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ABSTRACT. - This article discusses questions of the smoothness of
solutions to nonlinear dispersive evolution equations. We consider equa-
tions of KdV type, that is, of the general form

with x E R. The hypothesis on the nonlinear function f is principally that
so that dispersive effects are dominant. We show that if the

function u (o, x) decays faster than polynomially on R +, and possesses
certain minimal regularity, then a priori the solution u (t, x) E C°° for t > o.
Furthermore, the relationship between the rate of decay and the amount
of gain of regularity is quantified; if

then for all 0  t __ T, and u (t, ([0, T]; H o~ 1 (R))
where T is the existence time.
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148 W. CRAIG, T. KAPPELER AND W. STRAUSS

RESUME. - Cet article demontre certaines proprietes de regularite des
solutions des equations d’evolution dispersives non lineaires. Nous consi-
derons les equations du type KdV, de la forme

ou xeR. L’hypothese la plus importante sur la fonction f est que
pour que les effets dispersifs soient dominants. Nous mon-

trons que, si la fonction u (0, x) decroit vers zero plus vite que les polyno-
mes sur R+, et si elle est de minimale regularite, a priori la solution

u (t, x) E Coo pour t > o. En plus, la relation entre la vitesse de decroissance
et l’ordre de regularite supplementaire est quantifiee; si

alors pour tout OtT, et u (t, x)EL1 ([0, T] ; (R))
ou T est le temps d’existence.

1. INTRODUCTION

An evolution equation enjoys a gain of regularity if its solutions are
smoother for t > 0 than its initial data. An equation need not be hypoellip-
tic for this to happen provided the initial data vanish at spatial infinity.
For instance, for the Schrodinger equation in it is clear from the

explicit formula that a solution is Coo if the initial data decay faster than
any polynomial. For the Korteweg-de Vries equation on the line, T. Kato
[Ka], motivated by work of A. Cohen [Co], showed that the solutions are
Coo for any data in L2 with a weight function 1 + ea ". Kruzhkov and
Faminski [KF] related the order of vanishing at infinity of the initial data
to the gain of regularity of the solution for Corresponding work for
some special nonlinear Schrodinger equations was done by Hayashi et al.
([HNT1], [HNT2]) and Ponce [Po]. While the proof of Kato appears to
depend on special a priori estimates, some of its mystery has been resolved
by the recent results of local gain of finite regularity for various other
linear and nonlinear dispersive equations due to Constantin and Saut [CS],
Sjolin [Sj], Ginibre and Velo [GV] and others. However, all of them require
growth conditions on the nonlinear term.

In this paper we separate the question of regularity from the question
of global existence. We quantify the gain of each derivative by the degree
of vanishing of the initial data at infinity. We prove that there is an
infinite gain of regularity within the existence interval for solutions with
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149GAIN OF REGULARITY

sufficient decay at infinity. We use a technique of nonlinear multipliers,
generalizing Kato’s original method, together with ideas of Craig and
Goodman [CG]. This is true for a general class of dispersive equations,
including those of Schrodinger type and KdV type, without any growth
conditions on the nonlinear terms.

We limit ourselves in the present paper to a fully nonlinear equation of
KdV type in one space dimension. Namely, we consider the equation

where f~C~ and

In addition there is a technical hypothesis onfin cases in which it depends
explicitly on x and t; these are stated precisely in Section 2.

In order to measure the decay, we use one-sided weight functions w G, k (x)
which behave roughly like ~ as jc -~ + oo and like as x ~ - oo, where

k >_ 0 and cr > O. That is, they grow to the right and decay to the left. Let
Hi (was k) denote the Sobolev space with respect to the measure wa, k (x) dx.
We use the notation Our main result is the following.

Gain of Regularity Theorem

Let u (x, t) be a solution of ( 1 ) in R x (0, T) with uxx, ux and u
bounded. Assume that there is an integer K >_ 2 such that

Then

and

for all 0  k  K and In the special case k = K, the weight function
wu, -1 (x) in (4) is required to be a positive integrable functioh on (0, oo).
Thus we have a gain of K derivatives at the expense of K/2

powers of x as x -~ + oo . By Sobolev’s inequality, (5) implies that

a4 + k u ~ 2 is bounded in R x (0, T). Since K can be arbitrarily
large, we see that the solution is Coo in R x (0, T) if (3) is true for all K.
We also show that the hypotheses of the preceding theorem are satisfied

under natural initial conditions.

Vol. 9, n° 2-1992.
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Existence Theorem

If u (x, 0) = tp (x) where [K >_ 2] then there is a maximal
existence time T* _ oo such that the hypotheses of the preceding theorem
are valid in each time interval 0 __ t __ T  T*.

Informally speaking, the two theorems together imply that if cp E H~ is
rapidly decreasing as jc 2014~ +00, then within the existence interval.
The number five can be reduced if the equation is quasilinear or

semilinear. Note that f only satisfies the structure conditions (2). There
are no growth conditions on f at all. The first condition in (2) means that
the equation is uniformly dispersive. The second condition in (2) has the
effect of avoiding a backwards parabolic term.

In particular, the Existence Theorem asserts that five derivatives in the
initial data lead to six derivatives in the solution. In fact, we prove that if
k >-_ 7 and p belongs to Hk without a weight, then the solution belongs to
H a~ ~ for a. e. T*). This is one of the results proved by Kato [Ka]
for the KdV.
The idea of the proof of gain of regularity is as follows.
(i ) Differentiating the equation many times leads to an equation which

looks almost linear. Incidentally, for a linear equation this first step may
be omitted and the results take a simpler form.

(ii) The simplest equation of type (1) is the Airy equation u~ + uxxx - ~~
It is invariant under the transformation (~ : u ~ xu - 3 tuxx. Since the L2
norm is an invariant, so are

and

They indicate a gain of one or two derivatives solely at the expense of
one or two powers of x. For higher derivatives, we need only take higher
powers of However, the idea of invariance does not readily generalize.
For instance, consider the equation We would like to

N

find a nontrivial operator F (x, t) aj of order N which commutes
j=i

with at + a (x) a3. It cannot be found in general because F has only N + 1
coefficients but the commutator [F, has order N + 2.

(iii) On the other hand, it is well known that such equations are

intrinsically one-sided. The solitons travel to the right, not the left. More-
over, the solution of the Airy equation is u (x, t) = t-1~3 A (xt-1~~) ~ cp {x)
where A is the Airy function. The Airy function decays exponentially as
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;c -~ + oo but only very slowly with oscillations as x -~ - oo . Therefore, in
order to get the regularity, it ought to be sufficient to assume that 
decays fast as x - + oo but only slowly as x -~ - oo . This consideration
motivates the use of the one-sided weight functions.

(iv) Our actual procedure is to multiply the Airy equation by ç u for an
appropriate weight function § (x, t), obtaining the identity

This identity is integrated over xe R, whereupon the right hand side
vanishes and we obtain through the Gronwall inequality our main energy
estimate. If we choose § > 0 and ~x > 0, then the second term provides a
gain of one derivative relative to the initial data. If § (x, 0) = 0, then the
initial data does not appear explicitly in the estimate at all. We repeat
this estimate for the higher derivatives of the solution. For the fully
nonlinear equation (1), ~ will depend nonlinearly on the solution itself.
This method can be considered as an approximate one-sided version of
(ii ) with an operator which changes at each induction step.
The plan of the paper is as follows. In Section 2 we prove the Gain of

Regularity Theorem (in slightly greater generality). The first induction

steps are delicate, the later ones quite routine.
In Section 3 we prove a first existence theorem, locally in time, for

cp E H’ (~) without use of a weight function. In Section 4 we show that
the solutions belong to weighted classes provided the initial data do. We
also reduce the existence assumptions to only five derivatives on the data
with weights, thereby completing the proof of the Existence Theorem.
Finally, the appendix contains several versions of technical weighted inter-
polation lemmas.

It is straightforward to extend these results to equations of odd order
in the spatial variable, with m _>_ 5. If m is even the equation is parabolic,
and the properties of smoothness of solutions reflect different phenomena.
For the odd order case, the dispersive character of the equation leads to
gain of regularity, with higher regularity obtained for more localized initial
data. Again initial data which decay rapidly on a half axis lead to Coo
solutions, locally in time. These results are contained in unpublished notes
of the authors.

Additionally, it is clear that the demands on the initial data cp can be

considerably weakened if the nonlinearity has special structure. For exam-
ple if the equation is semilinear, such as the classical KdV equation,
the starting differentiability required by our method can be reduced to
3 derivatives.

In a subsequent paper the authors treat equations of Schrodinger type,
where similar results are true.

Vol. 9, n° 2-1992.
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2. GAIN OF REGULARITY

This section contains the main theorem, which we present in a slightly
more general form than in the introduction.
We write 3=3/cbc and We abbreviate and a~ _ ~/au3.

Our nonlinear function u2, ui , uo, x, t) whose derivatives are writ-
ten ao~ ... ~33 f. The equation is

where T], and T is an arbitrary positive time.
The assumptions on f are as follows. f : 1R5 x [0, T] ~ fF~ is Ceo in all its

variables.

(Al) There exists c > 0 such that

for all y = (u3, u2, ul, uo) E I~4, x E E~ and t E [0, T].
(A2) x~ t)  0.

(A3) All the derivatives of fey, x, t) are bounded for for t E [0, T]
and y in a bounded set.

(A4) t) is bounded for all N > 0, j> 0, and T].
Remark. - These assumptions imply that f has the form

where gj = gj (Uj, ..., uo, x, t) and h = h (x, t) have the properties

g3 ~ go and h are Coo and each of their derivatives
is bounded for y bounded and t E [0, T].

Indeed, we define

and similarly for gi and go and h = f(0, 0, 0, 0, x, t). Then (Al) implies
(3), (A2) implies (4) and (A3) implies (5).
We now specify the weight functions to be used. A function ç (x, t)

belongs to the weight class Wa Ik if it is a positive C °° function on f~ x [0, T]
and there exist constants cl, c2, c3 such that
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We shall always take ~ >__ © and 
By HS (W03C3 ik) we denote the Sobolev space on R with a weight; that is,

with the norm

for any 03BE ~ W03C3 ik and 0  t  T. Even though the norm depends on §, all
such choices lead to equivalent norms. By LP (HS ik)) we denote the
space of functions v (x, t) with the norm

The traditional Sobolev space is without a weight. We
define

and

We shall use the last spaces only in the case i = -1. With this notation
we can succinctly state the two main theorems. The distinction between
them resides only in the order of differentiability assumed for the solution
and in the nature of the weight functions.

THEOREM 2.1. - Let T>0 and let u (x, t) be a solution of ( 1 ) in the

region R x [0, T] such that

for some L >__ 1 and all 6 > 0. Then

for all and with the exception that f I = L then W6, _ 1, ~ i
is replaced by W6, -1, l-
Thus we have a gain of L derivatives, at the expense of L powers of x

in the weight functions as x ~ + oo, which means L/2 powers of x for the
solution u (x, t). Therefore if the assumption (9) holds for all the
solution is infinitely differentiable in the x-variable. From the equation
(1) itself the solution is Coo in both of its variables. The next theorem
shows that the assumed number of derivatives can be reduced by two,
with only a minor change in the weight functions.

THEOREM 2 . 2. - Let T>0 and let u (x, t) be a solution of ( 1 ) in the
region R x [0, T] such that

Vol. 9, n° 2-1992.
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for some K >_ 2 and all 6 > 0. Then

for all 0 __ k _ K and all 7 > 0, with the exception that is replaced

The rest of this section is devoted to a proof of these two theorems. It
is based entirely on a sequence of a priori estimates, as mentioned in the
introduction. We shall derive the a priori estimates assuming that the
solution is Coo, is bounded as x ~ - oo, and is rapidly decreasing as

x -~ + oo, together with all of its derivatives. At the end of the proof we
shall use an approximation argument for the general case. In Theorems
4 . 1 and 4 . 5 it is proved that (9) implies o)) and that
(11) implies u E L2 {H6 {W6, K -1, o)). 

The a priori estimate

We begin the proof by taking rx x-derivatives of the equation where
oc=7+l=5+k with 6_a_7+L=5+K. Thus

where only the highest-order terms have been written explicitly. We have
also omitted the arguments of f and its derivatives and have denoted

Then we let § e W~, K + s - «, « - s ~ multiply ( 13) u = ~ u« and integrate
over Each term in (13) is treated separately. The first two terms
yield

and
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The third and fourth terms in (13) are treated similarly, integrating by
parts twice. Indeed,

and

The fifth, sixth and seventh terms in (13) are also treated similarly,
integrating by parts once. By this procedure we obtain the main identity

where

and where R = O (u~, ua _ 1, ...) has coefficients containing § but no
derivatives of ~. Our main estimate comes from the first two terms in (14)
if 11 can be chosen to be positive. The second part of the second term in
(14) is non-negative by (A2).

Choice of weight function

If 11 is an arbitrary weight function in ik, then there exists § E W J, I+ 1, k
which satisfies (15). Indeed, letting a (x, t) = a3 f = a3 f (uxxx, . - . , x, t),
equation (15) takes the form 3 a ~x - (2 oc - 3) ax ~ = r~ . It has a solution

Since a (x, t) is bounded below by (Al) and is bounded above by (A3), it
follows that ç inherits the properties (6), (7) and (8) of 11 with an increase
of growth at + oo by one power.

In the case of Theorem 2.1, we take 8 _ a = l + 7 _ L + 7. If r:tL+7,
we take any

In case a = L + 7, we take Due to the
full nonlinearity of equation (1) the multiplier is nonlinear; that is, ç
depends on 9~ u, ... though So § and its derivatives must be
treated carefully.

Vol. 9, n° 2-1992.
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LEMMA 2. 3 (Estimate of error terms). - If 8 __ a. _ L + 7 and the weight
functions are chosen as in ( 18), then

where C depends only on the norms of u in

for 7 _ a 2014 1 and on the norm of u in L Cl) (H~ (Wo L o))-

Proof of Theorem 2. 1 assuming Lemma 2. 3. - We will use induction
on a, beginning with a = 8. The estimate will be applied to a smooth
approximation of the solution. Let u be a solution satisfying (9). The
equation itself implies that L o))- Hence u is a weakly
continuous function of t with values in In particular,

for every t. Let T) and let ~ cp~~~ ( . ) ~ be a

sequence of functions in Co (R) which converges to u (., to) strongly in
H7 (Wo L o)’ Let (x, t) be the unique solution of (1) with the initial data

(x) at time t = to. By Theorem 3 . 2 it is guaranteed to exist in a time
interval [to, to + ~] where b > 0 does not depend on n. By Theorem 4.1,

with a bound that depends only on the norm of in 

Furthermore, Theorem 4. I guarantees the non-uniform bounds

for each n, k and (x.
The main identity (14) and the estimate (19) are therefore valid for each
in the interval [to, to + ~~. The multiplier 11 may be chosen arbitrarily

in its weight class (18) and is defined by (17) and depends on
n. However the constants cl and c2 in (7) are independent of n. From
(14) and (19) we have

By (19), C is independent of n. This estimate (23) is proved by induction
for a = 8, 9, 10, ... Thus is also bounded in

for a >_ 8. Since u(n) --~ u in L ~ (H~) by Section 3, it follows that u belongs
to the space (24). Since 8 is fixed, this result is valid over the whole
interval [0, T]. In the last step of the induction we have 
and 11 E Wa, _ ~, L. This completes the proof of Theorem 2 . 1.
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LEMMA 2. 4. - The expression R in the main identity (4) is a sum of
terms of the form

where 1 _ v 1 _ ... 

Proof - The terms of R come from differentiating the equation and
multiplying by ç ua. They clearly have the form (25), where p is the total
number of factors pulled out of f by differentiation, with Pj derivatives of
f with respect to u J ( j = 3, 2, 1, 0). The total number of derivatives which
occur in (25) is given by (27). Each differentiation of f with respect to U3
contributes an extra 3 derivatives, which leads to the term 3 p3 in (27);
similarly for u2 and U1’ Thus at least p3 among {V1, ..., are >_ 4, at
least p2 of them are > 3, at least p2 of them are > 2 and they are all _>_ 1.
Therefore

Combining this with (27), we get

Using (26) we get (28).

Proof of Lemma 2.3. - We must estimate both Rand ~. We

begin with a term of R of the form (25), assuming that vp _ 1  a - 2
(p >_ 2) or else /?= 1. By the induction hypothesis, u is bounded in
L~ (H03B2 (W03C3,L- (03B2-7)+,(03B2-7)+)) for all 03C3 > 0 and 0  oc -1. By the appen-
dix,

o - 6~ + - In the term (25) we estimate
..., 1 using (30). We estimate u,,p and ua using the weighted L2

bounds . 

and the same with vp replaced by a. It suffices to check the powers of t,
the powers of x as x ~ +00 and the exponentials as jc -~ 2014 oo.

In the term (25), the factor ç contributes the power t°‘ -’, according to
f 18). Each factor uV’ uses up the power t~‘’J - 6~ +~2 in the estimate (30), for

1.... , p -1. The last two factors in (25) use up the powers 8~ +~2

,~. n° 2-1992.
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in the estimate (31). Thus the difference in the powers of t is

We claim that M _> 0, so that the extra power of t can be thrown away.
To prove the claim, we argue as follows. Among the indices {1, ... , p ~,
let q be the largest index p -1 such that vq -- 6. Each derivative

M ..., u~q comes from differentiating f (u3, u2, ul, uo, x, t) with respect
to its first four arguments. Let q3 of the derivatives come from U3, q2
from u2, etc. Then

as in the proof of Lemma 2 . 4. Now by (27)

Hence, if q  p,

if 0 _ q -- p - 2. The remaining cases are as follows. If 2 _ q = p - 1, then
2M->-p-10+vp-(vp-8)+ >_p-3?0. If 1=q=p-1, then 
from (32). then 2 M >_- a - 6 - (vp - 8) + ? 0 because 

Finally ifvp6, then p = q and 2 M = oc - 6 > 0.
Similarly, as x - +00, the difference in the powers of x is

We claim that N  0, which means that the extra power xN can be thrown
away. To prove this claim assuming vF >__ 7, we write
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By (33),

in case q -- p - 2. On the other hand, if q = p -1, then

Finally if 6, then

The behavior as is easier, since each factor UV. must grow

slower than an exponential and § decays like an exponential 
We simply need to choose the appropriate relationship between cr and ?’
at each induction step.
Now consider the term of R with p = 0, namely the term 03BEu03B1 ~03B1xf where

all the differentiation acts on the explicit x variable of f. By (2) this term
has the integral

By (5) each is bounded. Hence

is finite because of (A4).
The analysis of all the terms of R will be completed with the case of

with p >_ 2. In this case p + 2 (a -1 )  a + 8 by (28), or

p + a _ 10. Since a >__ 8 and p >__ 2, this requires a = 8 and p = 2. By (27),
Vi + v2  14. That is, vx = v2 = 7 is the only possibility. Thus the only term
of this form is

This term is integrated by parts once, leading to a term of the form

Vol. 9, n° 2-1992.
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where 03BE ~ W03C3,L-1,1. For this term we use the interpolation inequality
I v’ ~ 3  ~ v" 2~2 . For x > 1 this leads to the estimate

which is bounded. For x  1 the estimate is similar except for exponential
weights. This completes the estimate of R.
Now we estimate the terms 03B8 u203B1 where 3 is given by (16). We claim

that 9 involves derivatives of u only up to order six and hence that 3 u;
is a sum of terms of the same type we have already encountered in R, so
that its integral can be bounded in the same manner. Indeed (16) shows
that 3 depends on at ç, a3 ~ and derivatives of lower order. Formula (17)
expresses § in terms of 11 and derivatives of u up to order three. The first
term of 9~, namely - at ç, is given by

where and

This shows explicitly that 8- depends only on derivatives of u up to

order six. This completes the proof of Lemma 2.3 and therefore of
Theorem 2.1.

In order to prove Theorem 2 . 2, we use the main identity (14) with
6 _ a = k + 5  K + 5. If a  K + 5, we take any weight function

LEMMA 2. 5. - If K >_ 3 and 8 _ a -- K + 5 and the weight functions are
chosen as in (37), then

where C depends only on the norms of u in

for 5  oc -1 and on the norm of u in L~° (HS o))~

Proof. - The proof is similar to that of Lemma 2.3. In fact (30) is

true for 0 _- (3  a - 2 and ~ E Wa, K - (a - 4) +, ~~ - 4j + - Also (31 ) is true for
and the same with vp replaced by a. Following

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



161GAIN OF REGULARITY

the proof of Lemma 2. 3, the difference in the powers of t is

The difference in the powers of x as x ~ + oo is

It is left to the reader to verify that M > 0 and N  0, as in Lemma 2 . 3.
The special term of R with is treated as before. In case a= 8, the
special term of R of the u~ is treated as in (35) with L -1
replaced by K - 3. Such a term occurs on the third induction step k - 3,
that is, only in case K > 3.

It remains to estimate the terms 03B8 u203B1 where 9 is given by (16). They are
estimated in the same way as before in case a >_ 8, but for the sake of our
future discussion of the cases a =6 and 7, we provide a more detailed
analysis of them. Because ~ involves up to six derivatives of u, some of
the 03B8 u203B1 terms will be major terms when we take a = 6 and 7 in the next
lemma. We begin with the second term in (16), a3 [~ a3 f ]. We recall the
formula (17), which we write in the form

where m involves at most one derivative of a. In (42) the factors I (a - ~ r~)
have the same behavior as ç. The factors a and 8a involve at most

four derivatives of u, which are harmless because u, au, 82 u, 9~ u and
( 1 + ea x) a4 u are bounded [by (39)] for all So only the factors 83 a
and o2 a in (42) require careful analysis. Now and

where the coefficients bj are harmless. Therefore the
second term in (16) contributes terms to (14) of the form

If oc _>_ 8, these terms are of the same kinds as the regular ones in R. If
a = b or 7, they will be analyzed separately in Lemma 2 . 6. The 3rd-7th
terms in (16) are of the same type as the second term, or better, and are
analyzed in the same way.

voi 9, n° 2-1992.
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It remains to estimate the first term in (16), namely - ~t03BE . u203B1. For
convenience we choose t) of the form t~ r~ (x) where k = a - 5. Then
3~=t~a~-lI(a-~r~) and

The first term in (44) is regular (like the terms of R which we have already
analyzed). Now

But, differentiating equation (1), we have so that

This appears in the second term of (44) multiplied by some harmless
factors. If a >_ 8, all these terms (multiplied by u~ ) are regular.

In the last term of (44), the factor at a appears inside the integral. We
write it as - a 3 f ’ . a 3 [f] plus terms with fewer derivatives of u. Thus the
last term in (44) is

The main term in this integral is integrated by parts to give

The first term in (45) is ~ (~3f)-03B2. ~23 f . u5 + O(u4, ... ). It is regular if
a > 7. The second term in (45) is

where g and h involve u3, ..., u and j involves u4, ..., u. Since

u4 us = ~ Cu4I2], another integration by parts eliminates the fifth derivative,
leaving us with terms of the previous types. This completes the estimates
of all the 03B8 uf terms and thereby the proof of Lemma 2 . 5.

LEMMA 2. 6. - If a = 6 or 7 there exists a positive constant C,
which depends only and on the norms of u in L~ (HS o)) and in
(39) for 5 __ oc- l, such that

for some 03BE E 5.

Proof - We begin with the first induction step, oc = 6, which is the
most delicate. The main identity (14) then takes the following explicit
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form

(with various combinatorial constants c~), where we have written all the
terms with and the dots represent terms involving ~~ li f and 
Integration by parts leads to the identity (14) where there are a number
of regular remainder terms as before, as well as four kinds of exceptional
remainder terms, namely terms involving u6, us u6, u1 and u;. Clearly the
estimation of us u6 will be easier than u6, and the estimation of u; will be
easier than u1; we limit the discussion here to these two kinds of terms.

The u 5 Terms

which is a standard interpolation inequality with a weight function. We
apply it first to and upper bound for the coefficient of the

u1 term. is a linear combination of upper bounds of § and a~.
Because of (8), ~4 is a weight function of the same class as ~. Therefore
the sum of the u1 terms is bounded by

which is bounded by (11).

The u6 Terms

A typical such term is  c f u6 I 3. A standard interpolation
inequality is
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If we disregarded the weight functions, we would estimate as follows.
Letting v = us,

Hence

for any E > o. The idea is to subtract the E-term from the ~ u27 and to
estimate the cg term using a known bound of us.
Taking account of the weight functions, we recall that 11 E W G, K - 2, i

By assumption (11), and

u6 E L~ (L2 (W6, K- ~, o))- In the appendix it is proven that

Since K > 3/2, we way replace (K + 6)/5 by the larger power K. Multiplying
by t and integrating we get

for any E > o. This implies the required estimate for positive x. As for
x --~ - oo, a similar argument applied to yields

Multiplication by t and integration over (0, T) yields an inequality similar
to the previous ones but over the interval ( - ~, -1 ) with exponential
weight functions. This completes the estimate of the u6 term.
The second induction step, a = 7, leads to the identity (14) where

We integrate the first term by parts, using 3 u6 u~ = o (u6). The terms 9~ u~
lead to some exceptional terms of the same types as we have discussed
earlier. Therefore the only exceptional terms which remain are u6 u~ and
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u6. In this where K>2. In case

K = 2, ~ E Wa, _ 1, 2. We require bounds in terms of the norms of us in
U6 in U7 in 1) and u8

in L2 (L2 (W6, K-3, 2)), the last one with a small coefficient.
The u6 term is estimated (for x> I) as in (35), namely

as desired. The main term to be estimated has the Again we
explicitly write only the case of positive x. By Holder’s inequality,

The first factor in (50) is estimated by the appendix as

Replacing (K + 6)/5 by K as before, we get

where we can choose 8=1. The last factor in (50) is

Replacing (K + 1)/5 by the larger power K -1 since K > 3/2, we get

This is placed into (50), the result is multiplied by t2 and integrated over
t. This completes the proof of Lemma 2. 6.

Proof of Theorem 2. 2. - By Theorems 4 . 5 and 4 . 7,
s o)). Now the induction begins with a = 6. The proof is

similar to that of Theorem 2 . 1 but the space H7 (W 0 L o) is replaced by
HS o)- Since K > 2 we can use Theorem 4 - 2 to guarantee that the
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approximate solution (x, t) exists in a uniform time interval [to, to + ~],
that is uniformly bounded in L°° (HS o)) (~ L2 (H6 (Wa, K-1~ o))~
and that (22) holds for each n. This estimate, which is valid in the interval
[to, to + 6], is not uniform in n, however the bound (23) is valid for ~t~‘~
and 11 in the weight classes (37) because of Lemmas 2.5 and 2.6. Thus

is a bounded sequence in

for a >_ 6. Since u~n~ --~ u in L °° (H 5 o)) by Section 4, it follows that u

belongs to the space (51).

3. EXISTENCE AND UNIQUENESS

In this section we prove the basic local-in-time existence and uniqueness
result. This is used in Sections 2 and 4, but is also of independent interest.
In Section 4 the condition for existence and uniqueness will be improved.
First, we address the question of uniqueness:

THEOREM 3 . 1. (Uniqueness). - Let OToo. Assume f satisfies (A. 1 )-
(A . 4). Then for there is at most one solution u E L~ ([0, T] ; H’))
o. f’ (2 . I ) with initial data cp.

Proof - Assume u, v are two solutions of (2.1) on L °° ([0, T], H’ ( (~))
with at u, at v in L °° ([0, T], H4 (~)) and with the same initial data. Then

By the mean value theorem there are smooth functions (0 _ j  3),
depending smoothly on u3, u2, ul, uo, x, t and V3, v2, V1, vo, such that (1)
takes the form

Moreover, using (A . 1 ) and (A. 2) respectively we conclude by the
mean value theorem, that d~3j (y, x, t) >_ c1 > 0 and d~2~ (y, x, t) __ 0 for
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Multiplying (2) by 2 ~ (u - v) and integrating in x we

obtain by partial integration,

Observe that all the partial integrations can be justified, as u and v are in
L°° ([o, T], H’ (Q~)) and ~t E L°° ([0, T]; H1). Since d~2~  0 and a [~ d~3~j = 0
we conclude that, for a suitably chosen constant c > 0,

By Gronwall’s inequality and the fact that u - v vanishes at t = 0 it follows
that u - v. This proves uniqueness.
The next result deals with existence.

THEOREM 3 . 2. - Assume f satisfies (A . .1 }-(A . 4). Let N be an integer
>_ 7 and let c0 > 0. Then there exists a time 0  T  oo depending only on co
such that for all cp E HN with 1 ~ co there exists a solution of (2. 1 ),
u E L ~° ([0, T] ; HN ( Il~)) with u (x, 0) = c~ (x).
The conclusion implies that u E L°° ([0, T]; (E~)) and, by the equa-

tion, at u E L 00 ([0, T]; (~)). The proof proceeds in several stages. First
we differentiate the equation to make it quasilinear, and define a sequence
of approximations as solutions of a linearized equation. Then a version
of the estimate of Section 2 is obtained and is shown to be valid uniformly.
Hence a passage to the limit succeeds.

We saw in Section 2 that differentiating the equation 6 times leads to

Upon substitution of u = A v where A = (I - a6) -1 this equation takes
the form
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where Vj denotes aj v and used. (5) is linearized by
substituting a new variable w in each coefficient;

The main estimate is stated in the next lemma.

LEMMA 3 . 3. - Let v, w be a pair of functions in Ck ([0, oo ), HN (f~)) for
all k, N which satisfy (6). Define ~a - w3, ... )~ 3 + 2 °‘~3. For each
integer a ? 0 there exist positive, nondecreasing functions gt°‘~, and 
such that for all t >-- 0

where ~ ~ w is the norm in H°‘ 

Proof of Lemma 3 . 3. - Taking a°‘ of equation (6) for some a >-- o, we
obtain an equation of the form

where is a smooth function depending on A w3 + i, ... - with

i =12 + a - j. For oc ? 3, depends at most linearly on

A ws + «, while for a=2, p (1~ ws + «, - - . ) depends at most quadratically on

Following the basic estimate we multiply equation (8) by to obtain

The first term on the right side of (9) is, when integrated,

where
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The second term on the right side of (9) is, when integrated,

where

for some coefficients cj which only depend upon lower derivatives of w.
The term in the sum in (9) with j = 7 + 03B1 is integrated by parts just once

and the remaining terms are left as is. The resulting identity is

The new weight function 11 is given by

With our choice of ~ _ (a3 f )3 + 2 °‘~3 one obtains 11 --_ o.
Furthermore, by assumption (A2), a2~_ o; thus the first term in the

righthand side of (10) is nonpositive. By standard estimates, the lemma
now follows. If a = 2, h(2~ is chosen to be 0.

Proof of Theorem 3 . 2. - Using the same approximation procedure as
in Section 2 it suffices to prove that for cp in (~ Hk ((~), there exists a

k?0

solution u in L°° ([o, T]; with initial data cp and with a time of
existence T > 0 which only depends on As a first step we prove
that there exists a solution u in L°° ([o, T]; H7 (IR)) of (2. 1). We define a
sequence of approximations to equation (5) as

where ...) and where the initial condition is given by
(x, 0) = cp (x) - a6 cp (x). The first approximation is given by
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(x, t) _--_ cp (x) - a6 c~ (x). Equation ( 11 ) is a linear equation at each itera-
tion which can be solved in any interval of time in which the coefficients
are defined. This is shown in Lemma 3 . 5 below. By Lemma 3 . 3,

where ~~n~ = a3~(n v‘3’, .. , )3 + 2 a/3.
By (A. 1 ) we have ~x~ -1 ~ (x, t) >__ c i + 2 «~3 > ©, for 0  t  T.

Observe that ~a~-1~ (x, 0) _ [a3 f (cp3, ... )]3 + 2 «~3 is independent of n and
[~3f(03C63, . . . )]3 + 2 03B1/3~c32 where c2 depends only and

is, in particular, independent of a.
First choose ~c =1 and let c~~ ~ I cp - a6 cp ~ ~., >__ ~ ~ cp ~ ~ ~- Observe that for

Define c3 --_ 1 + co (c2 c1) 2 and let T(n) be the maximum time such that

||v(k)(., t) ||1 ~ c3 for 0 ~ t ~ T(n), o _ k  n. By integrating ( 12) over the time
interval [0, t] we obtain for 0  t _ T~~> and j = o, 1, ... ,

( ~ at ~~~ ~ ~ ~ ~ 1  > {c3~.
Choosing T sufficiently small, depending on co, cl and c2 but not on n,

one concludes that

This shows that Tt’~> >_ T. Estimate (13) implies that there exists a sub-

sequence, still denoted by v~n~, such that ~ v weak* in

L~ ([o, T]; H1 (~)). We claim that u = A v is the solution we are looking
for. By equation (11), is a sum of terms each of which is the

product of a coefficient, bounded uniformly in n, and a function in

L2 ([o, T]; H - 2 ((l~)) bounded uniformly in n, so that the sequence ct is
bounded L2 ([0, T]; H - 2 (fl~)). By Aubin’s compactness theorem, there is a
subsequence such that v~n~ -~ v strongly in L2 ([0, (L~)). Hence,
for a subsequence, a. e. in x and t. It follows that

... ) -~ a3 f (A v3, ... ) strongly in L2 ([o, T] ; (El~)). Thus
the first term on the right hand side of (11), ... ) conver-

ges in L2 ([o, T]; (~)) to v3, ... ) A v9 as A -~ ~ v9 weakly in
L~([0,T];H’~)) and G’~ 3 J (~ Z’ 3n I ~, ... ) ~ C~ 3 f (11 ’U 3, ... ) strongly in
L2 ([0, T]; ((~)). Similarly all other terms in ( 11 ) converge to their
corrects limits, implying in L2 ([0, T]; and

Gt v + (I - Z’3, ... ) = 0. Applying A to both sides of this equation
we find that equation (2 . 1 ) is satisfied by M==AzB

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



171GAIN OF REGULARITY

As a second step we prove that there exists a solution u in

L x ([o, T]; HN ( f~)) of (2 . 1 ) with N> 8, where T depends only on 
We already know that there is a solution u in L°° ([o, T]; H7 (lR)).
It suffices to prove that the approximating sequence v(n) is bounded in

L x ([0, T]; HN - 6 ( ~)) . Take a=N- 6, and consider (12) for oc _>_ 2. By
the same arguments as for (1 = 1 we conclude that there exists T~«> > 0,
depending on cl and c2, but independent of n such that

Lx ([o, T~°‘~]; H°‘ (~)). Now denote by 0 T* ~°‘~  oo the maximal number
such for all 0  T  T’~ ~°‘~, u= A v is in L°° ([o, T]; We claim that

T~l~  T~ ~~‘~ for all oc > 2. Thus a time of existence T can be chosen depend-
ing only ‘ cp I ~ ~ .
As a consequence of Theorem 3 . 1 and Theorem 3. 2 and its proof one

obtains the following

COROLLARY 3 . 4. - Let cp ~ HN (R) with N >_ 7 and be a sequence
converging to cp in Let -u and be the corresponding unique
solutions given by Theorems 3. 1 and 3 . 2 in L~° ([0, T]; HN (fl~)) with T

depending only on sup II cp~’’~ Then ~ u weak* in L~° ([0, T]; HN (~))
Y

and strongly in L2 ([0, T]; HN -1 (L~)).
The linear equation (11) which is to be solved at each iteration has the

form

with smooth bounded coefficients which satisfy

LEMMA 3. 5. - Given initial data in fl HN ((~) there exists a unique
N>_0

solution of (14). The solution is defined in any time interval in which the
- 

coefficients are defined.

Proof. - The proof is standard so we only sketch it. We fix an arbitrary
time T > 0 and a constant M > o. Let

where ~ _ ~h~3)~3_ Introduce the bilinear form

defined on C~ (I~ x [0, T]), the set of smooth functions with compact
support in R, which vanish for t = o.
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Our estimates from Lemma 3 . 3 show that

Multiply by e-M t and integrate in time to obtain for T])
with v (x, 0) == 0,

Thus ~ ~ v, v ~ >__ ~ v, v ~ provided M is chosen large enough.
Similarly ( 2* w, w ~ >_ ~ w, w) for all x [0, T]) with

w (x, T)=0 where 2* denotes the formal adjoint of ~f. Therefore

~ 2* w, ~ * v ~ is an inner product E w (x, T) = 0 ~ . Denote
by X the completion of {Ø with respect to this inner product. By the Riesz
representation theorem, there exists a unique solution V E X, such that for
any ~* w ~ _ ~ ~ b{°~, w ), where we used is in
X. Then v = ~* V is a weak solution of ~ v = ~~; with [0, T]).
To obtain higher regularity of the solution, we repeat the proof with higher
derivatives included in the inner product. It is a standard approximation
procedure to obtain a result for general initial data.

4. WEIGHTED SOBOLEV ESTIMATES

In this section we develop a series of estimates for solutions of equation
(2.1) in weighted Sobolev norms. These provide both a starting point for
the a priori gain of regularity results that are discussed in Section 2, and
they lead to an improved existence and uniqueness result, with fewer
demands upon the regularity of the initial data cp than in Section 3. The
existence of these weighted estimates is often called the "persistence" of a
property of the initial data. We show that if for

L > 0, then the solution u (., t) evolves in for T].
The time interval of such persistence is at least as long as the interval
guaranteed by the Existence Theorem 3.2, and depends only upon

~~ cp Using these weighted norms, we give an improved theory of
existence and uniqueness, for initial data The guaranteed
time of existence is estimated in Theorem 4. 5 ; it depends only on a norm
of cp in H$ {Wo 2 0). Additionally, with weights greater than i = 2, the

persistence property is shown to start with L > 5.

THEOREM 4 . I. - Let i and L be non-negative integers and 0  T  ~.
Assume that u is the solution to (2. 1 ) in L~ ([0, T]; H’ ((I~)) with initial data
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cp (x) = u (x, 0) in H’. If, in addition, cp is in HL (W 0 i o) then

where 03C3 > 0 is arbitrary, and ~ is a weight function in W6, i-1, o for i >_ 1,
and in Wa, _ 1 o for i = 0.

Remark. - In case i = 0, the conclusion (2) can be viewed as a generaliz-
ation of the local gain of regularity results as established by Kato [Ka],
Constantin and Saut [CS] and Ponce [Po] in various special settings.

Proof : - We prove this result by induction on a,

As in the proofs of Theorems 2. 1 and 2. 2 we first derive formally some
a priori estimates for the solution where the bounds involve only the
norms of u in L°° ([o, T], H7 (rR)) and of cp in H7 (Wo i o)- One has to
justify these estimates; we do it by approximating u (x, t) by smooth
solutions and weight functions by smooth bounded functions.
According to the existence result in Section 3 the solution u (x, t) evolves

in L°~ ([0, T]: with N = max (L, 7). In particular, t) is in
L~° T]) for 0 _ j _- N -1.
To obtain estimates (1) and (2) we use a procedure similar to those

presented in Section 2. In the rigorous derivation of these estimates there
are two approximations performed; we approximate general solutions by
smooth solutions, and we approximate general weight functions by
bounded weight functions. The first of these procedures has already been
discussed in Section 3, so we will concentrate on the second.

Given a smooth weight function r~ (x) E W6, ~ -1, o with 6 > o, we take a

sequence ~s (x) of smooth bounded weight functions approximating 11 (x)
from below, uniformly on any half line ( - ~). Define the weight
functions for the a-th induction step

where a = a 3 f. Then are bounded weight functions which approximate
a desired weight function from below, uniformly on compact
sets. For a = o, ~o and are defined slightly differently;
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where g3 is defined in (2 . 2). These weight functions are designed to satisfy
the usual relations;

for oc >__ 1 and a = 0 respectively.
The first induction step is to obtain a weighted estimate for a = o.

Multiply equation (2.1) by 2 and integrate, to obtain

Using the form (2. 2) of the nonlinear term,

We write ~s = ~o s and note that I a3 ~s I  c ~s. Using (3) with (x=0,
0  r~s  3 a [~s g3], we find that

where c depends only on and, in particular, is independent of ~.
Similarly we obtain

and

Combining (5)-(7) with (4) yields

One applies Gronwall’s lemma to conclude

for o  t __ T. As c does not depend on b > o, the weighted estimate (8)
remains true in the limit for b -~ 0.
To prove the a-th induction step we start from formula (2. 14) with 11

and § given by ~03B4 and 03BE03B1, 03B4 = 03BE03B4.
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The expressions 3 and R are given as in Section 2.
By (3) and (A. 2) the second term in (9) is non-negative. Moreover it

follows from (2. 16) that ~/~s is a function bounded in x and t by a
constant c, which depends only on () (p and T and which is in particular
independent of 8. Thus (9) yields

To use Gronwall’s lemma to conclude the induction step it thus suffices
to prove

where the constant c depends upon and the norm of cp in

only. According to (2 . 25), R contains terms of the form

If a - 2 we perform one integration by parts, and then use the induc-
tion hypothesis to bound the resulting terms by the quantity:

The expression (11) is bounded in the previous induction steps. Suppose
that then the term (10) has the estimate

As discussed in Section 2, the multiplicity l >_ 2 only when a  8. Thus for
a > 8 a differential inequality of the necessary form is obtained. Further-
more, for a  7, ~ ~ ua _ ~ ~ ~ ~ is bounded by hypothesis, and again the estimate
is complete. Finally, for a = 8 we use the Sobolev lemma

Using these estimates in (9), and applying the Gronwall argument, we
obtain for any 0 _ t _ T
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The constants are independent of 8 so that letting the parameter 6 - 0
the desired estimates (1), (2) are obtained. D

For the next two theorems we need to take a closer look at the existence
results of Section 3. We first prove the following two lemmas.

LEMMA 4 . 2. - 

Assume that u E L °° ([0, T]; H’ (W 0 i o)) is a solution of(2 . 1 ) with initial
data 03B1=6 or 7 and 03BE ~ W0i0

where c depends only on the norm of u in L°° ([0, T]; HS (W 0 i o))~

Proof - The proofs for a = 6 and 7 are very similar and thus we treat
the case a =6 only. The point is to derive differential inequalities leading

to estimates for (13) which are at most linear in As in the proofs

of Theorem 2.1 and 2. 2 we first derive formally the a priori estimate. In
a by now familiar way one then justifies these estimates, approximating
u (x, t) by a sequence of solution in with N sufficiently large.
Choose a smooth weight function 11 (x) in Wa, o, for a > 0 arbitrary,

with bounded for all j, and define § as earlier by

where a=o3fand a = 6. Then t at ~/~ and a’ ~/~ are bounded for 0  j __ 3.
Again we start from formula (2.14);

where 9 and R are described in Section 2. From (14) we will derive a
differential inequality of the form

from which ( 13) follows by applying Gronwall’s lemma.

To obtain ( 15), an estimate of 03B8 u6 dx and R dx is obtained, which
uses the presence of the term (~ - 2 ~ a2 . f ’) u~ dx in a crucial way. The
analysis of 03B8 u6 in Section 2 shows that 03B8 u6 dx can be brought into the

Annales de l’Institut Henri Pnincare - Analyse non linéaire



177GAIN OF REGULARITY

form

where the coefficients b~ depend on u, ul, u2, u3, u4, x, t only and are

thus easily estimated. The analysis of R in Section 2 shows that R can
be brought into the form of an integral of

It thus suffices to estimate the terms ~ ~ u6 ~ 3 dx, ~ I dx, ~ us dx
and 03BE | u5 |3 dx. To accomplish this we use interpolation estimates as in
Lemma 2 . 6. For 03BE0 ~ W0 i0 0 with io = (i + 7)/5.

for a certain constant c depending on E. Since i >_ 7/4, io _ i and thus
H7 (W 0 io 0) C H7 (W 0 i 0)’ Holder’s inequality gives

thus the term ~’ us u6 dx is also estimated using (16). Next

The term 03BE | u5 |3 dx is estimated similarly. This completes the proof of
(15), and the result follows.

LEMMA 4. 3. - Let 0  T  There exists a strictly increasing prositive
smooth function H (s) such that if u is a solution of (2 . 1) in L°° ([0, T];

for some i >__ 1 /2, then, for 0 _ t  T and appropriate weight
functions ~a in 0 _ oc  5, we have

Proof. - Choose a smooth weight function ~(x) in (6 > 0
arbitrary) such that is bounded for j >_ 1. For define as
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before

In case a = 0 we define

by (2 . 2) .

where g3 is given

Now by (2. 2),

Moreover

First, consider at u2 03BE0 dx. As in (4) we have

This implies by a number of integrations by parts that

where c depends only on the norm of u in L~ ([o, T], For 
we start again from formula (2. 14).

where we have written ~a and Ra instead of 9~ and R for reasons of clarity.

The analysis of d~ in Section 2 (cf. 2 . 16) shows that ua dx

( 1  a __ 5) can be brought into the form

where the coefficients bj indicate functions which depend on u, u~, u2,

U3, u4, x, t only and are thus easily estimated by the norm of u in
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L~ ([o, T]; HS (R)). It suffices thus to estimate ~~ I u6 ~ u~ dx and

03BE03B1 ( us | u203B1 dx. For 1 _ a _ 4 this is done a straightforward way:

and

For u=5 we first observe that 03BE5 b1 u6 u25 dx can be written as

- 1 3  l [§s bi] u) dx and thus it remains to estimate §s | 5u |3 d§. For this

purpose we use an interpolation inequality, discussed in the Appendix:
For 0  tT

where 03BE is in Wo with io = (3 i + 1 )/5.

As for the error term we learn from Section 2 that it contains

terms of the form (2. 25).

with 1 _ v 1 _ , , . This can be easily estimated if 1 __ oc _ 4. For
a = 5, vp = 5 we must have vp _ 2  5.

Indeed, by an analogue of (2. 28) one obtains

this is contradicted.
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Thus choosing s = 1 2, £ ~03B1 uf dx + R03B1 dx is estimated by2 ~ 

where C does depend only on the norm of u in L°° ([o, T]; HS).
Inequality (17) now follows from (18), (19) and (22), together with the

fact that for i > 1, 2 03BE ~ W0i0 0 with io=(3i+ 1 )/5 -  i.
As a consequence of Lemmas 4. 2 and 4. 3 we obtain

COROLLARY 4 . 4. - Let cp E H’ (W 0 i o) with i >_ 7/4. Let u be the solution
of (2.1) with initial data cp. Denote by the lme span of this
solution, in the space H’ (W 0 i o). Then there exists 0  T’ _ T*, depending
only on the norm of cp in HS (Wo ~~4 0) such that

where C depends only on the norm of cp in HS (Wo ~ o).

Proo, f. - In view of Lemma 4. 2, only the existence of the uniform
time T’ is left to prove. This is done by induction on i, the strength of the
weight class. As in the proof of Theorems 2. 1 and 2.2 we approximate
u (x, t) by smoother solutions, here by a sequence u~n~ (x, t) in

L°~ ([o, T]; H’ (W 0 i o)) so that we can apply Lemma 4 . 3. We then justify
the existence of T’, independent of n, in a straightforward way. In fact, as

Lemma 4 . 3 holds for i >_ l, we may start the induction at i =1.
For the first induction step i = 1, we use the differential inequality from

Lemma 4 . 3 with i =1.

where H is a strictly increasing, positive, smooth function independent
of n. Indeed, let q (t) = 03A3  03BE03B1 uf dx. Then the differential inequality is

stated  (t)  H (q (t)) .
Let K(s) be such that d ds K(s)=1/H(s). Then K(s) is increas-

ds

ing and concave. Furthermore ~tK(q(t))=q(t)/H(q(t))~1 and thus
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K (q (t))  K {q (0)) + t. Thus q (t) will be finite as long as K (q (0)) + t
remains in the domain of K -1. This provides a lower bound on the
existence time T’ with 0  T’  T, depending only on

It remains to prove the subsequent induction steps. We start from (18)
and (19) to obtain as in the proof of Lemma 4. 3

where C depends only on the norm of u in L°° ([0, T]; o and
with io = (3 i + 1)/5. For io = 1, we obtain il = (5 io -1)/3 = 4/3.

From the first induction step, we know that sup T’ 03BE us dx  C where C
depends only on the norm of (p in H5 ( W olo)- For i o = I _ _  i - 4 3 = i i we
apply Gronwall’s lemma to (25) to conclude that for the whole time

interval [0, T’], sup T, 03A3 03BE uf dx stays bounded for all ç in Wo ; o.
Inductively, given define in = (5 1)/3. Then for any in-l 

we conclude as above, that sup stays bounded for ç in

W 0 i o. This proves Corollary 4 . 4. We now obtain the following main
result of this section:

THEOREM 4 . 5. - Let cp be in with i > 7/4. Then there exists
0  T  00, depending only on the norm of cp in H5 (o ~~4 0), and a solution u
o,f’ (2 .1 ) in L°° ([0, T]; HS (Wo ; o)) with initial data cp such that

for ~ in W G. i-I, arbitrary.

Proof - Approximate cp in H~ (Wo 1 o)-norm by a sequence in
H’ (Wo ~ o). According to Corollary 4 . 4 and Theorem 4 . 1, there exists
0  T  oo independent of n and a sequence of solutions u(n) in L °° ([0, T];

with initial data c~~n~. According to Lemma 4 . 3, (utn~)n > ~ is a
bounded sequence in L°° ([0, T]; HS (Wo ; o)). A limiting argument gives a
solution u of (2 . 1) in L°° ([0, T]; with initial data cp. (30) is
obtained in a by now standard way.
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THEOREM 4. 6. - Let cp be in with i >_ 2. Then the solution
u (x, t) of Theorem 4. 5 belongs to L°° ([0, T]; H6 (W 0 L o)) and satisfies

with 11 in W G, i-I, o (~ > o arbitrary).

Proof. - Again, one approximates cp, in this case in the H6 (Wo ; o)-
norm, by a sequence cp(n) in H’ (Wo ; i o)- Again by Corollary 4.4 and
Theorem 4.1 there exists 0  T  oo independent of n and solutions

(x, t) of (2 . 1) in L°° ([0, T]; H’ (W 0 i o)) with initial data c~~n~. One then
proceeds using similar arguments as in the proof of Theorem 4. 5.
The last result concerns the uniqueness of the solutions that we have

constructed.

THEOREM 4. 7 (Uniqueness). - Let 0  T  00. Assume f satisfies (A. 1 )-
(A.4). Then for there exists at most one solution

([0, T]; HS (Wo 2 o) of (2 . 1 ) with initial data tp.

Proof. - Assume u and v are two solutions of (2 .1 ) in L °° ([o, T];
HS (Wo, o)) (hence at u, at v in L°° ([0, T]; H2 (Wo 2 0))), with the same initial
data. As in the proof of Theorem 3 . 1 we write

where dU) (o _ j  3) depend smoothly on u3, ..., uo, v3, ..., vo, x,t and
are defined as in the proof of Theorem 3.1. However, because of the
lower differentiability of u and v, in order to perform the main estimate,
a weight function § is used which is independent of t and u and v. Define
~ =1 a [d ~3~]/d ~3~ ~ °° 

~}. Note that because u is in L °° ([0, T];
HS (W 0 i 0))’ sup x (x, t) ( --~ 0 as x - + oo for oc  4. Hence there exists

such that for all x ( (ad~3})/d~3~ I  1.
For our purpose it suffices to choose ç in the following way:

and for xl + 1 define ç such that 1, is smooth, does not depend
on t and satisfies for some f3 > 0
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Now use this weight functions in the main estimate; multiply (33) by
2 ~ (u - v) and integrate in x to obtain, by partial integrations

The second term on the left hand side of (35) can be estimated as follows;

Our choice of the weight function § implies that the above integrands are
strictly positive. The right hand side of (36) will be needed to balance
terms from the righthand side of (35). The two terms which need control
are those with the factor Here are the necessary estimates;

and

Later 8 will be chosen appropriately small.
The estimate of the last term from the righthand side of (35) is similar;

however the factors that are of principal concern include the coefficients,
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since they must accept two derivatives.

and

for x ~ x1 we deduce

Similarly, the L°°-norm in (39) is estimated;

To complete the discussion of (39) and (40), we remark that u,

v e L°° ([0, T]; HS 0)), thus the integrals ’ |~2 (E, d(3))03BE |2 dx andvEL 00 ([0, T]; HS (W 020)), thus the integrals 
2014 oo 

1 82 (I; d(3») I; 12 dx and

~x1 | a2 (03BE d(3) |2 dx are finite. Hence

Applying (41), and (36)-(38) to (35), we conclude that

Now Theorem 4. 7 follows from Gronwall’s lemma.
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APPENDIX

Interpolation with weights

In Sections 2 and 4, various interpolation estimates with weight
functions are used. They are all proved in the same way, so we restrict
ourselves to the most delicate of them. For u in H~ 1 (I~), one has the
standard interpolation C u IL26, that is

LEMMA 1. - Let ~i >__ 0 and b >-_ 0. Whenever (4 (3 - b)/5 = y >_ 0 there exists
C>O such that for u E H 1 

Proof - Choose a partition of unity (/~0), such that (R),
supp ~j(2j-1, 2j+1), 03A3 ~j = I in (2, +00) with supp ~j fi supp ~j=~

7~0

for 7~{7’, j~’~Ll }. Moreover we assume that - ~ ~ for ~~2 and
2 j~~o

Then 

Choosing y such that 1

Thus

and the lemma follows.

By the same method, using the standard interpolation

one proves.
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LEMMA 2. - Let (3 >__ 0, S >__ 0. Whenever (8 ~3 - 7 b)/5 = y >__ 0 there exists
C > 0 such that for u in H2 (R),

Finally, for reference, we include the following lemma, whose proof is
straightforward.

LEMMA 3. - For ~ in i >_ o, there exists a constant C
such that, for u in H ~ (V~~., i, o)
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