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ABSTRACT. - The limits of families of stable solutions for the equation
E2 ~uE - f (uE) + T ( I x I ) = 0 over radially symmetric domains with no-flux
boundary conditions are discribed. Particular emphasis is placed on the
characterization of points of discontinuity of these limits (interfaces) and
on the description of the graph of uE for small 6. Sufficient conditions for
existence of interfaces in terms of the temperature function, T, are given.
The analysis is more complete for families of global minimizers of the
associated energy functional.
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RESUME. - On étudie les limites de familles de solutions stables de

l’équation E2 DuE - f (u£) -~- T ( ~ x ( ) - 0 sur des domaines a symétrie radiale
sans flux au bord. On s’attache particulièrement a caractériser les points
de discontinuité de ces limites (interfaces) et a décrire le graphe de uE pour
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142 N. D. ALIKAKOS AND P. W. BATES

petit E. On donne des conditions suffisantes sur la temperature T pour
qu’il existe des interfaces. On analyse de manière plus approfondie les

familles minimisant l’énergie totale.

0. INTRODUCTION

In this paper we consider the equation

where Q is a ball or an annulus in IRN and s > 0 is a small parameter. The
basic structure hypotheses are:

(i) T = T (r), T’ is continuous and changes sign finitely many times;
(ii) f (u) = FI (u) is of class C1 and has precisely three zeroes,

f (-1)=f(1)=,f’(o)=0 with f’(-1)>0, f’(+1)>0, f’(o)o;
(iii) F ( -1) = F ( 1).
Note that Equation ( 1) reduces as E - 0, to the algebraic equation

Our study is concerned with the solutions of (2) that can be captured as
limits of stable solutions of (1). In our investigation we exploit the fact
that ( 1) is the Euler-Lagrange equation of the functional

Equation (1) arises as a model in solidification theory, known as the

phase model. In that context u represents the phase of the material
with say u > 0 representing liquid and u  0 representing solid, T is the
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143PHASE TRANSITIONS

temperature, E > 0 is related to the correlation length or interaction distance
between molecules, F is a double well potential and JE is the free energy.
If 8=0, then any uo with + l, -1 ~ is a global minimizer of Jo.
We think of ( 1) in terms of a stability mechanism that selects appropriate
solutions of (2). We refer the reader to Caginalp [C] for the physical
background for the phase field model.

Part of this work is concerned with the characterization of the interior

points of discontinuity of limits of global minimizers. We call these points
interfaces. We give a detailed description of the asymptotic shape of the
graphs of global minimizers, uE, as E ~ 0 and in particular we study
their structure in appropriate neighborhoods of the interfaces where rapid
variations of uE are to be expected (interior layers). Finally we give sufficient
conditions so that interfaces exist.

Equation ( 1) has been studied rigorously by Caginalp and Fife [CF] in
a general annular domain in two space dimensions and for a general
function T=T(xi, x~). The emphasis in that work is directed more in

identifying conditions which guarantee the existence of a simple closed
curve in Q that can serve as an interface and in constructing families of
solutions to ( 1) with interior layers at locations which converge to such a
prescribed interface.

Caginalp and McLeod [CM] study all radial solutions of (1) in an
annular domain for T identically constant, with inhomogeneous Dirichlet
conditions and for a special choice of F. In that work the location of
possible interfaces is characterized but no sufficient conditions for their
existence are given.
Next we proceed to a more detailed description of our results. In

Section 1 we begin with an observation of some independent interest. We
show that stable solutions, in the linearized sense, of a broad class of
equations on domains with radial symmetry have to be radial. In this way
we reduce the study of (1) for stable solutions to the study of radial
solutions. In Section 2 we establish that any sequence of stable solutions
of ( 1) with E ~ 0, has a subsequence which converges pointwise and in L1
to solutions of (2) with finitely many discontinuities. Theorem 2. 6 in
Section 2 is one of the main results of this work. It states that away from
interfaces, any sequence of global minimizers, with E -~ 0, has a subse-
quence which converges uniformly and provides the rate of convergence.
In Section 3 we study the structure of the interior layers; more precisely
we show in the layers that the solution is monotone and we give an
estimate on the width of the layer. We also give a sharp upper bound for
the number of interfaces. In Section 4 we characterize the location of the
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144 N. D. ALIKAKOS AND P. W. BATES

interfaces by establishing that at these points (for N >_ 2) the following
relations hold: If and then

and

Relation (4) in the physical context we have in mind is known as the

Gibbs-Thompson condition. Relation (5) is a stability condition that seems
new even in the context of formal asymptotic expansions. For N =1 the
corresponding relations have a different form:

In Section 5 we give sufficient conditions for the existence of interfaces
for global minimizers of It. In Section 6 we extend some of the results
above given for global minimizers to linearly stable solutions of (1).
Specifically we show that (5), (6) and (7) continue to hold in this generality.
As far as (4) is concerned we have been able to establish that for a given
convergent family{u~} of linearly stable solutions to ( 1) the interfaces are
characterized by

Our result as it stands allows the possibility that C depends upon the
family. On the other hand we establish the lower bound

After most of this work had been completed we learned of the recent
thesis by P. Sternberg [S] done under the direction of R. Kohn. Sternberg,
by extending work of Modica and Mortola on DeGiorgi’s r-conver-
gence, identifies the first nontrivial term in the asymptotic expansion of
IE. These results can also be applied to obtain some of our results in the
case of global minimizers. The method of r-convergence does not render
the fine structure of solutions as given in this paper. Some recent work of

’ 
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145PHASE TRANSITIONS

L. Modica ([M 1] and [M 2]) also addresses the topic of phase transitions
using r-convergence and gives a "minimal interfacial area" principle for
a two-phase medium.

In a recent paper J. J. Mahony and J. Norbury [MN] locate interfaces
for the singular limit of a different but related class of problems by
employing formal variational arguments.
We wish to express our thanks to P. Fife for bringing to our attention

the phase field model and also P. Sternberg for bringing to our attention
his work. The authors would like-to express thanks to J. Mallet-Paret and

S. Muller for useful conversations regarding this work. The first author
gratefully acknowledges support from the Lefschetz Center for Dynamical
Systems at Brown University where this work was completed.

1. S TABILITY IMPLIES SYMMETRY

Let q be an integer, 2 _ q  N, write and let

Let Q2 be an open bounded domain in let A, 
be bounded continuous functions and define S2 = ~ x : A (x2)  r  B 

x2 E SZ2 ~. If q = N, then we take S22 = = ~ o ~ so that S2 is an annular
region in (RN. Furthermore, in that case if A (0)  0, then S2 is a ball in (~8N
of radius B(0). In general, the property which we use is that Q has

rotational symmetry about the Let aS~ = T’o U rl,
r 0 ri 0 with ro and r 1 both open and closed in ~52.

Consider the boundary value problem

where

n being a C 1, outward pointing, nowhere tangent vector field.
Assume

(i) Q has a C2 boundary;
(ii) f and b are of class C~;

Vol. 5, n° 2-1988.



146 N. D. ALIKAKOS AND P. W. BATES

(iii) U E C2 (Q) n C1 (Q) is a solution to ( 1. 1) and (1.2).
Our symmetry result in Lemma 1. 1 below is also true in some settings

not allowed by (i)-(iii), however, at this point we do not wish to cloud the
issue with other technical considerations.

Define the linear operator L in C (Q) by

DEFINITION. - We say that u is a (linearly) stable solution if and only
if Re ( 7~) _ 0 for all the spectrum of L.

By a variant of the Krein-Rutman Theorem due to Amann (see
Theorem 12.1 of [Am]), the principal eigenvalue of L, Ào, is real, simple
and corresponds to a nonnegative eigenfunction.

LEMMA 1. 1. - Assume (i)-(iii) above. If u is stable then u = u (r, x2).

Proof - Write u = u (r, 81, ..., x2) where e1, ..., 
in generalized polar coordinates in Consider uo where for some

i = l, ... , q -1. Since A is rotationally invariant we have

and

Either uo = 0 or uo is an eigenfunction of L corresponding to eigenvalue 0.
If uo is an eigenfunction then ~,o = 0 by the stability assumption and hence
u03B8~0 on Q by Amann’s Theorem. But uo must have mean value in 8
equal to zero. Hence, uo = 0 and it follows that u = u (r, x2) as claimed.

Remark. - The proof above exploits the connectedness of the sphere
in dimension N ~ 2. In one dimension symmetry is not necessarily inherited
by stable or even asymptotically stable solutions. Indeed, based on

Theorem 3 of [FH] one can easily construct an example

with f of class C~ and f ( - x, u) = f (x, u), which possesses an asymptoti-
cally stable, odd, strictly monotone equilibrium. By "asymptotically stable"
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147PHASE TRANSITIONS

we mean that the linear operator u)) with Neumann bound-

ary conditions, has all its eigenvalues having negative real part. This

counterexample was pointed out to us by G. Fusco who in so doing settled
a question posed in a previous version of this paper. We note that

the asymmetrical solution mentioned above cannot possibly be a global

minimizer for J { u) --- 1 /2 ( u’) 2 dx - over Hl( -1, 1)

(here Fu = f ).

2. CONVERGENCE

Let where and for E > 0 consider the

family of functionals on H~ (Q)

We assume

(HI) T = T ( ~ x ~ ) is of class C~ on [A, B] and T’ has finitely many, n,
changes of sign, occurring at points we call { ri ~ n=1 arranged so that

A--_rori ... 
(H2) F’ (u) --_ f (u) is bounded and of class C1.
(H3) f has precisely three zeros,
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we also assume that

out we ao not assume that f’ is even (see Fig. 1). There is no loss in
assuming F(l)=0.

In (HI) the term "changes in sign" is used. We mean this in a rather
weak sense as clarified below. In particular T’ is allowed to be zero on
nontrivial intervals.

DEFINITION. - A function v has exactly k changes of sign in [A, B]
provided:

(i) There are points Sl  s2  ...  sk + 1 in [A, B] with  0
for all i = 1, 2, ..., k.

(ii) k is maximal
We will say that v has sign changes at the points ti  t2  ...  tk

provided v (ti) =0, the points in (f) can be chosen so that si  ti  s~ + 1 and
v does not change sign on t~+ 1].
With this definition and sign (v (c)) for

ce (t;, t~ + 1) all may be defined in the dbvious way, taking values + 1
or-1.

The functional, J,, in (2.1) gives the "energy" of solutions to the
equations

By Lemma 1.1, stable solutions of (2.2) are radially symmetric if N ~ 2.
Since we will be concerned only with such solutions we can rewrite Jt (u)
for u = u (r) as

and the associated Euler-Lagrange equation as
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We will be considering the convergence, as E approaches zero, of local
minimizers uE of JE. The first result of this section will be useful for

bounding the number of interfaces and thereby allowing us to determine
the fine structure of these minimizers for small values of E.

LEMMA 2 .1. - Assume (H 1) and (H2). Let u be a linearly stable solution
to (2.2), then u = u (r) and u’ has at most n changes of sign.

Proof - Lemma 1.1 shows that u = u (r) and satisfies (2.4).
Suppose that u’ has exactly M > n sign changes in [A, B] at points

ti  t2  ...  tM. The crux of the lemma lies in the following observa-
tion :

STEP I. - For 1 - i  n + 1 if a,  b and u’ (a) = u’ (b) = 0
then u’ T’ cannot be nonpositive (and u’ ~ 0) on [a, b].

Proof - Suppose u’ T’ _ 0, u’ ~ 0 on [a, b]. Let

Differentiating in (2.4), multiplying the result by v and integrating gives

contradicting the stability of u.
An immediate consequence of Step I is that no more than two of the

t/s can lie in any of the intervals r~+ 1], 0 ~ i _ n.

STEP II. - Suppose that r~] for some i and j. Then for
any k, 

Proof. - By Step I, u’ T’ >_ 0 on [tj-l, tj]. We induct on k: Suppose
that tJ + 2 _ then by Step I and the subsequent observation we have
r  t~ + 1  t~ + 2 _ ri + 1 and u’ T’ >_ 0 on [t~ + 1, t~ + 2]. Since

it follows that
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and hence that

a contradiction. The statement of Step II holds for k = 1.
Now suppose that t~ + ~ > but that t~ + ~ + 1  for some k. We

have

But then 0 on t~ + ~ + 1 ], a contradiction to Step I. This comple-
tes Step II. 

’

STEP III. - By Step I if 0 then at most one of the

t~’s lies in (r;, ri + 1]. Furthermore, u’ has at most one sign change in (A, ri]
and if a change occurs then sign (u’ T’) (A +) >_ 0. From this it follows that
if exactly one of the t/s lies in {rm _ 1, for each m, 1 _ m _ i then u’

- can have at most one sign change in (ri, ri + 1]~

STEP IV. - > rk for each k _ n.

Proof - Suppose not, then there exists i~k such that exactly two of
the t/s lie in rj and at most one lies in each (rm _ 1, r m] for all

1  i. By the observations in Step III, i > 1 and there cannot be one

sign change in each (rm _ 1, rm]’ 1  i. So and r~]
only if j  f. By Step II, > rk and so > rk. This

contradiction completes the proof of Step IV.
Finally we have

and

Since at most one of the t/s can lie in [rn, B) this implies that u’ T’ _ 0
on either [A, t~] or on 1, B]. This contradicts Step I and hence comple-
tes the proof of the lemma. 
We now give some useful estimates for the rate of convergence, as E - 0,

of stable solutions, of (2.4) away from interfaces.
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LEMMA 2.2. - Assume (Hl)-(H3). For E > 0 let uE be a stable solution
to (2.4) and suppose that converges to the number z E ~ ± 1 ~ on some
interval [a, b] c [A, B] uniformly as E -~ U. If [c, d] c (a, b) is fixed, then
the following estimates hold as E -~ 0

Proof - Without loss of generality assume UE -~ ~ on [a, b] as E - 0.
Fix points c E (a, c) and Je (d, b). By the Mean Value Theorem, there are
points aEE(a, c) and b) such that uE (aE) _ (uE (c~ - uE (a))/(c - a) and

These approach zero with E. Now fix C~ > 0
such that f ’ ( 1 ) > Ci and choose Eo > 0 such that f ’ (u~ (r)) > Ci for all
0  E  Eo and rE[a, b]. Multiplying (2.4) by and integrating
gives

Integration by parts applied to the first term and the Mean Value Theorem
applied to the second yields

It follows that for all E _ Eo

Vol. 5, n° 2-1988.



152 N. D. ALIKAKOS AND P. W. BATES

and consequently that

for some constant C2 > 0 independent of E _ Eo. Now,
raE, (c, [c, d] so for some constant C3 > 0 there are points

c) and dE E (d, if) such that for all 0  E _ Eo

But (u£ -1) satisfies

and for 0  s __ Eo and all dj. Using a
simple comparison argument combined with (2.7) one can see that

This proves part (i) of the lemma. To establish part (ii) we note that (2.5)
and (2.6) give

for some C4 > 0, independent of s.
Part (iii) follows from part (i) using the fact that uE changes sign at

most n times.
In the following observation, part (i) follows from the Maximum Princi-

ple and part (ii) follows from (i) and equation (2.2).

LEMMA 2. 3. - Assume (Hl)-(H3). Let u£ be a solution of (2.2). Then

(ii) ~ ~ dx - for some constant C > 0.

We are now prepared to prove our first convergence result.

LEMMA 2.4. - Assume (Hl)-(H3). Let Eo be as in the previous lemma
and for each E E (o, Eo] let uE be a stable solution to (2.2). Then for any
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sequence approaching zero, there exists a subsequence with correspond-
ing u£’s converging pointwise to a piecewise constant function u. Furthermore,
u has at most (n+ 1) points of discontinuity in (A, B) and |u| I =1 except
possibly at points of discontinuity.

Proof - By Lemma 1.1 each uE is radially symmetric. It follows that
the total variation is given by

But Lemmas 2.1 and 2.3 (i) now imply

Helly’s Theorem (see e. g. [N]) gives a pointwise convergent subsequence
of any sequence of the M/s. We suppose that is a sequence approaching
zero, and that the corresponding call them ~um~, converge pointwise
to a function u on [A, B].
By lower semicontinuity

If we multiply (2.2) by a test function (p E Co (Q) and integrate we obtain

Using Lemma 2.3 (ii) and Lebesque’s Theorem, letting m - oo yields

and hence, f (u) = 0 a. e. This in turn implies that

If we assume that ii takes the value 0 on a nonempty open interval I, we

may take a smooth function h with support in I and compute
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for m sufficiently large. This contradicts the stability of um and so such an
interval I does not exist. It now follows that u has at most (n + 1) points
of discontinuity in (A, B) and the proof is complete.
Remarks. - A similar application of Helly’s Theorem occurred in

[ASi]. The pointwise convergence together with the L~ bounds for ~um~
immediately gives LP convergence for all p  00.

So far we have been concerned with solutions which are linearly stable.
If we restrict our attention to minimizers of JE it is easy to obtain stronger
estimates as the following shows.

LEMMA 2.5. - Assume (Hl)-(H4). Let u be a global minimizer of J~,
then for some constant C > 0

Proof - J£ (u) _ J£ ( ± 1) and so JE (u)  0. Lemma 2.3 (i) implies (2. 8).
We now come to the main result of this section.

THEOREM 2.6. - Assume (Hl)-(H4). Let converge to zero and let
be corresponding global minimizers, converging pointwise to a function

u as given by Lemma 2.4. Let ~s~~~=1 be the interior points of discontinuity
of u and set so = A, 1= B. Given b > 0 small, there exists a constant

n

K > 0 such that on S --_ U [s~ + ~, 

Proof - Suppose not, then by Lemma 2.2 (i) convergence cannot be
uniform on S, for some b > 0. Thus we can select an interval

[a, b] _ [s~ + b, s~ + 1- ~] for some j _ n, a subsequence a sequence
{tj c [a, b] converging to some point to, and a number J3 > 0 such that

Without loss of generality we may take u = + 1 on [a, b]. We will also
consider a subinterval of (s~, s~ + 1), relabelled as [a, b], containing to in its
interior. We may assume that  fl and ~(&#x26;)-1 ~  [3 for
all f. Note that by Lemma 2.1 we can find subintervals P and Q of [a, b]
on either side of to and a further subsequence of {umJ with all terms
monotone on P and on Q (see the proof of Lemma 6.1). Thus we may
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assume that converges uniformly on neighborhoods of a and b, with
a rate of 0 (s) by Lemma 2.2 (i). We need a more detailed description of
the lack of uniformity. We pause to give the following lemma which
indicates that the only nonuniformities are of large amplitude.

LEMMA 2.7. - Assum e (Hl)-(H4). Let a, YE(O, 1 /4) and E 1 > 0 be such
that

decreasing in z E [ 1- 2 oe, 1- a]

for all r E [A, B] and E E (0, sj, (2.10)
and

Let u be a global minimizer of JE for some E E (0, E1]. Suppose that there
are points al  a3  a2 such that

Then there is a point c E (at, a2) with

Proof - By (2.11) it suffices to show that there is a point a2)
such that

Suppose not. We may assume without loss of generality that u  1- a
and u ~ 1- a on a2].

Define a comparison function (see Fig. 2) by

Let Q = ~r E [al, a2] : u (r)  1 ~ 2 a~ and R = [al, a2]~Q. Since J£ (u)  JE (u)
we have
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But the first integral is nonnegative by supposition and so is the second,
by (2.10). This establishes the lemma.

Remark. - We can ensure that (2.10) and (2.11) hold with y arbitrarily
close to zero by making a and El sufficiently small.

Returning to the proof of Theorem 2.6 now that we know that the
nonuniformities must be of large amplitude we will be able to show that
the gradient contribution to JE (u) is too costly if u has such a nonunifor-
mity. Let 03B2 E (0, 1/4) be a small positive number. Choose the interval (a, b)
to contain to and such that

holds, where C is given in (2.8). We will drop the subscripts on E and u
for notational convenience. By the remarks before the Lemma, there is
some cosntant D > 0 such that u ? 1- D E in neighborhoods of a and b.
We will take e to be so small that De and the conditions (2.10) and
(2.11) hold with E 1= E, a=P and 1/4 > y > 0. Note that for E small the
two local minima v (r) > w (r) of F (z) - £ T (r) z satisfy and

I w +1 ~ == 0 (s). Because of this we may assume that I u ( - 1 + D E on [a, b].
Let [c, d] c [a, b] be such that u _ 1- D E on [c, d] with equality holding

at e=e(E) and d=d(E) and such that at some point of
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[c, d]. Let p and q be the first points in [c, d] such that u (p) =1- [i and
u (q) _ -1 + y, respectively (see Fig. 3).
Now define a comparison function

We have the estimates

Vol. 5, n° 2-1988.
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To estimate the gradient term we first note that (2.8) implies

We also have

where the minimum is taken over all v~H1 such that and

v (q) = -1 + y. A short calculation gives this minimum, which we then
estimate from below to obtain

A similar estimate can be obtained for the gradient term as u increases
from -1+03B3 to Dividing by s in (2.14) and letting E approach zero
shows that (2.13)-(2.18) are incompatible. This completes the proof of
Theorem 2.6.

Estimates ( 2.17) and ( 2.18) for the width and gradient of the interior
layers of global minimizers of Jt will be useful in giving a more detailed
description of these layers in the following section. Note that the proof of
this theorem also shows that M cannot have removable discontinuities in

(A, B), that is the only interior discontinuities are jumps (between ± 1)
with different right and left hand limits. The same gradient estimates can
be used to show that there is no discontinuity or boundary layer at B nor
at A provided A > 0.

3. INTERIOR LAYERS

We assume (Hl)-(H4) hold throughout the remainder of this paper.
Consider some interval [a, b] c [A, B] and suppose that for some sequence

approaching zero the corresponding sequence of global minimizers
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converges pointwise on [a, b] to the function M where

For definiteness we take uL = -1 and +1. In Section 4 it is shown

that if N =1, then T (c) = 0  T’ (c) and if N >_ 2, then T(c)  0 and
T’ (c) ~ 0. Fix 1 /4) and consider the solvability in [a, b] of

LEMMA 3.1. - If N = 1 assume that the zeros of Tare nondegenerate.
For all N ~ 1 if n is sufficiently large then (3.1) has unique solutions in
[a, b], rL and rR, respectively with rL  rR. Furthermore, and

um is monotone on rR].

Proof - By Theorem 2.6, the solutions to (3.1)in [a, b] can be taken
to be arbitrarily close to c by making n sufficiently large. So we may
assume that all roots of (3.1) which lie in [a, b] are located in an interval
on which T’ ~ 0. Let r~ be the first point in [a, b] where um = -1 + p and
rR the last point in [a, b] where u,~ =1- (3. If Urn were not monotone in

rR] there would be points s  t in [r~, rR] such that um (s) = um (t) = 0
and um __ 0 on [s, t]. This violates Step I in the proof of Lemma 2.1.
Finally, the estimate is given by (2.8) as was (2.17).
Now we give bounds for the number of interior layers for global

minimizers in terms of the number of sign changes of T. In fact we have
local information.

PROPOSITION 3.2. - Let converge to zero and let be correspond-
ing global minimizers converging pointwise to a function u. Let [a, b] be an
interval on which T has constant sign. Then u has at most one interface in
[a, b] if N >_ 2 and at most two if N = 1. Furthermore, if there is a partition
of [A, B] into k subintervals with T one signed on each subinterval then u
has at most k interfaces in [A, B].

Proof - The statement concerning the case N ~ 2 follows trivially,
from the Gibbs-Thompson relation (4. 18 a). The case N =1 is also trivial
if we assume that T has only nondegenerate zeros. For the case N =1
without this nondegeneracy assumption we must work disproportionately
harder. We first show that if there are points c  d in [a, b] such that t7
has interfaces at c and d then
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Suppose (3.2) fails. Without loss of generality assume that T ~ 0 and
u = -1 on (c, d). Choose y > 0 small (specified below). There is a number
D=D(y) such that um (c - y) and um(d+y) lie above and um (r)
lies below -1+D~m for re[c+y, d - y] for all m sufficiently large. From
now on we drop the subscripts for notational convenience.

There exist points s E [c - y, c + y] and t E [d - y, d + y] such that

u (s) = u (t) = 1 2014 D E. Define a comparison function

One has

Here we have used the facts that F ~ 0, F (w) = 0 (E2) when ) w -1  D £

and when w+ 1 ~  D E and also T (u - u) _ 0 on [c + y, d - y]. By (2.17)
and (2.18) there is a constant C, independent of y and E, such that

The other integral terms in (3.3) can be estimated below by

-C1 Ey for all E sufficiently small (3.5)

and for some constant C1 which can be taken to be independent of y and
E. Choosing y  and letting E - 0 in the estimates (3.3)-(3.5) provides
a contradiction and so (3.2) must hold. This shows that ii has at most
two interfaces in [a, b].

Next, let R 1 > A be such that T has constant sign on [A, R1]. By an
argument similar to that given above one can show that there are only
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two alternatives:

Either

u has no interface in [A, RJ ]
or (3.6)
ii has exactly one interface, Ii > A,
in [A, R1] and 0 ~ 0 on [A, I1].

Suppose T changes sign and has constant sign on [R i, R i + 1 ],
1 - i _ k - l, where Rk - B. Suppose that for some j _ k - l, M has no
more than j interfaces in [A, Rj but more thanj+ 1 interfaces in [A, 
Choose j to be minimal with this property. Then, by (3.2), there are exactly
j interfaces in [A, R~] and two,  Ij+2’ in (Rj, Neces-

sarily T 0 on [Ij+ l’ I J + 2] and so T u  0 on [A, min R1}]. Statement
(3.6) implies Ii > R~. Now we can deduce that there is a first I j such
that ii has two interfaces in Rl+ 1]. This in turn implies that there are
integers m and n with l _ m  n  j and such that u has two interfaces in
[R , Rm+ 1], two in ] and exactly n -m -1 in Rn). The
possibility that n = m + 1 is not excluded. A counting argument shows that
(3.2) is violated between one of these pairs of interfaces. The Principle of
Mathematical Induction completes the proof of Proposition 3.2.

Remark. - What has been proved is the stronger statement that the
number of interfaces of i in [A, R j] is no more than j, the number of sign
changes of T in [A, R~]. A similar statement holds with respect to the
interval [R J, B].

4. LOCATIONS OF INTERFACES: THE GIBBS-THOMPSON
AND STABILITY CONDITIONS

We begin with the case N = 1 which unlike the higher dimensional case,
does not require a sharp constant C in estimate (2.8).

THEOREM 4.1. - Suppose N =1. Let be a family of global minimizers
converging pointwise to u as E - 0. Suppose u has an interface at xo:
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for some b > 0, fixed, where uL, uR E ~ + 1 ~.
Then

(a) (Gibbs-Thompson relation)
(b) T’ (xo)  0 (Stability condition) 

(4.1)

Proof - We begin by establishing (a). Let the continuous function p
be given by

0 for x outside [xo - 2 ~, xo + ~ ~]
p(x)= 1 for x in [3:o20148, 

linear otherwise

Define for small h > 0

Since UE is in particular a critical point of J£

From now on we drop the subscripts on çt: and uE for notational
convenience.

An easy calculation reveals

This last term can be rewritten as

is bounded independently of E and since u - I pointwise
as E - 0, Lebesgue’s Theorem implies that the first integral on the right
hand side of (4.4) approaches zero with E. Now consider the first two
integrals in (4.2). Theorem 2.6 and Lemma 2.2 (i) and (ii) imply that if

S=supp p’, then
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and

since uniformly on S. Letting E approach zero in (4.3) and

(4.4) gives 
’

and (4.1) (a) is established.
For part (b) we choose p as before except that we smooth the corners.

Since u is a local minimum we have ~" (o) >__ 0 and so after a short

computation we find

As before, this first integral is 0 (E). The second integral is 0 (E) since

and by (H3) and Lemma 2.2

parts (i) and (ii). The third integral can be rewritten as

This clearly converges to T’ (xo) as E - 0 and so (b) is established.

Remark. - The reader will notice that the above proof seems to require
more smoothness on T than was assumed. However, now the result is

established for TEC2, a density argument allows us to draw the same
conclusions for T of class C~. This reasoning will also be used in the proof
of Theorem 4.5 below.

The analysis when N ~ 2 requires a sharpening of estimate (2.8). Sup-
pose that is a family of global minimizers converging pointwise as
E - 0 to the piecewise constant function ïi, as given by Lemma 2. 4. Let
ro E (A, B) be a point of discontinuity of ii and let b > 0 be so small that

[ro - 2 b, ro + 2 b] contains no other points of discontinuity. For definiteness
we assume u (ro ) _ -1 and = +1.
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LEMMA 4.2. - Under the above assumptions

Proof - We first obtain an upper bound for the lim sup and for this
~ -. o

purpose we need to choose an almost optimal energy comparison function.
This we do by finding a function which is almost the pointwise minimum
of the sum of the integrands in the left hand side of (4.6). Let A and J.1 be
positive constants to be specified later, let 03C6 = cpE be a monotone increasing
function satisfying cp (ro - AE) = - E, cp (ro + J.1E) = E and (p (r) ( _- E for all r.
A particular cp having these properties will be chosen later. Define the
continuous function by

By Theorem 2 . 6 we have i u - u ( = O (E) and I u’ I = U (E) on

[ro - 2 b, ro + 2 b]. From now on we will drop all E sub-
scripts. Since J (u) -- J (û), after dividing by E we have

Since and u = u pointwise on [ro - ~, ro + b] the
difference between the integrals involving T is o ( 1). Taking this and the
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definition of û into account we may rewrite (4.7) as

With and z = u (r) we can estimate the right hand side of

(4.8) and change variables to obtain

At this point the choice of Q’ (E z) that minimizes the right hand side can
be seen to be 1/ 2 F (z). This is equivalent to choosing

however this cannot satisfy the requirements that

for finite values of A and p. Instead of the above we take y > 0 and small

but otherwise arbitrary and define

or

The matching conditions become
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For y fixed, (4.10) determines À and p. Note that for E > 0 small we still
have ~,E  ~ and ~,E  8. Substituting into (4.9) we obtain

Since y is arbitrary (4.11) gives the right hand side of (4.6) as an upper
bound. Next we show that this is a lower bound for the lim inf. For this

s -~ 0

purpose we introduce the family of stretched variables.

where r~ is the point closest to ro such that uE =1 /2 and uE (rE) >__ 0. The
value 1/2 is not important, any number v satisfying 0  ~ v I  1 would do.
Note that r£ - ro as E - 0. Define

It turns out that rE is unique for E sufficiently small, by Lemma 3.1,
however, we cannot use that fact here since the Lemma relies on

Theorem 4.5, below. Changing variables we see that U satisfies

Using a diagonal selection process, since has a bound independent
of E, one can find a subsequence Em -. 0 such that the corresponding
sequence of U’s converges in C2 on compact sets to U, the unique
(monotone) solution to

The boundary conditions at ± oo follow from the observations that 0
is bounded, IJ (o) =1/2, IJ’ (o) >_ 0 and LJ’ has at most finitely many
changes in sign by Lemma 2.1.
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The uniqueness of the candidate for the limit U means that the whole
family converges to U as E -~ 0. We have

and so by Fatou’s Lemma,

Note that from (4.12)

and

These combine with (4.13) to give the desired inequality.
More can be said about the limit in (4.6). The following equipartition

of energy result is a consequence of (4.14) and (4.15).

COROLLARY 4.3. - Under the hypotheses of Lemma 4.2

We shall use a modification of the previous result.
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COROLLARY 4.4. - Under the hypotheses of Lemma 4.2, for any number
a we have

Proof. - The result follows from (4.16) using some simple inequalities,
noting that by Lemma 2.2 the limits do not depend upon the choice of b.
For instance, in the case a >- N -1 we have

The remaining parts of the proof are just as obvious and are omitted.
We are now ready to prove

THEOREM 4.5. - Suppose N >_ 2. Let be a family of global minimizers
converging pointwise to u as E --~ 0. Suppose u has an interface at r = ro:

Jor some d > U, fixed, where uL, uR E t ± 1}. Then

Proof - Define p and ~E (h) as in the proof of Theorem 4.1. Again
dropping the subscripts we compute
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Notice that, as in (4.4), this last integral may be written as

The contributions from the first two integrals in (4.19) corresponding to
[A, [ro + b, B] are of order o ( 1). Using this observation and (4.20)
in (4.19) we find

Letting E -~ 0 and using Corollary 4.4 yields (4.18 a).
In order to establish (4.18 b) we take ç and p as before and impose the

stability condition that ~" (0) ~ 0. A short computation yields

Integration by parts with the u’ u"’ term and the fu" term and then with
the u’ u" pp’ term produces

Now,

So setting

~ ~
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we may write

The first term approaches zero with E by part (ii) of Lemma 2.2. The third
term approaches zero with E since max {I f (u (r)) ~: = 0 (E) as E - 0

by part (i) of Lemma 2.2 and Jo ) u’ ) C E by part (iii) of Lemma 2.2.

The fifth term also approaches zero with E, by Lebesgue’s Theorem. The
fourth term can be rewritten as

Note that F (u (ro + ~))/£ - 0 as E - 0. Letting E --~ 0 and using the stability
criterion ~" (o) >__ 0 in (4.22) yields

Observe that for N =1 and N = 2 we do not need to know if the above
limit even exists in order to arrive at (4.1 b) and (4.18 b), respectively.

For N > 2 we use (4.17) and (4.18 a) to rewrite (4.23) as

Combining terms after dividing by 2 gives (4.18 b).
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5. SUFFICIENT CONDITIONS FOR INTERIOR INTERFACES

Let ~1 > 0 be fixed. In Lemma 2.4 we showed that if uE was a global
minimizer of JE 0  E  sj is relatively compact in L 1.
We also showed that limit points are simple functions taking on the values
± 1 except possibly at the points of discontinuity, which is at most a finite
set. In the remarks following the proof of Theorem 2.6, we pointed out
that if M is such a limit and if M is discontinuous at roe(A, B), then

For this reason and in consideration of the physical motiva-
tion for our problem, we have called these points of discontinuity interfa-
ces. In this section we give conditions which guarantee that any limit, ïi,
of has an interface. We also indicate how one may ensure that multiple
interfaces occur.

THEOREM 5.1. - Let

and

v

then at least one interface exists, that is, any limit point of in L1 has
at least one point of discontinuity in (A, B).

Proof - We assume the conclusion fails and proceed to obtain a
contradiction. So, suppose that for some sequence converging to zero,
the corresponding sequence of minimizers converges to M= 1 in L1.
We will show that if (5.1) holds then for n sufficiently large uEm is not a
minimizer of JEm. This is done by considering a comparison function similar
to that used in the proof of Lemma 4.2. From now on we will drop the
subscripts on Em and uEm. Define
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where s e (A, B) is fixed but arbitrary, and J.1 are positive numbers to be
determined and cp = cpE is a monotone function to be specified later but
which will satisfy cp (r) ~ _ s, cp (s - ~,E) _ - E and By defini-
tion of we have JE (u) _ JE (u) and so, after dropping some positive
terms from the left-hand side and dividing by E,

Using the L1-convergence of u and û as E - 0, we see that

Changing variables as in the proof of Lemma 4.2 [cf. (4.9)] we obtain

where For the same reasons as before we make the nearly
optimal choice

This gives 03C6-1(t) = E 20142014 
and the matching conditions become

and determine À and p.

Substituting into (5.5), letting E approach zero and finally letting y
approach zero, we obtain
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Dividing and maximizing over [A, B] yields a contradiction to

(5.1) provided W 1 is given by the first quantity in its definition.
If Wi is given by the second quantity in its definition, we reach a

contradiction in a similar way by using - as a comparison function.
Likewise, a contradiction is reached if we suppose that M = 2014 1 a. e.
The above criterion guarantees an interface provided that T has suffi-

cient positive mass near one end of the interval and sufficient negative
mass near the other. It is most suited to the case when T has only one
sign change. An independent criterion can be obtained by considering
comparison functions with multiple interfaces. The proof is essentially the
same as that given above so we omit it and only record the result for the
convenience of the reader.

THEOREM 5.2. - Suppose that T changes sign 1 and that for

and

where Ro = A and Rm + 1= B, then at least one interface exists.
Sufficient conditions for multiple interfaces can be obtained by making

use of the Gibbs-Thompson and stability relations and constructing appro-
priate energy comparison functions with multiple interior layers. We omit
this analysis.

6. LINEARLY STABLE SOLUTIONS

Here we consider the limits of sequences of stable solutions to (2.2). It
was shown in Lemma 2.4 that from any sequence of stable solutions

to (2.2) corresponding to E=Em approaching zero, one can extract a

subsequence converging pointwise to a function M taking values ± 1 except
for possibly a finite number of discontinuities. Now we show that these
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discontinuities can only occur at points where a Gibbs-Thompson relation
holds, similar to the case for limits of global minimizers, and that the
stability condition must hold as before. We also show that interior layers
are monotone as in the case of global minimizers.

Throughout this section we assume that is a family of stable

solutions to (2.2) converging pointwise on [A, B], as E - 0, to the function
M as given by Lemma 2.4. We assume that for some numbers a  ro  b

where uL, 

LEMMA 6.1. - Let 03B4>0 be fixed. There exist points al  bl in

(ro - 8, ro), points a2  b2 in (ro, ro + b) and a sequence c converg-

ing uniformly to u on [al, bl] U [a2, b2]. The rate of convergence is O (Em).

Proof. - Divide each of the intervals (ro - b, ro) and (ro, ro + ~) into
n + 2 subintervals of equal length. By Lemma 2.1, from each of these
partitions we can find an interval, call them bl] and [a2, b2], such that
for some sequence, all terms are monotone on each of these intervals.

Uniform convergence now follows from pointwise convergence and the
rate of convergence is given by Lemma 2.2 (i).

Remark. - The proof of this lemma actually shows that from any
sequence converging to 0 one can extract a subsequence ~Em~~ such
that the corresponding u’s converge uniformly on some intervals each side
of and arbitrarily close to ro.
One can show that if u is a stable solution to (2.2) then ç’ (0) =0 ~ ~" (o)

where § is given in Section 4. In the definition of ç function p may be
taken to be any smooth function with support in (a, b). Let bj
and Q= [a2’ b2] be intervals given by Lemma 6.1 where 8 > 0 is such that
a  and  b. Choose p E C2 so that S=suppp’ c P U Q and

Now consider the limit as E -~ 0 in (4.3) along the sequence given by
Lemma 6.1. The uniform convergence on P U Q gives the limit of ç’ (0)
exactly as before. Similarly, for (4.5) and we have the following.
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THEOREM 6.2. - Suppose N =1. Suppose that u has an interface at xo:

for some ~ > 0, where uL, 1 ~. Then

The analysis for N ~ 2 is more difficult and we are not able to duplicate
the results obtained for global minimizers. This is because the first half of
the proof of Lemma 4.2 relied heavily upon energy comparisons. We can,
however, achieve a partial result which still gives a weak form of the
Gibbs-Thompson relation.

LEMMA 6.3. - Under the above assumptions, for any sufficiently small
s>o

In fact, for any number a

Proof - The second half of the proof of Lemma 4.2 still applies and
leads to (6.3).

Remark. - The lim inf in (6.3) can be taken to mean along any sequence
£ -’~ ~

Em -~ 0 as m - 00. This can be seen by the uniqueness of U in the proof
of Lemma 4.2.

We are now ready to consider the analogue of Theorem 4.5 for the case
of stable solutions to (2.2). Using the choice of p given before Theorem 6.2
we can again establish (4.21) for E = Em and given by Lemma 6.1.
Hence taking the lim inf in (4.21) along this sequence yields
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Again, when considering the stability condition ~" (0) ~ 0 we compute
(4.22) and argue as before to get a new version of (4.23), namely,

where we have dropped the Em subscript from u. Now we see from (4.21)
that the limit

exists, is independent of 8, and is equal to

It follows that

Combining (6.5) and (6.6) gives

or, after combining terms,

In establishing (6.4) and ( 6. 7) we have proved

THEOREM 6.4. - Suppose N >_ 2. Suppose that u has an interface at ro:

for some 6 > 0, where uL, uR E ~ ± 1 ~ . Then
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Finally, using Lem~ma 6.1 and the subsequent remark in place of

Theorem 2.6 in the proof of Lemma 3.1 one can show the following

THEOREM 6. 5. - If N we assume that the zeros of Tare nondegene-
rate. For fi > 0 fixed consider the solvability of

in a neighborhood q/* any interface r0 such that uL ~ uR. There is a S > 0

such that equations (6.9) have unique solutions in [r0-03B4, r0+03B4] and u~ is
monotone between

)

For N > 1, (6.8~) shows that M~ 7~ M~ always holds. The
remarks following the proof of Theorem 2.6 point out that Mj, 7~ M~ always
holds even for N = 1 when M is the limit of global minimizers.
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