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ABSTRACT. — The asymptotic behaviour of a finite energy pseudoholomorphic strip with
Lagrangian boundary conditions in a symplectic manifold is determined by an eigenfunction of
the linearized operator at the (transverse) intersection.
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RESUME. — Le comportement asymptotique d’une bande pseudoholomorphe d’énergie finie
a frontiére dans une sous-variété Lagrangienne d’une variété symplectique, est déterminé p
une fonction propre du probléme linéarisé le long de I'intersection (transverse).
© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Introduction

This paper deals with the asymptotic behaviour of pseudoholomorphic strips in
symplectic manifolds that satisfy Lagrangian boundary conditions. More precisely, let
(M, w) be a symplectic manifold antly, L1 C M be closed (not necessarily compact)
Lagrangian submanifolds that intersect transversally. Fidependent family of almost
complex structures/; on M that are compatible witlw. We consider smooth maps
u:R+i[0, 1] - M that satisfy the boundary value problem

osu+ J;(w)du=0 u®) CLg, u®R+i)CL.
Such holomorphic strips were studied by Floer [7,8] and he used them in his definition
of the Floer homology of Lagrangian intersections. The standard theory of such
holomorphic strips shows thatiif has finite energy then the limit
p= |i_)ngou(s, 1)
exists and is an intersection pointb§ andL;.
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Our main result (Theorem B) asserts that the limit

v(r) = lim 05 (s, 1)

1
eT,M, ol = /|asu<s,z)|2dr,
A% o €7 J

exists and, for somg > 0, satisfies the eigenvalue problem
Ji(p)ov—Arv=0, v0)eT,Lg, v(1)eT,L:.
It also asserts that there exists a constantO such that
lim € 9u(s, 1) = cv(t)

for everyt. The convergence is exponential and in €& topology.

There are four problems concerning the asymptotic behaviour of pseudoholomorphi

curves. The first two refer to symplectic geometry and the last two to contact geometry.
(i) The asymptotic behaviour of a pseudoholomorphic cylinder twisted by a
symplectomorphism that converges to a symplectic fixed point.

(i) The asymptotic behaviour of a pseudoholomorphic strip with Lagrangian
boundary conditions that converges to an intersection point.

(iii) The asymptotic behaviour of a pseudoholomorphic plane that converges to a
closed characteristic, i.e. a closed integral curve of the Reeb vector field.

(iv) The asymptotic behaviour of a pseudoholomorphic half plane with Legendrian
boundary conditions that converges to a characteristic chord, i.e. an integral curve
of the Reeb vector field connecting the Legendrian submanifold to itself.

Problem (i) is relevant to the Floer homology of a symplectomorphism, (ii) is relevant to
the Floer homology of a pair of Lagrangian submanifolds, (iii) is relevant to contact
homology, and (iv) is relevant to the relative contact homology of a Legendrian

submanifold. Our results are directed primarily at problem (ii). Problem (i) is a

special case of (ii): use the diagonal and the graph of the symplectomorphism as th
two Lagrangian submanifolds. However, although there is a strong similarity in the
techniques used in the proofs, there seems to be no easy way to reduce any of tl
remaining problems to (i) or vice versa.

There are two facets to each of the above problems, namely the existence of the lim
and the asymptotic behaviour in terms of eigenvectors of the linearized operator. T
establish the latter is considerably harder than the former. In (i) and (ii) the existence
of the limit is an easy consequence of Gromov compactness. The convergence |
exponential, see for example [17] for an exposition in the setting of problem (i). The
existence of the limit in the setting of (iii) was established by Hofer [12] and used in his
proof of the Weinstein conjecture in dimension three. The existence of the limit in the
setting of (iv) was established in [6] and used in the definition of the Floer homology of
a pair consisting of a Legendrian and a pre-Lagrangian submanifold.

The finer asymptotic behaviour in terms of the eigenvalues was treated by Hofer-
Wysocki—Zehnder [13] in the case of problem (iii) and by Abbas [1] in the case
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of problem (iv). Both papers only deal with three dimensional contact manifolds. In
Appendix D.2 we explain in more detail the relation between our results and those of
Abbas [1].

Our result is inspired by the work of Vin de Silva [18] on the Floer homology for
Lagrangian intersections of two embedded loops in a Riemann surface. In this case D
Silva gave a combinatorial description of the Floer homology in terms of embedded hal
discs (uneg. To prove that his combinatorial description agrees with Floer's definition
of the Floer homology groups one has to establish a one-to-one correspondenc
between de Silva’s lunes and Floer's holomorphic strips. The proof of this one-to-one
correspondence seems to require Theorem C below, which establishes the asympto
behaviour in dimension two. We emphasize that Theorem C, and hence the one-to-or
correspondence between lunes and holomorphic strips, is easy to prove whenever tl
two embedded loops agree with straight lines in some holomorphic coordinate char
near each intersection. However, the proof in the general case is considerably harder al
apparently requires the analysis of the asymptotic behaviour carried out in this paper.

We view the combinatorial definition of the relative contact homology of a Legendrian
knot (see Chekanov [3] and Eliashberg [4]) as a contact anlogue of de Silva’s
combinatorial definition of the Floer homology on a Riemann surface. See the as ye
unpublished work of Eliashberg—Givental-Hofer [5] for the analytic definition. The
proof that the combinatorial and analytic definitions agree again requires Theorem C.

The present paper is organized as follows. In Section 1 we discuss holomorphic strip
and state the main results. Theorem A about exponential decay is well known. Howeve
the proof uses similar techniques as that of Theorem B and we include an exposition fc
the sake of completeness. The proof of Theorem B is based on the technique develop:
by Agmon—Nirenberg [2] for abstract differential operators of the form

D=2 4 A6+ BGs),
as

where A(s) is an unbounded self-adjoint operator on a Hilbert space and converges tc
A, ass tends toco and B(s) is skew-adjoint and tends to zerosaends toco. Section 2
explains how the holomorphic strips fit into such a framework, Section 3 discusses the
technique of Agmon and Nirenberg, and Section 4 gives the proofs of Theorems A and B

To give a self contained exposition we have included several appendices. They de:
with differential inequalities of the form

Aw = —cw" T/

for the Laplace operator in dimension (Appendix A), with apriori estimates for
pseudoholomorphic curves (Appendix B), witl estimates for the Cauchy—Riemann
operator (Appendix C), and with the construction of a convenient metric near a totally
real submanifold (Appendix D). This metric and the results of Appendix A are needed
in the proof of the apriori estimates in Appendix B. In turn, the apriori estimates are
needed in the proof of Theorem A. Tié estimates in Appendix C are needed at various
places in the proofs of Theorems A and B. Appendix E explains an attempt to reduce
problem (iv) to our results.



576 J.W. ROBBIN, D.A. SALAMON / Ann. |. H. Poincaré — AN 18 (2001) 573-612

1. Holomorphic strips

Throughout,M denotes a smooth manifold/;}o<;<1 @ smooth family of almost
complex structures o/, andL, andL; are closed (not necessarily compact) transverse
submanifolds ofM such thatL, is totally real for J; and L, is totally real for J;.
Whenever convenient, we write

J=J(@, p)=J:(p).

We shall assume throughout that the following holds at each intersection paint
LoNLj.

HYPOTHESISH. — There is a nondegenerate skew form
T,M xT,M — R:(v,w) > w,(v,w)
that renders each of the subspadéd.o and 7, L Lagrangian, i.e.
w,(v,w)=0 for(w,w)eT,L, xT,L,, t=0,1,
and such that the form
T,M x T,M — R:(v,w) ~ w,(v, J(p)w)

is symmetric positive definite for< r < 1.

For example, this is the case whep is the value ap of a symplectic form oM, Lo
amdL; are Lagrangian submanifolds, and edglis compatible withw.
Consider the half strip

S:=1[0,00)+i[0, 1] ={s+it|0<s <00, 0<t <1}
and let

d0S := [0, 00), 015 :=1[0, 00) +1i.

We consider smooth maps: S — M which are holomorphic in the sense that they
satisfy the Cauchy—Riemann equations

osu + J;(u)o,u =0, (CR)
and satisfy the boundary conditions
u(dpS) C Lo, u(018) C L. (BC)

THEOREM A.—AssumeM is compact andu satisfies(CR) and (BC). Then the
following are equivalent.
(D) u has finite energy:

Eu) :=/|8su|2 < 00.
S
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(I The limits
p = lim u(s,1), 0= lim du(s,1)
§—>00 §—>00
exist uniformly irv.

(1) 9,u decays exponentially in thé> topology, i.e. there are positive constamts
andcy, s, c3, ... such that, for alls andk,

10521l o 15,00y x10,17) < CkE "

Each condition (I)—(Ill) is independent of the choice of the Riemannian metric used
to express it. When (lll) holds it follows from (CR) thatx and in fact all derivatives
of u decay exponentially. In the setting of [17] the equation contains an additional
Hamiltonian perturbation; in that case the convergence ofritierivatives does not
follow from (111). We introduce the abbreviation

S ={u e C>(S, M) |u satisfies (CR), (BC), ()—(1lI).

THEOREM B. —Assume: € S is nonconstant. Then there exist an eigenvalue 0
and a nonzero eigenfunctian: [0, 1] — 7, M such that

Ji(p)ow—rv=0, v eT,Lg, v(1)eT,Ly,

and
v(t) = lim €d,u(s, t).
§—>00
The convergence is with all derivatives, uniformejrand exponential. Thus there exist

a smooth functionw : [0, c0) x [0, 1] — T,,M and positive constantsandcy, c1, c2, . ..
such that, for every > 0, everyr € [0, 1], and every integek > 0,

1
— — (5
u(s, 1) =exp, <_Xe “u(t) +w(s, f)), lwll cx(s,00)x10,17) < k€ G+,

In particular, there exist positive constantsandc such that, for every > so and every
1 €10,1],

1
“e M L duls, )] < ce.
C

Consider the special case whete = C, J, =i, and p = 0. The tangent spaces
T,Lo andT,L, are real lines through the origin. Let the angle fr@pyy to 7,,L1 be
vo € (0, m). Then the eigenfunctions and eigenvalues of the linearized operator have the
form

v(t) = o ORI A =k — vy,

wherecg € T,Lo C C, co€™ € T,L1, andk € Z. Every suchv is an eigenfunction,
however, only positive integekscan occur in a limiting eigenfunction. We reformulate
Theorem B in this case.
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THEOREM C. —Letu:S — C be a holomorphic map which satisfie$doS) C Lo,
u(0,5) C L, and
lim u(s,t) = lim d,u(s,t) =0
§—>00 §—>00

uniformly inz. Then there exist a unique nonzero complex nungea unique positive
real numberv, and as > 0 such that

I/l(S —+ l[) = Coe_v(s+it) =+ O(e—(v-i-ﬁ)s)‘ (1)
These numbers satisfy € ToLo, co€*° € ToL1, 0 < vo < 7, andv = kmr — vg for some
positive integelk.

As a warmup we give a direct proof of this result in the (very special) case where
Lo=R and L; = €"R are straight lines. The boundary conditions assert that the
function

(s, 1) 1= e 08ty (s, 1)

extends to a holomorphic function frofdt := [0, o) + iR — C, still denoted byv,
such that

v(z + 2i) = v(z), v(2) = 0(2).
Sincev has period 2 there exists a holomorphic functiom: D \ {0} — C, where
D :={ceC]|¢| <1}, such that
v(z) = w(e™)
for z € C*. Sinceu is bounded it follows that

lw(g)| < Clg| o™

for all ¢ € D\ {0} and some constarif > 0. By the removable singularity theorem,
extends to a holomorphic function di. Hence there exist a unique nonzero complex
numbercy and a unique integer > 0 such that

w(¢) = cot® +O([¢[FHY).

Henceu(s, t) = o6+ (e~ ¢+) satisfies (1) with these constamts vo, k, and with
d=m.

The proof in the case of general transverse smooth cubyesind L, in C is
considerably harder. It is marginally easier than the general case handled by Theorem
because a Riemann surface is Kahler. In the Kahler case Jvithdependent of
Appendix A can be simplified as indicated in Remark B.2.

2. Thelinearized Cauchy—Riemann operator

Because the stri§ carries a prefered vector fielyds, the usual Cauchy—Riemann
equations (see [14]) take the special form (CR). Thus the left hand side of (CR) car
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be viewed as a section of the pullback bundlg' M — S. The Cauchy-Riemann
operator (i.e. the map which sends to the left hand side of (CR)) is thus a section
of the vector bundle”>° (S, T M) — C*(S, M); the solutions of (CR) are the zeros of
this section. Denote

B:={ueC>®(S, M) |u satisfieS BC) }

and
E:={§eC™(S,TM)|no& e B},

wheren :TM — M is the projection. Thug is a vector bundle oveB with fibre!
&, = C®w*T M). The tangent spacg, B is the set of vector field§ € C*°u*T M)
that satisfy

%—(s» 0) € Tu(s,O)LOa %—(S, 1) € Tu(s,l)Ll- (2)

It is a general principle that the derivative of a section of a vector bundle at a:zsro
that section gives a well defined linear map from the tangent space to the hase at
the fiber overu. In the case at hand this derivative is theearized Cauchy—-Riemann
operator D,:T,B— &,, given by

D& = Vi + (Ve Ji () du + Ji (u)ViE. 3

Because: satisfies (CR), this operator is independent of the choice of the connection.
Because: satisfies (BC) we havésu € 7,5 and D,d,u = 0. In the following lemma

the reader is cautioned to distinquish between the va|ug of 7 whent = 0 and the
standard complex structutg on R?* = C". We denote byy the standard symplectic
form onR?".

LEMMA 2.1. - There is a neighborhood of p in M and a local trivialization
[0,1] x U xR?* — TM:(t,q,v) ~ ®,(q)v e T,M

such that for(z, ¢) € [0, 1] x U we have

() Ji (@)D (q) = D/(q)Jo;
(i) @, (q)(R" x{0}) =T,L, fort=0,1,;
(i) @, (@,(p)v, ®,(p)w) = wo(v, w) for v, w € R,

Proof. —Choose a smooth paf, }o<, <1 Of Lagrangian subspaces @, M, »,) such
that

Ao=T,Lo,  A1=T,Ls.

Now choose smooth functiong :[0,1] — T,M, i =1,...,n, such that, for every
t € [0, 1], the vectorsey(¢), .. ., e,(¢) form an orthonormal basis of;, with respect to
the inner producty, (-, J;(p)-). Define

eitn(t) :=Ji(plei(t)

1 For a vector bundi€ — B we denote byC* (E) the space of sections.
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fori =1,...,n andz € [0, 1]. Then the linear map (1) : R** — T, M defined by

2n
D)= vier)

i=1

for v = (v1,...,v2,) € R? identifies R* x {0} with A,, Jo with J,(p), and wq
with w,. Now choose trivializations of L, and TL; near p that agree with the
given isomorphismfR” — A, for t = 0 andr = 1, respectively. Next extend these
to trivializations of 7,,M and T;, M that identify Jo and J;, respectively, with the
standard complex structure @f" and agree withb (¢) for ¢+ = 0, 1. Finally extend the
trivializations of 7, ,M and7,, M to a smooth family{ ®, }o<,<1 Of trivialization of T M
over a neighbourhood @f such thatb, identifiesJ, with the standard complex structure
onR?" and agrees witld (1) at p. O

Assume part Il of Theorem A and I&f ¢ M be as in Lemma 2.1. Fix € § and
assume without loss of generality thats, r) € U for all s and. Define the function
S:[0, 00) x [0, 1] — R?"*2" py the condition that

D, (u) (3,8 + Jod& + S&) = Dy (D1 (w)§) 4

holds for every smooth functiah: [0, oo) x [0, 1] — R?*. Here the right hand side of (4)
is defined by substituting, (1) for £ in (3). DefineS,, : [0, 1] — R?"*?" py

@, (p)Seo(t) := Ji(p)3; P;(p). ®)

LEMMA 2.2. — In this notation the following holds. The matik,(¢) is symmetric
for everyt and there exists a constant- 0 such that

1S(s, 1) = Seo (Dl < c(135u(s, )| +d(u(s, 1), p)) (6)

for everys > 0and every € [0, 1]. Moreover, ifu satisfies a unifornC*-bound for some
integerk > 1, then there exists a constant> 0 such that

IS = Seollck (s, 00 <101 < (8¢l cks, 00001y +  SUP  d(u(s’,0), p))  (7)
s'>5,0<<1

for everys > 0.

Proof. —By (i) and (iii) in Lemma 2.1, we have

wo(v, JoSeo (W) = w, (P, (p)v, D, (p) JoSso ()W)
=, (@ (p)v, JH(p) P (p)Sec(t)w)
=—w,(P,(p)v, 8, P,(p)w)
=w,(8,P,(p)v, D, (p)w)
= =0, (J1(P) D1 (P)Soa (), P (P))
=) (P (P)Sec (v, Ji (P) P (p)w)
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:wp(q)t(p)soo(t)v, q);(p)Jow)
= wo (S (), Jow)
for v, w € R?". HenceS,(t) is a symmetric matrix for every. Inequality (6) follows
from the identity
@, (u)Sv =V, (D, (u)v) + J, () V, (P, (u)v) + (Vao, yo S () ) Oyt

Fork > 1 estimate (7) follows by differentiating this identity. In particular,
D, (1) (0, S)v = VS(QD,(M)SU) — (VSdD,(u))Sv
= Vi Vi (@ (w)v) + Vi (4 () V(P (1))
+ Vo (Vo wyo s ) du) — (Vs @, (u)) Sv.
SinceV,o;u = Vi (Jo,u) = (V, J)osu + JV,0,u, this implies (7) fork=1. O
Consider the Hilbert spaces

H :=L?([0, 1], R™)

and
V:={& e W([0,1],R*) | £(0), £(1) e R" x {0}}.
LetA(s):V — H andA..: V — H be defined by

1
A(s) == Jod, + E(S(s’ D+ S6,0"), A= Jod + Seos (8)

These operators are self-adjoint, as unbounded linear operatéfsefineB(s) : H —
H by

1
B(s) := E(S(s,z) —S@s,0)"). 9)

LEMMA 2.3.— Continue to assum@) in Theorem A and use the notation introduced
in Egs. (4), (5), (8) and (9). Then A(s) — A~, A(s) and B(s) are bounded linear
operators onH, A, :V — H is bijective, and there exists a constant 0 such that,
for everys > 0,

IA(s) — Ascllzcay + 1Bl ey < ¢ Sup (|3sM(S, D +du(s, 1), P))» (10)

01

LA 2oy < COSUP (IVdsu(s, )] + 195uls, | +d(u(s, 1), p)). (11)

<r<1

Proof. —Inequalities (10) and (11) follow immediately from Lemma 2.2. We prove
that A, is injective. Leté € V such thatA,& = 0. Then the function[0, 1] —
T,M:t — &,(p)&(¢) satisfies

Do(p)&(0) € T, Lo, P1(p)ED eT,Ly
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and

3 (P (P)E@)) = Py (p)AE() — Ji(P) D1 (P)Sec(E()
=0,(p)(3,£(t) — JoSeo(DE())
=0.

SinceLy andL; intersect transversally at it follows thaté = 0 as claimed.
We prove thatd, is surjective. Let,, : [0, 1] x [0, 1] — Sp(2n) be the fundamental
solution of the operatadyd; + Seo, i.€.

Jod Voo (£, 1) + Seo (D Weo (2, 1) =0, W (t,1)=1.
DenoteAg :=R" x {0}. SinceA, is injective the map
Ao x Ao — R?": (§0, £1) > &1 — Woo(1, 009

is bijective. Givery; € H define(&o, &1) € Ag x Ag by
1
&1 — V(1 0&:=— / JoWoo (1, (¢ dt'.
0
Defineg : [0, 1] — R? by
‘
E(t) :=Wul(t,0)& — /JO\IIOO(t, n@"dr'.
0

Thené e VandA & =n. O

3. Operatorson Hilbert spaces
Let V andH be separable Hilbert spaces such that
VCH.

Suppose that is a dense subset &f and that the inclusioly < H is a compact linear
operator. Assume without loss of generality that

1§1le < I§llv
for every& € V. Throughout we denote by, -) the inner product o7 and by
I-1=1-1lu

the norm onH . (We never use the inner product or the normiahLet L(V, H) denote
the space of bounded linear operators fréfmo A and L(H) denote the space of
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bounded linear operators frofd to itself. Throughout this section let,, € L(V, H),
let [0, 00) — L(V,H):s — A(s) be a continuously differentiable function, and let
[0,00) — L(H):s — B(s) be a continuous function. We shall denote Jéys) the
derivative ofA(s) with respect ta. We impose the following conditions.

(a) A(s) is symmetric for every, i.e.

(A()E, n) = (&, A(s)n)

for &, n € V. Moreover, the operatord (s) — A, and A(s) extend to bounded
linear operators of, A, :V — H is bijective, and

lim [|A(s) — Aol = lim [[A(s)]| =0,
§—>00 5§—>00

where|| - || denotes the operator norm @riH).
(b) B(s) is skew-symmetric for every, i.e.

(&, B(s)n) = —(B(s)&, n)

foré,ne H, and
lim [|B(s)|| = O.

LEMMA 3.1. — Assumda) and (b) and let& : [0, c0) — H andn:[0,00) — H be
continuously differentiable functions. Suppgse) € V and

E(s) + A(9)E(s) + B(s)E(s) =n(s) (12)
for everys > 0. Suppose further that there exist positive constéhend e such that
I + )l < Ce™™ (13)
for everys > 0. Then there exist positive constaatand§ such that
IE@)] < ce™®
for everys > 0.
Proof. —We suppress the argumentvhenever convenient. Consider the function
(5) 1= 2EGI?
o) = 2 N .
SinceB(s) is skew-symmetric it follows that
& =(£,§) = (5,1 Ag),

and hence
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& =(E,n — 2AE) + (£, — AE)
=2|| A& |12+ |Inll*> — (A&, 3n) — (BE, n) + (2BE, AE) + (&, 1) — A&)
5 o
> || A& — §||B§||2—4||n||2+ (&, 1 — AE)

5 .
> ||Ag|* - (§||B||2+ ||A||) €11 — 4llnll* + (&, 7). (14)

Here||B|| and||A| are understood as the operator normsCoH ). By (a), there exists a
constan® € (0, ¢) such thatt < 1/2 and

[Asovll = 380l

for everyv € V. By (a) and (b), there exists a constagit- 0 such that
= 2 A 2
EIIB(S)II + A < 87, [A(s) — Asoll <6

for everys > so. Hence
AV = [Accv]l = [[(A(s) — Aol = 28] v]|

for s > 5o andv € V. Hence, by (14) and (13), we have

&(s) = IAEE) 12 — S2IES)IIZ — Hn(s)N1Z — (E(s), n(s))
> 382[1E(9)II7 — 4n()II> — (£(s), 1))

1
> 282)|E(s) 12 — 4lIn(s))1* — gnﬁ(s)n2

1

> 28%)|&(s))1? — ﬁ(un(s)n2 + 19(s)11?)
CZ

> 28%)|&(s))1? — ﬁe—z”

= (28)%a(s) — coe™*

for s > 5o, Wherecg := C?/82. Consider the function

COe—Zas

B(s) :==a(s) + 22— (22

This function satisfies

co(2¢)%€ %

(28)2 — (26)2
co(2¢)%€ %
27— (282 "
= (25)°B(s) (15)

B(s) =d(s) +

—2¢s

> (28)%a(s) +
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for s > so. We prove that

B(s) + 28B(s) <O (16)

for everys > so. Suppose, otherwise, thAts1) + 258(s1) > O for somes; > so. Then,
by (15),

B(s) +25B(s) > € cy
for everys > s; and some positive constasit This implies

d
—e®5B(s) > "¢y
ds

for s > s1. Integrating this inequality giveg(s) > €*c, — c3 for everys > s, and some
positive constants, andcs. This contradicts our assumption thigt(s)|| does not diverge
to oo ass tends to infinity. Thus we have proved (16). Write this inequality in the form

j—se%(w <0.

With ¢4 := €%0/2B(s0) it follows that

1€ < V2a(s) < V2B(s) < cae™®

for s > sg. This proves the lemma.n

Remark3.2. — Assume the situation of Lemma 3.1 wijh=0 andC = 0. Then
inequality (16) has the form

(E(s), A()E()) = 8IIE()]I? 17)

for s > so.

The next lemma is a simplified form of a theorem by Agmon and Nirenberg [2]. They
used this technique to establish unique continuation for solutions of elliptic and parabolic
partial differential equations.

LEmMMA 3.3 (Agmon-Nirenberg). -Assume tha#, B, and¢ satisfy the hypotheses
of Lemma3.1with n = 0 and that¢ is nonconstant. Thef(s) # 0 for everys > 0 and
the functions

v(s) = lég;”, A(s) = (v(s), A(s)v(s)) (18)
satisfy
AS) K IBG) P+ IAG) I = IIA(s)v(s) — A(s)v(s) ]I (19)
Moreover, if

N :=1(0) + /(llB(s)||2 + 1 A()]) ds < o0
0
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then
[HOIERNHO)
for everys > 0.

Proof. —The formula (18) defines functions. Q — V andi: Q2 — R, where
Q:={s>201]&(s)#0}.
In the following we suppress the argumeniThe derivative ob is given by
v=(A—A)v— Buv.

Hence

A=2(0, Av) + (v, Av)

=2(lv — Av — Bv, Av) + (v, Av)

= —2||]Av — Av||? 4+ 2(Bv, Av — Av) + (v, Av)

<IBIP + Al = [[av — Av])?.
Thus we have proved (19) fore Q.

Next we prove that2 = [0, co). Following [2] we consider the functiop: Q2 — R
given by
y(s) :=logll§ ()l

Its derivative isy = —A and hence, by (19),

P (s) = —IIB$)* = IAG)]. (20)

Since¢ is nonconstant2 # @. Let s; € ©, suppose by contradiction th& # [0, c0),
and choose a real number > 0 such thats, ¢ Q. Choosec > 0 such that|B(s)||*> +
|A(s)|| < ¢ for everys in the interval betwees, ands,. Assume first that, > s;. Then
s, may be chosen such that, s») C €. By (20), we have

ﬂn=ﬂm+/ﬁ>ﬂm—dw—m=>4

and hence/(s) = y (s1) + fjl y =y (s1) — (52 — 51) for s1 < s < so. This implies that
I€(s)| = €’ does not converge to zero asends tas,. Hences, € Q in contradiction
to our assumption. Now supposg< s1. Thens; may be chosen such tha, s1] C Q.
By (20), we have

y(s) =y (s1) —/)7 <y(s1) +cls1—sp) =:¢"
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and hence/(s) = y(s1) — [ty = v (s1) — ¢"(s1 — s2) for so < s < s1. It follows again
that |£(s)|| = € does not converge to zero asends tos, and sos, € . Thus we
have proved tha® = [0, o). Now suppose that

N=-y(0 + /(IIB(s)||2+ IA()]) ds < oo.
0

Then, by (20),

y(s) = 7(0) +/1’/’(0)da >N
0

and hence/ (s) > v (0) — Ns for everys > 0. This implies
€@ = >eO@e ™ =e V|0

foreverys >0. O

LEmMMA 3.4.— Assume that, B, &, v, A satisfy the hypotheses of Lem®&, let§
be the constant of Lemn3al, andN be the constant of Lemn3a3. Assume further that

/(IIA(s) — Aol + |1 B()) ds < 0.
0

Then the limits
Aoo = lim A(s), Voo = lim wv(s)
§—>00 §—>00
exist(the latter convergence is i), § < Ao < N, v, € V, and
AsoVoo = AooVso-

Proof. —Consider the function

w(s) = A(s) +/(||B||2+ 1AD). (21)
By (17), we have
w(@) =N, u(s) = A(s) =8 fors > so.

Sincefi(s) = A(s) — | B(s)||2 — || A(s)]| it follows from (19) that
f1(s) + I A(s)v(s) — A(s)v(s)[> <O (22)
for everys > 0. Henceu(s) converges to a positive real number

hoo 1= I pu(s) = lim a(s). (23)
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Sincen(0) = N andu(s) > 8 for everys > so we have
6 <Aoo <N

We prove thati,, is an eigenvalue ofA.,. Suppose, otherwise, that the operator
Ax — AoV — H is injective. The inclusiorV — H is a compact operator andl,,

is bijective, and st — A, is a Fredholm operator of index zero. Hentg — A is
bijective and hence, by the open mapping theorem, there exists a cofistahsuch
that, for everyn e V,

Il < 3cllAcen — Aoonll.
Chooses,, > 0 such that

[A(s) — Asoll < ¢, IA(s) = Aool <€

for s > s.. Then
1< c||A(s)v(s) — Als)v(s)|

and, by (22)(s) < —1/c? for s > 5. This contradicts the existence of the limit (23).
Thus we have proved that, is an eigenvalue ol ,,. Next we prove that

lim o(s)=0, o (s)=|[v(s) = hooAus 0(5)]". (24)
Since(v, v) = 0, the functiorns has a bounded derivative
6 = 2o (MooAne 10 — 20, Ay, 1D).
Now suppose, by contradiction, thats) does not converge to zero. Then there exists
a sequence, — oo and a constant > 0 such that (s,) > 3e. Since|s| is uniformly
bounded, say by some constant 0, we have
sy—&fc<s<s,+e/c=o0(s)=>2¢

Hence
1Asev(s) — Ao (s)[12 > 26 /|| A Y|

fors € [s, —e/c, s, + ¢€/c]. Since||A(s) — Ax || and|A(s) — A | COnverge to zero as
s — 00, it follows that

IAG)V(s) — A(s)v(s)[12 = /|| Ax

fors € [s, —¢/c, s, + ¢/c] andv sufficiently large. Hence it follows from (22) that(s)
diverges to—oo ass — oo. This contradicts (23). Thus we have proved (24). Let

E :=ker(As — Aso)
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and denote byP : H — E the orthogonal projection. Then there exists a constand
such that, for every € H,

In = Pl < ef[n = AocAss 0]
Hence, by (24),
lim flv(s) = Po(s) =0, Jim [[Pv(s)]| = lim (v(s), Pv(s)) =1 (29)
Now
PE(s) = —hoo PE(S) + f(5),  f(s) := P (Ao — A(s) — B(s))&(s). (26)
By (25), there exists a constant> 0 such that|&(s) || < 2||P&(s)| for s > s; and hence
If I <2(1 Ao — A+ 1B ) I PES) (27)

for s > s1. Consider the function

PEGs)  Pu(s)
IPES 1P

w(s) =
By (26), its derivative is
. PE/ PE ) f

Y e <||Pé||’w>w_||Ps|| <||Ps||’w>w

By (27), the derivativepb is integrable. Hence (s) converges to an elemenf, € E of
norm one. Hence, by (25),

Voo = liIM w(s) = lim Puv(s) = lim v(s).
§—00 §—00 §—>00

This proves the lemma. O
LEMMA 3.5. — Assume the situation of Lemr@al and suppose that

[ [aB@I+ @) dods < .
0

Theni — A, is integrable,
fim &~ [5(s)]| = cxo = &l “>7P £ O], (28)

and
1&Cs) — e_k“’scoovooH = O(e_kms) (29)
ass tends tooo.
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Proof. —Consider the function
1 2
p(s) = EIIU(S) — Pv(s)|°.

Its derivative is

o={v— Pv,v)

=(v— Pv, v — Av — Bv)
=(—Pv,Av— Av — Bv)
= (Aso — A)(Pv,v) + (Pv, Av — Axv + Bv)
SIA = Aol + 1Bl = (A = Aoo) (P, v)
<g— flv, Pv),

where
=1 = Aoos

wu is given by (21), and
g(s) = [|A(s) — Aol + | B(s) |l +/(I|B||2+ IAL]). (30)

By (25), there exists a positive real numbersuch that(v(s), Pv(s)) > 1/2 for every
s > 5. Moreover, sinceu is decreasing with limiti., it follows that f is positive.
Hence, fors’ > s > so,

]f<2]f(v,Pv><2](g—b)<2<p(s)+/oog>, (31)

Sinceg is integrable it follows thatf is integrable. By assumption and (2L),— X is
integrable, and hence sois, — A = u — A — f. Next we observe that the function
c(s) := e ||E(s)| satisfies the differential equation

Ok AB)EE)) _ (

Aoo — A .
IECs) | (5))c(s)

C(s) = Aooc(s) —

Hence
c(s) = € [£(s)]| = el "M |£(0)] (32)

and hence:(s) converges ta,, ass tends tooco. This proves (28). To prove (29) note
that

YIi_)rrgo g E(s) = JL@O c($)V($) = CooVoos

where the convergence isii. O
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LEMMA 3.6.— Assume the situation of Lemn35 and suppose that there exist
positive constant§’ ande such that

IA(s) = Acoll + IBG) | + IAG) | + 1 B(s)[| < Ce™®. (33)
Then there exist positive constamtand§ such that
Hé(s) — e_k“’scoovooH < cg Pootds

Proof. —Since Ay, — Ao:V — H is a Fredholm operator its kernd is finite
dimensional. Think ofE as a subspace aff and denote its orthogonal complement

by
Hy:=E™, Vi:=VNH.
As above, letP: H — E denote the orthogonal projection and consider the operators
A1(s): V1 — HyandBi(s) : HL — H; defined by
A1(s) := (1 — P)A(s)(L — P) — Ao, Bi(s) := (1 — P)B(s)(1 — P).
Defineé; : [0, co) — Vi andn; : [0, o) — H; by
£1(s) := €< (1L — P)&(s),

and
n1(s) 1= €=*(1 — P)(A(s) + B(s)) P&(s).
Thené&; andn, are continuously differentiable as functions fr¢dnoo) to H; and

£1+4 A1€1 + Bi&r + 11 =0.

The derivative ofy; is
n1(s) = € (1 — P)(A(s) + B(s5)) P£(s)
— € (1 = P)(A(s) + B(5)) P(A(5) — hoo + B(5))E(s)
=€&>*(1— P)(A(s) + B(s)) P£(s)
— s (1 — P)(A(s) — A + B(s)) P(A(s) — Aso + B(s5))&(s).
Hence, by (28) and (33), there is a const@ht- 0 such that, for every > 0,

()1 + lIAa(s)]| < C'e™.

Hence&; andn, satisfy the hypotheses of Lemma 3.1. Hence there exist constanis
andsé € (0, ¢) such that, for every > 0,

lo(s) = Po(s) | = o s (34)

e [[E(s)
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Moreover, it follows from (27) and (33) that there exist positive constarasds’ such
that, for everys > s’,

P& (s) o 0
anas)n_”“"”w“) ”w||</||w||<ce .
Hence
1069 =l < 106) = Prc+ [ Poo) = il + sy~ v
T [Pu(s)ll [Po)|
PE(s) H
= - P 1—||P _
e (TSI
&(s) H
<2llv(s) — P o
Jvis) = Peli+ H 1Pe) "

<(2c4)e™

for everys > s’. Now letg: [0, co) — [0, co) be given by (30). Then, by (33), there is a
constant” > 0 such that, for every > 0,

o0

/g(s) ds <c'e®.

s

By (31) and (34), there is a constarit > 0 such that, for every > 0,

/OOW ~hoo) = 7f < v(s) — Pu) 12 + z/g < et

By (21) and (33), there is a constarit > 0 such that, for every > 0,

o0 o0 o0
/M C el € /M ] +/|u el < CE
S S 5

By (32), c(s) = e*||&(s)|| converges exponentially te,, and hence the function
=& (s) = c(s)v(s) converges exponentially iQ.v,. O

4, Proofsof Theorems A and B

Proof of Theorem A- It is immediate that (1) implies (1); in fact, ife satisfies (II)
then

E() <

COIQ
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We prove that (I) implies (Il). Assume, by contradiction, that there exist sequences
s, — oo andt, € [0, 1] and a constant > 0 such that

|0su(sy, 1) =6 (35)
for everyv. Consider the sequence
u,(s,t):=u(s, +s,1).

By (I) and Lemma B.3, there exist constasgs> 0 andc; > 0 such that, for every e R
and every € [0, 1],

s =2 850 = |dsu(s, 1) < c1.
Hence, by Lemma C.3, there exist constants- O andc, > 0 such that

v =2 vo = Uy [l c2—1,11x[0,17) S C2-

By the Arzéla—Ascoli theoremy, has aC!-convergent subsequence, still denoted by
u,. SinceE (u) = 0, the limit function is independent of thkevariable. Hence

v“_[noo 105201l co—1,11x10,27 = O-

This contradicts (35). Thus we have proved that the second limit in (Il) exists. Since
dsu + J;(u)d,u = 0 it follows thatd,u converges to zero uniformly. Hence the length
function s — fol |0,u(s, t)| dt converges to zero. Hence it follows from the boundary
condition thatu(s, ) converges to an intersection point b§ and L, ass tends tooco.
This proves (II).

Before proving (II) implies (l11) we first prove that (II) implies

S"_[T;o 1052 |l ok (15, 00) x[0,17) = 0 (36)

for everyk. If (II) holds then sup, [d,u(s, 1)| < co. Hence, by Lemma C.3 and the fact
that J is independent of, it follows that, for everyk,

1951l c 10,00y x[0, 1) < O©-

Now suppose, by contradiction, that there exigéta0, an integek > 0, and a sequence
s, — oo such that

1952l ek (s, —1,5,+11x10,17) = 8-
Sinced,u satisfies a unifornC***-bound, it follows that the sequence
%—V(S, 1) = 85”(5 + 5y, 1)

has aC*-convergent subsequence. Sid¢e converges to zero in the sup-norm the limit
is zero. Hence the subsequence otonverges to zero in thé*-norm, a contradiction.
Thus we have proved (36).
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We prove that (Il) implies (111). If (I) holds we may assume, without loss of generality,
thatu(s, t) € U for everys > 0 and every < [0, 1], whereU C M is the neighbourhood
of p introduced in Lemma 2.1. Fer e U andr < [0, 1] let ®,(g) : R** — T,M be the
trivialization of Lemma 2.1 and, for > 0 and 0< 7 < 1, define& (s, t) € R?" by

§(s.1) = D, (u(s, 1) Byus. ). (37)
SinceD,d,u = 0, it follows from (4) that
05§ + Jod,§ + S =0. (38)

Define&:[0,00) — V by &(s)(¥) := &(s, t). This function is smooth and, by (38), it
satisfies

£(s) + A(9)E(s) + B(s)5(s) =0, (39)

whereA(s) and B(s) are defined by (8) and (9). By (36) and Lemma 248s) and B(s)
satisfy the hypotheses of Lemma 3.1. Hence there exist positive conggamde such
that, for everys > 0,

1
/ EGs, )P dE < coe 2. (40)
0

Now consider Eq. (38). By Lemma C.1, there exist, for each integef, constants;
andc, such that, for every > 1,

I& ”kaz([s,oo)x[o,l]) < ¢k (”S‘E ”W"*lvz([s—l,oo)x[o,l]) + 1§ ”Wk’l*z([s—l,OO)X[O,l]))
LN E N wr-12((5-1.00)x[0.1])-

Here the last inequality uses the fact that, by (36) and Lemma 2.2, the fuscéitisfies
a uniformC*~*-bound. Hence, by induction,

co _ —k
”%—”Wk.Z([S’OO)X[O,]_]) < C/Z”g”Lz([s—k,oo)X[O,l]) < Cl/c/ \/ 2_86 e

fors > so+ k. The last inequality follows from (40). Combining this with (36) we obtain
thatd,u = ®,(u)& converges to zero exponentially in thé° topology, as required. O

Proof of Theorem B-Letu € S be nonconstant and continue the notation of the
proof of Theorem A. In particulai (s, t) € R is defined by (37) and satisfies (38),
(39), and (40). By (Ill) in Theorem A and Lemma 2.3, the operaté(s) and B(s)
satisfy the hypotheses of Lemma 3.6. Hence there exist an eigenvalted, a nonzero
eigenfunctionv,, € ker(A., — Xs), and constants > 0 and d< (0, ¢) such that, for
everys > 0,

1
/|e’\°csr§(s, t) — voo(t)|2dt <ce s, (42)
0
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Abbreviate

C(s, 1) i= €E(s, 1) — Voo(0). (42)

We prove by induction that, for every integee> 0, there exists a constant > 0 such
that, for everys > 0,

5
1 lwr2(is, 00y xi0,17) < €€ . (43)

For k = 0 this follows from (41). Assume, by induction, that (43) has been established
for some integek > 0. Note that; satisfies the partial differential equation

as{ + Joal§ =n,

where

(s, 1) =€ (So (1) — S(5,1)E(s, 1) — (Soo(t) — Aoo) (s, 1),
and the boundary condition

¢(s,0),¢(s,1) e R" x {0}.

By (Ill) in Theorem A and (7) in Lemma 2.2, there exists a constant 0 such that

N

s
1S — Sooll ok (1s,00) x[0,1]) < €€

for everys > 0. Hence it follows from the induction hypothesis that

I =8
170l we2(is, 00y xio,1) < €€ °°

for everys > 0 and some constanf. Hence it follows from Lemma C.1 that (43) holds
with k replaced by + 1.

With (43) established, it follows from the Sobolev embedding theorem that &, 1)
converges uniformly and exponentially with all derivativesvto(¢) ass tends tooo.
Consider the functiom in z-dependent local coordinates: U — R?* nearp such that

@i(p) =0, do,(p)=P,(p)".
Then the matrix functiony, : U — R?*?*  defined by
Vi (q) :=de(q)P:(q),
satisfiesW,; (p) = 1. Moreover,d, (¢; o u) = ¥, (u)é and hence, by (42),
i (u(s, 1)) = € vy (t) + R(s, 1), (44)

and hence

@ (uls, 1)) = —)Lie_kmsvoo(t) —/R(a, t)do, (45)

oo
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where
R(s, 1) := €W, (u(s, 1)) (s, 1) + €7 (W, (u(s, 1)) — 1) veo (2).

It follows from (lll) in Theorem A and (43) that, for every integer> 0, there exists a
constant, > 0 such that, for every > 0,

— (oo +):s
| Rl ck(1s,00)x[0,17) < Ck€ (oo td)s (46)

Sincev,, is a nonzero eigenfunction df,, it follows from (44) thatv..(¢) # O for all z.
Hence there exist positive constantandsg such that

1
et (s, 1)] < e
C

for s > sg. Now take

A= Ao, v(1) := P (p)veo (D).

Then it follows from (45) and (46) that has the required asymptotic behaviour. This
proves Theorem B. O

Appendix A. TheHeinz trick

Let
92 92
A= —— 4+ ...
9x12 Tt 9x,2

denote the standard Laplacian &h. We write

B,(x)={£ €R"||§ —x| <r}

and abbreviateB, = B,(0). The following Lemma is a generalization of the mean
value inequality for subharmonic functions. A version of this estimate was proved by
Uhlenbeck [19] and used for the proof of the removable singularity theorem for Yang—
Mills connections. The proof below uses a classical trick by E. Heinz, which was
explained to us by Mario Micallef. The second author used a similar inequality in [16].

LEMMA A.l. - For every) > 1there exists a constapt = (X, n) > 0 such that the
following holds. Ifw : B, — R is a boundedC?-function that satisfies the inequalities

7
bn/2

Aw > —a — bw™2/" >0, /w<

B,

(A.1)

for some constants > 0 andb > 0 then

ar? A
0 < . A2
w(® 2n+4+V0|(Br)B/w (A-2)



J.W. ROBBIN, D.A. SALAMON / Ann. |. H. Poincaré — AN 18 (2001) 573612 597

RemarkA.2. — If b = 0 then the last condition in (A.1) is vacuous and (A.2) holds
with A = 1. In this case the inequality is sharp, i.e. in (A.2) equality holds with 1
wheneverAw = —a. (See step 1 of the proof.)

RemarkA.3. — The proof shows that the constantan be chosen as
= (2n + &)"2(1 — §)s"*+31+2/2\/o| (By),

wheres e (0, 1) is given byi = (1 —8)~"~L. In particular, with§ = 1/2 andn = 2,

T
A=38, =—.
=16
Proof of Lemma A.1- The proof consists of five steps.
Stepl: The lemma holds with= 0.
In this case the third inequality in (A.1) is automatically satisfied and (A.2) ivithl
is the mean value inequality for the subharmonic function

le2
2n

wx) =wx) +

Step2: It suffices to prove the lemma foe= 1. 3
Suppose thab : B, — R satisfies (A.1) and defin@ : By — R anda, b € R by

w(z) :=w(rz), a:=ar?, b= br.

Then

and

I3

I R
- rh = rnpn/2 - I;n/z'

B1 B,

Hence, assuming the lemma foe= 1, we obtain

~ 2
- a ar
w0 =w(0 < 2n+4+VO|(Bl) 2n—|—4+VO|(B)

Step3: It suffices to prove the lemma for= 1.
Suppose tha : B, — R satisfies (A.1) and defin@ : By — R anda € R by

W(2) :=b"?w(z), a:=b"%a.

Then

AW > —a — ptd/n
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/ﬁ):b”/z/wgu.

B, B,

Hence, assuming the lemma fio= 1, we obtain

and

b2 2y a A
0) = b"/2ip(0) < b= / .
w0 w0 2n+4+VO|(B,)B v 2n+4+V0|(Br)B v

Step4 (The Heinz trick Assumé = r = 1 and definef : [0, 1] — R by

flp)y=@1~-p) SBUIOw

for 0< p < 1. Sincef (1) =0and f is nonegative, there exigt: € [0, 1) andx™ € B~
such that

fp ):orgpixlf(p)= ci=w(x"*) :%l:*pw.

Denote
e=(1-=8A-p".
Then, for0< p <&,

Cl,Oz C(n+2)/np2 1
c< =+ =+ /w
21+4 " (2n+ 452 pn\ol(By)
By

(A.3)

To see this, note first that

supw < SUpw = flor+e) _ flp"te) < [ ‘
BB A—pr—er 8L py eI py o

Yy j(;1—',—2)/;1
n+ n

in B.(x*) and so (A.3) follows from step 1 withh = p < ¢ and a replaced by
a+c(n+2)/n8—n—2.

Step5: The lemma holds faor=1andb = 1.

If 2n+ 4)c <athenw(0) <c<a/(2n+ 4) and this implies (A.2). Hence we may
assume that

a<(@n+94c.
Next we prove that
CZ/nSZ
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Suppose otherwise that > (2n 4 4)6"+3/c¢%". Then, in (A.3), we can choose

(2n + 4)67+3
p = T e

and obtain

2 (n+2)/n ,2
ap c 0
+

1
<
‘Soita (2n—|—4)8”+2+,0”V0|(Bl)B/w
1

a3 c2/n n/2 1
=45
2 o ((2n+4)8”+3> VoI(Bl)/w
B

@t dete o ( c2n )"/2 1 /
S ¢ VoI(By) / v
1

c2/n (2]’1 + 4)5n+3

<(@A—=8)>2%+3
( )ec+ c+c((2n+4)5n+3> VO|(Bl)B/w
1

1 n/2 1
:C_8(1—8)0+c((2n+4)5n+3) Vol(Bl)B/w'

Here the third inequality uses< (2n + 4)c and the fourth inequality follows from the
fact that(2n + 4)8"3/c?/" < €2 < (1 — 8)2. It follows that

n/2

3(L—8)((2n +H5"*3) VOl(Bl)g/w.

B

But the left hand side equalg (see Remark A.3) and so this contradicts (A.1).
Hence (A.4) must have been true.
Now consider (A.3) witho = ¢ to obtain
a82 C(”+2)/”82

1
<
Sora T amraez S”VoI(Bl)B/w
1

- a(l— §)"+? et 1 /
< —F— — [ w.
2n+&e 0T enVol(By) y

1

The last inequality uses< 1 — § and (A.4). Multiplying bys" gives

1—3) n<a(1—5)”+2+ 1 /
— e" < w.
¢ 2i+4 " VoI(By

1
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Hence

n 1— —n—1
ce < a ( 6) /w

w0 =fO) < f(p)=1~p)"c= (1-08)" ~21+4 " Vol(By)

1

This proves the lemmainthe case-b=1. O

Appendix B. Apriori estimates

Throughout this sectioriM, g) is a closed Riemannian manifold addc M is a
closed submanifold. Denote (M, L) the space of all almost complex structures on
M for which L is totally real. Denote

H={zeC|Imz >0}, H,(z0) :={z € H| |z — zol <}

Note thatrr?/2 < ared H, (zq)) < mr?.

LEMMA B.1.- For every J € J(M, L) there exist constant8 > 0 and ¢ > 0
such that the following holds for every> 0, everyzg € H, and every smooth map
u: H,(z0) > M. If u satisfies the boundary value problem

Osu + J (u)d,;u =0, u(H,(z0) NR) C L,

then

2 2_ € 2
L/|&u|<8=:4&u@w|<;3 / 1912,
H,(z0) H,(z0)

Proof. —The assertion is independent of the choice of the metric. Hence we may
assume thayp satisfies the conditions (i), (i), and (iii) of Lemma D.1. L@tdenote
the Levi-Civita connection of and R € Q%(End(T M)) denote the curvature tensor.
Abbreviate

§:=19 =19 = ZleP =2
= o5u, ni=ou, w—2 —277 .
andA := 9,2+ 9,2. (That|£| = |n| follows from condition (i) in Lemma D.1.) Then
Aw = VP + [VEP + (€, V& + V V).
SinceV,n = V;¢€ we have
Vi + Vin=Vi(J§) — Vi(Un) = (;)E — (Ve ),

hence
ViVié + ViViE =V, (Vi§ + Vin) + ViVin — ViVin
=V (V1) = (% d)n) — RE, mn,
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and hence

Aw = |ViE|>+ |ViE|> — (RE, nn, £) + k. (B.1)
The error tern is

K= (& Vs ((V,DE = (V% d)n))
= (&, (D€ — (EDVin)) + (&, (V(VD)E — (V(V%e D).
There exists a constant=c(M, J, g) > 0 such that

(VDI <c(EF+1VED),  IN%DI<c(§17+1VE)).
Hence there exists a constaht ¢’ (M, J, g) > 0 such that
k> |5 = CIEPIVE] = ¢ IEPIVig ]
> —%Maz — %|%é|2—c’<1+c/>|s|“.
By (B.1), there exists a constatit= ¢ (M, J, g) > 0 such that
Aw > —c"|E|* /4= —c"w?.

Now the normal derivative oy on H,(zg) N R is zero:

dw(s,0) = (&(s,0), Vi&(s, 0))
=(5(s,0), in(s, 0))
=(£(5,0), Vi (J (u(s,0))&(s,0)))
=(£(5,0), J (u(s,0) V& (s, 0))
=0.

The penultimate equality uses the fact tWaf () is skew-symmetric with respect to
This follows from condition (i) of Lemma D.1. The last equality uses conditions (ii)
and (iii) of Lemma D.1. Namely, sinck is totally geodesic we havé&(s, 0) € T,,(s.0/L

and hence, by (ii)/ (u(s, 0)) ;& (s, 0) is orthogonal tdl}, s o) L. It follows thatw extends

by reflection to a twice continuously differentiable function on the open Bjgg¢g) :=

{z € C| |z — zo| < r}. The extended function will still be denoted hy. It satisfies
w(z) = w(z) andAw > —c”w?. Hence the assertion follows from Lemma A.1

RemarkB.2. — If (M, J, g) is a K&hler manifold then the error termin Eq. (B.1)
vanishes. If, in addition, the curvature is negative thies subharmonic and LemmaA.1
is not required.

Next we want to allow forJ to depend on bothy = s + it and u«. Following
Gromov [10] we do this by introducing an almost complex structure on the product
H x M. In our application we do not need the vector fiesindY below.

Let {J,},cu be a smooth family of almost complex structuresMrthat has compact
support in the sense that there exist a conskant 0 and an almost complex structure
Jso ON M such that/, = J,, for |z| > R. We assume thaf, € 7 (M, L) for everyz € R.
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LEmMMA B.3.— Under these hypotheses there exist constants0 and ¢ > 0 such
that the following holds for every € (0, 8), everyzg € H, and every smooth map
u: H,(z0) > M. If u satisfies the boundary value problem

dyu+ Iy )du =0, u(s,0) €L, (B.2)

1
/ wmﬁ<<5::+&mzwﬁ<c(1+;§(/ wMF).

H,(z0) H,(z0)

Proof. —Denote

then

M:=HXM, Z:=RXL,

and consider the almost complex structuren M given by

/0 -1 0
i=[1 o o].
0 0 J

ThenL is a totally real submanifold ofM, J) andu satisfies (B.2) if and only if the
functionu : H,(z9) — M, defined by

u(s,t):= (s, t,u(s, 1))

is aJ-holomorphic curve inV with boundary values it.. N

Lemma B.1 does not immediately apply in the present situatiovf &snot compact.
However, we may argue as follows. It suffices to prove the lemma under the additiona
hypothesis thazo| < R +1. Namely, if|zo| > R+ 1 replacezo by z1, where|zi| = R+1
andu by u1(z) = u(z + z0 — z2). Now M N (Br+1(0) x M) may be identified with an
open subset of a closed manifold ahd (Br41(0) x M) andJ may be extended.

Now we can apply Lemma B.1, i.e. there exist constantsO andc > 0 such that the
conclusion of Lemma B.1 holds with/, L, andJ replaced byM, L, andJ, and with
the product metric o/ . Note that

1951 (s, )% = 1+ |dyu(s, 1)]?.

5 / .
< (/= ulc < —.
"=\ =3

H,(z0)

/ 10,0 < mr?+ / |9,u|? < 8.

H;(z0) H,(z0)

Assume

Then
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Hence, by LemmaB.1,
- C - C C
|85 (20)|? < |8, (z0) > < — 8,012 < — + — |9su .
r2 T r?
H,(z0) H, (z0)

This proves the lemma. O

Appendix C. Elliptic bootstrapping

In this section we shall prove that a uniform bound on the first derivativesgofes
rise to uniform bounds on the higher derivatives whenavisra solution of (B.2). The
proof uses thd.2-estimate for the Laplace operator. ThroughButienotes a bounded
open subset dfl. Note that N R may be nonempty. Let

R 0 -1 2nx2n
Jo:= (]l 0 ) eR

denote the standard complex structure.
We consider the Cauchy—Riemann operator

05 = 8,6 + Jod&
for smooth functiong : Q@ — R?" that satisfy the Lagrangian boundary condition
£(s,0) e R" x {0} (C.1)

for all s € R such that(s, 0) € 2.

LEMMA C.1. - LetQ, Q' be bounded open subsetdibiuch thatQ c Q. Then, for
every integek > 0, there exists a constant= c(k, 2, Q) > 0 such that

1§ ”W"*LZ(Q) < c(l|5§ ||Wk-2(sz') + 11§ ||Wk-2(sz')) (C-Z)

for every smooth functioh: ' — R?" that satisfiegC.1).

Proof. —Assume first that has compact support i€2’. Then it follows from the
boundary condition and integration by parts that

/|55|2=/(|as5|2+ 1,612+ 2(3,&, Jod,&))
Q Q
= /(|BSS|2 +19,£ 1% + (3,8, JodE) — (&, Jodd,E))
S
= / (18,617 + 18,1 + (358, Jodi&) + (8,€, JodsE))
S

=/(|BSS|2+ 19,£12).
J
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Hence, by Poincaré’s inequality, there exists a constasic; (R2') > 0 such that

1 lwizey < c211058 + Jodi& | L2

for every smooth functior : Q' — R?" with compact support that satisfies (C.1). If

& does not have compact support choose a smooth cutoff fungtidel — R with
compact support such th# =1 on  and apply the previous inequality ¢ to
obtain (C.2) fork = 0. Assume, by induction, that (C.2) has been established for some
integerk > 0. Then (C.2) withk replaced byk + 1 follows by applying (C.2) to the
functiond,&. O

Next we shall consider the Laplace operator

92 92

= 952 + ar2

for smooth functions : 2 — R that satisfy either the Dirichlet boundary conditions
u(s,00=0 (C.3)

for all s € R such that(s, 0) € Q or the Neumann boundary condition

o;u(s,00=0 (C.49)

for all s € R such that(s, 0) € Q.
LEMMA C.2.— Let 2, Q" be bounded open subsetsHbfsuch thatQ c Q. Then,
for every integek > 0, there exists a constant= c(k, 2, ") > 0 such that

”M ||Wk+2,2(9) < C(I|AM||Wk.2(Q//) + ||M||Wk+l.2(Q//))

for every smooth function: Q" — R that satisfies eithefC.3)or (C.4).
Proof. —Choose an open s& ¢ H such that2 ¢ Q' andQ’ ¢ ©”. Denote

9 := 0, — Joo,.
By Lemma C.1, there exist constartsandc¢” such that

1€ w220y < ¢ (198 [lwrrr2iry + 16 lwrsrzar )

||77||Wk+1-2(sz') < C//(||377||Wk-2(sz”) + ||’7||Wk-2(sz”))

for all smooth functionsz: Q' — R? and :Q” — R? that satisfy the boundary
condition (C.1). Now suppose that, v:Q” — R are smooth functions such that
v satisfies the Dirichlet boundary condition andsatisfies the Neumann boundary
condition, i.e.

ou(s,0)=v(s,00=0
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for s € R such thaf(s, 0) € Q”. Then
£:=(u,v): Q" — R?

satisfies the Lagrangian boundary condition (C.1) and so does the functierd& .
SinceA = 34 it follows that
1§ lwes22(@) < ¢ (1€ lwrray + 16 Twrsr2)
< (" Ag| wr2n + (L4 cDIE] w12 -
This proves the lemma. O

LEMMA C.3.-LetQ, Q' be bounded open subsetsibéuch that2 c Q. LetM, L,
{J.}.cqr, be as in the hypotheses of LemB&. Then, for every integer > 0 and every
constantc; > 0, there exists a constai}, = ¢;(c1, 2, Q') > 0 such that the following
holds for every smooth map Q' — M. If u satisfies the boundary value probl€Bi2)
then

supldsu| < c1 = llullcr) < -
Q/
Proof. —Let 2n = dim M andn = dim L. CoverM by finitely many coordinate charts
that identify L with R"” x {0} ¢ R" and identifyJ with the standard complex structure
Jo: R — R? onR" x {0} = L. (Do this by choosing any coordinates, ..., x, on

L and using exponential normal coordinatgs..., y, with 3/dy; = Jd/dx;.) Choose
3 > 0 such that

Z20€ Q = Hj(zg9) C &

and that, for everyp € M, there exists a coordinate chart as above that contains the
closed ball of radiugc; aboutp.
Now letu : Q" — M be a solution of (B.2) such that

suplosul < c1
S‘Z/

and fix a pointzg € . Thend (u(zp), u(z)) < c18 for everyz € Hs(zg). Hence there is a
coordinate chart as above that contaiti#l;(zo)). Write u : Hs(zo) — U C R?* for the
mapu in this coordinate chart. Then

osu + J(s,t,u)o,u =0, (C.5)

u(s,0) € R" x {0}. (C.6)

We prove by induction that, for evety, there exists a constant, independent oft,
such that

||M||Wk~2(H5/k(zO)) < ¢k (C-7)
AbbreviateJ = J (s, ¢, u(s, t)) and think of this as a functions efands. Then, by (C.5),

(0, — JO,)(Osu + Jo,u) =0
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and hence
Au = (3;J)d,u — (8, J)d;u. (C.8)

Write u = (u1, up) whereu, : Hs(zo) — R” fori = 1, 2. Then, by (C.6)u»(s, 0) = 0 and
hence

du1(s, 0) = —0,uz(s,0) =0,

i.e.u; satisfies the Neumann boundary condition apdatisfies the Dirichlet boundary
condition. Hence it follows from Lemma C.2 that for every integer 1 there exists a
constani;_ , such that

/
ot w1205 0, o S Chort (AU wr-2.20815, 00y F 10 llwr2 (a3 zo1)) - (C.9)

By assumption there exists a constaftdepending only or; and the choice of the
coordinate charts, such that

”””Cl(Hs(zo)) < C/l'

Hence it follows from (C.9) witht = 1 and (C.8) that (C.7) holds with = 2. Now

the formula (C.8) shows that th&22-bound onu together with theC*-bound implies

a Wh2-bound onAu in the domainHs»(zo). Hence it follows from (C.9) withk = 2

that (C.7) holds withk = 3. Now suppose, by induction, that (C.7) has been established
for k > 3. Then, by (C.8)Au satisfies aWw*~12-bound in the domairt;(zo) and
hence, by (C.9) satisfies av**-2-bound inHj,(1(z0). This proves (C.7). With (C.7)
established, the assertion of the lemma follows from the Sobolev inequality

lullcogn, zg)) < colMullwz2(a, 2o

for some constanty(r) and every smooth functiom: H,(z0) — R?'. O

Appendix D. A convenient metric

The following lemma appeared in the Diploma thesis of Urs Frauenfelder [9]. We give
a proof for the convenience of the reader.

LEMMA D.1 (Urs Frauenfelder). Let (M, J) be an almost complex manifold and
L C M be a totally real submanifold witt2dimZL = dimM. Then there exists a
Riemannian metrig on M such that
(i) g(J(pv,J(p)w)=g(v,w) for pe M andv,w e T,M,
(i) J(p)T,L is the orthogonal complement &f L for everyp € L,
(iii) L is totally geodesic with respect to

Proof. —Choose coordinates, ..., x, on L and extend these to coordinates. ..,
Xny V1, - - -» Yo ON M such that

0 0
= —, i=1...,n,
dx;  dy;
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on L. Write a metric in these coordinates in the form

_ (ax,y) b(x,y)T)
s = (G000 PN,

wherea(x, y) =a(x, y)T, b(x, y), ande(x, y) = c(x, y)T are reah x n-matrices. Such
a metric satisfies (i), (ii), and (iii) if and only if

a(x,0) =c(x, 0, b(x,0)=0, Opeia(x,0) =0, (D.1)

for i = 1,...,n. The set of metrics that satisfy (D.1) is invariant under convex
combinations and under multiplication by cutoff functighs= 8(x, y) that satisfy

On+iB(x,0) =0.
This condition on the cutoff function is intrinsic. It asserts that
geL,veT,L=dp(q)J(qg)v=0. (D.2)
Hence the result follows by choosing local metrics that satisfy (D.1) and patching with
a partition of unity consisting of finitely many cutoff functions that satisfy (D.2)
Appendix E. Applicationsto contact geometry

Let M be a 2 + 1-dimensional oriented manifold aade Q*(M) be a contact form,
i.e.

a A (da)' > 0.

The Reeb vector field of « is defined by
t(Ya=1, t(Y)da =0.

We denote by :R x M — M the Reeb flow and write*(p) := ¢(t, p) whenever
convenient. Let. ¢ M be a closed Legendrian submanifold, ¢7; = 0 and L has
dimensionn. A characteristic chord is a pair(7T, y), wherey : [0, 1] — M is a smooth
curve andrl’ > 0 is a real number such that

y@O)=TY(y(), y(0) e L, y(eL.

In particular,y (1) = (¢ T, v (0)) for 0 < ¢t < 1. We allow the possibility that the image
of the characteristic chord lies on a periodic orbit of the Reeb flow and hentay not
be injective. Call the characteristic chordndegenerateif ¢ :R x L — M is transverse
to L at the point(T, y (0)).

Now suppose thal : TM — T M is an endomorphism such that

aolJ =0, JY =0, JP=qY —1,
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and the formula
(v, w) = =da(v, Jw) + a(v)ax(w) (E.1)

defines a Riemannian metric @#. In particular,/ maps the kernel af to itself and its
restriction to the kernel ok is an almost complex structure that is compatible with the
symplectic formda. As in Section 1 let us denote the half strip By= [0, co) x [0, 1].

We consider the partial differential equation

dsu —a(u)Y (u) + J (u) (du — a(du)Y (u)) =0,

(E.2)
dsa (Osu) + 9yt (du) =0,
for smooth functions: : S — M that satisfy the boundary condition
u(s,0) e L, u(s,1) e L, (E.3)

fors > 0.

RemarkE.1. — The solutions of (E.2) and (E.3) correspond to pseudoholomorphic
curves in the symplectization as follows. Consider the symplectic maniidw)
defined by

M:=Rx M, o:=da),

wheref denotes th&-coordinate. @ei =R x L is a Lagrangian submanifold ot
and the automorphisni: TM — T M defined by

J(@,v) = (—a(), Jv+8Y)

is an almost complex_structure oM that is compatible withis. The corresponding
Riemannian metric o =R x M is € times the product metric, where the metric
on M is given by (E.1). Now::S — M satisfies (E.2) and (E.3) if and only if there
exists a smooth functiofi: S — R such that the function : S — M, defined by

u(s, t) == (0(s, 1), u(s, 1))

is aJ-holomorphic curve i with boundary values i.. The functions is determined
by the equations

3,0 = a(d,u), 3,0 = —a(d;u) (E.4)
up to an additive constant.

LEMMA E.2.—-AssumeM is compact and that all characteristic chord¥, y) are
nondegenerate. Let: S — M be a solution ofE.2) and (E.3) such that

ILrQOG(s, 1) =00, 0< Eo(u) < 00,
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wheref : S — R satisfiegE.4)and

1 o0
Eo(u)z/u*dozz//|83u—oz(85u)Y(u)|2dsdt.
00

Then there exists a characteristic chdff, y) such that
Y|i_)rrgou(s, 1) =y(), vIi_)rr;ooz(atu(s, n)=T. (E.5)

The limits are uniform in.

Proof. —By [6, Theorem 5.9] (the numbering refers to the first draft), every sequence
s, — oo has a subsequencg such that(a(d,u(s,,, -)), u(s,,, -)) converges uniformly
to a characteristic chordr, y). By nondegeneracy, characteristic chords are isolated.
Hence the limit is independent of the sequencand of the subsequensg. O

Fix a nondegenerate characteristic chgfl y) and a functionu:S — M that
satisfies (E.5). It is convenient to introduce the following coordinates in a sufficiently
small neighbourhood’/ of the image ofy. Choose a local submanifolsf c M of
dimension 2 such that

p=y0)eM, T;M = kera,
and the Reeb flow defines an open immersion
¢ (—&,T+e) xM—U

onto an open neighbourhoadof y ([0, 1]). The manifoldM carries an exact symplectic
form

w:=da, ai=aoly.

If M is chosen as a sufficiently small slice that is transversg tben there are two
unigue Lagrangian submanifolds, L, ¢ M and two smooth functions

ro:l_,o—>R, 71:L; >R
such thaty™@ () e U N L for § € Lo, 9@ (q) € U N L for § € L4, and
70(p) =0, np)=T.
Since y is nondegenerate, these Lagrangian submanifolds intersect transversally ¢

p € LoN Ly and they do not intersect in any other point. ko (—¢, T + ¢) define
the almost complex structutg = J(z, -) on M by

de™ () (T — a(J(V)Y (@) = J (¢7(@)) dg™ (@)D (E.6)
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for o € T;M. Then J; is compatible withe for every r. Let us now assume that
u(s,t) € U for everys + it € S and define:: S — M andt:S — R by the condition
thati(s,t) — p andt (s, t) — ¢tT ass tends tooo and

(p('c(s,t),ﬁ(s,t)) =u(s,t) (E.7)

fors >0and 0<r < 1.
LEMMA E.3. - If u satisfiegE.2)and (E.3)then

dyit + J(t,1)9,u =0, AT 4 3,a(d,it) + d,a(d,i1) =0, (E.8)
whereA := §,% + 9,2, and, for every > 0,
i(s,t)yeL,, t(s,t)=71(i(s,1)), t=0,1 (E.9)
Proof. —Differentiate (E.7) to obtain
du =do" (u)dsu + (9,7)Y (),

hence
o (0su) = a(0zit) + 0,7, (E.10)
and hence
dsu — a(du)Y () = do* (i) (351 — a(3,0) Y ().
Similar identities hold withy replaced by. Hence, by (E.6),
0=0dsu — o (du)Y (u) + J (u) (du — (d,u)Y (u))
= do" (it) (351t — (B, Y (1)) + J (¢ (@) d (it)d,it
=do" () (35t — a(3,@)Y (i) + J, @)yt — o (J, (@)3,1) Y (ir))
= do" (i) (dyit + J; () d,it) — o (3t + T, (i) d,) Y (97 (ir)).
SinceY (¢ (p)) is not contained in the image @M under the differentiallo™ (p), it
follows thatd,u + J; (#)d,u = 0. This proves the first equation in (E.8) and the second

equation follows from (E.10). The boundary condition (E.9) follows directly from the
definitions. This proves the lemman

The first equation in (E.8) differs from (CR) in thatdepends on. In the special
case whereJ is invariant under the Reeb flow, is independent of and hence the
asymptotic behaviour af follows directly from Theorem B. The asymptotic behaviour
of ¢ can then be deduced from the second equation in (E.8). In this special case th
results of Abbas [1] follow from ours. We believe that in general the results of [1] can
be derived (and extended to higher dimensions) by allowing depend o and using
elliptic bootstrapping arguments for the two equations in (E.8).

In the case of a Legendrian knot the contact form and the Reeb vector field are givel

by

d
oa=dz—ydx, Y=—.
0z
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Consider the endomorphisth: TR® — TR? defined by

0 0 0 0 0 0
—=, J—=———y—, —=0
ox dy ay ax 0z 0z
Then Egs. (E.2) have the form
o,u — 0,v=0, o,v + d,u =0, Aw =0. (E.11)

Here we readu, v, w) for u in (E.2), (u, v) for « in (E.8), andw for 7 in (E.8). The slice
M is the(x, y)-plane and sa@ = z. The boundary condition (E.3) has the form

(u(s, 0), v(s,0), w(s, 0)) € L, (u(s, D, v(s, 1), w(s, 1) €L, (E.12)

where L C R® is a Legendrian knot. Every Legendrian knbtC R® projects to an
immersed curve. in the (x, y)-plane and the characteristic chords correspond to the
self-intersections of.. They are nondegenerate if and onlyIifhas transverse self-
intersections. In this case we can apply Theorem C to derive the asymptotic behaviour fc
the map(u, v) and use the Dirichlet boundary value problem to deduce the asymptotic
behaviour forw.
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