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ABSTRACT. — Nonlocal conservation laws of the form
ur+Lu+V- f(u)=0,

where —£ is the generator of a Lévy semigroup @rt(R"), are encountered in continuum
mechanics as model equations with anomalous diffusion. They are generalizations of the classic
Burgers equation. We study the critical case when the diffusion and nonlinear terms are balance
e.g.L~ (—A)Y2 1<a <2, f(s)~s|s"" L, r =1+ (¢ — 1)/n. The results include decay
rates of solutions and their genuinely nonlinear asymptotic behavior ag tiemels to infinity,

determined by self-similar source solutions.
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1. Introduction and motivation

The goal of this paper is to study the critical self-similar asymptotics ofLney
conservation lawsvhich can be written in the form

ur+Lu+V- f(u)=0, (1.2)

wherex e R”, t >0, u:R" x R — R, f:R — R"is a nonlinear term, and L is the
generator of a symmetric, positivity-preserving, Lévy operator semigrotfn e> 0,
on L1(R").
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The initial condition
uo(x) = u(x,0), (1.2)

which supplements (1.1), is assumed to beLa(R") function. If ug(x) > 0 is positive
a.e. with [, uo(x) dx < oo, then (1.1) can model an evolution densitiesu, i.e.
u(x,1) =20, [pou(x,1)dx = [, uo(x)dx < oo forall > 0.

The asymptotic behavior of solutions of the Cauchy problem (1.1)—(1.2) in the
noncritical cases has been studied in [6,5].

The operatot’ is a pseudodifferential operator defined by the symbela(§) > 0,
Lv(&) = a(€)v(£). The function ¢ is positive-definite, so the symbal&) can be
represented, as in [6], by the Lévy—Khintchine formula in the Fourier variables (cf. [2,
Chapter I, Theorem 1], or [18, Theorem B.2])

a(§) =ib& +q(&) + /(1— e —in& Ly <y () T (dy). (1.3)
Rn

The fundamental nature of the operatbiis clear from the perspective of probability
theory. It represents the most general form of generator of a stochastically continuou
Markov process with independent and stationary increments. This fact was our basi
motivation for the development of the theory presented below and in other related paper:
We assume (with no loss of generality) that O, i.e., there is no drift; indeed, a shift
of thex variable removes the drift tertn The functiong (§) =>"" ,_; gx&,6¢ In (1.3) is
a quadratic form ofR”, and we suppose thaté) > 0 for all £; e R", i.e. g is positive-
definite in the wide sense. In [6] we considewgd) = |£|%, which corresponds to the
usual Laplacian-A onR" as the Gaussian part gf Finally, IT is a Borel measure such
thatI1({0}) = 0 and [, min(L, |n|»T(dn) < occ.
Eq. (1.1) generalizes the Burgers equation

Uy — Uyy + (uz)x =0, (1.4)

with x € R andr > 0, in three different directions. First, the case of arbitrary dimension
n is considered. Second;d?/0x? is replaced by a quite general Lévy operaftbr
Third, instead of the quadratic nonlinearity, arbitrary (sufficiently smooth) funcfion
is considered.

As is well known, the solutions of the Burgers equation (1.4) with the initial condition
(1.2) in LY(R) become asymptotically self-similar as> oo, in the following sense: for
each I< p <

(VPR @) —U @], >0, ast— oo, (1.5)
where the functiorV = Uy, (x, t) has an explicit form

-1

X/t
U(x,t)= %exp(—x2/(4t)) <K — / exp(—z2/4) dz)
0
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This function is the, so-calledsource solutionof (1.4) such thatf, U(x, ) dx =
Jguo(x)dx = M with K = K(M), see, e.g., [16]. The initial data for the source
solution are attained in the sense of (narrow) convergence of measures; Uirgr) =
M35y means that lim.g [p U(x, 1)¢(x) dx = M¢(0) for each bounded € C(R). This
particular solution of (1.4) is self-similar, i.e.

UG, ) = U( a 1)
X, 1) =— —, .
NZNVG
In other words[ is invariant under the parabolic space-time scaling of functions i
defined, forA > 0, by

uy, = A" (ax, A%),

that is,U = U, for eachi > 0. Note that this scaling preserves the integrfilsi; dx =
Jg udx = M. Moreover, the convergence property (1.5) can be restated as

[|lus (@) — U(t)||p —0 asi— o0

for each fixedr > O.

All these properties can be established using the Hopf—Cole substitution
—(logv), which reduces (1.4) to the linear heat equation. However, recent publications,
cf. e.g., [10], [13], [14], [15], [16], [17], [28], developed versatile functional analytic
tools to study the long time behavior of solutions of general multidimensional diffusion-
convection equations

u— Au+b-V(ju"'u) =0 (1.6)

in R” with a real number > 1, b € R". For these equations, in general, no explicit
analytic solution is known. Rougly speaking, results in those papers describe the
asymptotic behavior in the following three cases:

e r > 1+ 1/n, when the asymptotics is linear, i.e.

(YD) — M(€2)]|, -0 ast — oo, (1.7)

where M = [g, uo(x) dx, (€2) = (4nt)™"/?exp(—|x|?/(4t)) is the fundamental
solution of the heat equation;
e r=1+4+1/n,when

("YDRy () — U n)]|, — 0 ast — oo, (1.8)

where U(x,t) = 72U (xt~%?,1) is the self-similar solution of (1.6) with
U(x,0) = Mép;
e 1<r<1+41/n,when

(YD) (1) — U (@)]| >0 ast — oo, (1.9)

holds, where (forb = (0,...,0,1)) U is a particular self-similar solution of
the partly viscous conservation la®, — A,U + 8%(IUl"lU) = 0 such that
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U(x,0) = Mép in the sense of measures. Here= (y, x,,), y = (x1,..., Xs_1),

-1 2
andA, —ijlﬁjz-

The first case can be classified vasakly nonlinear since in this situation the linear
diffusion prevails and the nonlinearity is asymptotically negligible. The second, critical
case isgenuinely nonlinegrwhen diffusion and the convection are balanced, and the
asymptotics is determined by a special solution of a nonlinear equation. Finally, the
third case isyperboli¢ since the asymptotics of solutions is determined by solutions of
an equation with strong convection and partial dissipation.

The methods introduced in [16] and developed in [10], [13], [14], [15] and [17] are
based on scalings of solutions and use in an essential manner tools associated wi
the diffusive behavior such as the maximum principle and, for the hyperbolic case
(1.9), entropy inequalities. However, it should be mentioned that the scaling method:
work efficiently also for certain equations for which the maximum principle fails. An
example here is the Korteweg—de Vries—Burgers equation which features dispersion ar
dissipation, see [19]. However, the extension of the usability of these tools in the contex
of nonlinear and pseudodifferential equations is far from routine. This is the main novelty
of the present paper.

Egs. (1.1) also generalize tfractal Burgersequation

u+ (=A)2u+b-V(ulu"t) =0 (1.10)

with r > 1, b € R", studied in [3], as well as the one-dimensiomabultifractal
conservation laws

a,/2

— Uy F Za] —3%/3x%) " u+ fu), =0, (1.11)

with 0 < «; < 2, a; > 0, and a polynomial nonlinearity, considered in [5]. Here, the
fractional power of ordet/2, 0 < « < 2, of the Laplacian ifR” (or the second derivative
—92/0x? in R) is the pseudodifferential operator with the sym{sat .

The study of (1.1), and related model equations with nonlocal nonlinearities con-
sidered in [8], is motivated by the anomalous diffusion encountered in many physical
phenomena. For instance, there are hydrodynamic models with modified dissipativity
(obtained as a closure of a system of moment equations, cf. [1]), models of growth o
molecular interfaces [22], interacting diffusive particles [8], etc. Two recent volumes
in Springer's Lecture Notes in Physics series [24,23] present applications of equation:
with fractional derivatives and related stochastic differential equations driversgble
processes to statistical physics, chaos in Hamiltonian mechanics, hydrodynamics, mols
cular biology and finance mathematics. We studied some probabilistic questions relate
to such equations in [4]. Various aspects of turbulence models based on the Burgel
equation have been discussed in [27].

In [3]-[8] we studied standard mathematical questions concerning (1.1), (1.10),
(1.11), including the solvability of the Cauchy problem in various function spaces,
uniqueness and regularity of solutions, as well as the large time asymptotics of solutions
Most of the results, except for, e.g., [3, Proposition 6.1] and some sections in [8,4],
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describe asymptoticallnear behavior of solutions to those equations, i.e. the situation
when the first term of large time asymptotics is a solution of the linearized equation
v; + Lv = 0 for (1.1) with the same initial condition (1.2)(x, 0) = ug(x). In those
cases, only the second term of asymptotics reflects nonlinear effects. Moreover, it wa
proved for (1.11), and then for (1.1), that the anomalous diffusion dominates the usua
Brownian diffusion described by the Laplacian for> oo, cf. [5, Theorem 1.2] and [6,
Theorem 5.1].

The present paper studies Eqs. (1.1) indh&ancedcase of 1< o < 2 and

r=1+(ax—-1)/n. (1.12)

This is a generalization of the second case (1.8) for (1.6), when the linear and nonlinee
terms are of the same importance over the entire time scal. Indeed, if the relation
(1.12) holds, then Eqg. (1.10) written for the rescaled solution

u; (x, 1) = A"u(rx, A%1)

is again the same fractal Burgers equation (1.10).

In this contextpne can think about E1.1)with critical nonlinearity as a true fractal
analog of the classical Burgers equati@h4).

Note that if limsup_q|f(s)|/|s|” < oo, for somer > 1 + (¢« — 1)/n, then
im0 "Y'/ 0 () — e7Fugl|, = 0, i.€., solutions of (1.1) behave as in the weakly
nonlinear case, see [6, Theorem 4.1, Remark 5.2].

We will prove that for each mas3/ € R, 1 < o < 2, the equation (1.10) in
the balanced case (1.12) has a unique self-similar solutios Uy, U(x,t) =
t=eU (xt=Y% 1), and [, U(x, 1) dx = M forall t > 0, [ U(x, 1)¢(x) dx — M¢(0) as
t — 0 for all boundedy € C*°(R") (Theorem 2.1). Such a solution determines the long
time behavior of solutions (with the same mag} of Eq. (1.1) which “asymptotically”
resemble (1.10) (Theorem 2.2). This, loosely speaking, means that we assume that tl
symbola(£) of the generator- £ of the Lévy semigroup &~ satisfiesa(&) ~ |£]* for
& — 0, and the nonlinearity is such thatf (s) ~ s” withr =1+ (« — 1)/n ass — 0.

Assumptions and statement of results can be found in Section 2. Section 3 contain
technical lemmas which will be useful in the proofs of theorems mentioned above. The
proofs themselves can be found in Sections 4 and 5. The main results of this paper wel
announced in a brief note [7].

Finally, let us note that our functional framework is that of the LebeshieR")
spaces. We use notatigim ||, for the L?(R")-norms of functions andv*r(R") for the
Sobolev spaces. The operator norm of an operatisom L?(R") to L? (R") is denoted
by [|All,,,- The constants independent of solutions considered andgtloése constants
may depend on the initial values) will be denoted by the same Igtteven if they may
vary from line to line. A standard reference book for facts from the theory of parabolic-
type equations and interpolation inequalities is [21]. More general function spaces o
Besov and Morrey type, interpolation spaces associated with the opérasatc., are
also suitable for studies of (the optimal conditions of) the solvability and asymptotics of
solutions of (1.1), cf. [3], [8].
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Probabilistic aspects of Lévy operatafsand semigroups generated by them are
discussed in [2], [18], [20] and [26].

2. Main results

Ouir first goal is to prove the existence and uniqueness of the source solution to th
fractal Burgers equation in the critical case (1.12% 1+ (¢ — 1)/n and 1< a < 2,
i.e., the existence and uniqueness of a funciiGatisfying

ur+ (—=A)2u+b -V (uu|* ") =0, (2.1)
u(x,0) = Mso(x), (2.2)

for M € R. The initial condition (2.2) is attained in the sense of (narrow) convergence of
measures, i.e.,

lim / u(x, N (x) dx = M (0)
er

for each bounded continuous functipre C(R"); in fact, it suffices to take bounde&d™
functions.

Note that we consider solutions which are not necessarily positive. The proof of
Theorem 2.1 is, however, much simpler for solutions of constant sign. The important
assumption is that the nonlineariff(s) = s|s|“~Y/" in the convection term is an odd
function. Therefore, it suffices to consider the cage: 0; indeed,—u solves (2.1) with
— Mg as the initial condition.

In the sequel, we will also encounter the integral formulation of (1.1)-(1.2), and
other nonlinear pseudodifferential equations like (2.1) and (2.4), below, via the Duhame
formula

u(t) :e—’ﬁuo—/Ve—“—”ﬁ - f(u(r)) dr. (2.3)
0

Solutions of the integral equation (2.3) are calteiid solutions of (1.1). They turn out
to be weaksolutions enjoying some regularity properties, cf. Lemma 3.5, 3.6 and [6,
Section 3].

The existence of solutions of the Cauchy problem (1.1)—(1.2) and their properties
follow from [6, Theorem 3.1, Proposition 3.1, Corollary 3.1, Remark 3.1]. We note that
the Brownian part—A of £ is essential to guarantee regularity of the solutions of this
problem, while the jump component gf, which in this paper is meant as the integral
term in (1.3), determines the large time behavior of solutions.

Recall that the Cauchy problem for the critical fractal Burgers equation (2.1) has
been studied in [3], where a result on the existence of the local in time solutions with
suitably small initial data in the space of measukdgR”) has been proved in the critical
case (1.12). The size assumption in [3, Proposition 6.1] was formulated in terms of
the quantity limsup, ot/ |e==2"%,|., which can be viewed as a norm in an
interpolation space associated with the operétan)*/?. Since the purpose of [3] was
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to give a direct proof of local in time existence of solutions of (1.10) wigtof weak

local regularity, we did not attempt to get optimal global existence results for large initial
data. The following result gives a complete solution to this problem. The proof can be
found in Section 4.

THEOREM 2.1. — The Cauchy problen{2.1)—(2.2) for the n-dimensional fractal
Burgers equation witll < a < 2, critical nonlinearity, and the initial data of the form
Méo, M > 0, has a unique solutio which is positive and has the self-similar form

Ux,t)=t""*U(xt™ "%, 1).

It turns out that theuniqueself-similar solution in Theorem 2.1 determines the long
time behavior of solutions to a large class of Cauchy problems
ui+ Lu+b-V(ulu)@ /") =0, (2.4)
u(x,0) = ug(x), (2.5)
for which the Lévy operatof satisfies the following condition:
e The symbol: of £ has the form

a)="L§|1" + k), (2.6)
wherel > 0, 1< a < 2, andk is a symbol of another Lévy operathir such that

lim k&) =0.
£ e -

2.7)

Without loss of generality (changing the spatial variab)ewe can assume that
=1.

Remark?2.1. — It is well known thatz(¢), as a symbol of an operator generating
a Lévy semigroup, satisfies the boundQ:(¢) < C,(1 + |£]?), for all £ € R* and
a constantC,. This fact, combined with the assumptions (2.6) and (2.7), gives the
inequality
0<a(§) < C(IEI" +1€1%), (2.8)

for all £ € R”, and another constant. Similarly,
0< k() <elE|“+ Cle)lEl (2.9)

holds for eachr > 0 and a constar€ (¢).

Example2.1. — The assumptions (2.6) and (2.7) are fulfillechinyltifractal diffusion
operators

k
L =—apA + z:aj(—A)‘)‘f/2
j=1

with apg = O,aj > 0, 1<O[j <2, and(x=min1<j<k0lj.
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Our second main result provides asymptotics of general solutions of the Lévy
conservation law with balanced nonlinearity. Its proof can be found in Section 5.

THEOREM 2.2.— Let u be a solution of the Cauchy proble(g2.4)—(2.5)for the
n-dimensional Lévy conservation law with the Lévy diffusion oper#@togatisfying
assumptiong2.6)—(2.7) and the initial dataug € L*(R") such that [, uo(x)dx = M.
Then, for eaclp € [1, 0],

YD) — U @), > 0 ast— oo, (2.10)

whereU = Uy, is the unique self-similar solution of the problg1)—(2.2)with the
initial data My constructed in Theore®.1.

Remark2.2. — Fora = 1, Eq. (2.4) is lineamu,; + Lu + bVu = 0. Moreover, the
change of variables — x — tb allows us to remove the drift ter@Vu. On the other
hand, combining Lemmata 3.2 and 3.3 below we obtain that the large time behavior o

solutions of the problem, + Lu = 0, u(x, 0) = uo(x), is described by (e~ %),

Remark2.3. — We do not know what are counterparts of Theorems 2.1 and 2.2 for
0 < «a < 1 because the estimatesof from Lemma 3.6 below fail foor < 1. A similar
difficulty was already encountered in [3] wheke,< 1, questions of uniqueness and
regularity of weak solutions to the fractal Burgers equationt+ (—d2/9x2)*/%u +
uu, = 0 were left unresolved.

Remark2.4. — For 1< r < 1+ (¢ —1)/n, we expect a hyperbolic large time behavior,
but a proof of this conjecture will require new methods, completely different from those
in [10,14-17].

3. Technical lemmas

In this section we gather several technical tools which will be used in the proofs of
Theorems 2.1 and 2.2. Some of these estimates are borrowed from [6], but the core «
this section is a collection of estimates for rescaled solutions of certain equations, cf.
e.g., [10,16,14,15,17,13].

We begin by recalling that, in view of the assumptions (1.3) and (2.6) imposed on the
symbola(£), the semigroup €% generated by the operateL is positivity-preserving
and satisfies the decay estimates similar to those in [6, Section 2]:

e |y, < Crnatpre, (3.1)
Hve_t[’H]_,p < Ct—n(l—l/p)/oz—l/oz, (32)
for eachp € [1, oc], all ¢ > 0, and a constar@ = C,, (cf. Lemma 3.4, below).
Moreover, the bound [6, (3.15)] guarantees that solutions to the nonlinear problen
2.4)—(2.5) withug € L1(R") satisfy the estimate
(
lu(@®)l, < Ct"E P yqy, (3.3)

forall > 0, eachp € [1, oc], and a constant = C,,.
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In what follows it is very important that the nonlinear semigroup associated with
the nonlinear problem (2.4)—(2.5) is an order-preserving contractioh¢R"). This
property is established as part of the next lemma the proof thereof can be found in [6
(3.6), Proposition 3.1, Corollary 3.1].

LEMMA 3.1. - Letu, v be solutions of the Cauchy problem for Kd.1) (or (2.4))
with the initial valuesug, v € L1(R"), respectively.
(i) Then, for every > 0,

|u() = v(®)||, < lluo — volls. (3.4)
(i) If up(x) < wo(x) a.e. inx, then
u(x,r) <v(x,t) a.e.inx,t. (3.5)
(iii) If, moreoverug € L°°(R"), then
essinfug <u(x,t) < esssupg, a.e.x,t. (3.6)

Next two lemmas show how to approximate’®e by a multiple of the kernel
(7M7),

LEMMA 3.2.— Assume that the symbal(&) satisfies(2.6) and (2.7). For each
p €[2, 00], andug € L1(R"),

lim ("= gty — e Oy =0, (3.7)

t—0o0

Proof. —The tool here is the Hausdorff—=Young inequality
01, < Cllvllys (3.8)

valid for every 1< g <2< p<oosuchthat 1p +1/¢g = 1. Recall that

e Cug(x) = (27)" / e i ) d
Rn

By assumption (2.6), for each> 0 there exist$ > 0 such that, for all¢| < g,
ja®) — &1 <el€]”. (3-9)
Hence, forp € [2, oo], by the Hausdorff—Young inequality (3.8), we obtain
&7 o — e uglfy < [ oo — e e
Rn

<C/...d§+c / Ok, (3.10)

|§]<8 1§18
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For|&| < &, in view of (3.9), we bound the integrand on the right hand side of (3.10) by
the following quantity

— —1|E]Y 19 )~ q . — o
7@ — e Tug() 17 < [ra(®) — 111| e uoll]
<eCr|*7e " uo 1.

Hence, by a change of variables, the first term on the right hand side of (3.10) is bounde
from above by

Ct"* uo|{ / £ 9 e d
Rl‘l

for all 7 > 0, and a constar@ independent of ande. The second term on the right hand
side of (3.10) is estimated directly, using the assumption (2.6), by

/ &1 i g 4.

1§18

It is easy to see that, for evely > 0, this integral tends to 0 faster than" .
Sincee > 0 was arbitrary, using the above estimates we conclude that (3.7) holds
true. O

LEMMA 3.3.— Assume thaiig € LY(R") and M = Jgn uo(x)dx. Then, for each
p €1, 00],
lim tn(l—l/l’)/ol||e—t(—A)a/2u0_ M(e_t(_A)a/z)H =0.

t—00 p

Proof. —This result is obtained from the inequality

Hh g()— (/h(x)dx)g(-)
Rl‘l

valid for eachp € [1, o], all h € LY(R", |x| dx), g € CL(R") N WLL(R"), and a constant
C = C, independent of andh. This inequality is a particular case of a more general
result proved in [12].

To prove the Lemma we apply (3.11) with(x) = ug(x) and g(x) = (e7/2""),
assuming first thatg € LY(R", |x| dx). The general case af € L1(R") can be handled
by an approximation argument. Details of such a reasoning are in [5, Corollaries 2.1
and 2.2]. O

The following consequence of Lemma 3.2 and 3.3 will be useful in the proof of
Theorem 2.2 fop = oo.

COROLLARY 3.1.— Assume that the symbalof £ satisfies(2.6) and (2.7). Letuo,
vo € LY(R") and [, ug(x) dx = [g, vo(x) dx = M. Then,

S CIVellpllhllLign,x)dv) (3.11)
p

)01/2

lim ¢"/% || e "“ug — e ="y = 0.

t—0o0
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Proof. —By the triangle inequality, we have
||e_’ﬁuo _ e—x(—A)C‘/zvoHoo < He—xcuo _ e—x(—A)“/zuon

n ||e—t(—A)°‘/2M0 _ M(e—t(—A)“/z) I

o0
+ ||M(e—t(—A)°‘/2) _ e—t(—A)“/ZUOHOO.
An application of Lemmas 3.2 and 3.3 concludes the proaf.
Now, for A > 0, let us consider the rescaled function
u; (x, 1) = Au(rx, 2%1), (3.12)

whereu is a solution to (2.4)—(2.5). Going back to (2.4), one easily checksthest a
solution of the problem

0
al/t)L + »C:)Ll/l)L + b . V(M)Lll/l”(a_l)/”) = 0,

u; (x,0) = X" uog(Ax) = ug ;. (x). (3.13)

Here, £, is the rescaled Lévy operator defined by the symitsel(¢/1). In the next
lemma, we gather some estimates of the keteel“*) of the linear semigroup &~
generated by-£;.

LEMMA 3.4. — Assume that the symbe(&) of the operatorL satisfies assumption
(2.6). Then, for every € [1, oo], there exists a constaiit independent ok andr such
that

He—z[,xuOHp < Ct—n(l—l/P)/Dt”uO”L (3.14)
Ve Pug|, < Crm Pt yg |y, (3.15)
IV (5 Ve Sug) ||, < Cor MR ey, (3.16)

forall ¢+ > 0.

Proof. —Note that under assumption (2.6) the symbol of the operéfosatisfies
A%a(E/)) = |E|* + A%k (£ /2). Now the reasoning is based on the crucial decomposition
of the kernels of semigroups

(€)= (e"“A)a/Z) * (€7, (3.17)

where K, is the Lévy operator corresponding to the symbdlk(&/1). Since
(e"®) |1 = 1, it follows immediately from the Young inequality and from the basic
estimates ofe~'~*?) that

— —1(—A)2/2 — —n(1— o
I )], < Cll(e" > ), ll(e7™) |l < crm-v/mre,
The proof of (3.15) is analogous but (3.17) has to be replaced by

V(e5) = V(e D)k ().
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The bound (3.16) is obtained in the same manner.

In what follows we will need some estimatesgf which are uniform with respect
toar > 1.

LEMMA 3.5.— Assume that: is a solution to(2.4)—(2.5)with the initial data
ug € LY(R"), and the rescaled functiam, is given by(3.12) Then, for every < [1, oo],
there exists a constart, independent of, ¢, such that

()], < Ct" Py, (3.18)

forall A >0, ¢ > 0.
Proof. —This follows from (3.3) by a simple change of variables:
s @)1 = 2P [u (1) [, < €A () P g
= Ct "D g .
forall A > 0,7 > 0, and a constar@ independent of,, r andug. O

LEMMA 3.6. — Under the assumptions of Lemr&b, for everyp € [1, oo], there
exists a constant’ independent of, 7, but, in general, dependent on the initial datg
such that

IVu, (1), < Cr—d-Yp/e=te, (3.19)

Proof. —To obtain this bound foVu; , we represent; in the mild form analogous to
that in (2.3), but now for the rescaled Eq. (3.13). Next, applying the gra®ientthis
integral equation, we obtain

t
Vu,(t +1) = Ve “u, (1) — / Ve "5 (b V (u; |u, | @Y (r + D de. (3.20)
0

Recall that, by (3.15) and (3.18), there is a constant 0 such that, for alh > 0 and
t >0,

Ve u, (D], < Cr ey ).

Next, for r € [0, 1], using (3.16) and (3.18), we estimate th&-norm of the integrand
in (3.20) by the following quantity

_(— R (¢—1)/n+1
HV(b -V(e « r)[%))HlHuk(f + 1)||p((0t—1)7n+1)

< C(l‘ _ r)_z/"‘(r + l)—n((oz—l)/n-i-l—l/p)/oz < C(I _ _[)—2/05,
forall > 1, and a constan independent of andaA. If T € [1, ], we proceed as follows
Ve =25 (b - ¥ (us | ) V) (r + D,
<C =)V + DIV IVur(r + DI,
<C =)V Vur(r + Dl
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Here, we have used the following consequence of (3.18):
i (z + Dlloo < Cz + D < C.
Hence, computing thd.”-norm of the expressions in (3.20), and using the above
estimates for the integrand in the second term on the right hand side of (3.20), we obtai
||Vuk(l‘ + 1)||p g C(t—n(l—l/p)/ot—l/ot + t—2/0t+1 + (t _ 1)—2/0t+1)

t
+ C/(t — 1) Y| Vuy(z + 1|, dr.
1

Since—2/a+1> —1fora > 1, we may apply the generalized singular Gronwall lemma
(cf., e.g., [9, Lemma 1.1]) for > 1 to prove the boundVu, (t + 1)||, < C(¢) with a
continuous functior€ on [0, co), uniformly with respect ta. > 0. However, by a change
of variables, we have

IVu, (t + D)), = A"V Vu(r%(r + 1)) ||

.
Thus, fixingt = ro > 0 and choosing. = (mﬁ)l/“, we obtain

IVu@)|, < Cr"d-tmie-te, (3.21)
for all + > 0, and a constanC independent of. Finally, observe that the inequality

(3.21) allows us to obtain, proceeding as for (3.18), the bound (3.19)d9r O

Next, we will establish some compactness properties of the family of rescaled
solutions{u, }.

LEMMA 3.7.— There exist a sequenég — oo and a functionz(x, r) such that, for
everyn >0,1< p <o0,0< 1t <1 < oo, and each bounded domain c R”,

uy, — it in C([ty, ]; W27(G)), (3.22)
d 9 .
Py ) — Eﬁ(r) in D'((0, 00) x R"). (3.23)

Moreover, the convergence
w, (1) — () in Lo (R") (3.24)
holds for everyp € [1, o0) and eachr > 0, and
u,, — u pointwise a.e. iR" x (0, 00). (3.25)
Proof. —The estimates (3.18) and (3.19) imply that the fami{ieg ;.o and{Vu; };-o
are uniformly bounded inLj;.((0, c0); LP(R")) for every p € [1,00]. The same

conclusion holds true fof - V (u; u;|“~Y/™)},-0 in view of the inequality

|5V (wlus | DM @O, < CIVI @Ol lus @182,
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Moreover, using Eq. (3.13) we deduce th@%uk}bo is uniformly bounded in
LZ.((0, 00); W=2P(R™)). Taking into account thaW*”(G) is compactly embedded

in W~?(G) for every bounded domai& of R" andr < s, and applying classical
compactness argument for vector-valued functions (cf. [25, Corollary 4, p. 85]), we see
that {u, },>1 is relatively compact inC([z1, t2]; W~—2-1.r(G)) for eachG, n > 0 and

all 0 <1 <t < 00. SO, there exists a sequentg— oo and a functionz such that
(3.22) holds, as well as (3.23). As a consequence of (3.18) and (3.19) we obtain also th:
{u;(1)},>1 is relatively compact irL{,.(R") for every p € [1, c0) and each > 0. Then

the diagonal method allows us to extract a sequence- oo such that (3.24) is valid.
Again, extracting a subsequence by the diagonal method leads to a subsequence (s
denoted by{A; }xen) such that the last conclusion (3.25) of Lemma 3.7 is satisfied.

LEMMA 3.8.— The functionz constructed in Lemma.7 satisfies Eq(2.1) in the
sense of distributions. Moreoveét,e L>((0, o0o); LY(R™)) and ||it(¢)||1 < |luoll1 for all
t > 0.

Proof. —In order to pass to the weak limit in Eq. (3.13), we multiply it by an arbitrary
test functionp € C2°(R") and integrate oveR”:

5
[ smnpd+ [ L x e dx
Rn Rn
_ /(uﬂuﬂ(“—b/")(x, b - Vo (x) dr =0, (3.26)
Rl‘l

It follows from (3.23) that along the sequentg— oo
[wtnemdr— [ i np@ad
y 8tu)hx’ QX X J atux, @(x)0x.

In order to pass to the limit in the second term in (3.26), we use the decomposition (2.6
which implies

/[,Au,\(x,t)w(x) dx =/(—A)“/2u,\(x,t)<p(x) dx+/lCAu,\(x,t)<p(x) dx.
Rll Rll Rll

In view of (3.22), the first integral term on the right hand side tend$,t0—A)*/%i(x, t)
x @(x)dx asi; — oco. To deal with the second term, we use the Schwarz inequality,
Lemma 3.5, and (2.9) to get

1/2
< Cllux(f)||2< /|A“k(§/k)<ﬁ(§)|2d§>

Rn
< Cr1@ (62| (= )25+ 2272C2 () | Ag12)

’ /ICAMA(X, He(x) dx
Rn

1/2

Now, sinces was arbitrary, we conclude th#t, C; u; (x, t)e(x) dx — 0 asi;, — oo.
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We can apply the Dominated Convergence Theorem and (3.25) in the nonlinear termr
because, by (3.18),

lu; (x, O] @V/ b Vo (x)| < CtH Vb Ve (x)),

with C independent of.. This proves thak satisfies the fractal Burgers equation (2.1)
in the sense of distributions.

Now let us observe that by (3.18)u; (1)]|1 < |luollz. Consequently, applying the
Fatou Lemma to the sequence of functiomsg, (x, )| and using (3.25) we deduce
li()|l1 < |luollx for all ¢ > 0. Therefore, it follows thai € L>((0, o0); LY(R")). O

LEMMA 3.9. — For each functionp € C2°(R") with compact support,

/ﬁ(x, Hex)dx - Me((0) ast— 0. (3.27)
Rll

Proof. —Observe that, for each smooth functipre C2°(R") with compact support,
the estimate

1£5¢lloo < C/(Ifl“ +1517)16(8)] dg (3.28)
Rn

holds uniformly in . > 1. Indeed, £;¢(x) = [p. A%a(§/1)@(€)€* dE, so that the
inequality (3.28) follows from the bound (2.8) on the symbolof

We multiply (3.13) by any functionp € C°(R") and integrate oveR" x (s, 1),
0<s <t < oo. We are allowed to integrate by parts, which leads to

Rn

/ 1 (x, () cbx — / i, (x, )9 (x) dx
Rn

< / / 45, (x, D[ Lo ()] dx dlr (3.29)

s Rn

t
+ / / ;. (x, D@D/ Vo (x)| dr de
s Rnr
< Cilt — s/ Liolloolluolls + Calt — 5|V |V oo,

where the constant§y, C; are independent of > 1 and O< s < ¢ < co. Here we have
used (3.18) witlp = 1, and (3.28), in the first term on the right hand side of (3.29), and
(3.18) withp = (¢ — 1)/n + 1, in the second term.

Passing to the limit — 0 in (3.29), we see that estimate (3.29) holdssfer 0, too.
Hence, lettingh, — oo in (3.29) withs = 0, we obtain

/ﬁ(x, He(x)dx — Me(0)| < Cr + CtYe.
Rl‘l
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Now the passage to the limit—> O gives the desired result (3.27)0

LEMMA 3.10. —The relation

lu, (x,)|[Pdx -0 asR— oo

Ix|=R

holds for every > 0, uniformly with respect ta. > 1.

Proof. —Let us fix ¥ € C*°(R") such thaty(x) = 0 for |x| < 1, andy(x) = 1 for
|x| = 2. For simplicity of notation we shall writ¢'z(x) = ¥ (x/R). It suffices to prove
that

lus ()Yrll, >0 asR — oo, (3.30)

uniformly with respect toh > 1 and O< #; <t < 1, < oo. Without loss of generality,
we may assume that, is nonnegative. Indeed, by the pointwise comparison principle
for solutions of (1.1) (cf. Lemma 3.1), we have; (x,1)| < v;(x,t) for almost all
x € R" andr > 0, wherev, is the solution of (3.13) with the initial data,;|. Hence
s, (Yl < 2 (OVRll .

First considerp = 1. Multiplying Eq. (3.13) foru, by ¥» and integrating oveR" we
have

d
E/uux,r)w(x)dx

Rn

=—/,C,\u,\(x,t)1ﬁR(x) dx—/b-V(uklul(“_l)/")(x,t)wR(x)dx. (3.31)
Rn Rn

Applying the reasoning in the proof of (3.28) to the functipp— 1 € C2°(R") we obtain
that, fora > 1,

1L ¥klloo = 1LYk — Do < C/(R‘“ISI“ + R2IE1%)|(Yrr — 1)(E)| &,
Rn

and, in view of (3.18),

/ Lot (x, )Y (x) d
Rﬂ

< ||£mR||oo/|ux<x, fldx < C(R™ + R?)[luoll1.
Rll

The integration by parts and (3.18) give

/ b - V(1] V) (x, 1) (x) dlx
Rn

<Ib- Vil / 0, (x, 1] @D/ gy
Rn

< CR_1I_1+1/0[.

Moreover, a change of variables and propertieg pimply that
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||u0,)\‘//R||l:/|M0(x)|‘//(%>dx< / |uo(x)| dx.
Rﬂ

[x|ZAR

Thus the integration of (3.31) ovg, ], and the application of the above inequalities to
the resulting equation, lead to the estimate

/w(x,z)w(x)dx

Rﬂ

<C / luo(x)|dx + C(R™ + R%) + CR™ 7,

|x|ZAR

for all A, ¢, R, and a constanf. Sinceug € L*(R"), the right hand side tends to 0 as
R — o0, uniformly with respect ta. > 1. Hence, (3.30) holds true for= 1.

To prove the conclusion of Lemma 3.10 in the case p < oo, it suffices to use
the elementary interpolation inequaliy ||, < [[v]|7/” vl Y7 with v = u, (t) ¥, and
the bound||u, (1)« < Ct™* valid for all ¢, , and a constan€, already proved in
(3.18). O

4. Self-similar source solutions— proof of Theorem 2.1

The proof will follow the plan:

(i) To establish the existence of source solutions we apply an approximation argumen
based on solvability results proved in [6]. Namely, we approximate Eq. (2.1) by its
parabolic regularization

ui+ Lu+b -V (ulu)@ /") =0,

whereL = —gA + (—A)¥/? for smalle > 0. At the same time the singular initial data
(2.2) are also approximated by smooth positive functiefsvith compact supports
shrinking to{0}, u§ € L*(R") N L>°(R"), and [g, u§(x)¢(x) dx — M¢(0) ase — 0.

(i) For the proof of uniqueness of these solutions we adopt the ideas from [15,
Section 3] and [10, proof of Theorem 1], where uniqueness of source solutions has bee
proved for an equation with A as the diffusion operator and the convection term similar
to that in (2.2). The first step is to show the result for nonnegative solutions.

(iii) Finally, the uniqueness result is extended to solutibhef arbitrary sign.

(i) Proof of existenceWe take asuj the rescaled function & ¢ € C>*(R") with
Jgn ¥ (x) dx =1, that is

uf(x) ="M (e x). (4.1)

In this setting, a unique, mild solutiarf has been constructed in [6, Section 3]. Now we
prove the convergence of approximating solutiefiso a self-similar source solutioti.
First, for each XK p < oo andr > 0, the approximations® satisfy the estimates

[l @], < 7T g, (4.2)

following from (3.18), see also [6, Corollary 3.2]. Note that the const@nts
independent of here, since the cited result on the decay of solutions is obtained from
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the decay of the semigroup&2"*, and not that of &~ (the latter is, in fact, better due
to e'f = g'2e'-M"? cf. the proof of Lemma 3.4). Second, singgare uniformly
bounded inL'(R") ase — 0 the gradient estimate

HVMS(I)H;; < CrA-Yp)ja=lja 4.3)

holds true also for each & p < oo and a constanCC independent ofe. This is
a particular case of (3.20) in Lemma 3.6. Hence, we infer from the compactness
Lemma 3.7 that there exists a limit functiéh= lim_, ., u** such that

U e C([t, t2]; W22(R") forall0 <1t <1, < oo and each; > 0.

Then, by (4.2)—(4.3) and an evident extension of standard regularity theory for
parabolic equations in [21, Chapter 3], we will see tliate C((0, 00); L1(R"))
N LE((0, 00); L= (R™)) and furtherU € C((0, 00); LP(R™)) N LX.((0, 00); WP (R")).
In the last step of the existence proof we need to checkifredsumes the initial data
(2.2) in the sense of measures; but this is a direct consequence of Lemmas 3.9 and 3.1
(i) Proof of uniqueness for positive initial datgince the convection is unidirectional,
the reasoning is, in principle, one-dimensional. Indeed, we may suppose, with no los
of generality, thafR” > 5 = (0, ..., 1). DenoteR” > x = (x1, ..., X,_1, X,) by (y, x,),
wherey = (x1, ..., x,_1) andx, € R, so that (2.1) becomes

d
ty =+ (=) 4 —— (uu] 7D/ =0. (4.4)

n

We begin by proving that for twaonnegativesolutionsU and U of the problem (4.4),
(2.2), the equality

/U(y,s,t)ds:/l_](y,s,t)ds (4.5)

holds for ally € R*~%, andx, € R; differentiation will imply that and U coincide.
The key observation is that both functions

ﬁ(y,t):/U(y,s,t)ds and ﬁ(y,z):/U(y,s,t)ds

satisfy thelinear equation
v+ (=A% =0 (4.6)

in R"1, with the initial datady = 8o(y), y € R*1. Indeed, the integration with
respect tar, and the operato(—A)%/? commute, which can be seen from the Fourier
representation and the Lévy—Khintchine formula (1.3). THusnd U are both equal

to the multiple of(n — 1)-dimensional fundamental solutign,(y, t) = e_t<_A)g{2150(y)
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of (4.6):

U(t) = U(t) = Mpy (t). 4.7)

Now consider an auxiliary functiow defined, forx = (y, x,,), t andr > 0, by

1
w(%xn, L, r) = (U(ya-xnv t) - ZW()’, I r)) ]]-[—r,r](-xn)v (48)

wherey (y,t;r) = fjr U(y,s,t)ds — p,(y,t). Observe thatv(y, -, t; r) is supported
in the interval[—r, ] for all y e R"* and¢ > 0, andffooow(y,s, t;r)ds = po(y,1).
Analogous properties are satisfied for the functiodefined as in (4.8) witly replaced
by U.

It is a consequence of Lemma 3.10 that

|U(y,s,t)|dyds — 0 ast — 0.

Rr=1|s|>r

Thusy (v, t; r) tends to O inLl(]Rg‘l), ast — 0, because

weant= [ | [ s, 4.9)
Ri-1 |s|>r
We consider now solutions* andw*, k =1, 2,3, ..., of the fractal Burgers equation

(4.4) with the initial dataw*(y, x,,, 1/k; r) and w*(y, x,, 1/ k; r), respectively. These
functions satisfy (by (4.7))

/wk(y,s,t;r)ds:/wk(y,s,l/k; rds=p.(y,1/k) = /J)k(y,s,t;r)ds.

Define the (one-dimensional) potentialswof andw* by

Xn

z"(y,xn,t;r)=/w"(y,s,t;r)ds,

—00

Xn

Zk(y,xn,t;r)=/u_)k(y,s,t;r)ds.

—00

The support properties ab(y, -, 1/k; r), w(y, -, 1/k; r) imply that, for each(y, x,) €
R" andr > 0,

Ky, %0 —2r,0;7) <2y, x4, 0 7) < 2K (9, x, + 27,05 7).
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The crucial observation is that andz* are nondecreasing with respectdoand solve

the equation
9 I+(e=1)/n
z) =0.

n

Lt (—A) 4 ( 2

From the comparison principle in Lemma 3.1, this time for the functions dz/dx,,
we obtain the inequalities

Fyx, =2 tr) <G x5 7) <KL xy F 201 7).

Passing to the limik — oo in the above inequalities we get

Xp—2r Xn Xp+2r

/U(y,s,t)ds</l7(y,s,t)ds< / U(y,s,t)ds. (4.10)

The passage to the limit in (4.10) is justified by noting that it suffices to show that
W, t;7) — U@ +1/k)|,— 0 ask— oo, (4.11)

and the corresponding property faf, U. By the L!-contraction property of solutions
u, i of (1.2): |lu@®) —a@®)]1 < |lu(0) — u(0)||1, proved in [6, (3.6)], we need to check
(4.11) forzr = 0 only. That means

— 0 ask— oo.

1
HU()}’ Xns 1/k) (l - ]l[—r,r](xn)) + 5#’()’, l/k)]l[—r,r](xn) 1

The norm of the first term is

/ |w(y, s, 1/k; r)| dy ds,

Rr—1ls|>r

which tends to 0 a8 — oo by the definition of the source solution. The norm of the
second term is bounded from above|by(-, 1/k; r)|1 (this term is inL*(R”~1)) which

also tends to 0 ak — oo, cf. (4.9). Since (4.10) holds for every> 0, we pass to the
limit » — 0 and arrive at (4.5). This concludes the proof of uniqgueness of nonnegative
source solutions of (2.1)—(2.2).

(iii) Proof of uniqueness for initial data of arbitrary sigBinceU = U, — U_ and
{U(@)};-0 is compact in the sense of narrow convergence of measures, both families
{U;(1)}-0 and {U_(1)};~0 also are. Thus, for each sequenceraf 0 tending to O,
there exists a subsequenge— 0 and two finite nonnegative measurgs v_ such that
Mdo=vi—v_andU,(t;) — vy, U_(tj;) — v_ inthe sense of measuresjas> co. By
Lemma 3.10, the measures, v_ are supported of0}. Consequently, they are multiples
of the Dirac measuréy.

Consider a sequence; of nonnegative functions ia2°(R") converging toM ég, for
instance defined as in (4.1) with=1/j, j =1,2,3,.... Letg; andh; be the solutions
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of (4.4) with the initial data at = 0 equal toU,.(t;) andU_(t;) + m, respectively. It
follows from the comparison principle in Lemma 3.1, oddnesg @f = s|s|“~Y/* and
uniqueness of solutions (3.4), that

0< U+(I+Tj)<gj(t), 0< U_(t+fj)</’lj(t). (412)

The functionsg; andh; solve the problem (4.4), (2.2) with the initial datafid(R") N
L*(R"). The proof that G< g; and 0< /; converge to some positive functiogsandh
which solve (2.1) in the sense of distributions, consists of the steps essentially describe
above for the approximations of U. Since the necessary modifications are evident, we
skip the detalils.

The limit functionsg and & take on the initial data/§, in the sense of measures
which is again based on the Lemma 3.10. Therefgrand are positivesolutions of
the problem (4.4), (2.2), so the first part of the proof applies, @adh. Passing to the
limit j — oo in (4.12) we have

Up()+U-(1) <g@) =h(),

and lettingr tend to O
M8y +v_ < M6,

thatis,v_ = 0. To conclude, observe thet (as well ad/. ) is a nonnegativeubsolution
of (4.4) with 0 as the initial value

ad d
—U_+ (=A)*?U_+ —(U_|U_|“"P/") <0,
5 U-+ D) o (U-1U-] )
This can be seen from the Kato—Beurling—Deny inequalities, cf. [11, (1.3.1) and (1.3.2)].
Indeed, we have
v
L(v]) < —L]|v]
]
in the sense of distributions (the precise meaning of this inequalitg 1, £Y/?|v]) <

(@, v|v|~1Lv) for each 0< ¢ andwv in the domain of the quadratic form ab?(R")
associated witlC). Consequently, we get

LWU-) = %(L’(IUI) —LU) < %<I_ZI£(U) - /J(U)> = (sgnU_)LU,

and, similarly, L(U,) < (sgnU,)LU. Then, taking into account the oddness of the
nonlinear term, it follows that

P P
—(U_ )+ LU_ U_|U_|“"D/"y <0
(U + LU+ ——(U|U-| )

in the sense of distributions d&" x (0, co).

Then 0< v(y) = [, U-(y, x,) dx, is a subsolution of the linear equation (4.6) in
R*~1 with 0 as the initial value, s&/_ = 0. ThereforelU = U,., and, by the first part of
the proof,U =Uy. O
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Remark4.1. — The self-similar solutiol/ decays algebraically in the space variable
x, so that|U(x,1)| < C(A + |x))~"*+9, cf. [20] for related estimates ab, () and
generalizations for €~. This is, of course, in contrast with the Gaussian decay of
in x for (1.4).

5. Self-similar asymptotics — proof of Theorem 2.2

The crucial observation in the proof of Theorem 2.2 is that the investigation of the
asymptotic behavior of a solutian can be reduced to studying the convergence of the
family {u, },-0 asi — oo. Indeed, if we note that

u (x,1) —U(x,1) =" (u(hx, %) — U (Ax, 1Y),
then choosing.* =t we have
[ur (D) = U], = 2" VP u) = UG, =" u@) = U @], (5.1)

Thus, the convergence in tli&’-norm ofu; (x, 1) to U (x, 1) asi — oo is equivalent to
(2.10). Of course, the same is true, if we replaeel by any fixed ¢ > 0.

From this point on, the proof is based on lemmas proved in Section 3.

(i) First, using estimates of the familfu,},>1 uniform with respect tor from
Lemma 3.5 and 3.6 and compactness arguments from Lemma 3.7, wa famdi
a sequence., — oo such that (3.22)—(3.25) hold true. By Lemma 3.8, the funciion
satisfies the Eq. (2.1) in the sense of distributions.

(i) Next, combining Lemmatas 3.9 and 3.10, we arriveusét,0) = MJy. This
implies, by the uniqueness @&f = U,, proved in Theorem 2.1, that(x,7) = U(x,t)
andu, — U asi — oo.

(iii) Finally, Lemma 3.10 and (3.27) imply that the convergence;af) towardU ()
takes place not only in the local or weak sense (cf. Lemma 3.7), but actudlB(iR")
for each 1< p < o0.

The proof of (2.10) forp = oo requires another argument involving the integral
equation (2.3). Recall thgk,, u(x, 1) dx = M andU = Uy, is the corresponding source
solution of (2.2). A calculation involving (2.3) yields the following identity

ut+) -U@E+1)=e"“(u@) - U®)
— /b Ve COL (ylu| @D — g U@/ (z + 1) dr. (5.2)
0

Since [, (u(x,1) — U(x, 1)) dx =0, it follows from Corollary 3.1 that
" le"F ) - U@)||,— 0 ast— oo.
We split the integration range with respectrtén the second term on the right hand

side of (5.2) into[0, /2] and[z/2, t]. Fort € [0, ¢/2] the L*°-norm of the integrand is
bounded by
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[6-v(Ee "5 Jlut+1) - U+ 1),
< (llu(z + DIV + 11U (T + D&
<C@t—v)y et ez + ) UG + D), (5.3)
Hence, by the Lebesgue Dominated Convergence Theorem and (2.1Q) with we
have
/2

1o/ /b Ve O (ylu| @/ g U@/ (r + 1) de
0

o
t/2

< oo /(I — gy e e e |y (r 4 1) — Uz + D), de
0

1/2
<C /(1 — )Mot |y (15 + 1) — U (ts + 1), ds — O
0

ast — 0o.

We proceed analogously with the integral on the right hand side of (5.2) for
T € [t/2,t]. However, in this case, it is necessary to modify the inequality (5.3)
in the following way. By the Hdlder inequality, for every, ¢ € [1, co] satisfying
1/p+1/qg =1, we have theL.*°-norm of the integrand in (5.2) bounded from above
by

—(t—1)L
b9 (e8|, fluz + D~ UG + 1),
X (Ju@@ + DIV + U@ + DIV
<C(t— -L—)—ﬂ/(Pﬂl)—l/a(.[ + 1)—l+1/0t—n(1—1/17)/0l
(T +D"TYPNu + 1) = U+ D).
From now on, we repeat the reasoning in the cage[0, /2] providedq € (1, ) is

chosen so thatn/(pa) — 1/a > —1,i.e.,p > n/(a¢ — 1). This concludes the proof of
Theorem 2.2. O

Remark5.1. — Assumption (2.6) on the operatdr can be replaced by weaker
assumptions

im %) ¢ 0.00) and inf 48
£-0 |§]¥ geRr" [£]¥

In this case the proof of the crucial decay estimates (3.2) and (3.15) in Lemma 3.4
necessitates a supplementary smoothness assumptiofoof # 0.

> 0.

Remark5.2. — The result in Theorem 2.2 remains true if we the nonlinear
in Eqg. (1.1) just enjoys the correct critical asymptotics at O, that is, if it satisfies the
condition lim_q £ (s)/(s|s|@~Y/") € (0, 00).
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