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ABSTRACT. – Nonlocal conservation laws of the form

ut +Lu+ ∇ · f (u) = 0,

where−L is the generator of a Lévy semigroup onL1(Rn), are encountered in continuum
mechanics as model equations with anomalous diffusion. They are generalizations of the classical
Burgers equation. We study the critical case when the diffusion and nonlinear terms are balanced,
e.g.L ∼ (−	)α/2, 1 < α < 2, f (s) ∼ s|s|r−1, r = 1 + (α − 1)/n. The results include decay
rates of solutions and their genuinely nonlinear asymptotic behavior as timet tends to infinity,
determined by self-similar source solutions.
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1. Introduction and motivation

The goal of this paper is to study the critical self-similar asymptotics of theLévy
conservation lawswhich can be written in the form

ut +Lu+ ∇ · f (u) = 0, (1.1)

wherex ∈ R
n, t � 0, u :Rn × R

+ → R, f :R → R
n is a nonlinear term, and−L is the

generator of a symmetric, positivity-preserving, Lévy operator semigroup e−tL, t > 0,
onL1(Rn).
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The initial condition

u0(x) = u(x,0), (1.2)

which supplements (1.1), is assumed to be anL1(Rn) function. If u0(x) � 0 is positive
a.e. with

∫
Rn u0(x)dx < ∞, then (1.1) can model an evolution ofdensitiesu, i.e.

u(x, t) � 0,
∫

Rn u(x, t)dx = ∫
Rn u0(x)dx < ∞ for all t > 0.

The asymptotic behavior of solutions of the Cauchy problem (1.1)–(1.2) in the
noncritical cases has been studied in [6,5].

The operatorL is a pseudodifferential operator defined by the symbola = a(ξ) � 0,
L̂v(ξ) = a(ξ)v̂(ξ). The function e−ta(ξ) is positive-definite, so the symbola(ξ) can be
represented, as in [6], by the Lévy–Khintchine formula in the Fourier variables (cf. [2,
Chapter I, Theorem 1], or [18, Theorem B.2])

a(ξ) = ibξ + q(ξ) +
∫
Rn

(
1− e−iηξ − iηξ1{|η|<1}(η)

)
�(dη). (1.3)

The fundamental nature of the operatorL is clear from the perspective of probability
theory. It represents the most general form of generator of a stochastically continuous
Markov process with independent and stationary increments. This fact was our basic
motivation for the development of the theory presented below and in other related papers.

We assume (with no loss of generality) thatb = 0, i.e., there is no drift; indeed, a shift
of thex variable removes the drift termb. The functionq(ξ) =∑n

j,k=1 qjkξj ξk in (1.3) is
a quadratic form onRn, and we suppose thatq(ξ) � 0 for all ξj ∈ R

n, i.e.q is positive-
definite in the wide sense. In [6] we consideredq(ξ) = |ξ |2, which corresponds to the
usual Laplacian−	 onR

n as the Gaussian part ofL. Finally,� is a Borel measure such
that�({0}) = 0 and

∫
Rn min(1, |η|2)�(dη) < ∞.

Eq. (1.1) generalizes the Burgers equation

ut − uxx + (u2)
x
= 0, (1.4)

with x ∈ R andt > 0, in three different directions. First, the case of arbitrary dimension
n is considered. Second,−∂2/∂x2 is replaced by a quite general Lévy operatorL.
Third, instead of the quadratic nonlinearity, arbitrary (sufficiently smooth) functionf

is considered.
As is well known, the solutions of the Burgers equation (1.4) with the initial condition

(1.2) inL1(R) become asymptotically self-similar ast → ∞, in the following sense: for
each 1� p � ∞

t (1−1/p)/2∥∥u(t) − U(t)
∥∥
p

→ 0, ast → ∞, (1.5)

where the functionU = UM(x, t) has an explicit form

U(x, t) = 1√
t

exp
(−x2/(4t)

)(
K −

x/
√
t∫

0

exp
(−z2/4

)
dz

)−1

.
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This function is the, so-called,source solutionof (1.4) such that
∫

R
U(x,1)dx =∫

R
u0(x)dx ≡ M with K = K(M), see, e.g., [16]. The initial data for the source

solution are attained in the sense of (narrow) convergence of measures; limt→0U(t) =
Mδ0 means that limt→0

∫
R
U(x, t)ϕ(x)dx = Mϕ(0) for each boundedϕ ∈ C(R). This

particular solution of (1.4) is self-similar, i.e.

U(x, t) = 1√
t
U

(
x√
t
,1
)
.

In other words,U is invariant under the parabolic space-time scaling of functionsu �→ uλ

defined, forλ > 0, by

uλ = λu
(
λx,λ2t

)
,

that is,U ≡ Uλ for eachλ > 0. Note that this scaling preserves the integrals:
∫

R
uλ dx =∫

R
udx = M . Moreover, the convergence property (1.5) can be restated as∥∥uλ(t) − U(t)

∥∥
p

→ 0 asλ → ∞
for each fixedt > 0.

All these properties can be established using the Hopf–Cole substitutionu =
−(logv)x which reduces (1.4) to the linear heat equation. However, recent publications,
cf. e.g., [10], [13], [14], [15], [16], [17], [28], developed versatile functional analytic
tools to study the long time behavior of solutions of general multidimensional diffusion-
convection equations

ut − 	u+ b · ∇(|u|r−1u
)= 0 (1.6)

in R
n with a real numberr > 1, b ∈ R

n. For these equations, in general, no explicit
analytic solution is known. Rougly speaking, results in those papers describe the
asymptotic behavior in the following three cases:

• r > 1+ 1/n, when the asymptotics is linear, i.e.

tn(1−1/p)/2∥∥u(t) − M
(
et	
)∥∥

p
→ 0 ast → ∞, (1.7)

whereM = ∫
Rn u0(x)dx, (et	) = (4πt)−n/2 exp(−|x|2/(4t)) is the fundamental

solution of the heat equation;
• r = 1+ 1/n, when

tn(1−1/p)/2∥∥u(t) − U(t)
∥∥
p

→ 0 ast → ∞, (1.8)

where U(x, t) = t−n/2U(xt−1/2,1) is the self-similar solution of (1.6) with
U(x,0) = Mδ0;

• 1< r < 1+ 1/n, when

t (n+1)(1−1/p)/(2r)∥∥u(t) −U(t)
∥∥
p

→ 0 ast → ∞, (1.9)

holds, where (forb = (0, . . . ,0,1)) U is a particular self-similar solution of
the partly viscous conservation lawUt − 	yU + ∂

∂xn
(|U |r−1U) = 0 such that
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U(x,0) = Mδ0 in the sense of measures. Herex = (y, xn), y = (x1, . . . , xn−1),
and	y =∑n−1

j=1
∂2

∂x2
j

.

The first case can be classified asweakly nonlinear, since in this situation the linear
diffusion prevails and the nonlinearity is asymptotically negligible. The second, critical
case isgenuinely nonlinear, when diffusion and the convection are balanced, and the
asymptotics is determined by a special solution of a nonlinear equation. Finally, the
third case ishyperbolic, since the asymptotics of solutions is determined by solutions of
an equation with strong convection and partial dissipation.

The methods introduced in [16] and developed in [10], [13], [14], [15] and [17] are
based on scalings of solutions and use in an essential manner tools associated with
the diffusive behavior such as the maximum principle and, for the hyperbolic case
(1.9), entropy inequalities. However, it should be mentioned that the scaling methods
work efficiently also for certain equations for which the maximum principle fails. An
example here is the Korteweg–de Vries–Burgers equation which features dispersion and
dissipation, see [19]. However, the extension of the usability of these tools in the context
of nonlinear and pseudodifferential equations is far from routine. This is the main novelty
of the present paper.

Eqs. (1.1) also generalize thefractal Burgersequation

ut + (−	)α/2u+ b · ∇(u|u|r−1)= 0 (1.10)

with r > 1, b ∈ R
n, studied in [3], as well as the one-dimensionalmultifractal

conservation laws

ut − uxx +
k∑

j=1

aj
(−∂2/∂x2)αj /2

u+ f (u)x = 0, (1.11)

with 0< αj < 2, aj > 0, and a polynomial nonlinearityf , considered in [5]. Here, the
fractional power of orderα/2, 0< α < 2, of the Laplacian inRn (or the second derivative
−∂2/∂x2 in R) is the pseudodifferential operator with the symbol|ξ |α.

The study of (1.1), and related model equations with nonlocal nonlinearities con-
sidered in [8], is motivated by the anomalous diffusion encountered in many physical
phenomena. For instance, there are hydrodynamic models with modified dissipativity
(obtained as a closure of a system of moment equations, cf. [1]), models of growth of
molecular interfaces [22], interacting diffusive particles [8], etc. Two recent volumes
in Springer’s Lecture Notes in Physics series [24,23] present applications of equations
with fractional derivatives and related stochastic differential equations driven byα-stable
processes to statistical physics, chaos in Hamiltonian mechanics, hydrodynamics, mole-
cular biology and finance mathematics. We studied some probabilistic questions related
to such equations in [4]. Various aspects of turbulence models based on the Burgers
equation have been discussed in [27].

In [3]–[8] we studied standard mathematical questions concerning (1.1), (1.10),
(1.11), including the solvability of the Cauchy problem in various function spaces,
uniqueness and regularity of solutions, as well as the large time asymptotics of solutions.
Most of the results, except for, e.g., [3, Proposition 6.1] and some sections in [8,4],
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describe asymptoticallylinear behavior of solutions to those equations, i.e. the situation
when the first term of large time asymptotics is a solution of the linearized equation
vt + Lv = 0 for (1.1) with the same initial condition (1.2)v(x,0) = u0(x). In those
cases, only the second term of asymptotics reflects nonlinear effects. Moreover, it was
proved for (1.11), and then for (1.1), that the anomalous diffusion dominates the usual
Brownian diffusion described by the Laplacian fort → ∞, cf. [5, Theorem 1.2] and [6,
Theorem 5.1].

The present paper studies Eqs. (1.1) in thebalancedcase of 1< α < 2 and

r = 1+ (α − 1)/n. (1.12)

This is a generalization of the second case (1.8) for (1.6), when the linear and nonlinear
terms are of the same importance over the entire time scalet > 0. Indeed, if the relation
(1.12) holds, then Eq. (1.10) written for the rescaled solution

uλ(x, t) = λnu
(
λx,λαt

)
is again the same fractal Burgers equation (1.10).

In this context,one can think about Eq.(1.1)with critical nonlinearity as a true fractal
analog of the classical Burgers equation(1.4).

Note that if lim sups→0 |f (s)|/|s|r < ∞, for some r > 1 + (α − 1)/n, then
lim t→∞ tn(1−1/p)/α‖u(t) − e−tLu0‖p = 0, i.e., solutions of (1.1) behave as in the weakly
nonlinear case, see [6, Theorem 4.1, Remark 5.2].

We will prove that for each massM ∈ R, 1 < α < 2, the equation (1.10) in
the balanced case (1.12) has a unique self-similar solutionU = UM , U(x, t) =
t−n/αU(xt−1/α,1), and

∫
Rn U(x, t)dx = M for all t > 0,

∫
U(x, t)ϕ(x)dx → Mϕ(0) as

t → 0 for all boundedϕ ∈ C∞(Rn) (Theorem 2.1). Such a solution determines the long
time behavior of solutions (with the same massM) of Eq. (1.1) which “asymptotically”
resemble (1.10) (Theorem 2.2). This, loosely speaking, means that we assume that the
symbola(ξ) of the generator−L of the Lévy semigroup e−tL satisfiesa(ξ) ∼ |ξ |α for
ξ → 0, and the nonlinearityf is such thatf (s) ∼ sr with r = 1+ (α − 1)/n ass → 0+.

Assumptions and statement of results can be found in Section 2. Section 3 contains
technical lemmas which will be useful in the proofs of theorems mentioned above. The
proofs themselves can be found in Sections 4 and 5. The main results of this paper were
announced in a brief note [7].

Finally, let us note that our functional framework is that of the LebesgueLp(Rn)

spaces. We use notation‖u‖p for theLp(Rn)-norms of functions andWk,p(Rn) for the
Sobolev spaces. The operator norm of an operatorA from Lq(Rn) to Lp(Rn) is denoted
by ‖A‖q,p. The constants independent of solutions considered and oft (these constants
may depend on the initial values) will be denoted by the same letterC, even if they may
vary from line to line. A standard reference book for facts from the theory of parabolic-
type equations and interpolation inequalities is [21]. More general function spaces of
Besov and Morrey type, interpolation spaces associated with the operatorL, etc., are
also suitable for studies of (the optimal conditions of) the solvability and asymptotics of
solutions of (1.1), cf. [3], [8].
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Probabilistic aspects of Lévy operatorsL and semigroups generated by them are
discussed in [2], [18], [20] and [26].

2. Main results

Our first goal is to prove the existence and uniqueness of the source solution to the
fractal Burgers equation in the critical case (1.12):r = 1 + (α − 1)/n and 1< α < 2,
i.e., the existence and uniqueness of a functionu satisfying

ut + (−	)α/2u+ b · ∇(u|u|(α−1)/n)= 0, (2.1)

u(x,0) = Mδ0(x), (2.2)

for M ∈ R. The initial condition (2.2) is attained in the sense of (narrow) convergence of
measures, i.e.,

lim
t→0

∫
Rn

u(x, t)ϕ(x)dx = Mϕ(0)

for each bounded continuous functionϕ ∈ C(Rn); in fact, it suffices to take boundedC∞
functions.

Note that we consider solutions which are not necessarily positive. The proof of
Theorem 2.1 is, however, much simpler for solutions of constant sign. The important
assumption is that the nonlinearityf (s) = s|s|(α−1)/n in the convection term is an odd
function. Therefore, it suffices to consider the caseM � 0; indeed,−u solves (2.1) with
−Mδ0 as the initial condition.

In the sequel, we will also encounter the integral formulation of (1.1)–(1.2), and
other nonlinear pseudodifferential equations like (2.1) and (2.4), below, via the Duhamel
formula

u(t) = e−tLu0 −
t∫

0

∇e−(t−τ )L · f (u(τ))dτ. (2.3)

Solutions of the integral equation (2.3) are calledmild solutions of (1.1). They turn out
to beweaksolutions enjoying some regularity properties, cf. Lemma 3.5, 3.6 and [6,
Section 3].

The existence of solutions of the Cauchy problem (1.1)–(1.2) and their properties
follow from [6, Theorem 3.1, Proposition 3.1, Corollary 3.1, Remark 3.1]. We note that
the Brownian part−	 of L is essential to guarantee regularity of the solutions of this
problem, while the jump component ofL, which in this paper is meant as the integral
term in (1.3), determines the large time behavior of solutions.

Recall that the Cauchy problem for the critical fractal Burgers equation (2.1) has
been studied in [3], where a result on the existence of the local in time solutions with
suitably small initial data in the space of measuresM(Rn) has been proved in the critical
case (1.12). The size assumption in [3, Proposition 6.1] was formulated in terms of
the quantity lim supt→0 t

(1−1/α)/r ‖e−t (−	)α/2
u0‖r , which can be viewed as a norm in an

interpolation space associated with the operator(−	)α/2. Since the purpose of [3] was
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to give a direct proof of local in time existence of solutions of (1.10) withu0 of weak
local regularity, we did not attempt to get optimal global existence results for large initial
data. The following result gives a complete solution to this problem. The proof can be
found in Section 4.

THEOREM 2.1. – The Cauchy problem(2.1)–(2.2) for the n-dimensional fractal
Burgers equation with1< α < 2, critical nonlinearity, and the initial data of the form
Mδ0,M > 0, has a unique solutionU which is positive and has the self-similar form

U(x, t) = t−n/αU
(
xt−1/α,1

)
.

It turns out that theuniqueself-similar solution in Theorem 2.1 determines the long
time behavior of solutions to a large class of Cauchy problems

ut +Lu+ b · ∇(u|u|(α−1)/n)= 0, (2.4)

u(x,0) = u0(x), (2.5)

for which the Lévy operatorL satisfies the following condition:
• The symbola of L has the form

a(ξ) = *|ξ |α + k(ξ), (2.6)

where* > 0, 1< α < 2, andk is a symbol of another Lévy operatorK such that

lim
ξ→0

k(ξ)

|ξ |α = 0. (2.7)

Without loss of generality (changing the spatial variablex) we can assume that
* = 1.

Remark2.1. – It is well known thata(ξ), as a symbol of an operator generating
a Lévy semigroup, satisfies the bound 0� a(ξ) � Ca(1 + |ξ |2), for all ξ ∈ R

n and
a constantCa. This fact, combined with the assumptions (2.6) and (2.7), gives the
inequality

0� a(ξ) � C
(|ξ |α + |ξ |2), (2.8)

for all ξ ∈ R
n, and another constantC. Similarly,

0 � k(ξ) � ε|ξ |α + C(ε)|ξ |2 (2.9)

holds for eachε > 0 and a constantC(ε).

Example2.1. – The assumptions (2.6) and (2.7) are fulfilled bymultifractal diffusion
operators

L = −a0	 +
k∑

j=1

aj (−	)αj /2

with a0 � 0, aj > 0, 1<αj < 2, andα = min1�j�k αj .
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Our second main result provides asymptotics of general solutions of the Lévy
conservation law with balanced nonlinearity. Its proof can be found in Section 5.

THEOREM 2.2. – Let u be a solution of the Cauchy problem(2.4)–(2.5) for the
n-dimensional Lévy conservation law with the Lévy diffusion operatorL satisfying
assumptions(2.6)–(2.7), and the initial datau0 ∈ L1(Rn) such that

∫
Rn u0(x)dx = M .

Then, for eachp ∈ [1,∞],
tn(1−1/p)/α∥∥u(t) −U(t)

∥∥
p

→ 0 as t → ∞, (2.10)

whereU = UM is the unique self-similar solution of the problem(2.1)–(2.2)with the
initial data Mδ0 constructed in Theorem2.1.

Remark2.2. – Forα = 1, Eq. (2.4) is linearut + Lu + b∇u = 0. Moreover, the
change of variablesx �→ x − tb allows us to remove the drift termb∇u. On the other
hand, combining Lemmata 3.2 and 3.3 below we obtain that the large time behavior of
solutions of the problemut +Lu = 0, u(x,0) = u0(x), is described byM(e−t (−	)1/2

).

Remark2.3. – We do not know what are counterparts of Theorems 2.1 and 2.2 for
0< α < 1 because the estimates of∇u from Lemma 3.6 below fail forα < 1. A similar
difficulty was already encountered in [3] where,α � 1, questions of uniqueness and
regularity of weak solutions to the fractal Burgers equationut + (−∂2/∂x2)α/2u +
uux = 0 were left unresolved.

Remark2.4. – For 1< r < 1+(α−1)/n, we expect a hyperbolic large time behavior,
but a proof of this conjecture will require new methods, completely different from those
in [10,14–17].

3. Technical lemmas

In this section we gather several technical tools which will be used in the proofs of
Theorems 2.1 and 2.2. Some of these estimates are borrowed from [6], but the core of
this section is a collection of estimates for rescaled solutions of certain equations, cf.,
e.g., [10,16,14,15,17,13].

We begin by recalling that, in view of the assumptions (1.3) and (2.6) imposed on the
symbola(ξ), the semigroup e−tL generated by the operator−L is positivity-preserving
and satisfies the decay estimates similar to those in [6, Section 2]:∥∥e−tL∥∥

1,p �Ct−n(1−1/p)/α, (3.1)∥∥∇e−tL∥∥
1,p �Ct−n(1−1/p)/α−1/α, (3.2)

for eachp ∈ [1,∞], all t > 0, and a constantC = Cp (cf. Lemma 3.4, below).
Moreover, the bound [6, (3.15)] guarantees that solutions to the nonlinear problem

(2.4)–(2.5) withu0 ∈ L1(Rn) satisfy the estimate

‖u(t)‖p � Ct−n(1−1/p)/α‖u0‖1, (3.3)

for all t > 0, eachp ∈ [1,∞], and a constantC = Cp.
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In what follows it is very important that the nonlinear semigroup associated with
the nonlinear problem (2.4)–(2.5) is an order-preserving contraction onL1(Rn). This
property is established as part of the next lemma the proof thereof can be found in [6,
(3.6), Proposition 3.1, Corollary 3.1].

LEMMA 3.1. – Let u, v be solutions of the Cauchy problem for Eq.(1.1) (or (2.4))
with the initial valuesu0, v0 ∈ L1(Rn), respectively.

(i) Then, for everyt � 0, ∥∥u(t) − v(t)
∥∥

1 � ‖u0 − v0‖1. (3.4)

(ii) If u0(x) � v0(x) a.e. inx, then

u(x, t) � v(x, t) a.e. inx, t. (3.5)

(iii) If, moreover,u0 ∈ L∞(Rn), then

ess infu0 � u(x, t) � ess supu0, a.e.x, t. (3.6)

Next two lemmas show how to approximate e−tLu0 by a multiple of the kernel
(e−t (−	)α/2

).

LEMMA 3.2. – Assume that the symbola(ξ) satisfies(2.6) and (2.7). For each
p ∈ [2,∞], andu0 ∈ L1(Rn),

lim
t→∞ tn(1−1/p)/α∥∥e−tLu0 − e−t (−	)α/2

u0
∥∥
p

= 0. (3.7)

Proof. –The tool here is the Hausdorff–Young inequality

‖v̂‖p � C‖v‖q , (3.8)

valid for every 1� q � 2� p � ∞ such that 1/p + 1/q = 1. Recall that

e−tLu0(x) = (2π)−n

∫
Rn

e−ta(ξ)+ixξû0(ξ)dξ.

By assumption (2.6), for eachε > 0 there existsδ > 0 such that, for all|ξ | < δ,∣∣a(ξ) − |ξ |α∣∣� ε|ξ |α. (3.9)

Hence, forp ∈ [2,∞], by the Hausdorff–Young inequality (3.8), we obtain∥∥e−tLu0 − e−t (−	)α/2
u0
∥∥q
p

�C

∫
Rn

∣∣e−ta(ξ) − e−t |ξ |α ∣∣q |û0(ξ)|q dξ

�C

∫
|ξ |<δ

. . . dξ +C

∫
|ξ |�δ

. . . dξ. (3.10)
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For |ξ | < δ, in view of (3.9), we bound the integrand on the right hand side of (3.10) by
the following quantity∣∣e−ta(ξ) − e−t |ξ |α ∣∣q |û0(ξ)|q �

∣∣ta(ξ) − t|ξ |α∣∣qe−ct |ξ |α‖u0‖q
1

� εCtq |ξ |αqe−ct |ξ |α‖u0‖q
1.

Hence, by a change of variables, the first term on the right hand side of (3.10) is bounded
from above by

εCt−n/α‖u0‖q
1

∫
Rn

|ξ |qαe−c|ξ |α dξ,

for all t > 0, and a constantC independent oft andε. The second term on the right hand
side of (3.10) is estimated directly, using the assumption (2.6), by∫

|ξ |�δ

e−qt |ξ |α dξ‖u0‖q
1.

It is easy to see that, for everyN > 0, this integral tends to 0 faster thant−N .
Sinceε > 0 was arbitrary, using the above estimates we conclude that (3.7) holds

true. ✷
LEMMA 3.3. – Assume thatu0 ∈ L1(Rn) and M = ∫

Rn u0(x)dx. Then, for each
p ∈ [1,∞],

lim
t→∞ tn(1−1/p)/α∥∥e−t (−	)α/2

u0 − M
(
e−t (−	)α/2)∥∥

p
= 0.

Proof. –This result is obtained from the inequality∥∥∥∥h ∗ g(·)−
(∫

Rn

h(x)dx
)
g(·)

∥∥∥∥
p

� C‖∇g‖p‖h‖L1(Rn,|x|dx) (3.11)

valid for eachp ∈ [1,∞], all h ∈ L1(Rn, |x|dx), g ∈ C1(Rn)∩W 1,1(Rn), and a constant
C = Cp independent ofg andh. This inequality is a particular case of a more general
result proved in [12].

To prove the Lemma we apply (3.11) withh(x) = u0(x) and g(x) = (e−t (−	)α/2
),

assuming first thatu0 ∈ L1(Rn, |x|dx). The general case ofu0 ∈ L1(Rn) can be handled
by an approximation argument. Details of such a reasoning are in [5, Corollaries 2.1
and 2.2]. ✷

The following consequence of Lemma 3.2 and 3.3 will be useful in the proof of
Theorem 2.2 forp = ∞.

COROLLARY 3.1. – Assume that the symbola of L satisfies(2.6) and (2.7). Letu0,
v0 ∈ L1(Rn) and

∫
Rn u0(x)dx = ∫

Rn v0(x)dx = M . Then,

lim
t→∞ tn/α

∥∥e−tLu0 − e−t (−	)α/2
v0
∥∥∞ = 0.
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Proof. –By the triangle inequality, we have∥∥e−tLu0 − e−t (−	)α/2
v0
∥∥∞ �

∥∥e−tLu0 − e−t (−	)α/2
u0
∥∥∞

+ ∥∥e−t (−	)α/2
u0 −M

(
e−t (−	)α/2)∥∥∞

+ ∥∥M(e−t (−	)α/2)− e−t (−	)α/2
v0
∥∥∞.

An application of Lemmas 3.2 and 3.3 concludes the proof.✷
Now, for λ > 0, let us consider the rescaled function

uλ(x, t) ≡ λnu
(
λx,λαt

)
, (3.12)

whereu is a solution to (2.4)–(2.5). Going back to (2.4), one easily checks thatuλ is a
solution of the problem

∂

∂t
uλ +Lλuλ + b · ∇(uλ|uλ|(α−1)/n)= 0,

uλ(x,0) = λnu0(λx) ≡ u0,λ(x). (3.13)

Here,Lλ is the rescaled Lévy operator defined by the symbolλαa(ξ/λ). In the next
lemma, we gather some estimates of the kernel(e−tLλ) of the linear semigroup e−tLλ

generated by−Lλ.

LEMMA 3.4. – Assume that the symbola(ξ) of the operatorL satisfies assumption
(2.6). Then, for everyp ∈ [1,∞], there exists a constantC independent ofλ and t such
that ∥∥e−tLλu0

∥∥
p

�Ct−n(1−1/p)/α‖u0‖1, (3.14)∥∥∇e−tLλu0
∥∥
p

�Ct−n(1−1/p)/α−1/α‖u0‖1, (3.15)∥∥∇(b · ∇e−tLλu0
)∥∥

p
�Ct−n(1−1/p)/α−2/α‖u0‖1, (3.16)

for all t > 0.

Proof. –Note that under assumption (2.6) the symbol of the operatorLλ satisfies
λαa(ξ/λ) = |ξ |α + λαk(ξ/λ). Now the reasoning is based on the crucial decomposition
of the kernels of semigroups(

e−tLλ
)= (

e−t (−	)α/2) ∗ (e−tKλ
)
, (3.17)

where Kλ is the Lévy operator corresponding to the symbolλαk(ξ/λ). Since
‖(e−tKλ)‖1 = 1, it follows immediately from the Young inequality and from the basic
estimates of(e−t (−	)α/2

) that∥∥(e−tLλ
)∥∥

p
� C

∥∥(e−t (−	)α/2)∥∥
p

∥∥(e−tKλ
)∥∥

1 � Ct−n(1−1/p)/α.

The proof of (3.15) is analogous but (3.17) has to be replaced by

∇(e−tLλ
)= ∇(e−t (−	)α/2) ∗ (e−tKλ

)
.
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The bound (3.16) is obtained in the same manner.✷
In what follows we will need some estimates ofuλ which are uniform with respect

to λ � 1.

LEMMA 3.5. – Assume thatu is a solution to (2.4)–(2.5) with the initial data
u0 ∈ L1(Rn), and the rescaled functionuλ is given by(3.12). Then, for everyp ∈ [1,∞],
there exists a constantC, independent ofλ, t , such that

‖uλ(t)‖p � Ct−n(1−1/p)/α‖u0‖1, (3.18)

for all λ > 0, t > 0.

Proof. –This follows from (3.3) by a simple change of variables:

‖uλ(t)‖p = λn(1−1/p)∥∥u(λαt
)∥∥

p
� Cλn(1−1/p)(λαt

)−n(1−1/p)/α‖u0‖1

=Ct−n(1−1/p)/α‖u0‖1.

for all λ > 0, t > 0, and a constantC independent ofλ, t andu0. ✷
LEMMA 3.6. – Under the assumptions of Lemma3.5, for everyp ∈ [1,∞], there

exists a constantC independent ofλ, t, but, in general, dependent on the initial datau0,
such that

‖∇uλ(t)‖p � Ct−n(1−1/p)/α−1/α. (3.19)

Proof. –To obtain this bound for∇uλ, we representuλ in the mild form analogous to
that in (2.3), but now for the rescaled Eq. (3.13). Next, applying the gradient∇ to this
integral equation, we obtain

∇uλ(t + 1) = ∇e−tLλuλ(1) −
t∫

0

∇e−(t−τ )Lλ
(
b · ∇(uλ|uλ|(α−1)/n))(τ + 1)dτ. (3.20)

Recall that, by (3.15) and (3.18), there is a constantC > 0 such that, for allλ > 0 and
t > 0, ∥∥∇e−tLλuλ(1)

∥∥
p

� Ct−n(1−1/p)/α−1/α‖u0‖1.

Next, for τ ∈ [0,1], using (3.16) and (3.18), we estimate theLp-norm of the integrand
in (3.20) by the following quantity∥∥∇(b · ∇(e−(t−τ )Lλ

))∥∥
1

∥∥uλ(τ + 1)
∥∥(α−1)/n+1
p((α−1)/n+1)

� C(t − τ)−2/α(τ + 1)−n((α−1)/n+1−1/p)/α � C(t − τ)−2/α,

for all t > 1, and a constantC independent oft andλ. If τ ∈ [1, t], we proceed as follows∥∥∇e−(t−τ )Lλ
(
b · ∇(uλ|uλ|(α−1)/n))(τ + 1)

∥∥
p

� C(t − τ)−1/α‖uλ(τ + 1)‖(α−1)/n
∞ ‖∇uλ(τ + 1)‖p

� C(t − τ)−1/α‖∇uλ(τ + 1)‖p.



P. BILER ET AL. / Ann. I. H. Poincaré – AN 18 (2001) 613–637 625

Here, we have used the following consequence of (3.18):

‖uλ(τ + 1)‖∞ � C(τ + 1)−n/α � C.

Hence, computing theLp-norm of the expressions in (3.20), and using the above
estimates for the integrand in the second term on the right hand side of (3.20), we obtain

‖∇uλ(t + 1)‖p �C
(
t−n(1−1/p)/α−1/α + t−2/α+1 + (t − 1)−2/α+1)

+ C

t∫
1

(t − τ)−1/α‖∇uλ(τ + 1)‖p dτ.

Since−2/α+1> −1 forα > 1, we may apply the generalized singular Gronwall lemma
(cf., e.g., [9, Lemma 1.1]) fort > 1 to prove the bound‖∇uλ(t + 1)‖p � C(t) with a
continuous functionC on [0,∞), uniformly with respect toλ > 0. However, by a change
of variables, we have

‖∇uλ(t + 1)‖p = λn(1−1/p)+1∥∥∇u
(
λα(t + 1)

)∥∥
p
.

Thus, fixingt = t0 > 0 and choosingλ = ( t
t0+1)

1/α, we obtain

‖∇u(t)‖p � Ct−n(1−1/p)/α−1/α, (3.21)

for all t > 0, and a constantC independent oft . Finally, observe that the inequality
(3.21) allows us to obtain, proceeding as for (3.18), the bound (3.19) for∇uλ. ✷

Next, we will establish some compactness properties of the family of rescaled
solutions{uλ}.

LEMMA 3.7. – There exist a sequenceλk → ∞ and a functionū(x, t) such that, for
everyη > 0, 1< p < ∞, 0< t1 < t2 < ∞, and each bounded domainG ⊂ R

n,

uλk
→ ū in C

([t1, t2];W−2−η,p(G)
)
, (3.22)

∂

∂t
uλk

(t) → ∂

∂t
ū(t) in D′((0,∞)× R

n
)
. (3.23)

Moreover, the convergence

uλk
(t) → ū(t) in L

p
loc

(
R

n
)

(3.24)

holds for everyp ∈ [1,∞) and eacht > 0, and

uλk
→ ū pointwise a.e. inRn × (0,∞). (3.25)

Proof. –The estimates (3.18) and (3.19) imply that the families{uλ}λ>0 and{∇uλ}λ>0

are uniformly bounded inL∞
loc((0,∞);Lp(Rn)) for every p ∈ [1,∞]. The same

conclusion holds true for{b · ∇(uλ|uλ|(α−1)/n)}λ>0 in view of the inequality∥∥b · ∇(uλ|uλ|(α−1)/n)(t)∥∥
p

� C‖∇uλ(t)‖p‖uλ(t)‖(α−1)/n
∞ .
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Moreover, using Eq. (3.13) we deduce that{ ∂
∂t
uλ}λ>0 is uniformly bounded in

L∞
loc((0,∞);W−2,p(Rn)). Taking into account thatWs,p(G) is compactly embedded

in Wr,p(G) for every bounded domainG of R
n and r < s, and applying classical

compactness argument for vector-valued functions (cf. [25, Corollary 4, p. 85]), we see
that {uλ}λ�1 is relatively compact inC([t1, t2];W−2−η,p(G)) for eachG, η > 0 and
all 0 < t1 < t2 < ∞. So, there exists a sequenceλk → ∞ and a functionū such that
(3.22) holds, as well as (3.23). As a consequence of (3.18) and (3.19) we obtain also that
{uλ(t)}λ�1 is relatively compact inLp

loc(R
n) for everyp ∈ [1,∞) and eacht > 0. Then

the diagonal method allows us to extract a sequenceλk → ∞ such that (3.24) is valid.
Again, extracting a subsequence by the diagonal method leads to a subsequence (still
denoted by{λk}k∈N) such that the last conclusion (3.25) of Lemma 3.7 is satisfied.✷

LEMMA 3.8. – The functionū constructed in Lemma3.7 satisfies Eq.(2.1) in the
sense of distributions. Moreover,ū ∈ L∞((0,∞); L1(Rn)) and‖ū(t)‖1 � ‖u0‖1 for all
t > 0.

Proof. –In order to pass to the weak limit in Eq. (3.13), we multiply it by an arbitrary
test functionϕ ∈ C∞

c (Rn) and integrate overRn:∫
Rn

∂

∂t
uλ(x, t)ϕ(x)dx +

∫
Rn

Lλuλ(x, t)ϕ(x)dx

−
∫
Rn

(
uλ|uλ|(α−1)/n)(x, t)b · ∇ϕ(x)dx = 0. (3.26)

It follows from (3.23) that along the sequenceλk → ∞∫
Rn

∂

∂t
uλ(x, t)ϕ(x)dx →

∫
Rn

∂

∂t
ū(x, t)ϕ(x)dx.

In order to pass to the limit in the second term in (3.26), we use the decomposition (2.6)
which implies∫

Rn

Lλuλ(x, t)ϕ(x)dx =
∫
Rn

(−	)α/2uλ(x, t)ϕ(x)dx +
∫
Rn

Kλuλ(x, t)ϕ(x)dx.

In view of (3.22), the first integral term on the right hand side tends to
∫

Rn(−	)α/2ū(x, t)

× ϕ(x)dx asλk → ∞. To deal with the second term, we use the Schwarz inequality,
Lemma 3.5, and (2.9) to get

∣∣∣∣ ∫
Rn

Kλuλ(x, t)ϕ(x)dx
∣∣∣∣�C‖uλ(t)‖2

( ∫
Rn

∣∣λαk(ξ/λ)ϕ̂(ξ)
∣∣2 dξ

)1/2

�Ct−n/(2α)(ε2∥∥(−	)α/2ϕ
∥∥2

2 + λα−2C2(ε)‖	ϕ‖2
2

)1/2
.

Now, sinceε was arbitrary, we conclude that
∫

Rn Kλuλ(x, t)ϕ(x)dx → 0 asλk → ∞.



P. BILER ET AL. / Ann. I. H. Poincaré – AN 18 (2001) 613–637 627

We can apply the Dominated Convergence Theorem and (3.25) in the nonlinear term,
because, by (3.18),

|uλ(x, t)|(α−1)/n+1|b · ∇ϕ(x)| � Ct−1−(n−1)/α|b · ∇ϕ(x)|,

with C independent ofλ. This proves that̄u satisfies the fractal Burgers equation (2.1)
in the sense of distributions.

Now let us observe that by (3.18),‖uλ(t)‖1 � ‖u0‖1. Consequently, applying the
Fatou Lemma to the sequence of functions|uλk

(x, t)| and using (3.25) we deduce
‖ū(t)‖1 � ‖u0‖1 for all t > 0. Therefore, it follows that̄u ∈ L∞((0,∞);L1(Rn)). ✷

LEMMA 3.9. – For each functionϕ ∈ C∞
c (Rn) with compact support,∫

Rn

ū(x, t)ϕ(x)dx → Mϕ(0) ast → 0. (3.27)

Proof. –Observe that, for each smooth functionϕ ∈ C∞
c (Rn) with compact support,

the estimate

‖Lλϕ‖∞ � C

∫
Rn

(|ξ |α + |ξ |2)|ϕ̂(ξ )|dξ (3.28)

holds uniformly in λ � 1. Indeed,Lλϕ(x) = ∫
Rn λ

αa(ξ/λ)ϕ̂(ξ)eixξ dξ , so that the
inequality (3.28) follows from the bound (2.8) on the symbol ofL.

We multiply (3.13) by any functionϕ ∈ C∞
c (Rn) and integrate overRn × (s, t),

0< s < t < ∞. We are allowed to integrate by parts, which leads to∣∣∣∣∣
∫
Rn

uλ(x, t)ϕ(x)dx −
∫
Rn

uλ(x, s)ϕ(x)dx

∣∣∣∣∣
�

t∫
s

∫
Rn

|uλ(x, τ)||Lλϕ(x)|dx dτ (3.29)

+
t∫

s

∫
Rn

|uλ(x, τ)|(α−1)/n+1|b · ∇ϕ(x)|dx dτ

� C1|t − s|‖Lλϕ‖∞‖u0‖1 +C2|t − s|1/α‖∇ϕ‖∞,

where the constantsC1,C2 are independent ofλ � 1 and 0< s < t < ∞. Here we have
used (3.18) withp = 1, and (3.28), in the first term on the right hand side of (3.29), and
(3.18) withp = (α − 1)/n + 1, in the second term.

Passing to the limits → 0 in (3.29), we see that estimate (3.29) holds fors = 0, too.
Hence, lettingλk → ∞ in (3.29) withs = 0, we obtain∣∣∣∣∣

∫
Rn

ū(x, t)ϕ(x)dx −Mϕ(0)

∣∣∣∣∣� Ct + Ct1/α.



628 P. BILER ET AL. / Ann. I. H. Poincaré – AN 18 (2001) 613–637

Now the passage to the limitt → 0 gives the desired result (3.27).✷
LEMMA 3.10. – The relation∫

|x|�R

|uλ(x, t)|p dx → 0 asR → ∞

holds for everyt > 0, uniformly with respect toλ � 1.

Proof. –Let us fixψ ∈ C∞(Rn) such thatψ(x) = 0 for |x| � 1, andψ(x) = 1 for
|x| � 2. For simplicity of notation we shall writeψR(x) = ψ(x/R). It suffices to prove
that

‖uλ(t)ψR‖p → 0 asR → ∞, (3.30)

uniformly with respect toλ � 1 and 0< t1 � t � t2 < ∞. Without loss of generality,
we may assume thatuλ is nonnegative. Indeed, by the pointwise comparison principle
for solutions of (1.1) (cf. Lemma 3.1), we have|uλ(x, t)| � vλ(x, t) for almost all
x ∈ R

n and t � 0, wherevλ is the solution of (3.13) with the initial data|u0,λ|. Hence
‖uλ(t)ψR‖p � ‖vλ(t)ψR‖p.

First considerp = 1. Multiplying Eq. (3.13) foruλ by ψR and integrating overRn we
have

d

dt

∫
Rn

uλ(x, t)ψR(x)dx

= −
∫
Rn

Lλuλ(x, t)ψR(x)dx −
∫
Rn

b · ∇(uλ|u|(α−1)/n)(x, t)ψR(x)dx. (3.31)

Applying the reasoning in the proof of (3.28) to the functionψR −1∈ C∞
c (Rn) we obtain

that, forλ � 1,

‖LλψR‖∞ = ‖Lλ(ψR − 1)‖∞ � C

∫
Rn

(
R−α|ξ |α +R−2|ξ |2)|(ψR − 1)̂ (ξ )|dξ,

and, in view of (3.18),∣∣∣∣∣
∫
Rn

Lλuλ(x, t)ψR(x)dx

∣∣∣∣∣� ‖LλψR‖∞
∫
Rn

|uλ(x, t)|dx � C
(
R−α +R−2)‖u0‖1.

The integration by parts and (3.18) give∣∣∣∣∣
∫
Rn

b · ∇(uλ|u|(α−1)/n)(x, t)ψR(x)dx

∣∣∣∣∣� ‖b · ∇ψR‖∞
∫
Rn

|uλ(x, t)|(α−1)/n+1 dx

�CR−1t−1+1/α.

Moreover, a change of variables and properties ofψR imply that
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‖u0,λψR‖1 =
∫
Rn

|u0(x)|ψ
(

x

λR

)
dx �

∫
|x|�λR

|u0(x)|dx.

Thus the integration of (3.31) over[0, t], and the application of the above inequalities to
the resulting equation, lead to the estimate∣∣∣∣∣

∫
Rn

uλ(x, t)ψR(x)dx

∣∣∣∣∣� C

∫
|x|�λR

|u0(x)|dx +C
(
R−α +R−2)+ CR−1t−1/α,

for all λ, t,R, and a constantC. Sinceu0 ∈ L1(Rn), the right hand side tends to 0 as
R → ∞, uniformly with respect toλ � 1. Hence, (3.30) holds true forp = 1.

To prove the conclusion of Lemma 3.10 in the case 1< p < ∞, it suffices to use
the elementary interpolation inequality‖v‖p � ‖v‖1/p

1 ‖v‖1−1/p∞ with v = uλ(t)ψR , and
the bound‖uλ(t)‖∞ � Ct−n/α valid for all t, λ, and a constantC, already proved in
(3.18). ✷

4. Self-similar source solutions – proof of Theorem 2.1

The proof will follow the plan:
(i) To establish the existence of source solutions we apply an approximation argument

based on solvability results proved in [6]. Namely, we approximate Eq. (2.1) by its
parabolic regularization

ut +Lu+ b · ∇(u|u|(α−1)/n)= 0,

whereL = −ε	 + (−	)α/2 for small ε > 0. At the same time the singular initial data
(2.2) are also approximated by smooth positive functionsuε

0 with compact supports
shrinking to{0}, uε

0 ∈ L1(Rn) ∩L∞(Rn), and
∫

Rn u
ε
0(x)ϕ(x)dx → Mϕ(0) asε → 0.

(ii) For the proof of uniqueness of these solutions we adopt the ideas from [15,
Section 3] and [10, proof of Theorem 1], where uniqueness of source solutions has been
proved for an equation with−	 as the diffusion operator and the convection term similar
to that in (2.2). The first step is to show the result for nonnegative solutions.

(iii) Finally, the uniqueness result is extended to solutionsU of arbitrary sign.
(i) Proof of existence.We take asuε

0 the rescaled function 0� ψ ∈ C∞
c (Rn) with∫

Rn ψ(x)dx = 1, that is

uε
0(x) = ε−nMψ

(
ε−1x

)
. (4.1)

In this setting, a unique, mild solutionuε has been constructed in [6, Section 3]. Now we
prove the convergence of approximating solutionsuε to a self-similar source solutionU .

First, for each 1� p � ∞ andt > 0, the approximationsuε satisfy the estimates∥∥uε(t)
∥∥
p

� Ct−n(1−1/p)/α∥∥uε
0

∥∥
1, (4.2)

following from (3.18), see also [6, Corollary 3.2]. Note that the constantC is
independent ofε here, since the cited result on the decay of solutions is obtained from
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the decay of the semigroup e−t (−	)α/2
, and not that of e−tL (the latter is, in fact, better due

to e−tL = eεt	e−t (−	)α/2
, cf. the proof of Lemma 3.4). Second, sinceuε

0 are uniformly
bounded inL1(Rn) asε → 0 the gradient estimate∥∥∇uε(t)

∥∥
p

� Ct−n(1−1/p)/α−1/α (4.3)

holds true also for each 1� p � ∞ and a constantC independent ofε. This is
a particular case of (3.20) in Lemma 3.6. Hence, we infer from the compactness
Lemma 3.7 that there exists a limit functionU = limk→∞ uεk such that

U ∈ C
([t1, t2];W−2−η,2(Rn)

)
for all 0< t1 < t2 < ∞ and eachη > 0.

Then, by (4.2)–(4.3) and an evident extension of standard regularity theory for
parabolic equations in [21, Chapter 3], we will see thatU ∈ C((0,∞);L1(Rn))

∩L∞
loc((0,∞);L∞(Rn)) and furtherU ∈ C((0,∞);Lp(Rn))∩L∞

loc((0,∞); W 2,p(Rn)).
In the last step of the existence proof we need to check thatU assumes the initial data

(2.2) in the sense of measures; but this is a direct consequence of Lemmas 3.9 and 3.10.
(ii) Proof of uniqueness for positive initial data.Since the convection is unidirectional,

the reasoning is, in principle, one-dimensional. Indeed, we may suppose, with no loss
of generality, thatRn � b = (0, . . . ,1). DenoteR

n � x = (x1, . . . , xn−1, xn) by (y, xn),
wherey = (x1, . . . , xn−1) andxn ∈ R, so that (2.1) becomes

ut + (−	)α/2u+ ∂

∂xn

(
u|u|(α−1)/n)= 0. (4.4)

We begin by proving that for twononnegativesolutionsU andŪ of the problem (4.4),
(2.2), the equality

xn∫
−∞

U(y, s, t)ds =
xn∫

−∞
�U(y, s, t)ds (4.5)

holds for ally ∈ R
n−1, andxn ∈ R; differentiation will imply thatU and �U coincide.

The key observation is that both functions

Ũ(y, t) =
∞∫

−∞
U(y, s, t)ds and �̃U(y, t) =

∞∫
−∞

U(y, s, t)ds

satisfy thelinear equation

vt + (−	)α/2v = 0 (4.6)

in R
n−1, with the initial dataδ0 = δ0(y), y ∈ R

n−1. Indeed, the integration with
respect toxn and the operator(−	)α/2 commute, which can be seen from the Fourier

representation and the Lévy–Khintchine formula (1.3). Thus,Ũ and �̃U are both equal

to the multiple of(n − 1)-dimensional fundamental solutionpα(y, t) ≡ e−t (−	)
α/2
n−1δ0(y)
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of (4.6):

Ũ(t) = �̃U(t) = Mpα(t). (4.7)

Now consider an auxiliary functionw defined, forx = (y, xn), t andr > 0, by

w(y, xn, t; r) ≡
(
U(y, xn, t) − 1

2r
ψ(y, t; r)

)
1[−r,r](xn), (4.8)

whereψ(y, t; r) ≡ ∫ r

−r U(y, s, t)ds − pα(y, t). Observe thatw(y, ·, t; r) is supported
in the interval[−r, r] for all y ∈ R

n−1 and t > 0, and
∫∞
−∞ w(y, s, t; r)ds = pα(y, t).

Analogous properties are satisfied for the functionw̄ defined as in (4.8) withU replaced
by �U .

It is a consequence of Lemma 3.10 that∫
Rn−1

∫
|s|>r

|U(y, s, t)|dy ds → 0 ast → 0.

Thusψ(y, t; r) tends to 0 inL1(Rn−1
y ), ast → 0, because

‖ψ(·, t; r)‖1 =
∫

Rn−1

∣∣∣∣ ∫
|s|>r

u(y, s, t)ds
∣∣∣∣dy. (4.9)

We consider now solutionswk andw̄k, k = 1,2,3, . . . , of the fractal Burgers equation
(4.4) with the initial datawk(y, xn,1/k; r) and w̄k(y, xn,1/k; r), respectively. These
functions satisfy (by (4.7))

∞∫
−∞

wk(y, s, t; r)ds =
∞∫

−∞
wk(y, s,1/k; r)ds = pα(y,1/k) =

∞∫
−∞

w̄k(y, s, t; r)ds.

Define the (one-dimensional) potentials ofwk andw̄k by

zk(y, xn, t; r) =
xn∫

−∞
wk(y, s, t; r)ds,

z̄k(y, xn, t; r) =
xn∫

−∞
w̄k(y, s, t; r)ds.

The support properties ofw(y, ·,1/k; r), w̄(y, ·,1/k; r) imply that, for each(y, xn) ∈
R

n andr > 0,

zk(y, xn − 2r,0; r) � z̄k(y, xn,0; r) � zk(y, xn + 2r,0; r).
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The crucial observation is thatzk andz̄k are nondecreasing with respect toxn and solve
the equation

zt + (−	)α/2z +
(

∂

∂xn
z

)1+(α−1)/n

= 0.

From the comparison principle in Lemma 3.1, this time for the functionsw = ∂z/∂xn,
we obtain the inequalities

zk(y, xn − 2r, t; r) � z̄k(y, xn, t; r) � zk(y, xn + 2r, t; r).
Passing to the limitk → ∞ in the above inequalities we get

xn−2r∫
−∞

U(y, s, t)ds �
xn∫

−∞
�U(y, s, t)ds �

xn+2r∫
−∞

U(y, s, t)ds. (4.10)

The passage to the limit in (4.10) is justified by noting that it suffices to show that∥∥wk(·, ·, t; r) −U(t + 1/k)
∥∥

1 → 0 ask → ∞, (4.11)

and the corresponding property forw̄k, �U . By theL1-contraction property of solutions
u, ū of (1.1): ‖u(t) − ū(t)‖1 � ‖u(0) − ū(0)‖1, proved in [6, (3.6)], we need to check
(4.11) fort = 0 only. That means∥∥∥∥U(y, xn,1/k)

(
1− 1[−r,r](xn)

)+ 1

2r
ψ(y,1/k)1[−r,r](xn)

∥∥∥∥
1
→ 0 ask → ∞.

The norm of the first term is∫
Rn−1

∫
|s|>r

∣∣w(y, s,1/k; r)∣∣dy ds,

which tends to 0 ask → ∞ by the definition of the source solution. The norm of the
second term is bounded from above by‖ψ(·,1/k; r)‖1 (this term is inL1(Rn−1

y )) which
also tends to 0 ask → ∞, cf. (4.9). Since (4.10) holds for everyr > 0, we pass to the
limit r → 0 and arrive at (4.5). This concludes the proof of uniqueness of nonnegative
source solutions of (2.1)–(2.2).

(iii) Proof of uniqueness for initial data of arbitrary sign.SinceU = U+ − U− and
{U(t)}t>0 is compact in the sense of narrow convergence of measures, both families
{U+(t)}t>0 and {U−(t)}t>0 also are. Thus, for each sequence ofτ > 0 tending to 0,
there exists a subsequenceτj → 0 and two finite nonnegative measuresν+, ν− such that
Mδ0 = ν+−ν− andU+(τj ) → ν+, U−(τj ) → ν− in the sense of measures asj → ∞. By
Lemma 3.10, the measuresν+, ν− are supported on{0}. Consequently, they are multiples
of the Dirac measureδ0.

Consider a sequencemj of nonnegative functions inC∞
c (Rn) converging toMδ0, for

instance defined as in (4.1) withε = 1/j , j = 1,2,3, . . . . Let gj andhj be the solutions
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of (4.4) with the initial data att = 0 equal toU+(τj ) andU−(τj ) + mj , respectively. It
follows from the comparison principle in Lemma 3.1, oddness off (s) = s|s|(α−1)/n and
uniqueness of solutions (3.4), that

0� U+(t + τj ) � gj (t), 0� U−(t + τj ) � hj(t). (4.12)

The functionsgj andhj solve the problem (4.4), (2.2) with the initial data inL1(Rn) ∩
L∞(Rn). The proof that 0� gj and 0� hj converge to some positive functionsg andh
which solve (2.1) in the sense of distributions, consists of the steps essentially described
above for the approximationsuε of U . Since the necessary modifications are evident, we
skip the details.

The limit functionsg andh take on the initial dataMδ0 in the sense of measures
which is again based on the Lemma 3.10. Therefore,g andh arepositivesolutions of
the problem (4.4), (2.2), so the first part of the proof applies, andg ≡ h. Passing to the
limit j → ∞ in (4.12) we have

U+(t) + U−(t) � g(t) = h(t),

and lettingt tend to 0

Mδ0 + ν− � Mδ0,

that is,ν− = 0. To conclude, observe thatU− (as well asU+) is a nonnegativesubsolution
of (4.4) with 0 as the initial value

∂

∂t
U− + (−	)α/2U− + ∂

∂xn

(
U−|U−|(α−1)/n)� 0.

This can be seen from the Kato–Beurling–Deny inequalities, cf. [11, (1.3.1) and (1.3.2)].
Indeed, we have

L(|v|) � v

|v|L|v|
in the sense of distributions (the precise meaning of this inequality is:〈L1/2ϕ,L1/2|v|〉 �
〈ϕ, v|v|−1Lv〉 for each 0� ϕ and v in the domain of the quadratic form onL2(Rn)

associated withL). Consequently, we get

L(U−) = 1

2

(
L(|U |)−LU

)
� 1

2

(
U

|U |L(U)−L(U)

)
= (sgnU−)LU,

and, similarly,L(U+) � (sgnU+)LU . Then, taking into account the oddness of the
nonlinear term, it follows that

∂

∂t
(U−) +LU− + ∂

∂xn

(
U−|U−|(α−1)/n)� 0

in the sense of distributions onRn × (0,∞).
Then 0� v(y) = ∫∞

−∞ U−(y, xn)dxn is a subsolution of the linear equation (4.6) in
R

n−1 with 0 as the initial value, soU− ≡ 0. Therefore,U = U+, and, by the first part of
the proof,U = UM . ✷
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Remark4.1. – The self-similar solutionU decays algebraically in the space variable
x, so that |U(x,1)| � C(1 + |x|)−(n+α), cf. [20] for related estimates ofpα(t) and
generalizations for e−tL. This is, of course, in contrast with the Gaussian decay ofU

in x for (1.4).

5. Self-similar asymptotics – proof of Theorem 2.2

The crucial observation in the proof of Theorem 2.2 is that the investigation of the
asymptotic behavior of a solutionu can be reduced to studying the convergence of the
family {uλ}λ>0 asλ → ∞. Indeed, if we note that

uλ(x,1) −U(x,1) = λn
(
u(λx,λα)− U(λx,λα)

)
,

then choosingλα = t we have∥∥uλ(1) −U(1)
∥∥
p

= λn(1−1/p)∥∥u(λα)− U(λα)
∥∥
p

= tn(1−1/p)/α∥∥u(t) −U(t)
∥∥
p
. (5.1)

Thus, the convergence in theLp-norm ofuλ(x,1) to U(x,1) asλ → ∞ is equivalent to
(2.10). Of course, the same is true, if we replacet = 1 by any fixed t0 > 0.

From this point on, the proof is based on lemmas proved in Section 3.
(i) First, using estimates of the family{uλ}λ�1 uniform with respect toλ from

Lemma 3.5 and 3.6 and compactness arguments from Lemma 3.7, we findū and
a sequenceλk → ∞ such that (3.22)–(3.25) hold true. By Lemma 3.8, the functionū

satisfies the Eq. (2.1) in the sense of distributions.
(ii) Next, combining Lemmatas 3.9 and 3.10, we arrive atū(x,0) = Mδ0. This

implies, by the uniqueness ofU = UM proved in Theorem 2.1, that̄u(x, t) = U(x, t)

anduλ → U asλ → ∞.
(iii) Finally, Lemma 3.10 and (3.27) imply that the convergence ofuλ(t) towardU(t)

takes place not only in the local or weak sense (cf. Lemma 3.7), but actually inLp(Rn)

for each 1� p < ∞.
The proof of (2.10) forp = ∞ requires another argument involving the integral

equation (2.3). Recall that
∫

Rn u(x, t)dx = M andU = UM is the corresponding source
solution of (2.2). A calculation involving (2.3) yields the following identity

u(t + 1) −U(t + 1) = e−tL(u(1) − U(1)
)

−
t∫

0

b · ∇e−(t−τ )L(u|u|(α−1)/n −U |U |(α−1)/n)(τ + 1)dτ. (5.2)

Since
∫

Rn(u(x,1) − U(x,1))dx = 0, it follows from Corollary 3.1 that

tn/α
∥∥e−tL(u(1) −U(1))

∥∥∞ → 0 ast → ∞.

We split the integration range with respect toτ in the second term on the right hand
side of (5.2) into[0, t/2] and[t/2, t]. For τ ∈ [0, t/2] theL∞-norm of the integrand is
bounded by
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∥∥u(τ + 1) − U(τ + 1)

∥∥
1

× (‖u(τ + 1)‖(α−1)/n
∞ + ‖U(τ + 1)‖(α−1)/n

∞
)

� C(t − τ)−n/α−1/ατ−1+1/α∥∥u(τ + 1) − U(τ + 1)
∥∥

1. (5.3)

Hence, by the Lebesgue Dominated Convergence Theorem and (2.10) withp = 1, we
have

tα/n

∥∥∥∥∥
t/2∫
0

b · ∇e−(t−τ )L(u|u|(α−1)/n −U |U |(α−1)/n)(τ + 1)dτ

∥∥∥∥∥∞

� Ctn/α
t/2∫
0

(t − τ)−n/α−1/ατ−1+1/α∥∥u(τ + 1) − U(τ + 1)
∥∥

1 dτ

� C

1/2∫
0

(1− s)−n/α−1/αs−1+1/α∥∥u(ts + 1) −U(ts + 1)
∥∥

1 ds → 0

ast → ∞.
We proceed analogously with the integral on the right hand side of (5.2) for

τ ∈ [t/2, t]. However, in this case, it is necessary to modify the inequality (5.3)
in the following way. By the Hölder inequality, for everyp,q ∈ [1,∞] satisfying
1/p + 1/q = 1, we have theL∞-norm of the integrand in (5.2) bounded from above
by ∥∥b · ∇(e−(t−τ )L)∥∥

q

∥∥u(τ + 1) −U(τ + 1)
∥∥
p

× (‖u(τ + 1)‖(α−1)/n
∞ + ‖U(τ + 1)‖(α−1)/n

∞
)

� C(t − τ)−n/(pα)−1/α(τ + 1)−1+1/α−n(1−1/p)/α

× ((τ + 1)n(1−1/p)/α‖u(τ + 1) − U(τ + 1)‖p

)
.

From now on, we repeat the reasoning in the caseτ ∈ [0, t/2] providedq ∈ (1,∞) is
chosen so that−n/(pα) − 1/α > −1, i.e.,p > n/(α − 1). This concludes the proof of
Theorem 2.2. ✷

Remark5.1. – Assumption (2.6) on the operatorL can be replaced by weaker
assumptions

lim
ξ→0

a(ξ)

|ξ |α ∈ (0,∞) and inf
ξ∈Rn

a(ξ)

|ξ |α > 0.

In this case the proof of the crucial decay estimates (3.2) and (3.15) in Lemma 3.4
necessitates a supplementary smoothness assumption ona for ξ �= 0.

Remark5.2. – The result in Theorem 2.2 remains true if we the nonlinear termf (s)

in Eq. (1.1) just enjoys the correct critical asymptotics at 0, that is, if it satisfies the
condition lims→0f (s)/(s|s|(α−1)/n) ∈ (0,∞).
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