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A BSTRACT. - Let M be a complete Finsler manifold of class It is

shown that if M contains a compact subset of category k (in M), then
each function R) which is bounded below and satisfies the

Palais-Smale condition must necessarily have k critical points. This should
be compared with the known result that f has at least cat ( M) critical

points provided M is of class C2. An application is given to an eigenvalue
problem for a quasilinear differential equation involving the p-Laplacian
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RÉSUMÉ. - Soit M une variété de Finsler complète de classe On

démontre que si M contient un sous-ensemble compacte de catégorie k
(dans M), alors toute fonction f E C1 (M, R) qui est bornée inférieurement
et satisfait à la condition de Palais-Smale doit nécessairement avoir k

point critique. Ce résultat est à rapprocher du théorème connu selon lequel
f a au moins cat(M) point critique lorsque M est de classe C2. On
donne une application à un problème de valeur propre pour une équation
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120 A. SZULKIN

différentielle quasi-linéaire faisant intervenir le p-Laplacien

1. INTRODUCTION

Let M be a compact C2-manifold without boundary and f : M - f~ a
continuously differentiable function. A classical result by Ljusternik and
Schnirelmann [14], cf also ([8], [21]), asserts that if M is of category k
[denoted cat(M) =k], then f has at least k distinct critical points (all
definitions will be given in the next section). This result has been general-
ized by Palais ([16], [17]) who proved the following

1.1. THEOREM. - Let M be a C2 Finsler manifold (without boundary)
and f E C1 (M, R) a function which is bounded below and such that for each
CE l~ the set f~ _ ~ x E M : f (x) ~ c ~ is complete in the Finsler metric for M.
If f satisfies the Palais-Smale condition and if cat (M) = k, then f has at
least k distinct critical points.
The key ingredient in the proof of Theorem 1. 1 is a deformation lemma

which in its simplest form says that if c is not a critical value of f and if
E>O is small enough, then there exists a mapping ~ : [0,1] x M ~ M
satisfying r~ (0, x) = x, f (~ (t, x)) _- f (x) for all t and x, and r~ ( 1, 
(i. e., 11 deforms to f~-£). The déformation is constructed by letting
11 (t, x) move along the integral lines of a pseudogradient vector field for
f as t varies from 0 to 1. As is well known from the theory of ordinary
differential equations, integral lines may not exist unless the vector field is
locally Lipschitz continuous. To carry out the above construction it seems
therefore necessary to assume that M is at least of class C2 - (a mapping
is of class C2 - if it is differentiable and the derivative is locally Lipschitz
continuous).

In this paper we will be concerned with a generalization of Theorem 1. 1
to C1-manifolds. Ideally, one would like to show that the conclusion
remains valid if M is a C 1 Finsler manifold. Our result is slightly weaker,
yet it seems to be sufficient for most of practical purposes. It asserts that
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121LJUSTERNIK-SCHNIRELMANN THEORY

if M is Ci and contains a compact set of category k (in M), other

assumptions being as in Theorem 1.1, then the conclusion still holds.

Note in particular that if M contains compact sets of arbitrarily large
category, then f has infinitely many critical points.
The proof of Theorem 1.1 is carried out as follows. Set

where 1 _ j _ k and catM ( A) denotes the category of A in M. Assume for
simplicity that all c~ are finite and distinct. Then, if c~ is not a critical

value, one finds an A with and By the
deformation lemma, if (1, A), then catM(B) >_ j 
a contradiction. So all Cj are critical and f has at least k critical points.
As we pointed out earlier, this argument is not readily applicable if M is
only of class C~. Our proof is therefore quite different. We define

where and A is compact}. On A~ we introduce
the Hausdorff metric dist and set II (A) = sup f (x). Again, assume for

x e A

simplicity that all c~ are distinct. By Ekeland’s variational principle (see
the next section), there exists an A E Aj such that

If c~ is not a critical value, then, by slightly deforming A, we find 
with d ist ( A, B)  s and n(B)-n(A)  - E s for all smalls) 0. So

a contradiction. The idea of using Ekeland’s
principle to show the existence of critical points other than local minima
may be found in [2] (Section 5. 5), and an argument similar to the above
one (using Ekeland’s principle on the space of subsets) - in [20].

Suppose now that X is a Banach space and f, (X, R) are two even
functions. Consider the eigenvalue problem

Problems of this type have been studied by several authors. See e. g. [1],
[3], [5], [10], [11], [19], [23]. If b ~ g (0) is a regular value of g, then

is a C1-manifold, 0~M and there is a one-to-one correspon-
dence between solutions of (1) and critical points Assuming in
addition that f|M is bounded below and g E C2 (X, we may pass to the

quotient space M = M/ ~ , where - is the equivalence relation identifying
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122 A. SZULKIN

x with - x, and use Theorem 1.1 in order to obtain a lower bound for
the number of solutions of ( 1). The assumption that g E C2 (X, R) [or even

turns out to be too restrictive for some applications, cf
Browder [5]. One possible approach to (1) when g E CI (X, ~) is by using
the Galerkin approximations (see e. g. [5]). However, in order to carry out
the limiting procedure it seems necessary to put some restrictions on f
and g which are not needed in the case of R). A différent

approach has been taken by Amann [1] who has shown that the deforma-
tion lemma remains valid whenever R) and M is bounded and
homeomorphic to the unit sphere by the radial projection mapping. From
this he has derived results on (1) which generalize those in [5]. As a
corollary to our generalization of Theorem 1.1 we shall show that it is
neither necessary to assume that R) nor that M is bounded
and homeomorphic to the unit sphere.
The paper is organized as follows. In Section 2 we collect some defini-

tions and facts which will be useful later. In Section 3 we state and prove
the main theorem. Some of its consequences and extensions are given in
Section 4. In Section 5 we present an application to the boundary value
problem

where is bounded and A is the p-Laplacian, 1 p  oo (in particular,

1 would like to thank Ivar Ekeland for bringing to my attention the
problem of generalizing the Ljusternik-Schnirelmann theory to C1-man-
ifolds.

2. PRELIMINARIES

Let M be a C~ Banach manifold (without boundary). Denote the tangent
bundle of M by T ( M) and the tangent space of M at x by T,~ ( M). Let
Il v T ( M) ~ [0, + oo ) be a continuous function such that

(i) For each x E M, the restriction to Tx(M), denoted by ~ (
(or sometimes simply by Il ( Il), is an admissible norm on T x (M);
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123LJUSTERNIK-SCHNIRELMANN THEORY

(ii) For each xo E M and k > 1 there is a trivializing neighbourhood U
of xo such that

The function ) ) ) ) is called a Finsler structure for T(M). A regular manifold
together with a fixed Finsler structure for T (M) is called a Finsler manifold.
Every paracompact C~ Banach manifold admits a Finsler structure [16]
(Theorem 2. 11). For a C’-path ?: [a, b] -> M define the length of c by

If x, y are two points in the same connected component of M, let the
distance p (x, y) be defined as the infimum of 1 (6) over all 03C3 joining x
and y. Then p is a metric for each component of M (called the Finsler
metric), and it is consistent with the topology of M [17] (Section 2).

Let M be a Finsler manifold and f E C1 (M, R). Denote the differential
of f at x by df(x). Then df(x) is an element of the cotangent space of M
at x, Tx(M)*. A point x~M is said to be a critical point of f if df(x) = o.
The corresponding value c = f (x) will be called a critical value. values
other than critical are regular. We shall repeatedly use the following
notation:

If M is a Finsler manifold, then the cotangent bundle T(M)* has a dual
Finsler structure given by

where wETx(M)* and ~ , ~ is the duality pairing between Tx(M)* and
T x (M). It follows that the mapping is well defined and
continuous A function f E el (M, R) is said to satisfy
the Palais-Smale condition at the level c, CE R, in short] if each

sequence (x") c M such that f (xn) -+ c and Il df (xn) ( ~ -~ 0 has a convergent
subsequence. This is a local version of the following compactness condition
due to Palais and Smale: is bounded and ( ‘ df (xn) ~ I -~ 0, then a
subsequence of(xn) converges.

Vol. 5, n° 2-1988.



124 A. SZULKIN

Let xo E M - K. There exists a vector Vo E Txo ( M) such that I ~V0 I ~ =1
and df (xo), Vo i > 3 I I d.Î I I . Set vo = 3 2 I I df(xo) I I Vo. Then

Such vo is called pseudogradient vector ([ 16], [ 17]). It is easily seen that
,

chart at xo. Denote

Then dl (xo) is locally represented by ~((p(xo)), where g’ is the Fréchet

Since g’ is conti-

nuons,

provided U is small enough. We have proved

2 .1. PROPOSITION. - For each there exist a chart cp :
U -~ Txo ( M) at xo and a vector vo E Txo ( M) such that (2) is satisfied (with
g=f ~ ~-1).

In what follows we shall need the notions of Ljusternik-Schnirelmann
category and genus. Let M be a topological space. A set A c M is said to
be of category k in M [denoted catM (A) = k] if it can be covered by k but
not k -1 closed sets which are contractible to a point in M. If such k
does not exist, catM(A)= +00. Let X be a real Banach space and X the
collection of all symmetric subsets of X - ~ 0 ~ which are closed in X (A is
symmetric if A = - A). A nonempty set is said to be of genus k
[denoted y (A) = k] if k is the smallest integer with the property that there
exists an odd continuous mapping from A to f~k - ~ 0 ~. If there is no such
k, y (A) _ + oo, and if A=0, y(A)=0. Below we summarize pertinent
properties of category and genus.

2. 2. PROPOSITION. - Let M be a topological space and A, B ~ M. Then
(a) catM (A) = 0 if and only 
(b) catM (A) =1 if and only if A is contractible to a point in M.
(c) If A c B, then 
(d) catM ( A U + catM ( B) .
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125LJUSTERNIK-SCHNIRELMANN THEORY

(e) If catM ( B)  ~, then catM 

( f ) If A is closed in M and ce : [0, to] x A ~ M is a deformation of A
(i. e., a (0, x) = x V x E A), then catM (A) -- catM (ce (to, A)).

(g) If M is a Finsler manifold and A cM, then there is a neighbourhood
U of A such that = catM (A).

(h) If M is a connected Finsler manifold and A is a closed subset of M,
then catM (A) - dim (A) + 1, where dim denotes the covering dimension.

Properties (a) - (d) follow directly from the definition, (e) follows from
(c) and (d) because Ac(A-B) UB, ( f ) is Theorem 6 . 2 ( 3) in [16] and
(vii) on p. 191 in [17], and (g), (h) follow from Theorems 6. 3, 6.4 in [16]
upon observing that each Finsler manifold is necessarily an absolute
neighbourhood retract (ANR) [15] (Theorem 5).

2. 3. PROPOSITION. - Let A, B E E. Then

(a) If there exists an odd continuous mapping f : A - B, then y (A) _ y (B).
(b) IfAcB, 
(c) Y (A U B) ~ Y (A) + Y (B).
(d) If y (B)~~ 
(e) If A is compact, then y (A)  oo and there exists a neighbourhood N

of A, N E E, such that y (N) = y (A).
( f ) If N is a symmetric and bounded neighbourhood of the origin in (~k

and if A is homeomorphic to the boundary of N by an odd homeomorphism,
then y (A) = k.

(g) If Xo is a subspace of X of codimension k and if y (A) > k, then

Properties (a) - ( f ) may be found e. g. in [8], [19], [21] and (g) in [19].
In the proof of the main theorem we shall employ the following varia-

tional principle due to Ekeland [2] (Corollary 5. 3.2), [9].

2.4. PROPOSITION. - Let (Z, d) be a complete metric space and
H Z ~ ( - ~, + ce] a proper (i. e., + oo) lower semicontinuous function
which is bounded below. If E > 0 and x E Z satisfy
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then there exists a y E Z such that

and

3. THE MAIN THEOREM

3.I. THEOREM. - Suppose that M is a C~ Finsler manifold and
f E C 1 ( M, l~~ is bounded below and such that f~ is complete in the metric p
for each CE ~. Define

where cM: catM (A) >- j and A is compact ~. If Q~ for some k >_ 1
and if f satisfies for all c = c~, j = 1, ..., k, then f has at least k

distinct critical points.

Proof - Assume that M is connected. This causes no loss of generality
because if M = U Mi, where Mi are the connected components of M, then

it follows from the definition of category that catM (A)=03A3 catMi (A ~ Mi).
1

Since A~+ ~ c A~ for j = 1 , ..., k -1 and the sets A E AJ are compact,

Given j, suppose c~ _ ... for It suffices to show that

Indeed, it follows from (3) that catM (K~~) >_ l, so Q.~. This gives the
correct number of critical points if all c~ are distinct. If they are not, p > 0
for some j. Therefore 1 according to (h) of

Proposition 2. 2, so K~~ is an infinite set.
Let b > c~ be a real number. Define

c fb : catM ( A) >_ j and A is compact}.
It is easy to see that
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be the collection of all nonempty closed and bounded subsets 
In ff we introduce the Hausdorff metric dist [12] (§ 15 . VII) given by

where p (a, B) = inf p (a, b). Since h is complete, so is the space {~, dist)
b e B

[12] (§ 29 . IV).
In order to continue the proof we shall need two lemmas.

3. 2. LEMMA. - dist) is a complete metric space.

Proof. - It suffices to show that is closed in Let (An) be a
sequence in and let An -+ A. It is easy to see that A is compact. Let U
be a neighbourhood of A in M such that catM(U)=catM(A) [c~:
Proposition 2 . 2 (g)]. Since An -+ A, An C U for almost all n. Hence

catM (A) so A e r,. D

3 . 3. LEMMA. - The function II : -~ 1~ defined by

is lower semicontinuous.

Proof - Let A" --~ A. For each x E A there is a sequence (xn) such that
xn -~ x and x" E Therefore

Since x was chosen arbitrarily, n(A)  lim inf 11 (An). D

Proof of Theorem 3. 1 continued. - Recall that we want to show that
[cf. (3)]. Suppose catM(Kc) __ p. Denote

Since f satisfies (PS)~, K~ is compact. It is therefore possible [via
Proposition 2 . 2 (g)] to choose S > 0 so that catM (K~)) = catM  p.

Let j be a fixed number. Using we may find an arbitrarily

small E > 0 with the property that

Suppose E  a  l. Choose an such that Let

~2 = A ~ - N2s CK~)~ Then and, by Proposition 2. 2,
So By Propo-
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sition 2. 4 and Lemmas 3. 2 and 3. 3, there is an A Er; such that

and

Since E  ~ and dist (A, A2) _ E,

Our goal now is to obtain a contradiction by constructing a B~0393j
which will fail to satisfy (5). Denote

Then because A E rj. Given x; e S, choose a chart cpi : Ui -~ Txi ( M)
at x; such that

It follows from (6) and Proposition 2.1 that if Ui is sufficiently small,
then

and there exists a vector satisfying (2) Let Vi ce Ui be an
open neighbourhood of xi such that

where b~ > 0 and

Proceeding in this way for each we obtain an open covering (Vl)
of S. Since S is compact, there exists a finite subcovering V t, ..., to

which we may subordinate a continuous partition of unity 03BE1, ..., 03BEm.
Let x : M - [0, 1] be a continuous function such that x --_ 1 on S and x --_ 0

m

on M - U Vi, and let The sets Ui, ..., Um cover S, and by
i=1

construction,

Annales de l’Institut Henri Poincaré - Analyse non linéaire



129LJUSTERNIK-SCHNIRELMANN THEORY

and

where ..., bm ~ .
Fix a number bo/( 1 + k2)) and let

According to (9), is well defined and continuous. For an arbitrary point
x~U1, let 03C31(s)=03B11 (s, x), Since 03C31 is a pathjoining x to (t, x),

p(x, x))~t0~03C3’1(s)~ds~t0~d ds03C61(03C31 (s))~x1ds=k03C81(x)t (10)

according to (7) and thé définition of Dénote g=f03BF03C6-11 and let xeUi.
Then it follows from thé mean value theorem and Proposition 2.1 that
for some 9e(0, 1),

Therefore, employing (8) and (4),

Note that (10) and (12) are satisfied for all x~M because 
whenever xU1. Note also that according to ( f ) of

Proposition 2. 2.
Let

otherwise.

Vol. 5, n° 2-1988.
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We need to show that a2 is well defined and continuous. Let x~supp 03C82
and let o be a path joining x to al (t, x). Since p (x, and

according to (9) and (10), al (t, and if 6 leaves U2.
Therefore

Furthermore, if o c U 2,

Combining thèse two facts,

Hence by the triangle inequality,

So it follows from (9) that cp2 (al (t, x)) - t 03C82 (x) ~ cp and a2 is

well defined. If al (t, x) is sufficiently close to the boundary of U2, then
supp 03C82 according to (9) and ( 13). Hence for such x, 03B12 (t, x) = al (t, x).

Therefore oc2 is continuous. Set

Then [cf the argument of (10)].
This and ( 10) yield

The same argument as in ( 11) and (12) implies that

Annales de l’Institut Henri Poincaré - Analyse non linéaire



131LJUSTERNIK-SCHNIRELMANN THEORY

So by (12),

Since a2 (t, A) was obtained from al (t, A) by continuous deformation,
a2 ( t, A) E rj.

Proceeding as above, we eventually define

and show that

and am (t, A) E Let B = am (t, A). By ( 14), dist (A, B) _ kt. Since II (B) >__ c
and f ~ am (t, x) _ f (x),

Recall that k3 and §si (x) + ... +03C8m(x)= 1 on S. Using this, (5), ( 15)2

and ( 16), we obtain

a contradiction. D

3. 4. REMARK. - Condition (PS)c in Theorem 3.1 may be replaced with
the following weaker one: If there is a sequence (xn) such that f(xn) -+ c
and then c is a critical value and inf p (xn, KJ=0. This is

seen by verifying that the previous argument applies if (3) is modified to

(3’) either Kc is not compact or 

A still weaker (but insufficient for our purposes) version of (PS)c has been
introduced in [4]. It says that c is a critical value whenever there exists a
sequence (xn) such that f(xn) -+ c and Il 
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4. RELATED RESULTS

4.1. COROLLARY. - Suppose that M is a closed symmetric C1-subman-

ifold of a real Banach space X and Suppose also that R)
is even and bounded below. Define

Cj= inf sup f(x),
A e rj x e A

where cM: A y (A) >_ j and A is compact}. If 0393k~ ~ for some
k >_ 1 and if f satisfies (PS)c for all c = Cj’ j = 1 , ..., k, then f has at least k
distinct pairs of critical points.

Proof. - Let M = M/ ~ , where - is the equivalence relation identifying
x with - x, and let ~‘ : M -~ I~ be the function induced by f It is clear that
M and ,~ satisfy the hypotheses of Theorem 3 .1. Furthermore, if A E 

then, setting X = ( X - ~ 0 ~ ) / ~ and Â = A / ~ , [ 18]
(Theorem 3. 7). Since M ce X, it follows from the definition of category
that k. So Â E Ak. Hence ? possesses at least k, and f
at least k pairs of critical points. D
A different (and perhaps more natural) proof of the corollary may be

obtained by modifying the argument of Theorem 3.1 (category should be

replaced with genus and the mappings ai should be odd in u).
The assumption that f is bounded below in Theorem 3.1 was used only

in order to assure that c 1 > - ~. It is therefore easy to see that the

following stronger results are valid.

4.2. COROLLARY. - Suppose that M is a CI Finsler manifold and

f E CI ( M, ~) is such that f~ is complete in the metric p for each CE R. Let

c~ and A~ be defined as in Theorem 3 .1. If Q.~ for some k >_- 1, cm > - o0

for some m, 1 - m - k, and is satisfied for all then f
has at least k - m + 1 distinct critical points.

4. 3. COROLLARY. - Suppose that M is a closed symmetric C1-subman-

ifold of a real Banach space X and 0~ M. Suppose also that f E CI (M, R)
is an even function. Let c~ and be defined as in Corollary 4. 1. If ~ QS

for some k ?_ l, c,~ > - oo for some m, 1 _ m _ k, and is satisfied for
all c = c -, m - j _ k, then f has at least k - m + 1 distinct pairs of critical

points.
A function f X --~ R, where X is a Banach space, is said to be Gâteaux

differentiable if f or each x~X there exists a linear mapping f ’ (x) E X * such

Annales dé l’Institut Henri Poincaré - Analyse non linéaire
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that

Let us remark that there is a different-weaker-definition of Gâteaux

differentiability in which it is not required that the left-hand side of ( 17)
be linear in y (see e. g. [3], [8]). A function f : M ~ R, where M is a Finsler
manifold, will be called Gâteaux differentiable if for each x E M and each
chart (p : U --~ Tx ( M) at x, Jo (p-i is Gâteaux differentiable. The Gâteaux
derivative df is strong-to-weak* continuous if for each x ~ M, each sequence
Xn -+ x and each chart (p : U - T~ ( M) at x,

in the weak* topology of Tx(M)*.

4. 4. REMARK. - Theorem 3.1 and Corollaries 4 .1-4 . 3 remain valid if

f, instead of being C , is continuous and Gâteaux differentiable with the
derivative strong-to-weak* continuous. This follows by observing that in
the proofs of Proposition 2.1 and Theorem 3.1 only the above weaker
smoothness assumption has been used.

5. AN APPLICATION

Let Q c IRN be a bounded domain with smooth boundary ôS~ and let
f, g be two continuous real-valued functions. Fix a number p E (1, ao) and
denote

We will be concerned with the following eigenvalue problem: Given b E R,
find a function u and a real number À such that

and

Vol. 5, n° 2-1988.
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Suppose that f and g satisfy the growth restriction

where 1 _ r  1~ ~ -1 if N >p, otherwise. Let be

the usual Sobolev space (of real-valued functions) with the norm

u ( ( - . . Define

The following result follows from standard arguments in Sobolev spaces.

5 . 1. PROPOSITION. - Suppose that f; g satisfy ( 19). Then
( i) ~, ~r E C 1 (H, R) and

(ii) Ci and B)/ are completely continuous (i. e., they map weakly conver-
gent sequences to strongly convergent ones).

(iii) and 03C8 are continuous with respect to weak convergence in H.
The proof for p = 2 may be found e. g. in [19] (Appendix B). If p ~ 2,

the argument of [19] applies upon observing that the Sobolev embedding
H c:; Lr + 1 (Q) is compact.

5. 2. LEMMA. - (i) ~’ maps bounded sets to bounded sets.
(ii) If un - u weakly in H and D’ (un) converges strongly, then Un - u

strongly.

Proof - Let A : H - H* be the mapping given by

Then Since I  A u, v ~ I _ ] and Ci is completely
continuous, the conclusion follows.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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(ii) It is easy to verify that there is a constant a > 0 such that

Suppose that un - il weakly and 0’ ( un) is strongly convergent. Then also
A un is strongly convergent. It follows therefore from (20) with U=Un and
v = il that u" - il strongly. D
A much more general version of Proposition 5.1 and Lemma 5.2 may

be found in [5].
Suppose that b is a regular value of C. Then (b) is a C1-

manifold and Me M is a critical point of and only if

~r’ ( u) _ ~, ~’ (u) for some Il E I~. Assume also that ~r’ on M. It follows

that Il =P 0 for such B)/ and, according to Proposition 5 .1, there is a one-
to-one correspondence between critical points of W and weak solutions of
(18) (18)].

5 . 3. THEOREM. - Suppose that f, g E C ( IFB, R) are two odd functions
satisfying (19). Suppose also that G(t»O for almost all t and there exist

positive constants d 1, d 2, d 3 such that and

G ( t) >_ - F ( t) - d3. regular value of, then ( 18) has infinitely
many weak solutions.

Note that under the hypotheses of Theorem S . 3 ~ need not be in
C2 - (H, R). In particular, if 1 p  2, then ~’ cannot be locally Lipschitz
continuous [cf (20)]. If p >_ 2 and f~C1 (R, R), R) provided
f’ satisfies the growth restriction

where r is as in (19). Note also that under the present hypotheses
M = ~-1 (b) need neither be bounded nor radially homeomorphic to the
unit sphere in H.

Proof of Theorem 5. 3. - We shall keep the notation introduced earlier
in this section. First we show that ~r’ (u) ~ 0 if u ~ 0. Assume without loss
of generality that ess sup u > o. Since G ( t) > 0 for almost all t, there exist

such that meas { x E SZ : u (x) >__ )0, meas { x E SZ : > 0
and g(t»O on [rt, By [7] (Theorem 1), meas { x E SZ : >0.
Hence g ~ u > 0 on a set of positive measure. So ~r’ (u) ~ 0 and there is a
one-to-one correspondence between critical points of B)/ and weak solutions
of ( 18).

It is clear that M is symmetric. We claim that it contains compact
subsets of arbitrarily large genus, i. e., for any k >_ 1 defined
in Corollary 4.1). Since H is separable, there exists a biorthogonal system
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such that emEH, the em’s are linearly dense in H
and the e:’s are total for H [13] (Proposition 1. f . 3). Let us remark that
we could in particular choose (em)m E  to be a Schauder basis for H

[which exists according to [22] (Section 4. 9. 4)], and then find biorthogonal
functionals eg. Denote

(cl is the closure). If m is large enough,

Indeed, otherwise there would exist a sequence ( um) such that 
=1 and

Since e*n, um~ = 0 for all and the en’s are total, Um -+ 0 weakly in
H. Therefore Um -+ 0 strongly in LP (Q), a contradiction to (22). It follows
from (21) and the assumption on F that for some a > o,

In particular, the sets H; n M and are bounded. Let

Ek=span ..., Then dim Ek = k and is a bounded

and symmetric neighbourhood of 0 E Ek. Therefore accord-

ing to (/) of Proposition 2. 3. Since Ek n M is compact, 
Let j>m. Since G(t»O for almost all t, on a set of positive

measure for any Me M (cf the argument at the beginning of the proof).
Theref ore ~  0 on M and

Let A E rj. Then A H by (g) of Proposition 2. 3. Since H~ n M is
a bounded set, bounded below. Hence c~ > - oo whenever j>m.
We shall show that B[/ satisfies (PS)~ for any cO. The conclusion of

the theorem will then follow from Corollary 4. 3. Suppose 
Since
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the sequence is bounded. Assume after passing to a subsequence that
Un -+ ii weakly in H. Since ~r ( ~ = c  0 [by (iii) of Proposition 5. 1], 
Let J : H - H* be the duality mapping [see e. g. [6] (Section 4)]. Recall
that J and J -1 are continuous, I J u I I - I I u ~ ( and ~ J u, u ) = I V u e H.

Define the projection mapping P" : H - T~ (M) by

Note that  ~r’ (u), v ~ _  d~r (u), v ) whenever v E Tu (M). Since

and d~r (u") ~ 0,

Therefore

Since ~r’ (un) -~ ~r’ (û) ~ o and ~’ (un) is bounded [by (i) of Lemma 5. 2],
~’ (un) (or a subsequence of it) is strongly convergent. By (ii) of
Lemma 5.2, un -> ii strongly. D

5.4. REMARKS. - (i) It is well known that functionals of the type
considered here do not satisfy (PS)o. To see this for let (un) c M be a
sequence converging weakly to 0. and ~r’ ( un) -~ 0. Since

no subsequence of (un) converges strongly, and it follows from (ii)
of Lemma 5 . 2 that ~’ (un) ~ 0 for almost all n. Therefore (un) - 0 (recall
that (un) -~ 0 if and only if (25) is satisfied).

(ii) The numbers c~ in (23) tend to zero as j - oo. Indeed, observe that
An ~ Q,~ for any A er, [by (g) of Proposition 2 . 3]. Furthermore,

[because if (Uj) is a sequence such that (~ M, then Uj - 0 weakly in
H ; theref ore ~ ( u~) -~ 0]. Since c~ -~ 0.

(iii) Suppose that f, g~C(R, R) are odd, satisfy ( 19), for almost
all t and G ( t) >-- - F ( t) - d 3. If b  0 is a regular value of C, then ( 18) has
at least k pairs of weak solutions provided M = d~ -1 (b) contains a compact
subset of genus k. The proof is obtained by applying Corollary 4.1 to the
functional - §. Since - § may not satisfy (PS)o, we must show that Cj>O.

By (24), the sequence (un) is bounded, so we may
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assume that un - il weakly in H. Since

and 03A6 is weakly lower semicontinuous, 03A6 (u) -_ b  o. It follows that u~ 0.
On the other hand, ~r (un) -~ ~r (u) = o. So û = o. This contradiction shows
that -03C8 is bounded away from 0. Therefore Cj>O. A related result in a
geometrically simpler situation (in which it is easy to compute k) may be
found in Zeidler [23] (Proposition 11 ) .
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