrix in (4.8) takes the form

A(z)= 1

K
I+

(
K − 1

K

)
z⊗ z

|z|2 , (5.3)

where we record the following ellipticity bounds

1

K
= min|ξ |=1

〈A(z)ξ, ξ 〉� max|ξ |=1
〈A(z)ξ, ξ 〉 =K.
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The real and imaginary parts off are:

u(x, y)= x
(
x2+ y2) 1−K

2K and v(x, y)= y
(
x2+ y2) 1−K

2K . (5.4)

These are none other than J. Serrin’s [66] solutions to Eqs. (4.8). They belong to the
Sobolev spaceW 1,p

loc (R
2) for all 1 � p < 2K/(K −1), but not forp � 2K/(K −1). The

Beltrami equation (5.2) also holds for the function 1/f (z), which gives us another set of
solutions to Eqs. (4.8), namely

u′(x, y)= x
(
x2+ y2)−K+1

2K and v′(x, y)= y
(
x2+ y2)−K+1

2K . (5.5)

Note that we have simply replacedK by −K in (5.4). However, these latter ones are
only very weak solutions. They belong toW 1,q

loc (R
2) for all 1 � q < 2K

K+1, but not for
q � 2K

K+1. Finally, regardingu, v, u′, v′ andA as functions ofn variables we conclude
that in any dimension the critical exponentsqK andpK , defined in (1.19), are sharp.

6. The failure of higher integrability

Consider more general radial stretching

f (z)= zχ(|z|). (6.1)

Here we assume that the functiont �→ tχ(t) is strictly increasing whileχ(t) is
decreasing. Elementary computation gives

|fz| + |fz| = χ(|z|),
|fz| − |fz| = χ(|z|)+ |z|χ ′(|z|).

Hence the distortion function takes the form

K(z)= |fz| + |fz||fz| − |fz| =
χ(|z|)

χ(|z|)+ |z|χ ′(|z|) .

We apply this formula to

χ(|z|)= 1

|z| logσ 1
|z|

for |z|< e−σ , σ > 0.

Thus

K(z)= 1

σ
log

1

|z| (6.2)

and

|F | = 1

|z| log−σ
1

|z|

√
1+ σ 2 log−2 1

|z|
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in the open ballΩ = {z; |z|< e−σ }. We see at once that eγK ∈ L1(Ω) for all exponents
γ < 2σ . On the other hand|F | /∈ L2 logα(Ω) if 2σ � 1+ α. In conclusion, for the
implication at (1.32) it is necessary to assume thatγ � 1 + α, wheneverα > −1,
confront with Conjecture 1.1.

7. Other examples

There are more examples directly linked with the quasiharmonic fields

Example7.1. – Letf = (f 1, . . . , f n) :Ω→ R
n be a mapping whose coordinatesf i

are inW 1,pi (Ω), 1< p1, . . . , pn <∞, i = 1,2, . . . , n. With f we associate two vector
fields

E =∇f 1 and B =∇f 2× · · · × ∇f n.

The latter stands for the cross product ofn − 1 gradient fields inRn. It is well known
that

divB = 0

provided 1
p2
+· · ·+ 1

pn
� 1. By the Laplace expansion formula we see that the dot product

〈B,E〉 equals the Jacobian determinant off . That is,〈B,E〉 = det[Df (x)] = J (x, f ).
Now, the coupleF = [B,E] is aK-quasiharmonic field if and only if

∣∣∇f 1∣∣2+ ∣∣∇f 2× · · · × ∇f n∣∣2 � K det[Df ]. (7.1)

This inequality provides a method for constructing elliptic equations and their particular
solutions, without getting into a lengthy calculation of the second order distributional
derivatives. For a treatment of more general constructions we refer the reader to [44].

Example7.2. – Let Φ :Ω × R
n → R be a Carathéodory function such that

ξ ∈ R
n→Φ(x, ξ) is convex. Denote byΦ∗(x, η)= sup{〈η, ξ 〉 −Φ(x, ξ); ξ ∈ R

n} the
Young conjugate ofΦ(x, .). Throughout this example we assume the quadratic growth
and coercivity condition. This can be expressed by a single inequality

|ξ |2+ |η|2 �
(
K + 1

K

)[
Φ(x, ξ)+Φ∗(x, η)

]
, (7.2)

whereK � 1. Letu ∈W 1,2(Ω) be a local minimizer of the variational integral

I [v] =
∫
Ω

Φ(x,∇v) dx.

Precisely we mean thatI [u] = min{I [v]; v ∈ u + W
1,2
0 (Ω)}. Consider the solution

B ∈ B2(Ω) of the dual problem in the sense of Ekeland–Temam [27]. That is, divB = 0
in Ω and∫

Ω

[〈B,∇u〉 −Φ∗(x,B)
]=max

{∫
Ω

[〈X,∇u〉 −Φ∗(x,X)
]; X ∈ B2(Ω)

}
. (7.3)
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Then the extremality relations take the form

〈B,∇u〉 =Φ(x,∇u)+Φ∗(x,B) a.e. inΩ. (7.4)

SettingE =∇u ∈ E2(Ω) we obtain aK-quasiharmonic fieldF = [B,E] satisfying the
distortion inequality

|B|2+ |E|2 �
(
K + 1

K

)
〈B,E〉. (7.5)

8. Hodge decomposition and Poincaré lemmas

For our purpose it will be sufficient to review div-curl decomposition in the entire
spaceΩ = R

n. In this case we can make explicit calculations by means of the Riesz
transforms

R= (R1, . . . ,Rn) :Lp
(
R
n
)→ Lp

(
R
n,Rn

)
, 1< p <∞,

where

(Rf )(x)= =
(
n+1

2

)
π

n+1
2

∫
Rn

(x − y)f (y) dy
|x − y|n+1

.

The book by E. Stein [69] is a particularly good reference. Consider a vector field
F = (f 1, . . . , f n) ∈ Lp(Rn,Rn). We first solve the Poisson equation

F =?U = (
?u1, . . . ,?un

)
(8.1)

for U = (u1, . . . , un) ∈D′(Rn,Rn). Note the identities

∂2U

∂xi∂xj
=−Rij (F ) ∈Lp(

R
n ×R

n
)

for i, j = 1, . . . , n, (8.2)

whereRij = Ri ◦ Rj are the second order Riesz transforms. Eq. (8.1) yields div-curl
(also known as Hodge) decomposition ofF .

F = B +E, (8.3)

where

B =?U −∇ divU and E =∇ divU. (8.4)

These fields are easily seen to be divergence and curl free, respectively. More explicitely,
with the aid of (8.2) we find that

B = (I+R⊗R)F and E =−(R⊗R)F. (8.5)

Hereafter, we use the notationR⊗ R = [Rij ] for the matrix of the second order Riesz
transforms. We refer to the operators

B= I+R⊗R and E=−R⊗R (8.6)
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as projections ofLp(Rn,Rn) onto the spacesBp(Rn) andEp(Rn), respectively. For the
use in the sequel we note that

kerB= Ep
(
R
n
)

and kerE= Bp
(
R
n
)
, (8.7)

which is clear from the uniqueness of the Hodge decomposition. Next,F can also be
written as

F =∇(divU)+ div(curlU). (8.8)

Here, we have applied the divergence operator to the matrix function curlU . The result
is a vector field whose components are obtained by computing the divergence of the row
vectors. Now, ifF ∈D′(Rn,Rn) and curlF happens to be inLs(Rn,Rn×n), then we can
solve Poisson’s equation for curlU , that is

?(curlU)= curl(?U)= curlF. (8.9)

Hence

∂2(curlU)

∂xi∂xj
=−Rij (curlF) ∈Ls(Rn,Rn×n). (8.10)

In other words, the second term at (8.8) belongs to the Sobolev classW1,s(Rn,Rn) while
the first term, denoted byF0 = ∇(divU), is a curl free distribution. We then conclude
with the following Poincaré type Lemma:

LEMMA 8.1. –For each distributionF ∈ D′(Rn,Rn), with curlF ∈ Ls(Rn,Rn×n)
and 1 < s <∞, there existsE0 ∈ E(Rn,Rn) such thatF − E0 ∈W1,s(Rn,Rn). We
also have a uniform bound

‖F −E0‖1,s = ‖DF −DE0‖s � Cs(n)‖curlF‖s . (8.11)

The following formula for the transposed differential ofF − E0 couldn’t have been
more explicit

Dt(F −E0)= (R⊗R)(curlF) ∈Ls(Rn,Rn×n). (8.12)

Here the notationR ⊗ R = [Rij ] is being used for the operator acting on matrix-
functions, in analogy with the multiplication of matrices. We argue similarly for the
dual statement:

LEMMA 8.2. –For each distributionF ∈ D′(Rn,Rn), with divF ∈ Ls(Rn,Rn) and
1< s <∞, there existsB0 ∈ B(Rn,Rn) such thatF −B0 ∈W1,s(Rn,Rn) and we have

‖F −B0‖1,s = ‖DF −DB0‖s �Cs(n)‖divF‖s . (8.13)

This follows from another explicit formula for the differential ofF −B0, namely

D(F −B0)=−(R⊗R)(divF). (8.14)
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In each lemma, if the distributionF happens to be in some spaceLs
′
(Rn,Rn), 1< s′ <

∞, then so do the distributionsE0 andB0. This is because bothE0 andB0 can be
expressed in terms ofF via Riesz transforms. Orlicz–Sobolev variants of these lemmas
are also available, but we shall pursue this matter later. Concerning local fields, with the
aid of formulas (2.1), we obtain

COROLLARY 8.3. –Let F = [B,E] be a div-curl couple inLsloc(Ω,R
n × R

n),
1 < s < ∞, and ϕ ∈ C∞0 (Ω). Then there exists a div-curl coupleF0 = [B0,E0] ∈
Ls(Rn,Rn ×R

n) such thatϕF −F0 ∈W1,s(Rn, R
n) and

‖ϕF −F0‖1,s �C(n, s)
∥∥|∇ϕ| |F |∥∥

s
. (8.15)

As F0 is obtained via Riesz transforms ofϕF it may be concluded that ifF ∈
Ls

′
loc(Ω,R

n × R
n) for some other exponent 1< s′ <∞, thenF0 ∈ Ls ′(Rn,Rn × R

n).
Furthermore, we have the following singular integral expressions for the differential of
ϕF −F0:

D(ϕB −B0)=−(R⊗R) 〈∇ϕ, B〉,
Dt(ϕE −E0)= (R⊗R)[E ∗ ∇ϕ].

In either of these expressions we notice that∫
Rn

〈∇ϕ,B〉 = 0 and
∫
Rn

[E ∗ ∇ϕ] = 0.

Hence, ifΩ is a cube or a ball centered atx0 ∈ R
n, then forx ∈ R

n − 2Ω we have the
point-wise inequality

|D(ϕF −F0)(x)|� C(n)diamΩ

|x − x0|n+1

∥∥ |∇ϕ| |F |∥∥
L1(Rn)

.

This also gives

|(ϕF −F0)(x)|� C(n)diamΩ

|x − x0|n
∥∥ |∇ϕ| |F |∥∥

L1(Rn)
. (8.16)

9. Hilbert transform

When studying quasiconformal mappings in the complex plane an analogue of the
Hilbert transform was introduced by Beurling, nowadays known as the Beurling–Ahlfors
transform. This is a singular integral operator of the form

(Af )(z)= 1

2πi

∫∫
C

f (ξ) dξ ∧ dξ
(z− ξ)2

, f ∈Lp(C), 1< p <∞. (9.1)

We wish to argue by analogy with this operator and its higher dimensional counterparts
introduced in [41].
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Let F ∈ Lp(Rn,Rn), 1 < p < ∞, be a given vector field. We decompose it as
F = B +E, whereB ∈ Bp(Rn) andE ∈ Ep(Rn). Then we setS(F )=E −B. In terms
of the projection operators, we can write

−S= B−E= I+ 2R⊗R. (9.2)

This operator in dimension 2 is not exactly the same asA. Nevertheless, it captures basic
algebraic and analytic features ofA. Before discussing more advanced results, let us list
some properties of particular interest

(i) S is an involution, that is,S ◦ S= I;
(ii) S is self adjoint, that is ∫

Rn

〈SF,G〉 =
∫
Rn

〈F,SG〉 (9.3)

for F ∈ Lp(Rn,Rn) andG ∈Lq(Rn,Rn), with 1< p,q <∞, p+ q = pq.
Thus, forp = q = 2, we find that

(iii) S :L2(Rn,Rn)→ L2(Rn,Rn) is an isometry.
This operator seems to be an excellent generalization of the Hilbert transform on the
real line. When raised to the level of differential forms one obtains even more general
operatorS :Lp(Rn,Λl)→ Lp(Rn,Λl). The latter has proven to be extremely useful
in the study of quasiconformal mappings [26,41]. But the calculation of itsp-norms
remains one of the outstanding problems in the area, even in the casen= 2. There have
been several attempts to identify these norms [42,6,5,38], which have led to the following

CONJECTURE 9.1. –For all dimensionsn� 2 and1< p <∞, we have

‖S‖p =max
{
p− 1,

1

p− 1

}
. (9.4)

See next section for much more general setting.
So far, the best estimate belongs to R. Bañuelos and A. Lindeman [6], which asserts

that

‖S‖p � 6max
{
p− 1,

1

p− 1

}
. (9.5)

Note that this estimate is dimension free, but, in view of the property (iii) it does not
exhibit correct upper bound forp close to 2. Riesz–Thorin Interpolation Theorem comes
to the rescue, details being left for the reader.

LEMMA 9.1. –For a pair 1< q � 2 � p of Hölder conjugate exponents,p+q = pq,
we have

‖S‖q = ‖S‖p � 7p− 13. (9.6)

Let us point out that the equation‖S‖q = ‖S‖p is straightforward by a duality
argument.

We have reserved our final section of Part One for comments concerning possible
extensions of these ideas.
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10. The elliptic complex setting

There is always further to go. One way is by looking at the exact sequences of first
order differential operators, generalizing the previously considered sequence

D′(
R
n,R

) ∇−→D′(
R
n,Rn

) curl−→D′(
R
n,Rn×n). (10.1)

LetΛ−,Λ andΛ+ be arbitrary finite dimensional inner product spaces. Consider a short
elliptic complex

D′(
R
n,Λ−

) D−−→D′(
R
n,Λ

) D+−→D′(
R
n,Λ+

)
, (10.2)

whereD− andD+ are first order partial differential operators with constant coefficients.
More precisely, the sequence of symbols

Λ−
D−(ξ)−→ Λ

D+(ξ)−→ Λ+ for ξ ∈R
n − {0} (10.3)

is supposed to be exact; ImD−(ξ)= kerD+(ξ).
Note that the dual complex

D′(Rn,Λ−)
D∗−←−D′(

R
n,Λ

) D∗+←−D′(
R
n,Λ+

)
(10.4)

is elliptic if and only if the original complex is. Then the elliptic second order operator

?=D−D∗
− +D∗

+D+ :D′(
R
n,Λ

)→D′(
R
n,Λ

)
(10.5)

is a natural tool to various estimates.
With the aid of singular integrals one can solve the Poisson equation

?U = F ∈Lp(Rn,Λ
)
, 1< p <∞, (10.6)

uniquely forU ∈W2,p(Rn,Λ). The basic estimate is

∥∥∥∥ ∂2U

∂xi∂xj

∥∥∥∥
p

�Cp‖F‖p, i, j = 1, . . . , n. (10.7)

This gives rise to the Hodge decomposition of a vector fieldF ∈Lp(Rn,Λ), namely

F =D−α +D∗
+β (10.8)

with α ∈ W1,p(Rn,Λ−) and β ∈ W1,p(Rn,Λ+), which are explicitely expressed in
terms of the first order derivatives ofU . Then the Hilbert transform is defined by the
rule

SF =D−α−D∗
+β, S :Lp

(
R
n,Λ

)→ Lp
(
R
n,Λ

)
, 1< p <∞. (10.9)
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On the analogy of the div-curl couples one might consider the pairsF = [X,Y ] ∈
Lp(Rn,Λ × Λ), with X = D−α and Y = D∗+β, and also their JacobianJ (x,F) =
〈X(x),Y (x)〉.

We trust that the further resemblance to the quasiharmonic fields is selfexplanatory.
Finding the norms of the Hilbert transform associated with the elliptic complex (10.2)

is central to theLp-theory of PDEs. Numerous examples suggest the following

CONJECTURE 10.1. –For a Hölder conjugate pair1< q � p <∞, p+ q = pq, we
have

‖S‖q = ‖S‖p = p− 1. (10.10)

The expected lower bound for‖S‖p is easily seen to be true. What remains is to show
the estimate

‖F+‖p � (p− 1)‖F−‖p, 2 � p <∞. (10.11)

Without getting into technicalities, this reduces to showing that

I [F] =
∫
Rn

(
(p− 1)|F−| − |F+|)(|F−| + |F+|)p−1 � 0, (10.12)

see D. Burkholder [11] and [38,5,2] for further developments. It is in this way that we
become interested in the variational integrals of the form

I [F] =
∫
Rn

Φ
(
F(x)

)
dx, (10.13)

whereΦ is a continuous function onΛ. Such integrals are well defined on the pairs

F = [X,Y ] ∈C∞0
(
R
n,Λ×Λ

)
.

We say thatΦ is quasiconvexif

∫
Rn

[
Φ(F0+F(x))−Φ(F0)

]
dx � 0 (10.14)

for everyF0 ∈ Λ × Λ andF(x) = [X(x),Y (x)], wheneverX ∈ D−C∞0 (Rn,Λ−) and
Y ∈D∗+C∞0 (Rn,Λ+).

It is of great interest to characterize quasiconvexity by imposing only algebraic
conditions on the integrandΦ. Note that Burkholder’s functional (10.12) is convex in the
so-called singular directions, zeros of the Jacobian. For a general functional (10.13), this
simply means that the real variable functiont �→Φ(F0+ tF) with F0 ∈Λ×Λ andF =
[X,Y ] is convex, wheneverX andY are orthogonal vectors inΛ. If we confine ourselves
to the elliptic complexes such that

⋃
|ξ |=1 kerD+(ξ)=Λ, then condition (10.14) implies

convexity in singular directions, see the forthcoming paper [33]. A puzzling thing about
an analogous conjecture in the multidimensional Calculus of Variations is its failure, for
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n� 3, as shown by V. Šverák [71]. Conjecture 10.2 is likely to be true in all dimensions
since it assumes convexity in more directions.

For relevant literature we refer to [20]. We are now left with a challenging conjecture
for the converse:

CONJECTURE 10.2. –Convexity in singular directions implies quasiconvexity.

Part Two:

Bounded Distortion

This part is dedicated to quasiharmonic fields of bounded distortion, say

1�K(x)�K a.e. (10.15)

Just as quasiconformal mappings in the plane, theK-quasiharmonic fields will be used
for the study of the second order elliptic equations inRn.

11. The Beltrami operator and critical exponents

Letµ be a measurable function inRn valued in symmetric matrices such that

‖µ(x)‖ =max|ξ |=1
|µ(x)ξ |� K(x)− 1

K(x)+ 1
, (11.1)

where 1� K(x) <∞ a.e. The central question that we want to address here is the
invertibility of the Beltrami operator

I−µS :Lp
(
R
n,Rn

)→ Lp
(
R
n,Rn

)
, 1< p <∞, (11.2)

and its adjoint

I− Sµ :Lq
(
R
n,Rn

)→ Lq
(
R
n,Rn

)
, p+ q = pq. (11.3)

The latter being characterized by the identity∫
Rn

〈(I−µS)F,G〉 =
∫
Rn

〈F, (I− Sµ)G〉 (11.4)

for F ∈ Lp(Rn,Rn) andG ∈ Lq(Rn,Rn). Basic estimates ofI − Sµ can be obtained
from those ofI−µS via the identity

I− Sµ= S ◦ (I−µS) ◦ S. (11.5)

Both operators are certainly invertible inLp(Rn,Rn) andLq(Rn,Rn), for 1< q � p

<∞, with p+ q = pq, such that

‖µ‖∞‖S‖q = ‖µ‖∞‖S‖p < 1. (11.6)
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Recall that our basic assumption is 1�K(x)�K . To each such constantK we associate
a pair of Hölder conjugate exponents, 1� qK < 2< pK �∞, determined implicitely by
the equation

‖S‖qK = ‖S‖pK =
K + 1

K − 1
. (11.7)

As ‖S‖2= 1, standard interpolation arguments give strict inequality

‖S‖r < K + 1

K − 1
for all r ∈ (qK,pK). (11.8)

Thus the critical interval(qK,pK) consists of the exponentsr for which the operators
I−µS andI−Sµ are invertible inLr(Rn,Rn). To facilitate explicit estimates we record
the following dimension free bounds for thecritical exponents

qK <
14K− 12

7K − 5
< 2<

14K− 12

7K − 7
< pK, for K > 1 (11.9)

which is immediate from Lemma 9.2. An affirmative answer to Conjecture 9.1 would
yield invertibility of the operators

I−µS, I− Sµ :Lr
(
R
n,Rn

)→ Lr
(
R
n,Rn

)
for all exponentsr in the interval

2K

K + 1
< r <

2K

K − 1
. (11.10)

As an interesting note this is true in dimension 2 [4], though thep-norms ofS still remain
unknown.

12. Caccioppoli inequalities

Our next objective is to estimate div-curl solutions of the nonhomogeneous Beltrami
equation

F−(x)= µ(x)F+(x)+G(x). (12.1)

We will be working under the assumption thatF ∈ Ls ′loc(Ω, R
n × R

n) for at least one
exponents′ in the critical interval(qK,pK). Fix an exponentr such that

max
{
qK,

n

n− 1

}
< r < pK. (12.2)

The following Caccioppoli type estimate holds

PROPOSITION 12.1. –Suppose thatG ∈ Lrloc(Ω,R
n) and F ∈ L

nr
n+r
loc (Ω,R

n × R
n)

satisfy (12.1). ThenF ∈ Lrloc(Ω,R
n × R

n) and for each test functionϕ ∈ C∞0 (Ω)
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we have

‖ϕF‖r � C(n,K)‖ϕG‖r +C(n,K)
∥∥ |∇ϕ| |F |∥∥ nr

n+r
. (12.3)

Proof. –Multiplying (12.1) byϕ leads to an equation in the entire spaceR
n

(ϕF−)= µ(ϕF)+ + ϕG, (12.4)

whereµ :Rn→ R
n×n is defined to be zero outsideΩ . AlthoughϕF is no longer a div-

curl couple we can find one which is close toϕF . Indeed, by Corollary 8.3 there exists
a div-curl couple

F0 ∈ L nr
n+r

(
R
n,Rn ×R

n
)∩Ls ′(Rn,Rn ×R

n
)
, (12.5)

which satisfies

‖ϕF −F0‖1, nr
n+r � C(n, r)

∥∥ |∇ϕ| |F |∥∥ nr
n+r
.

For the coupleΦ = ϕF − F0, one may use Sobolev’s theorem to find thatΦ ∈
Lr(Rn,Rn ×R

n) and its norm is controlled by

‖Φ‖r �C(n, r)
∥∥ |∇ϕ| |F |∥∥ nr

n+r
. (12.6)

Eq. (12.4) takes the form

F−
0 −µF+

0 = ϕG+µΦ+ −Φ−

or, equivalently

(I−µS)F−
0 = ϕG+µΦ+ −Φ−. (12.7)

The right hand side belongs toLr(Rn,Rn), while F−
0 ∈ Ls ′(Rn,Rn). Both exponents

r and s′ are in the critical interval(qK,pK). It is at this point that we make use of
the inverse operator(I−µS)−1 :Ls(Rn,Rn)→ Ls(Rn,Rn). We recall that this operator
exists and is bounded wheneverqK < s < pK . Consequently,F−

0 belongs toLr(Rn,Rn)

and so doesF+
0 = S(F−

0 ). Moreover, we have

‖F0‖r �C(n,K)‖ϕG+µΦ+ −Φ−‖r .
HenceϕF =Φ +F0 ∈ Lr(Rn,Rn×R

n), and by this latter estimate it follows that

‖ϕF‖r = ‖Φ +F0‖r � C(n,K)‖Φ‖r +C(n,K)‖ϕG‖r .
When combined with (12.6) this implies the inequality (12.3), completing the proof of
Proposition 12.1.

Now the proof of Theorem 2 is straightforward. Indeed, forK-quasiharmonic fields
we have Eq. (12.1) withG ≡ 0 in (12.1). Proposition 12.1 gives Caccioppoli type
inequality

‖ϕF‖r �C(n,K)
∥∥ |∇ϕ|F∥∥

nr
n+r
. (12.8)
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Repeated application of this estimate results in the improvement of the degree of
integrability of F , exactly as stated in part (a) of Theorem 2. The second part is
immediate, details being left to the reader.

One inference from (12.8) is the reverse Hölder inequality for integral means over the
cubesQ in the domainΩ

(
−
∫
Q

|F |r
) 1

r

� C(n,K)

(
−
∫

2Q

|F | nrn+r
) n+r

nr

. (12.9)

Here, the double cube, denoted by 2Q, is also assumed to be contained inΩ .

13. An estimate for nonhomogeneous equations

We now turn to an elliptic PDE of the form

divA(x)∇u= divF in Ω ⊂R
n, (13.1)

whereF is a given vector field inLrloc(Ω,R
n) and the coefficient matrix verifies

1

K
|ξ |2 � 〈A(x)ξ, ξ 〉�K|ξ |2.

The div-curl coupleF = [B,E] = [A(x)∇u − F,∇u] solves a nonhomogeneous
Beltrami equation

F−(x)= µ(x)F+(x)+G(x). (13.2)

Here the Beltrami matrix is explicitely expressed in terms ofA

µ(x)= I−A(x)
I+A(x) ,

while the vector fieldG is given in terms ofF by

G(x)= [I+A(x)]−1F.

As the eigenvalues ofA(x) lie betweenK−1 andK it follows that

‖µ(x)‖� sup
K−1�λ�K

∣∣∣∣1− λ1+ λ
∣∣∣∣= K − 1

K + 1
.

This makes it legitimate to apply Proposition 12.1. We forgo possibly more general
implications, just only extract the following useful estimate:

PROPOSITION 13.1. –Supposeu ∈ W 1,2
loc (Ω) satisfies Eq.(13.1) with F ∈ Lrloc(Ω,

R
n), where2 � r < pK . Thenu ∈W 1,r

loc (Ω) and

‖ϕ∇u‖r � C(n,K)‖ϕF‖r +C(n,K)
∥∥ |∇ϕ| |∇u|∥∥ nr

n+r
. (13.3)
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Recall thatPK is not smaller than 2+ 2
7(K−1) .

14. The Dirichlet problem in the range of critical exponents

This section is devoted to a qualitative analysis of the boundary value problem




∑
ij=1

∂

∂xi

(
Aij (x)

∂u

∂xj

)
= divF

u ∈W 1,r
0 (Ω),

(14.1)

whereF ∈ Lr(Ω,Rn) andA verifies the usual ellipticity bounds

K−1|ξ |2 � 〈A(x)ξ, ξ 〉�K|ξ |2. (14.2)

The natural space here is of courseW 1,2
0 (Ω). The caser = 2 poses no difficulty since

the existence and uniqueness follow by variational principles. We have

‖∇u‖2 �K‖F‖2. (14.3)

Thus Eq. (14.1) defines a bounded operatorA :L2(Ω,Rn)→ L2(Ω,Rn) which takes a
given vector fieldF into the gradient of the solution. Like for the Laplace operator, the
Lr -bounds withr �= 2 need some regularity ofΩ . For the sake of simplicity we confine
ourselves to only three types of domains:Ω =R

n, Ω =R
n+ andΩ is a cube inRn.

THEOREM 14.1. –The operatorA extends continuously toLr(Ω,Rn) for all expo-
nentsr in the interval(1.21).

Proof. –It suffices to prove the uniform estimate

‖∇u‖r � C(n,K)‖F‖r . (14.4)

We shall derive it from the Beltrami equation (13.2). ForΩ = R
n there is no need

to multiply this equation by a test functionϕ ∈ C∞0 (Rn). In this case estimate (12.3)
remains valid withϕ ≡ 1. Hence (14.4) is immediate.

We next consider the half spaceΩ = R
n+ = {(x1, . . . , xn);xn > 0}. Let ρ :Rn →

R
n denote the reflection about the hyperplanexn = 0, that is,ρ(x1, . . . , xn−1, xn) =

(x1, . . . , xn−1,−xn). The task is now to extend equation (14.1) toR
n. We define

u(x) = −u(ρx) for x ∈ R
n−. Obviously ∇u(x) = −(ρ∇u)(ρx) for x ∈ R

n−. Hence,
u ∈W 1,r (Rn) and we have

∫
Rn

|∇u(x)|r dx = 2
∫

R
n+

|∇u(x)|r dx. (14.5)
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Guided by the above extension of∇u we find out how to extendF to R
n. Likewise,

F(x)=−ρF(ρx) for x ∈R
n. Hence∫

Rn

|F(x)|r dx = 2
∫

R
n+

|F(x)|r dx. (14.6)

The coefficient matrixA = A(x) can be extended toRn by settingA(x) = A(ρx) for
x ∈ R

n−, which leads to the same ellipticity bounds as in (14.2), for allx ∈ R
n. Although

it is not obvious at this point it is nevertheless true that

divA(x)∇u= divF in R
n (14.7)

in the sense of distributions. On account of the already established estimate inR
n, we

conclude with the inequality

‖∇u‖Lr (Rn+)=
(

1

2

)1/r

‖∇u‖Lr (Rn) �
(

1

2

)1/r

C(n,K)‖F‖Lr (Rn) (14.8)

=C(n,K)‖F‖Lr (Rn+)

with the same constant as for the entire spaceR
n.

The case whenΩ is a regular bounded domain, such as a cube or ball inR
n, needs

handling with additional arguments. We begin, as before, by extending Eq. (14.1) slightly
beyond∂Ω . For instance ifΩ is a cube one can reflectu, F and the coefficient matrixA
across the faces ofΩ in much the same way as we did forR

n+. New cubes emerge in this
process and we continue reflecting across their faces. At the end we look atu as a local
solution to the extended equation in the double cube

divA(x)∇u= divF in 2Ω. (14.9)

The point is that the norms of∇u andF are controlled by those over the original domain,
namely

‖∇u||Ls(2Ω) � C(n,K)‖∇u‖Ls(Ω) (14.10)

and

‖F‖Ls(2Ω) �C(n,K)‖F‖Ls(Ω) (14.11)

for all 1� s � r .
Let us first assume that 2� r < pK . Proposition 13.1 applies to the cutoff function

ϕ ∈ C∞0 (2Ω) such that 0� ϕ(x)� 1, ϕ(x)≡ 1 onΩ and|∇ϕ(x)|� C(n) diam−1(Ω).
It results in the following estimate

(
−
∫
Ω

|∇u|r
) 1

r

�C(n,K)

(
−
∫

2Ω

|∇u| nrn+r
) n+r

nr

+C(n,K)
(
−
∫

2Ω

|F |r
) 1

r

(14.12)

�C(n,K)

(
−
∫
Ω

|∇u| nrn+r
) n+r

nr

+C(n,K)

(
−
∫
Ω

|F |r
) 1

r

.
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The latter are due to (14.10) and (14.11). Applying Hölder’s and then Young’s inequality
we see that for every positiveε

(
−
∫
Ω

|∇u| nrn+r
) n+r

nr

�
(
−
∫
Ω

|∇u|r
) n−1

nr
(
−
∫
Ω

|∇u|2
) 1

2n

� n− 1

n
ε

(
−
∫
Ω

|∇u|r
) 1

r

+ 1

nεn−1

(
−
∫
Ω

|∇u|2
) 1

2

.

On substituting this into (14.12) withε sufficiently small we obtain

(
−
∫
Ω

|∇u|r
)1/r

�C(n,K)

(
−
∫
Ω

|F |r
)1/r

+C(n,K)

(
−
∫
Ω

|∇u|2
)1/2

. (14.13)

On the other hand, theL2-bound at (14.3) yields

(
−
∫
Ω

|∇u|2
)1/2

�K

(
−
∫
Ω

|F |2
)1/2

�K

(
−
∫
Ω

|F |r
)1/r

.

Hence the desired estimate (14.4) follows.
By duality, we can easily pass to the caseqK < r � 2. Here are some details. Let

r ′ denote the Hölder conjugate tor , which is obviously in the interval 2� r ′ < pK .
According to the previous case, we can solve uniquely the equation div(A∇u′)= divF ′

for a functionu′ ∈W 1,r ′
0 (Ω), whereF ′ = |∇u|r−2∇u is regarded as a given vector field

in Lr
′
(Ω,Rn). On account of the already established estimate (14.4), with exponentr ′

in place ofr , we can write∫
Ω

|∇u|r =
∫
Ω

〈∇u,F ′〉 =
∫
Ω

〈∇u, A∇u′〉

=
∫
Ω

〈A∇u, ∇u′〉 =
∫
Ω

〈F,∇u′〉� ‖F‖r‖∇u′‖r ′

�C(n,K)‖F‖r ‖F ′‖r ′ = C(n,K)‖F‖r‖∇u‖r−1
r .

Hence the desired inequality

‖∇u‖r �C(n,K)‖F‖r . ✷ (14.14)

15. Measure in the right hand side

This section will be devoted to the equation

divA(x)∇u= ν, (15.1)

whereν is a Radon (signed) measure of finite total variation in a cubeΩ ⊂ R
n. Some

novelties ought to be mentioned here. First by G. Stampacchia [68] who introduced
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the so-called duality solutions, then L. Boccardo and T. Gallouet [8] who defined
approximation solutions and F. Murat [61] who proposed to study the entropy solutions,
and others [50,22]. All of these concepts ensure the existence and uniqueness of the
solutions for to the Dirichlet problem. However, these ideas do not apply if one wants to
investigate the usual solutions, in the sense of Schwartz distributions. Precise conditions
for the existence and uniqueness of the distributional solutions (in terms of the ellipticity
constantK) depend on the norms of the Hilbert transform inR

n. That is why it is
impossible to give definite answers at present. However, we are able to give here at least
good bounds forK to ensure those properties. Critical to our approach is the introduction
of the so-called grandLs-space:

Ls
(
Ω,Rn

)⊂ ⋂
0<ε�s−1

Ls−ε
(
Ω,Rn

)
, s = n

n− 1
,

which we supply with the norm

‖F‖s = sup
0<ε�1

(
ε−

∫
Ω

|F | n−εn−1

) n−1
n−ε

<∞. (15.2)

Every measureν can be written asν = divF , with someF ∈ Ls(Ω,Rn) and s =
n/(n− 1). Explicitely, we can write

F(x)=
∫
Ω

∇xG(x, y) dν(y), (15.3)

whereG is the Green’s function for the Laplacian onΩ . Theorem 3 is a consequence
of (1.22) applied tor = (n− ε)/(n− 1).

We close this section with similar questions for the nonlinearp-harmonic type
equation

divA(x,∇u)= ν = divF, (15.4)

where K−1|ξ |p � 〈A(x, ξ), ξ 〉 � K|ξ |p. The uniqueness problem for distrbutional
solutions is far more complicated. What we need first of all are the estimates of the
form ∫

Ω

|∇u| (p−1)(n−ε)
n−1 � C(n,p)

∫
Ω

|F | n−εn−1 (15.5)

for at least some small positive numbersε. These estimates are known only whenp= n

[35], in which case the distributional solutions actually belong to the grand Sobolev
spaceW 1,n)

0 (Ω). The equations with measure in the right hand side have been subjected
to a great deal of investigation by G. Dolzmann, N. Hungerbuehler and S. Müller,
see [25] and more references given there. Finally, an approach to the nonlinear theory
of harmonic fields and related PDEs of the Cauchy–Riemann type, referred to as Hodge
systems, is presented in [46].
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Part Three:

Quasiharmonic Fields with Distortion in Exp (Rn)

In the sections to follow, we will address the questions of regularity of quasiharmonic
fields with unbounded distortion. The results have profound consequences for the elliptic
PDEs with anisotropic degeneracy. We will continue this theme later in the paper. Since
theL2-integrability fails when eK is not locally integrable, we must assume that

eγK ∈L1
loc(Ω)

for someγ � 1. To get the higher integrability theory off the ground we will actually
assume thatγ = γ (n) is sufficiently large. The theory of BMO-functions and some
Orlicz spaces are a major prerequisite which we must outline here for completeness
of the arguments in the sequel.

16. Majorization and commutators with BMO-functions

A functionK :Ω→R+ on a measurable setΩ ⊂R
n is said to be BMO-majorized if

there existsK ′ ∈ BMO(Rn) such thatK(x)�K ′(x) for a.e.x ∈Ω .

PROPOSITION 16.1. –A necessary and sufficient condition thatK =K(x) should be
BMO-majorized inΩ is that ∫

Ω

eγK(x) dx

1+ |x|n+1
<∞ (16.1)

for some positive numberγ .

The proof is based on a result of R. Coifman and R. Rochberg [18], which we state as
follows.

LEMMA 16.2. –Let Mµ denote the Hardy–Littlewood maximal function of a Radon
measureµ in R

n, and suppose thatMµ(x) is finite and positive at some pointx. Then

‖ log(Mµ)‖BMO(Rn) �C(n). (16.2)

Proof of Proposition 16.1. –Suppose (16.1) holds. We need only considerΩ = R
n,

since otherwise we look atK as equal to zero outsideΩ . The majorizing function in
question can be defined as

K ′(x)= 1

γ
logM

(
eγK(x)

1+ |x|n+1

)
+ 1

γ
log

(
1+ |x|n+1) �K(x).

It is clear that‖K ′‖BMO �C(n)/γ .
For the converse, suppose thatK(x)�K ′(x) a.e. inΩ with K ′ ∈ BMO(Rn). Global

integrability properties of BMO-functions follow from John–Nirenberg lemma. Among
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such properties is the following inequality

∫
Rn

eγ |K ′(x)−K
′
0|

1+ |x|n+1
dx �A(n),

where γ = C(n)

‖K ′‖BMO
and K ′

0 stands for theL1-mean ofK ′ over the unit cube. This
completes the proof of Proposition 16.1.

Neither the hypotheses nor the forthcoming conclusions will be affected if we replace
K by K ′. Instead of introducing new symbols, we simply assume that the original
distortion function satisfies

‖K‖BMO(Rn) �
C(n)

γ
. (16.3)

It will be convenient to introduce the weightedL2-space of vector fields inRn

L2(
R
n, dω

)⊂ L2(
R
n, dx

)
, (16.4)

wheredω(x)=K2(x) dx. We realize that the Hilbert transform

S :L2(
R
n, dω

)→ L2(
R
n, dω

)
(16.5)

is still bounded. In view of (16.2) its norm depends only on the dimension, but not onK .
Indeed, forF ∈ L2(Rn, dω) we have

‖SF‖L2(Rn,dω)=‖KSF‖2

� ‖S(KF)‖2+ ‖(KS− SK)F‖2

� ‖KF‖2+C(n)‖K‖BMO‖F‖2

�C(n)‖F‖L2(Rn,dω).

Here we have used an estimate for the commutatorKS− SK of S with the operator of
multiplication byK . Such estimates will be frequently employed in the sequel, thus we
state them as a lemma.

LEMMA 16.3. –Let S be a singular integral operator inRn and letK ∈ BMO(Rn).
Then KS − SK :Lp(Rn, dx) → Lp(Rn, dx), 1 < p < ∞, has norm bounded by
Cp(n)‖K‖BMO.

This elegant result belongs to R. Coifman, R. Rochberg and
G. Weiss [19]. We shall also discuss it in the context of Orlicz spaces later on.

17. The L2-inverse of I−µS

With the above preliminaries we can now establish the following invertibility result

THEOREM 17.1. –There is a bounded linear operator� :L2(Rn, dω)→ L2(Rn,

dx) such that

(I−µS) ◦�=� ◦ (I−µS)= I :L2(
R
n, dω

)→L2(
R
n, dx

)
. (17.1)
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Precisely, we have

‖�G‖L2(Rn,dx) � 2‖G‖L2(Rn,dω). (17.2)

Proof. –We begin with a technical but very useful point-wise inequality

|SF |2+ |F |2 � 2K
(|SF |2− |F |2)+ 4K2∣∣(I−µS)F

∣∣2. (17.3)

To see this, we write

∣∣(I−µS)F
∣∣ � |F | − ‖µ‖ |SF |� |F | − K − 1

K + 1
|SF |

or, equivalently

|SF | + |F |�K
(|SF | − |F |)+ (K + 1)|F −µSF |.

Multiplying both sides by 2(|SF | + |F |) gives

2
(|SF | + |F |)2 � 2K

(|SF |2− |F |2)+ 2(K + 1)|F −µSF |(|SF | + |F |)
� 2K

(|SF |2− |F |2)+ (K + 1)2|F −µSF |2+ (|SF | + |F |)2
.

Inequality (17.3) is now straightforward.
We shall establish the existence of the operator� by proving the following estimate

‖F‖L2(Rn,dx) � 2‖(I−µS)F‖L2(Rn,dω) (17.4)

for F ∈ L2(Rn, dx). It is, therefore, natural to try to integrate (17.3). Some technical
difficulties arise because the productK(|SF |2 − |F |2) need not be integrable. For this
reason, prior to integration, we divide (17.3) by 1+ εK(x) reducing the inequality to

|SF |2+ |F |2
1+ εK

� 2k
(|SF |2− |F |2)+ 4K2|F −µSF |2. (17.5)

Hereε > 0 and we notice that the new factork = K/(1+ εK) is bounded. At the end
we will let parameterε go to zero. It is worth pointing out that the BMO-norm ofk does
not depend onε

‖k‖BMO � 2‖K‖BMO � 2c(n)

γ
(17.6)

as it is easy to check.
Next, with the aid of Hodge decomposition we can writeF = E − B, where

B ∈ B2(Rn) andE ∈ E2(Rn), ‖F‖2
2 = ‖B‖2

2 + ‖E‖2
2. By the definition of the Hilbert

transformSF =E +B and|SF |2− |F |2= 4〈B,E〉. Then, integrating (17.5) yields

∫
Rn

|B|2+ |E|2
1+ εK � 4

∫
Rn

〈kB,E〉 + 2‖F −µSF‖2
L2(Rn,dω). (17.7)
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To effectively estimate〈kB,E〉 we apply Hodge decomposition of the vector field
kB ∈ L2(Rn, dx), that is

kB = B ′ +E′.

Here we can use the projection operators to compute the componentsB ′ andE′, namely

B ′ = B(kB) ∈ B2(
R
n
)

and E′ = E(kB) ∈ E2(
R
n
)
.

Since the vector fieldsB ′ and E are orthogonal inL2(Rn,Rn) we are reduced to
estimating the integral of〈E′,E〉. By Hölder’s inequality

∣∣∣∣
∫
Rn

〈E′,E〉
∣∣∣∣ � ‖E′‖2‖E‖2.

The necessary bound for‖E′‖2 will follow almost immediately once we expressE′ in
the form of a commutator,

E′ = (Ek− kE)B. (17.8)

This is legitimate because the operatorE vanishes on divergence free vector fields. Now
Lemma 16.3 yields

‖E′‖2 � C(n)‖k||BMO‖B‖2 � C(n)

γ
‖B‖2.

Therefore, ∣∣∣∣
∫
Rn

〈kB,E〉
∣∣∣∣ � ‖E′‖2‖E‖2 � C(n)

γ

∫
Rn

(|B|2+ |E|2). (17.9)

On substituting it into (17.7), we obtain

∫
Rn

|B|2+ |E|2
1+ εK

� 4C(n)

γ

∫
Rn

(|B|2+ |E|2)+ 2‖F −µSF‖2
L2(Rn,dω).

Monotone Convergence Theorem yields the same inequality withε = 0. At this point
we shall chooseγ sufficiently large, to ensure that the integral in the right hand side is
absorbed by the left hand side. It results in the inequality:

1

2

∫
Rn

|F |2= 1

2

∫
Rn

(|B|2+ |E|2) � 2‖F −µSF‖2
L2(Rn,dω)

which is the same as (17.4).
To settle matters finally, we need to solve the equation

(I−µS)F =G (17.10)
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for F ∈ L2(Rn, dx), whereG is a given vector field inL2(Rn, dω). Uniqueness certainly
follows from (17.4). The only point remaining concerns the existence of the solution. To
this effect, we approximateµ by

µm(x)=



µ(x) if ‖µ(x)‖� m− 1

m
,

(m− 1)µ(x)

m‖µ(x)‖ otherwise,
(17.11)

wherem= 1,2, . . . . Note that‖µm(x)‖� 1− 1
m

. It is also important to pay attention on
the following bound independent ofm

‖µm(x)‖� K(x)− 1

K(x)+ 1
, m= 1,2, . . . . (17.12)

Since the operatorI−µmS is invertible inL2(Rn, dx)we can solve the Beltrami equation

Fm −µmSFm =G ∈L2(
R
n, dω

)⊂ L2(
R
n, dx

)
(17.13)

for Fm ∈ L2(Rn, dx). On account of (17.4) the following uniformL2-bounds hold

‖Fm‖L2(Rn,dx) � 2‖G‖L2(Rn,dω). (17.14)

We may certainly assume that{Fm} converges weakly to anF ∈ L2(Rn, dx), if not, we
consider a subsequence. It follows from the boundedness ofS thatSFm are converging to
SF , weakly inL2(Rn, dx). Note thatµm(x)→ µ(x) and‖µm(x)‖� 1, at almost every
x ∈ R

n. This implies weak convergence ofFm − µmSFm to F − µSF , proving thatF
is a solution of Eq. (17.10). Lastly, we define�G to be this solutionF ∈ L2(Rn, dx),
completing the proof of Theorem 17.1.

Our ultimate goal will be to extend the operator� :L2(Rn, dω)→ L2(Rn, dx) to
the Zygmund classesL2 logα L. But first we have to establish somewhat cumbersome
technical details associated with the Orlicz spaces.

18. Some Orlicz spaces

A continuous and increasing functionΦ : [0,∞) → [0,∞), with Φ(0) = 0 and
lim t �→∞Φ(t) =∞, will be called an Orlicz function. Let(Ω,ω) be aσ -finite measure
space andW a finite dimensional normed space. The generalized Orlicz classLΦ(Ω,W)

consists of all measurable functionsf :Ω→W such that

‖f ‖Φ = inf
{
λ > 0;

∫
Ω

Φ

( |f |
λ

)
� 1

}
. (18.1)

LΦ(Ω,W) is a complete linear metric space [63]. As a note of warning,‖ ‖Φ is not a
norm. This nonlinear functional, also known as Luxemburg functional, is homogeneous
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but it fails to satisfy the triangle inequality whenΦ is not convex. In the convex case,
‖ ‖Φ is a norm andLΦ(Ω,W) becomes a Banach space.

Sometimes, to signify the dependence on the measuredω, we use the notation
LΦ(Ω,dω) in which case the target spaceW will be recognized from the context.

The Zygmund classesLp logα L, corresponding toΦ(t) = tp logα(e+ t), 1 � p <

∞, α ∈ R, will be of particular interest to us. An elementary calculation shows that
these Orlicz functions are increasing and convex, wheneverα � 1− p. The following
estimates are straightforward

‖f ‖Lp log−1L � ‖f ‖p � ‖f ‖Lp logL (18.2)

�
[∫

|f |p log
(

e+ |f |
‖f ‖p

)]1/p

� 2‖f ‖Lp logL.

The integral expression in the middle defines a norm inLp logL, which is equivalent
to the Luxemburg norm; the triangle inequality is far from being obvious. We have the
following Hölder type inequalities for real-valued functions

‖AB‖Lc logγ L � Cαβ(a, b)‖A‖La logα L‖B‖Lb logβ L, (18.3)

where the exponentsa, b > 1 andα,β ∈ R are coupled by the equations

1

c
= 1

a
+ 1

b
,

γ

c
= α

a
+ β

b
.

Thus, in particular

‖fg‖1 � c‖f ‖L2 log−α L‖g‖L2 logα L (18.4)

and

‖fg‖L logL � c‖f ‖L2 logL‖g‖L2 logL. (18.5)

If W is an inner product space, then the nondegenerate bilinear form
∫ 〈f,g〉 gives rise

to the duality betweenL2 log−α L andL2 logα L. Here is another useful estimate

LEMMA 18.1. –For f ∈ L2 logL(Ω,W), we have

‖f log
(

e+ |f |
‖f ‖2

)
‖L2 log−1L � 2‖f ‖L2 logL. (18.6)

Proof. –To shorten notation, we recall the Orlicz spaces (1.8) corresponding to
P(t) = t2 log(e+ t) andQ(t) = t2 log−1(e+ t). It follows from the definition of the
Luxemburg norm that

1=
∫ |f |2
‖f ‖2

P

log
(

e+ |f |
‖f ‖P

)

�
∫ |f |2 log2(e+ |f |

‖f ‖P
)

‖f ‖2
P log

[
e+ |f |

‖f ‖P log
(
e+ |f |

‖f ‖P
)]

=
∫
Q

(
f

‖f ‖P log
[
e+ |f |

‖f ‖P
])
.
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Hence, by the definition of theQ-norm
∥∥∥∥f log

(
e+ |f |

‖f ‖P
)∥∥∥∥

Q

� ‖f ‖P .

We only need to sharpen the left hand side of this inequality in such a way that‖f ‖2

will take place of‖f ‖P . This goes as follows∥∥∥∥f log
(

e+ |f |
‖f ‖2

)∥∥∥∥
Q

�
∥∥∥∥f log

(
e+ |f |

‖f ‖P
)∥∥∥∥

Q

+
∥∥∥∥f log

(
1+ ‖f ‖P‖f ‖2

)∥∥∥∥
� ‖f ‖P + ‖f ‖Q log

(
1+ ‖f ‖P‖f ‖2

)

� ‖f ‖P + ‖f ‖Q‖f ‖P‖f ‖2
= 2‖f ‖P ,

completing the proof of the lemma.

The following Orlicz space extension of the Marcinkiewicz interpolation theorem will
be useful.

LEMMA 18.2. –LetM be a sub-additive and homogeneous operator fromLq(Ω,W)

+Lp(Ω,W), 0< q < p <∞, to the space of measurable functions onΩ , that is

{ |M(f + g)|� |Mf | + |Mg|,
M(αf )= αM(f ), α � 0.

(18.7)

Suppose thatM is simultaneously of weak type(q, q) and weak-type(p,p). That is, for
eachα > 0, we have

∣∣{x: |Mf (x)|> α
}

�




(
Aq‖f ‖q

α

)q

for f ∈Lq(Ω,W),(
Ap‖f ‖p

α

)p

for f ∈Lp(Ω,W).
(18.8)

LetΦ be an Orlicz function such thatta ≺Φ ≺ tb, for some exponentsq < a < b < p.
This simply means that the functiont−aΦ(t) is increasing, whilet−bΦ(t) is decreasing.

ThenM is a bounded operator fromLΦ(Ω,W) into itself, and we have

‖Mf ‖Φ � C‖f ‖Φ for ∈LΦ(Ω,W). (18.9)

The constantC = CΦ is determined by the equation

a

a − q

(
2Aq

C

)q

+ b

p− b

(
2Ap

C

)p

= 1. (18.10)

Proof. –Because of homogeneity we may assume that‖f ‖Φ = 1, which gives∫
Ω

Φ(|f |)= 1. (18.11)



556 T. IWANIEC, C. SBORDONE / Ann. I. H. Poincaré – AN 18 (2001) 519–572

It also involves no loss of generality in assuming that the constantC = CΦ at (18.10)
equals 1. For, if not, we consider the operatorC−1M instead ofM. We then mimic
the idea of Marcinkiewicz as presented in [69, pp. 21–22]. Letλ(t) = |{x; |Mf (x)| >
t}| denote the distribution function ofMf . A slight modification of the proof of
inequality (19) in [69, p. 22] actually shows that

λ(t)�
(

2Aq

t

)q ∫
|f |>t

|f |q +
(

2Ap

t

)p ∫
|f |�t

|f |p. (18.12)

Next, we express
∫
Φ(|Mf |) by means of the Riemann–Stieltjes integral with respect to

Φ(t) and use (18.12) to obtain

∫
Ω

Φ(|Mf |)=
∞∫

0

λ(t) dΦ(t)

� (2Aq)
q

∞∫
0

( ∫
|f |>t

|f |q
)
dΦ

tq
+ (2Ap)

p

∞∫
0

( ∫
|f |�t

|f |p
)
dΦ

tp
.

Further, changing order of integration this reads as

∫
Ω

Φ(|Mf |)� (2Aq)
q

∫
Ω

|f |q
( |f |∫

0

dΦ

tq

)
+ (2Ap)

p

∫
Ω

|f |p
( ∞∫
|f |

dΦ

tp

)
.

We shall now estimate the line integrals. Integrating by parts, and with the aid of the
hypothesis thatta ≺Φ(t)≺ tb, we obtain

|f |∫
0

dΦ

tq
= Φ(|f |)

|f |q + q
|f |∫
0

Φ(t)dt

t1+q

� Φ(|f |)
|f |q + qΦ(|f |)|f |a

|f |∫
0

dt

t1+q−a
= a

a − q
Φ(|f |)
|f |q .

In much the same way we get the inequality

∞∫
|f |

dΦ

tp
� b

p− b
Φ(|f |)
|f |p .

Finally, we arrive at the estimate

∫
Ω

Φ(|Mf |)�
[

a

a − q
(2Aq)

q + b

p− b
(2Ap)

p

]∫
Ω

Φ(|f |)= 1.
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Here, by virtue of the normalization of the operatorM, the constant in the square
brackets equals 1. Now the definition of Luxemburg’s norm implies

‖Mf ‖Φ � 1= CΦ‖f ‖Φ
completing the proof of the lemma.

A few words should be said about this result. While the interpolation theory has long
been discussed in the context of Orlicz spaces [63,36,52], the details like in Lemma 18.2
are rather new, and much unfamiliar. Also, we have found it desirable to include the
proof of (18.9) as it is easier than to combine the existing more general results scattered
throughout the research journals.

Lemma 18.2 furnishes a convenient tool for establishing boundedness of singular
integrals, maximal operators and some commutators.

LEMMA 18.3. –LetΦ(t)= tp logα(e+ t), 1< p <∞, α ∈R, and letT be a singular
integral operator inR

n. Then

‖T(f )‖Lp logα L � Cp(α)‖f ‖Lp logα L. (18.13)

The same holds for the Hardy–Littlewood maximal function

Mf (x)= sup
{
−
∫
Q

|f (y)|dy; x ∈Q⊂R
n

}
(18.14)

supremum being taken with respect to all cubes containingx ∈R
n.

‖Mf ‖Lp logα L � cp(n,α)‖f ‖Lp logα L. (18.15)

The Orlicz space extension of Lemma16.3reads as

‖(kT−Tk)F‖Lp logα L � cp(n,α)‖k‖BMO‖F‖Lp logα L. (18.16)

Let us take a little time now to analyze more closely the proof of Theorem 17.1.
Although we did not emphasize it there the idea behind the calculation was that the
div-curl product〈B,E〉 belongs to the Hardy spaceH1(Rn), see [17]. The key estimate
at (17.9) can actually be derived from the duality ofH1 and BMO∣∣∣∣

∫
Rn

k〈B,E〉
∣∣∣∣ � ‖k‖BMO ‖〈B,E〉‖H1 � Cn‖k‖BMO‖B‖2‖E‖2. (18.17)

In the context of Orlicz norms, this fact reads as follows:

LEMMA 18.4. –Let [B,E] be a div-curl couple withB ∈ L2 logα L(Rn,Rn)

andE ∈ L2 log−α L(Rn,Rn), α ∈R andk ∈L∞(Rn). Then
∣∣∣∣
∫
Rn

k〈B,E〉
∣∣∣∣ � C(n,α)‖k‖BMO‖B‖L2 logα L‖E‖L2 log−α L. (18.18)
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Proof. –The arguments are much the same as those in the proof of Theorem 17.1,
the only difference is that we apply Hodge decomposition to the vector fields in
L2 logα L(Rn, dx). Here are some details

kB = B ′ +E′ = B(kB)+E(kB).

The Orlicz space version of identity (2.6) shows that the integral of〈B ′,E〉 vanishes.
Thus we obtain∣∣∣∣

∫
Rn

k〈B,E〉
∣∣∣∣=

∣∣∣∣
∫
Rn

〈E′,E〉
∣∣∣∣ �C(n)‖E′‖L2 logα L‖E‖L2 log−α L.

Writing E′ = (Ek − kE)B and using Lemma 18.3, we conclude with the required
estimate

‖E′‖L2 logα L � C(n,α)‖k‖BMO ‖B‖L2 logα L

completing the proof of the lemma.

Inequality (18.18) will play crucial role in the extension of the operator
� :L2(Rn, dω)→ L2(Rn, dx) to the Orlicz spacesL2 logα L(Rn, dω).

19. A restriction at infinity

Some global integrability properties of eγK are necessary for the invertibility of the
operatorI−µS in spaces different fromL2(Rn,Rn).

Recall that we always require eγK ∈ L1
loc(R

n) for sufficiently largeγ = γ (n). Here
we shall impose further restriction onK at infinity, namely

eγK = f + b ∈L1(
R
n
)+L∞

(
R
n
)
. (19.1)

This condition, like (16.1), is also invariant under majorization by a BMO-function. For
this purpose, we shall need to examine the function

K ′ = 1

γ
log

[
(M|f |1/2)2+Mb

]
, (19.2)

whereM stands for the Hardy–Littlewod maximal operator. It is evident thatK ′(x) �
K(x), everywhere. To estimate its BMO-norm the following elementary inequality will
suit us nicely

‖ log(X+ Y )‖BMO � 3‖ logX‖BMO + 3‖ logY‖BMO, (19.3)

whereX andY are arbitrary positive functions. The verification of (19.3) is left to the
interested reader. Hence, by Lemma (16.2), we obtain

‖K ′‖BMO � 6

γ
‖ log(M|f |1/2)‖BMO + 3

γ
‖ logMb‖BMO � C(n)

γ
. (19.4)
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A decomposition similar to that of (19.1) is worth noting

eγK
′ = f ′ + b′ = (

M|f |1/2)2+Mb ∈L1(
R
n
)+L∞(

R
n
)
. (19.5)

Moreover, for the new componentsf ′ = (M|f |1/2)2 andb′ =Mb we have the following
uniform bounds

‖f ′‖1=
∥∥M

(|f |1/2)∥∥2
2 � C(n)‖f ‖1, (19.6)

‖b′‖∞ � ‖b‖∞.
Next observe that for each cubeQ⊂R

n

eγ �−
∫
Q

eγK �−
∫
Q

|f | + −
∫
Q

|b|� ‖f ‖1

|Q| + inf
Q
b′.

ExpandingQ to the entire spaceRn we then conclude thatb′(x) � eγ , everywhere in
R
n. Thusb′ = eγK0, for some bounded function 1�K0(x) � 1

γ
log‖b‖∞. Decomposi-

tion (19.5) can be written as

eγ (K
′−K0) − 1= e−γK0

(
M|f |1/2)2 ∈L1(

R
n
)

which shows, in particular, thatK0(x)�K ′(x).
With these observations in mind, it is convenient (without loss of generality) to

reformulate condition (19.1) as:

‖K‖BMO � C(n)

γ
(19.7)

and

eγ (K−K0) − 1∈ L1(
R
n
)

(19.8)

for someK0 ∈ L∞(Rn) such that 1� K0(x) � K(x). Furthermore, to accomodate
explicit estimates the following quantity seems to be useful

[K] = ‖K0‖∞ + 1

γ

∫
Rn

[
eγ (K−K0) − 1

]
. (19.9)

This quantity is controlled in terms of the original decomposition (19.1)

[K]� C(n)

γ

[
log‖b‖∞ + e−γ ‖f ‖1

]
. (19.10)

Another useful fact is that the norms‖G‖LP (Rn,dω) and‖KG‖LP (Rn,dx) are comparable,
whereP(t)= t2 log(e+ t). More precisely, forγ � 10, we have

‖G‖2
LP (Rn,dω) � ‖KG‖2

LP (Rn,dx) (19.11)

� 20‖G‖2
LP (Rn,dω) + 5[K]‖KG‖2

L2(Rn,dx)

� 25[K]‖G‖2
LP (Rn,dω).



560 T. IWANIEC, C. SBORDONE / Ann. I. H. Poincaré – AN 18 (2001) 519–572

The first inequality follows from the definition of the Luxemburg norm but the second
one needs some work. We begin by the following computation

‖KG‖2
LP (Rn,dx) �

∫
Rn

K2|G|2 log
(

e+ K|G|
‖KG‖2

)

�
∫
Rn

K2|G|2 log
(

e+ |G|
‖KG‖2

)
+

∫
Rn

K3|G|2

� 4‖G‖2
LP (Rn,dω) +

∫
Rn

K2(K −K0)|G|2+‖K0‖∞ ‖KG‖2
L2(Rn,dx).

Next, we use an elementary inequality

xy � x

γ
log

(
e+ x

a

)
+ a

γ

(
eγy − 1

)
,

to find that∫
Rn

K2(K −K0)|G|2 � 1

γ

∫
Rn

K2|G|2 log
(

e+ K2|G|2
‖KG‖2

2

)
+ ‖KG‖

2
2

γ

∫
Rn

[
eγ (K−K0) − 1

]

� 8

γ
‖KG‖2

LP (Rn,dx)+
([K] − ‖K0‖∞)‖KG‖2

2.

Combining all the above gives

‖KG‖2
LP (Rn,dx) � 4‖G‖2

LP (Rn,dω) + [K] ‖KG‖2
2+

4

5
‖KG‖2

LP (Rn,dx)

from which (19.11) is immediate.

20. Extension of G to L2 logL

Having disposed of all the necessary requisites, we consider the question whether the
operator�, originally defined inL2(Rn, dω) with values inL2(Rn, dx), extends to a
continuous operator

� :L2 logL
(
R
n, dω

)→ L2 logL
(
R
n, dx

)
. (20.1)

THEOREM 20.1. –Under the conditions onK stated above, the operator� acts
continuously fromL2 logL(Rn, dω) into L2 logL(Rn, dx). It also verifies the following
uniform bounds

‖�G‖L2 logL(Rn,dx) �C(n)‖KG‖L2 logL(Rn,dx)+C(n)
√[K]‖KG‖L2(Rn,dx)

�C(n)
√[K] ‖G‖L2 logL(Rn,dω). (20.2)

Proof. –The extension will be established once we prove the estimate

‖F‖P � C(n)‖K(I−µS)F‖P +C(n)[K]‖F‖2 (20.3)
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for all F ∈ LP (Rn, dx) = L2 logL(Rn, dx). We proceed analogously to the proof of
inequality (17.4). Before making any calculation, however, we normalizeF

‖F‖2= 1. (20.4)

Being homogeneous, inequality (20.3) is not affected by this assumption. LetMF

denote the Hardy–Littlewood maximal function ofF . This function isL2-majorized
by constants depending only on the dimension

1 � ‖MF‖2 �C(n), (20.5)

by Maximal Theorem inL2(Rn). Finally, we introduce an auxiliary function

λ= log(e+MF), thus‖λ‖BMO � C(n) (20.6)

by (19.3) and Lemma 16.2.
Now, the pointwise inequality (17.3) is again our starting point. We multiply it byλ,

divide by 1+ εK and integrate overRn, to obtain∫
Rn

|F |2 log(e+ |F |)
1+ εK

� 2
∫
Rn

k
(|SF |2− |F |2)λ+ 4

∫
Rn

K2|F −µSF |2λ, (20.7)

where we recall thatk = K
1+εK ∈L∞(Rn) and

‖k‖BMO � C(n)

γ
. (20.8)

Let us first take on the easier estimate of the second integral at the right hand side
of (20.7). The claim is that

∫
Rn

K2|F −µSF |2λ� C(n)‖K(I−µS)F‖2
P (20.9)

and follows from an elementary inequalitya2 log(e+ b) � 2a2 log(e+ a) + b2, for
nonnegative numbers. Indeed, let us denote

G(x)= F(x)−µ(x)SF(x).

On substitutinga = K |G|
‖KG‖P andb =MF , we obtain

∫
Rn

λK2|G|2 � 2
∫
Rn

K2|G|2 log
(

e+ K|G|
‖KG‖P

)
+ ‖KG‖2

P ‖MF‖2
2

The integral term in the right hand side equals‖KG‖2
P , while the second term is no

larger thanC(n)‖KG‖2
P , completing the proof of (20.9).
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We are left with the task of estimating the integral
∫

Rn k(|SF |2−|F |2)λ. To this effect,
we use div-curl decompositionsF = E − B andSF = E + B, with components in the
Orlicz classes. Namely,B ∈ BP (Rn) andE ∈ EP (Rn). TheirP -norms are controlled by
that ofF

‖B‖P + ‖E‖P �C(n)‖F‖P . (20.10)

Now, the integral in question takes the form
∫
Rn

k
(|SF |2− |F |2)λ= 4

∫
Rn

k〈λB,E〉. (20.11)

Although the vector fieldλB is no longer divergence free it, nevertheless, preserves
important cancellation properties, since the factorλ belongs to BMO(Rn). To rigorously
explain this phenomenon let us first show thatλB ∈ LQ(Rn, dx)= L2 log−1L(Rn, dx).
For this, we write

|λB| = |B| log(e+MF)� (|F | + |SF |) log(e+MF)

� (MF + |SF |) log(e+MF + |SF |)
� (MF + |SF |) log

(
e+ MF + |SF |

‖MF + |SF | ‖2

)
+C(n)(MF + |SF |).

In the latter step we have used the obvious inequality‖MF + SF‖2 � A(n)‖F‖2 =
A(n). By Lemma 18.1 it follows thatλB ∈ LQ(Rn, dx), and an estimate of its norm is
also available.

‖λB‖Q � 2
∥∥MF + |SF |∥∥

P
+C(n)

∥∥MF + |SF |∥∥
Q

� [2+C(n)]∥∥MF + |SF |∥∥
P
.

Since the maximal operator and the Hilbert transform are both bounded inLP (Rn, dx),
we conclude with the inequality

‖λB‖Q � C(n)‖F‖P . (20.12)

Now, to measure how close isλB to a divergence free vector field in the space
LQ(Rn, dx), we use Hodge decomposition

λB = B ′ +E′, (20.13)

whereB ′ ∈ BQ(Rn) andE′ ∈ EQ(Rn). We then estimate the divergence free component
by expressing it asB ′ = B(λB). Thus

‖B ′‖Q = C(n)‖λB‖Q � C(n)‖F‖P , (20.14)

since the projection operatorB is bounded inLQ(Rn, dx). Concerning the curl-free
componentE′, we have better estimate due to the commutator representation

E′ = E(λB)= (Eλ− λE)B, (20.15)
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since the operatorE vanishes on div-free fields. With the aid of Lemma 18.3 we see
thatE′ belongs to the same space as the vector fieldB does, which isLP (Rn, dx) =
L2 logL(Rn, dx). Let us record two estimates. The first reads as

‖E′‖P � C(n)‖λ‖BMO ‖B‖P � C(n)‖F‖P . (20.16)

The second one (for use in the sequel) is theL2(Rn, dx) – analogue of this,

‖E′‖2 � C(n)‖λ‖BMO‖B‖2 �C(n)‖F‖2= C(n). (20.17)

Returning to (20.11), we now split the integral of the right hand side in accordance with
the decomposition ofλB at (20.13)∫

Rn

k(|SF |2− |F |2)λ= 4
∫
Rn

k〈B ′,E〉 + 4
∫
Rn

k〈E′,E〉. (20.18)

Lemma 18.4 gives a bound for the first integral in the right hand side∣∣∣∣4
∫
Rn

k〈B ′,E〉
∣∣∣∣ �C(n)‖k‖BMO‖B ′‖Q‖E‖P � C(n)

γ
‖F‖2

P (20.19)

by (20.8), (20.14) and (20.10). What remains is to estimate the second integral in (20.18).
It is at this point that we need the restrictions onK , stated in (19.7) and (19.8).
Accordingly,∣∣∣∣

∫
Rn

k〈E′,E〉
∣∣∣∣ � ‖K0‖∞‖E′‖2‖E‖2+

∫
Rn

(K −K0)|E′| |E|

�C(n)‖K0‖∞‖F‖2
2+

1

γ

∫
Rn

|E′| |E| log
(

e+ |E′| |E|
‖ |E′| |E| ‖1

)

+ 1

γ
‖ |E′| |E| ‖1

∫
Rn

[
eγ (K−K0) − 1

]
.

Here we have applied the elementary inequality

xy � x

γ
log

(
e+ x

a

)
+ a

γ

(
eγy − 1

)

for positive numbers. The first integral is equivalent to theL logL-norm of |E′| |E|,
apply (18.2) withp = 1. By inequality (18.5) and by‖ |E′| |E| ‖1 � ‖E′‖2‖E‖2 �
C(n)‖F‖2

2, we arrive at the estimate∣∣∣∣
∫
Rn

k〈E′,E〉
∣∣∣∣ �C(n)[K] ‖F‖2

2+
1

γ
‖E′‖P ‖E‖P (20.20)

�C(n)[K] ‖F‖2
2+

C(n)

γ
‖F‖2

P

due to (20.16).



564 T. IWANIEC, C. SBORDONE / Ann. I. H. Poincaré – AN 18 (2001) 519–572

Finally, combining (20.9), (20.18), (20.19) and (20.20) yields∫
Rn

|F |2 log(e+ |F |)
1+ εK � C(n)

γ
‖F‖2

P +C(n)[K] ‖F‖2
2+C(n)‖K(I−µS)‖2

P .

It is now legitimate to letε go to zero. In view of the normalization‖F‖2 = 1, we are
lead to the inequality claimed at (20.3). Indeed, by (18.2) it follows that

‖F‖2
P �

∫
Rn

|F |2 log
(

e+ |F |
‖F‖2

)

� C(n)

γ
‖F‖2

P +C(n)[K] ‖F‖2
2+C(n)‖K(I−µS)F‖2

P .

The proof of (20.3) is completed by chosingγ = γ (n)� 2C(n).

Having disposed of the estimate (20.3), we can now make analysis similar to that in
the proof of Theorem 8.1 to conclude with inequality (20.2). Here are some details. We
consider the approximationµm(x)→ µ(x), defined by (17.11). The inverse operator
(I− µmS)−1 is bounded inL2±ε(Rn, dx) for some positiveε = ε(m). By interpolation
Lemma 18.2 this operator is also bounded inLP (Rn, dx)= L2 logL(Rn, dx), though we
have no control of its norm. Now, given any vector fieldG ∈LP (Rn, dω)⊂ LP (Rn, dx)

we can solve the equation

(I−µmS)Fm =G

for Fm ∈ LP (Rn, dx). Inequality (20.3) remains valid for the operatorI − µmS and
provides us with the uniform bound

‖Fm‖P �C(n)‖KG‖P +C(n)[K] ‖Fm‖2

�C(n)‖KG‖P + 2C(n)[K] ‖KG‖2.

The latter step follows from theL2-estimate in (17.2). From this point the proof runs as
in Theorem 17.1 and, therefore, is omitted.

21. Extension to the dual space L2 log−1L

This section is devoted to the following dual version strenghtening of Theorem 20.1.

THEOREM 21.1. –The operator� = (I − µS)−1 extends boundedly to the Orlicz
spaces.

� :L2 log−1L(Rn, dω)→ L2 log−1L(Rn, dx). (21.1)

Moreover

‖�G‖L2 log−1L(Rn,dx) � C(n)[K] ‖G‖L2 log−1L(Rn,dω). (21.2)

Proof. –Consider two vector fieldsF ∈ LQ(Rn, dx) = L2 log−1(Rn, dx) and
H ∈ LP (Rn, dω) ⊂ L2 logL(Rn, dx). As these spaces are dual to each other we can
compute the inner product
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Rn

〈F,H 〉 =
∫
Rn

〈SRF,SH 〉 =
∫
Rn

〈SF, (I−µS) ◦�SH 〉

=
∫
Rn

〈(I− Sµ)SF,�SH 〉 =
∫
Rn

〈S(I−µS)F,�SH 〉

=
∫
Rn

〈(I−µS)F,S�SH 〉

�C(n)‖K(I−µS)F‖Q ‖K−1S�SH‖P
�C(n)‖K(I−µS)F‖Q ‖K−1�SH‖P .

Here, we have used boundedness of the operatorK−1SK :LP (Rn, dx)→ LP (Rn, dx),
which can be verified as follows:

∥∥K−1SK
∥∥
P
= ∥∥K−1(SK −KS)+ S

∥∥
P

� ‖SK −KS‖P + ‖S‖P � C(n),

by the commutator result (18.16).
However, our focus will be on the operatorK−1� :LP (Rn, dω)→ LP (Rn, dω), for

which we need to prove the inequality‖K−1�Ψ ‖P � C(n)[K] ‖Ψ ‖P , for all Ψ ∈
LP (Rn, dω). This will give us the desired estimate

∫
Rn

〈F,H 〉�C(n)[K]‖K(I−µS)F‖Q‖H‖P . (21.3)

To this effect, consider an arbitraryΦ ∈LP (Rn, dω) and apply (20.3) toK−1Φ in place
of F .∥∥K−1Φ

∥∥
P

�C(n)
∥∥(I−µS)Φ +µ(SK −KS)K−1Φ

∥∥
P
+C(n)[K]∥∥K−1Φ

∥∥
2

�C(n)‖(I−µS)Φ‖P +C(n)‖SK −KS‖P
∥∥K−1Φ

∥∥
P

+C(n)[K]∥∥K−1Φ
∥∥

2.

The term with the commutator is absorbed by the left hand side, because‖SK−KS‖P �
C(n)‖K‖BMO � C(n)/γ andγ is sufficiently large.

∥∥K−1Φ
∥∥
P

� C(n)‖(I−µS)Φ‖P +C(n)[K]∥∥K−1Φ
∥∥

2. (21.4)

To estimate the latter term we make use of Theorem 17.1. Precisely, we use inequal-
ity (17.4) withK−1Φ in place ofF∥∥K−1Φ

∥∥
2 � 2

∥∥K(I−µS)K−1Φ
∥∥

2

= 2
∥∥(I−µS)Φ +µ(SK −KS)K−1Φ

∥∥
2

� 2‖(I−µS)Φ‖2+ 2‖SK −KS‖2
∥∥K−1Φ

∥∥
2

� 2‖(I−µS)Φ‖2+ C(n)

γ

∥∥K−1Φ
∥∥

2.

Hence
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∥∥K−1Φ
∥∥

2 � 4‖(I−µS)Φ‖2. (21.5)

On substituting this into (21.4), we conclude with the estimate∥∥K−1Φ
∥∥
P

�C(n)‖(I−µS)Φ‖P + 4C(n)[K]‖(I−µS)Φ‖2

�C(n)[K]‖(I−µS)Φ‖P ,
which is none other than‖K−1�Ψ ‖P � C(n)[K]‖Ψ ‖P , for Ψ = (I− µS)Φ. As said
before, this gives (21.3). Estimate (21.3) holds not only forH ∈ LP (Rn, dω) but also
extends to allH ∈ LP (Rn, dx), by an approximation. The final conclusion is that

‖F‖Q � C(n)[K]‖K(I−µS)F‖Q, (21.6)

sinceLQ(Rn, dx) is the dual space toLP (Rn, dx). From this, the extendibility of�, to
a bounded operator onLQ(Rn, dx) is evident

‖�G‖LQ(Rn,dx) �C(n)[K]‖KG‖LQ(Rn,dx) (21.7)

�C(n)[K] ‖G‖LQ(Rn,dω)

for all G ∈ LQ(Rn, dω), establishing the theorem.

22. Higher integrability

In this section we prove Theorem 4. Incidentally our proof gives also estimates for
local solutions of the nonhomogeneous Beltrami equation

F−(x)= µ(x)F+(x)+G(x), (22.1)

where we assume thatF is a div-curl couple of classL2 log−1L(Ω,Rn × R
n) andG

is a given vector field inL2 logα Lloc(Ω,dω), with someαε{−1,0,+1}. The theorem
is local, thus we can confine ourselves to a cube inΩ ⊂ R

n. Our objective is to show
thatF belongs toL2 logα Lloc(Ω,R

n ×R
n) and

‖ϕF‖L2 logα L(Rn,dx) � C‖ϕG‖L2 logα L(Rn,dω) +C
∥∥ |∇ϕ| |F |∥∥

L
2n
n+1 (Rn,dx)

(22.2)

for every test functionϕ ∈ C∞0 (Ω).
Here the constantC = CΩ(n,K) depends also onΩ , but not onϕ. We proceed

analogously to the proof of Proposition 12.1. Multiplying (22.1) by the test function
yields

(ϕF)− = µ(ϕF)+ + ϕG in R
n. (22.3)

Although ϕF = [ϕB,ϕE] is no longer a div-curl couple, we see that both div, ϕB =
〈∇ϕ ·B〉 and curlϕE =∇ϕ 4 E belong toL2 log−1L.

Recall from Section 8 an Orlicz–Sobolev variant of Corollary 8.3. Accordingly, there
exists a div-curl coupleF0 ∈ L2 log−1L(Rn, R

n×R
n) for whichϕF −F0=Φ is in the

Orlicz–Sobolev classW1,Q(Rn,Rn × R
n) with Q(t) = t2 log−1(e+ t). As a matter of

factΦ is explicitely given by means of the Riesz potentials of〈∇ϕ ·B〉 and∇ϕ 4E. It is
from this observation that we have been able to derive the point-wise inequality (8.16).
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As before, Eq. (22.3) takes the form

(I−µS)F−
0 = ϕG+µΦ+ −Φ−. (22.4)

This time, the right hand side is in the spaceL2 logα L(Rn, dω), wheredω = K2 dx,
which is the domain of the inverse operator�= (I−µS)−1. Therefore,F−

0 belongs to
L2 logα L(Rn, dx) and we have the estimate

‖F−
0 ‖L2 logα L(Rn,dx) � C(n,K)‖ϕG‖L2 logα L(Rn,dω) +C(n,K)‖Φ‖L2 logα L(Rn,dω)

by Theorem 20.1, ifα = 1, Theorem 21.1, ifα =−1, and Theorem 17.1, ifα = 0. The
same holds forF+ = SF−

0 , and consequently forϕF =F0+Φ. Precisely, we have

‖ϕF‖L2 logα L(Rn,dx) � C(n,K)‖ϕG‖L2 logα L(Rn,dω)+C(n,K)‖Φ‖L2 logα L(Rn,dω). (22.5)

LettingG≡ 0 andα = 1 establishes Theorem 4.
We shall continue this proof to arrive at the uniform bound in (22.2). For this we only

need to show that

‖Φ‖L2 logα L(Rn,dω) � CΩ(n,K)
∥∥ |∇ϕ| |F |∥∥

L
2n
n+1 (Ω)

. (22.6)

For the proof of this inequality, we fix a functionη ∈ C∞0 (3Ω) which equals 1 on the
cube 2Ω. We can write

‖Φ‖L2 logα L(Rn,dω) � ‖ηΦ‖L2 logα L(3Ω,dω)+ ‖(1− η)Φ‖L2 logα L(Rn−2Ω,dω)

�CΩ(n,K)‖Φ‖
L

2n
n−1 (3Ω,dx)

+C(n)

∥∥∥∥ diamΩ

|x − x0|n
∥∥∥∥
L2 logα L(Rn−2Ω,dω)

× ∥∥ |∇ϕ| |F |∥∥
L1(Rn)

,

which is due to the inequality at (8.16). Using Sobolev’s inequality the latter terms are
dominated by

CΩ(n,K)
[‖DΦ‖

L
2n
n+1 (Rn,dx)

+ ∥∥ |∇ϕ| |F |∥∥
L1(Rn)

]
.

As said in Section 8,DΦ is expressed by means of the Riesz transforms of〈∇ϕ,B〉
and∇ϕ 4 E. That is why its norm is controlled by that of|∇ϕ| |F |. Applying Hölder’s
inequality to the second term results in (22.6).

23. Applications to the degenerate elliptic PDEs

One of the motivations for this study was to solve the Dirichlet problem

{divA(x)∇u= divA(x)F,

u ∈H1,A
0 (Ω),

(23.1)

whereA(x) is a symmetric matrix with measurable coefficients satisfying the ellipticity
bounds

K−1(x)|ξ |2 � 〈A(x)ξ, ξ 〉�K(x)|ξ |2.
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Our only hypothesis concerning the eigenvalues ofA(x) is that they are bounded in the
following average sense ∫

Ω

eγK(x) dx <∞

for sufficiently large exponentγ = γ (n).
The function spaces we shall consider are:

L2
A

(
Ω,Rn

)= {
F ; ‖F‖A =

(∫
Ω

|F(x)|2A dx
)1/2

<∞
}
, (23.2)

where we have used the notation|ξ |A = 〈A(x)ξ, ξ 〉1/2, for ξ ∈R
n.

H1,A(Ω)= {u; ‖∇u‖A <∞}. (23.3)

Here‖∇u‖A is a seminorm which makesH1,A(Ω) into a Banach space modulo constant
functions. The closure ofC∞0 (Ω) is a Banach space, denoted byH1,A

0 (Ω), which we
supply with the norm

‖u‖1,A = ‖∇u‖A =
[∫
Ω

〈A(x)∇u, ∇u〉dx
]1/2

.

GivenF ∈ L2
A(Ω,R

n), we minimize the variational integral

I [v] =
∫
Ω

|F −∇v|2A (23.4)

subject to allv ∈H1,A
0 (Ω). The minimizer, sayu ∈H1,A

0 (Ω), is unique and solves the
Euler–Lagrange equation (23.1). From this interpretation of the solution the energy
estimate (1.36) is immediate. Of course, we assume here that‖F‖A < ∞. This is
certainly the case ifKF ∈ L2(Ω,Rn). As a matter of fact this latter condition implies
L2-integrability of the gradient ofu, as in (1.37) forΩ a cube inRn or any other regular
domain. To see this fact, we first extend equation (23.1) to the double cube 2Ω , like
in the proof of Theorem 14.1. The norms inL2 logα(2Ω) for the extended solutions
are controlled by those over the original cubeΩ . In this way, we look atu as
a local solution of (23.1) on the cube 2Ω . Consider the following div-curl couple
F = [A(x)(∇u − F),∇u]. Before making estimates we recall the following general
inequality

‖X‖L2 log−1L �CK
∥∥K−1/2X

∥∥
L2. (23.5)

Hence

‖X‖L2 log−1L + ‖AX‖L2 log−1L � CK ‖X‖L2
A

(23.6)

for all vector fieldsX ∈ L2
A. The constantCK depends only on

∫
Ω eγK , details are left

to the reader. We see from here that|F | is in the classL2 log−1L(2Ω). Furthermore,F
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solves the nonhomogeneous Beltrami equation

F−(x)= µ(x)F+(x)+G(x), (23.7)

where

µ(x)= I−A(x)
I+A(x) , ‖µ(x)‖� K(x)− 1

K(x)+ 1
(23.8)

and

G(x)=
[ −A(x)

I+A(x)

]
F(x), |G(x)|� |F(x)|. (23.9)

Now, assume thatKF ∈ L2 logα(Ω,Rn) for someα = 0,1. The same holds for the
extension ofF to the double cube. That is,KF ∈ L2 logα(2Ω,Rn). It is, therefore,
legitimate to apply estimate (22.2) and write

‖ϕ∇u‖L2 logα(2Ω) +‖ϕA∇u‖L2 logα(2Ω)

� C‖ϕKF‖L2 logα(2Ω) +C
∥∥ |∇ϕ|K(|F | + |∇u|)∥∥

L
2n
n+1 (2Ω)

for every test functionϕ ∈ C∞0 (2Ω). We can certainly takeϕ ≡ 1 on Ω. Since the norms
over 2Ω are dominated by the corresponding ones overΩ , we obtain

‖∇u‖L2 logα L(Ω) + ‖A∇u‖L2 logα(Ω)

� CΩ(n,K)‖KF‖L2 logα(Ω) +CΩ(n,K)‖K∇u‖
L

2n
n+1 (Ω)

.

What is left is to estimate the latter term by means ofF , which can be achieved by using
the energy estimate. Indeed, with the aid of Hölder’s inequality we find that

‖K∇u‖
L

2n
n+1 (Ω)

�CK‖K−1/2∇u‖L2(Ω)

�CK‖∇u‖L2
A
(Ω) �CK‖F‖L2

A
(Ω)

�CK ‖KF‖L2 logα(Ω).

On substituting this into the previous inequality we conclude this paper with the
following Fundamental Estimate for the Dirichlet problem (23.1)

‖∇u‖L2 logα L + ‖A∇u‖L2 logα L � CΩ(n,K)‖KF‖L2 logα L. (23.10)
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