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ABSTRACT. - In this paper we study some of the implications for
stability of equilibria in nonlinear elastostatics of assuming that the stored
energy function is rank one convex.
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RÉSUMÉ. - Dans cet article nous étudions la stabilité des équilibres
en élastostatique non linéaire sous l’hypothèse que la fonction d’énergie
emmagasinée est convexe de rang un.

INTRODUCTION

Let the functional E be defined by
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where Q c I~" and u : SZ -~ Then any smooth weak minimiser uo of E

satisfies

and the Legendre-Hadamard condition

(for a proof see Morrey [11]). The integrand L is said to be rank one
convex if

and for all x, u, P in the domain of definition of L.

In this paper we examine some of the implications for stability of
smooth solutions of (0.2) of assuming that L is rank one convex.

Suppose uo is a smooth solution of (0.2). Roughly speaking, we say
that uo imbedded in a one parameter family of parame-
trised by a in some interval 1 around zero if

(i) for each ael, M (a, x) is a solution of (0.2) and
(ii) x).

For the precise meaning see Definition 1. 5.
In the context of nonlinear elastostatics L (x, u, where W

is the stored energy function. In section 2, part II, we generate families of

equilibria from any smooth equilibrium solution by exploiting the inva-
riances of the underlying Euler-Lagrange system.

Given any integrand L (x, u, Vu) and a corresponding one parameter
family of equilibria { u (ce, . )) we can generate further maps ue : S2 --~ (~n by
taking any function 9 : Q - 1 and defining

i. e. we allow the parameter to be a function of position. If then

Me and uo satisfy the same boundary condition. Our main result in section 1
is that uo is the global minimiser in this class i. e.
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for all functions 9 (x) such that 8 Our arguments use what appears
to be a natural generalisation of the one dimensional field theory of the
Calculus of Variations (see e. g. Cesari [6], Morrey [11]).

Basically, the problem is to show that uo minimises E on some admissible
set d. A necessary and sufficient condition for this to hold is that there
exist a functional ~ : j~ -~ !R with the properties

It is clear that the existence of ~ satisfying properties (i)-(iii) implies that
uo is globally minimising in d. Conversely, if uo is the global minimiser
in j~ then IF = E satisfies (i)-(iii).

In the field theory of the Calculus of Variations the approach is to
ensure that (i) holds by an appropriate convexity assumption on L and
that (ii) and (iii) are satisfied by choosing ~ to be a null Lagrangian i. e.

where N is chosen so that F (u)=F (u0)=E(u0), ~ ~A. A central prob-
lem is to characterise the set of all N with this property. This question
has been studied by a number of authors including Ball, Currie and
Olver [4], Edelen [7], Ericksen [8], Landers [10], Olver [12], Olver and

Sivaloganathan [13], Rund [14]. In our arguments N is given by the right
side of (1. Il), this generalises the situation for one dimensional problems
where u : and F is the Hilbert invariant integral of the classical field
theory (see Cesari [6], p. 70). Examples of the application of the one
dimensional field theory to elastostatics are contained in Ball and
Marsden [5] and Sivaloganathan [15]. There have been various attempts
to extend the field theory to multiple intégral problems (see e. g. Weyl [17],
Morrey [11], Rund [14] and the references therein) however, in contrast to
the one dimensional theory, the gap between the known necessary and
sufficient conditions is still large.

In section 2 we apply the results of section 1 to nonlinear elasticity. In
Proposition 2. 4 we obtain a partial answer to the question of whether rank
one convexity implies quasiconvexity by showing that the homogeneous
déformations are globally minimising in various classes of déformations
(for further details regarding this open problem see Ball [3]). Finally, in
section 2, part III, we apply our techniques to prove a uniqueness result
originally due to Knops and Stuart [9]. The result, which is contained in

Vol. s,_~1~ 2-1988.



102 J. SIVALOGANATHAN

Theorem 2. 5, is that if the stored energy functions is rank one convex

and strictly quasiconvex then the only smooth solution of the equilibrium
equations satisfying affine boundary conditions is the affine (homogeneous)
map itself.

The results of this paper are, we hope, a first step towards a field

theory for three dimensional problems of nonlinear elasticity under realistic
convexity assumptions on the stored energy function.

1. PRELIMINARIES

Let QcRn, n >_ 1 be a bounded domain with strongly Lipschitz boundary
and let be C~ on its domain of definition, where
Mn x n denotes the space of n x n matrices and [R" is some open set with

o c V. Later, in considering applications to elasticity, we allow L to have
singularities.
Given ~W1,~ (Q; [R") define the corresponding energy by

ïj=l, 2, ..., n.- - 

oxJ

For the purposes of this paper we consider the displacement boundary
value problem in which the values of u are specified on the boundary of
Qby

for some given function uo.

Null Lagrangians

Let on its domain of definition, where I ~ f~ is
some open interval and U c c (~" is open and contains Q.

DEFINITION 1. 1. - We say that N (x, 8, P) is a null lagrangian if and
only if the functional
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satisfies

for all ei such that:

Remark 1.2. - It follows by approximation that J~f is constant on all
°° (Si) that satisfy (iii) and that agrée on ôSZ.

The next Lemma gives a characterisation of N.

LEMMA 1. 3. - N (, null lagrangian only if

and

Proof - If N is a null lagrangian then any is a global
minimiser of IR against all admissible variations ~~C~0(03A9) and thus (1.4)
holds. Conversely given eeC1(Q) and satisfying (i) and (ii)
then it follows by the dominated convergence theorem that

this follows on replacing e by 8 + t r~ in (1.4) and observing the convexity
of the domain of definition of N for fixed x.

Vol. 5, n° 2-1988.
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Remark 1. 4. - If 1 === tR then Lemma 1. 3 is simply the statement that
N is a null lagrangian if and only if the Euler-Lagrange equation for J~ is
identically satisfied in the sense of distributions for all 

Families of equilibria

DEFINITION 1. 5. - We say that the one parameter family of functions
{M ( a, x) ~ parametrised by a E I some open interval around zero is a one
parameter family of equilibria if

(i) for each a E (a, . ) E C~ (Q; !Rn) and is a solution of (0 . 2);
(ii) all the partial derivatives up to second order i. e.

exist and are continuous on 1 x Q.
We next define a family of maps d that is obtained from the one

parameter family of equilibria by replacing the parameter with a function
8 (x). More specifically

where

i. e. j~ consists of maps ue satisfying the same boundary condition as uo,
where

The next Theorem is the main result of this section and shows that uo is

the global minimiser of E on ~.

THEOREM 1. 6. - Let x)~ be a one parameter family of equilibria
and let L be rank one convex, then

where A is defined by (1 . 7) and uo is given by (1 . 9).

Proof - A simple calculation gives
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It then follows from the assumption that L is rank one convex (0.4) that

where

Notice that the right hand side of inequality (1. Il) is a function of x,

8 ( x), ~ 8 ( x) . We next show that it is in fact a null lagrangian ( see
Definition 1.1). By Lemma 1. 3 it is sufficient to prove that the expression

Vol. 5, n° 2-1988.
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is equal to zero. We integrate the first term in square brackets in (1.13)
by parts which yields

where we have suppressed the arguments of the derivatives of L. Simplify-
ing ( 1.14) yields

which is equal to zero by our definition of a one parameter family of
equilibria [see Definition 1. 5 (i)].
Hence by Lemma 1. 3 the integral of the right-hand side of (1. Il) is

constant for all maps in d and is equal in particular to its value for the

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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map corresponding to 9 --_ o, u (0, x), i. e.

proving the result.

Remark 1. 7. - The integral of the right-hand si de of (1. Il) appears
to be the natural generalisation of the Hilbert invariant integral of the
one dimensional field theory of the calculus of variations (see Cesari [6]).
The Theorem has a natural generalisation to the case when

2. APPLICATIONS TO ELASTOSTATICS

I. The stored Energy Function

In this section we describe some of the implications of the results of
section 1 for the stability of equilibria, under zero body force, of a homo-
geneous isotropic elastic body which in its reference state occupies some
bounded domain Q c In the notation of section 1 this corresponds to
the case

where W : M + " -~ is the stored energy function of the material and

We will assume for the purposes of this section that W E C2 M + ", R+).
Any déformation of the body u : S2 -~ I~" satisfying the local invertibility
condition

Vol. 5, n° 2-1988.
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has an associated energy E ( u) given by

In order that all maps u with finite energy should satisfy (2. 3) we require
that

and extend the domain of W to all of Mn x n by setting

The equilibrium equations, under zero body force, are the Euler-Lagrange
equations for ( 2 . 4)

Remark 2. 1. - The homogeneous deformations, which are the affine
maps given by

are always solutions of (2. 6).

II. Families of equilibria

In the context of nonlinear elasticity we can generate one parameter
families of equilibria (see Definition 1. 5) by taking any smooth solution
uo E C2 (fi) of (2. 6) together with any differentiable group that leaves the
Eurler-Lagrange system (2. 6) invariant. Thus, for example, the invariance
of the energy E under rigid body motions implies that

and hence that

is such a family whenever Q : 1 - SO (n) and d : 1 --~ (~" are any twice
continuously differentiable functions.

Similarly, the assumption of isotropy (see Truesdell and Noll [16])
implies that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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and hence that

is also a one parameter family of equilibria. However, in this case, it is
clear that in will not be defined on all of 03A9 so that

Lemma 1. 3 and consequently Theorem 1. 6 do not apply directly. [We
would certainly need to further restrict the class d, given by (1.7), by
requiring that the functions e: Q -+ 1 satisfy Q (8 (x)) x + d (9 (x)) E SZ,
VxeQ. Other difficulties would arise in ensuring that a version of

Lemma 1. 3 holds as this relies on the convexity of the domain of definition
of the putative null Lagrangian.] ] Notice that in proving a version of
Theorem 1. 6 the requirement that ue should satisfy (2. 3) causes no
difficulties as (2 . 5) guarantees that whenever (2 . 3) fails on a

set of non zero measure.

Another family of equilibria, which we will use later in this section, is

generated by the invariance of (2. 6) under the scaling

is a solution of (2. 6) whenever uo is. [The parameter à = 1 - ce is chosen
so that M(0, x) ~ uo (x).] Again u (a, . ) will not in general be defined on all
of fi. Notice also that the family defined by (2.12) is contained in that
described by (2. 9) in the case when uo is an affine map (see Remark 2.1).

Finally, using Remark 2.1, we can generate another family of equilibria
which is different in character from ( 2 . 9), (2. Il) and ( 2 .12) :

is a family of equilibria defined on f~" for any choice of smooth functions

Remark 2.2. - Any combination of the families (2.9), (2.11) and
( 2 .12) will also generate a family of equilibria.

DEFINITION 2 . 3. - We say that W is quasiconvex at if

for all bounded open sets D c IRn, V cp E Wô~ °° (D), and is strictly quasi-
convex at F if (2 . 14) holds with strict inequality whenever cp ~ 0. We say
that W is quasiconvex if ( 2 .14) holds 

-

Vol. 5, n° 2-1988.
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It is well known that if W is quasiconvex then it satisfies (0.4) (see e. g.
Morrey [11], Ball [2]). The converse question, first posed by Morrey, is still
open. A partial answer is furnished by the next proposition.

PROPOSITION 2. 4. - Let the family of equilibria u (oc, . ), oc E I (some open
interval around zero) be defined by (2 . 13), where and

are twice continuously differentiable functions satisfying
K(0)=F, some 

Then where .91 is defined by ( 1. 7) and

Proof. - This follows by a straightforward application of Theorem
1.6.

III. Uniqueness of equilibria

In this section we show how the uniqueness result of Knops and Stuart
[9] may be derived by the methods of section 1. Their result is the following.

THEOREM 2. 5. - Let Q be star-shaped and let W E C2 ", R) be rank
one convex and strictly quasiconvex at F E ". If uo E C2 (SZ) is a solution

of (2. 6) satisfying

then

The proof of this Theorem is deferred until the end of this section. The
idea of it and the main difficulties are most easily demonstrated by
considering the case Q=B the unit ball in (~n and setting c = 0. Assume
the existence of an equilibrium and to try to apply a version
of Theorem 1. 6 with the family {u(03B1, x)} defined by (2.12) to conclude
that

If in particular we could choose 8 (x) --_ B (x) =1- ( x ( i. e. x - retracts

each point x radially onto the boundary ôB then by ( 2 . 16), ( 2 . 15), ( 1. 8)

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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and (2.12) it follows that

and that

(Knops and Stuart [9] conclude this by the use of a divergence identity
for equilibrium solutions). But if W is strictly quasiconvex then

a contradiction. However, in this case, even though
8 E W1~ °° (B), Lemma 1. 3 and Remark 1. 2 do not apply directly. There
are two main problems associated with our putative null Lagrangian [the
right-hand side of (2. 26)] : firstly it is defined for those functions 6(x) for

which ~x~03A9 i. e. for a given x~03A9 the admissible values 6(x)

must lie in a closed set. Hence when trying to obtain the analogue of
Remark 1.2 by approximating e by smoother functions care has to be
taken to ensure that the approximating functions respect the constraint.
Secondly, Lemma 1.3 does not apply directly since it requires the inte-
grand to be in C 1 in order to use the dominated convergence theorem to
obtain ( 1. 6) but the differentiability properties of (2. 26) in x and 1- 8 as
x, ( 1- 8) -~ 0 are not clear. We circumvent thèse difficulties in

Proposition 2. 8 and Corollary 2. 9 using a procedure which allows us to
work away from the singular point 8 =1.

Hypotheses on Q. - For the remainder of this paper we will assume
further that Q is star-shaped with respect to the origin, i. e. that 0~03A9 and
that for each there exists a unique t>O such that tx~~03A9. We
will also assume that Q has a C 1 boundary in the sense that there exists
an open neighbourhood U of ao and (p E C 1 (U, R), with V (p non vanishing
on U, such that

The assumption that Q is star-shaped with respect to the origin then
implies that

Vol. 5, n° 2-1988.
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DEFINITION 2. 6. - We define the scaling function e : f~ for each

by assigning to be the unique positive number such that

and set E (0) = 0.

LEMMA 2. 7. - The scaling function E satisfies

Proof. - Let a, P be respectively inf sup where dénotes
x e 8S2 x e af2

the usual Euclidean metric. Since 0 e Q by assumption it follows that a,
(3 > 0 and that

As E>O it follows that

By definition

where (p is the function of (2. 17). We now extend the definition of s to
tQ where t>l is chosen so that t03A9~03A9~U and this is

always possible by (2.18). It then follows from ( 2 . 18) and the implicit
function theorem R) and hence R) by
( 2 . 20) . Differentiation of (2.21) gives

As E ~ C ~ ( t S2B~ 0 ~, ~) clearly E ~ C 1 (~~~ ~ ~, ~) and the boundedness of
V E now follows from the continuity of the right-hand si de of (2. 22) and
the compactness of ô~.

PROPOSITION 2 . 8. - Suppose that W is rank one convex and that

is a solution of (2 . 6) that satisfies for some

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Let and define

where s(x) is the scaling function corresponding to Q, given by
Definition 2. 6. Then

where u~ is defined by ( 2 . 12) and ( 1. 8).
Notice that

Proof - Our proof proceeds in 2 stages.

Step 1. - We first show the existence of a séquence enEC1(Q) with
the following properties

To obtain the existence of such a séquence let ([0,1]) be another
séquence satisfying

The smoothness shown in Lemma 2 . 7, then implies that

is a séquence satisfying (i)-(iv).

Vol. ~, -n° ~-1988.
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Step 2. - By (2 .12), ( 1. 10) and ( 1. 8) it follows that

The assumption that W is rank one convex implies that W ( F + 7_~ O Jl) is
a convex function of  for 03BB, e Rn. Thus

and hence

The arguments of Theorem 1. 6 show that the integral of the right-hand
side of (2 . 28) is constant for all functions that vanish on on

and that satisfy E Q, V x E Q, and is equal in particular to its value

for S == 0, i. e. E (uo).
Now using the approximating sequence en and the dominated conver-

gence theorem we see that the integral of the right-hand side of (2. 28) at
8=6 is equal to its value at for any n and hence ( 2 . 24) holds.

COROLLARY 2. 9 :

where

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Since

inequality ( 2 . 29) follows from ( 2 . 31 ) and (2.24).

Proof of Theorem 2. 5. - If ç = 0 and F x by using Corollary 2. 9
we obtain a contradiction of the strict quasiconvexity of W at F, and the
result follows. If then we apply the arguments of Proposition 2 . 8

with the family of equilibria ( 2 .12) replaced by a combination of ( 2 .12)
and (2.13), more specifically we choose

Again, as in Proposition 2. 8 we choose 6 given by (2. 23) then

Now exactly analogous arguments to those contained in the proof of

Proposition 2. 8 show that and hence by the arguments of

Corollary 2. 9 that E (u~‘) >_ E (uo), where uh (x) -_- F x + ç. The remainder of
the proof follows as in the case c = 0.

Remark 2.10. - The use of different combinations of the families (2. 9),
(2. Il) and ( 2 .12) may permit a proof of Theorem 2 . 5 for some domains
that are not star-shaped.

3. CONCLUDING REMARKS

The scaling family of deformations (2.12) offers an approach to answer-
ing the question of whether rank one convexity of W implies quasiconvex-
ity of W. We first remark that, by a scaling argument, in order to show
that W is quasiconvex, it is necessary and sufficient to check that the

quasiconvexity condition (2 . 14) holds for one bounded open set 
mes (see e. g. Ball [1] p. 205). We choose D = B the unit ball in f~n.

Now let u : B - be any deformation (not necessarily an equilibrium

Vol. 5, n° 2-1988.
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solution) satisfying

and set

Then

and the corresponding energy is given by

The assumption that W is rank one convex implies that the integrand in
(3. 4) is convex in V (p. The question of whether rank one convexity implies
quasiconvexity is now replaced by the question of whether (po (x) --_ I x is
the global minimiser of 1 on the set

where, in order that M be well defined, we require that x 03C6(x)~B, ~x~B.

and is a smooth solution of the Euler-Lagrange
équation for 1 namely

then it is possible to prove an analogue of Corollary 2. 9 for the functional
I, i. e.

This is equivalent to

ie u~ is a deformation of B satisfying the same boundary conditions as
the homogeneous deformation with no more energy than it. This result

follows by arguments analogous to those contained in the proof of Theo-

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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rem 1. 6 (see Remark 1. 7), Proposition 2. 8 and Corollary 2. 9 on observ-

ing that ( 3 . 6) inherits the scaling invariance of (2. 6), ie that is a

solution of (3 . 6) whenever cp is.
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