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ABSTRACT. - We prove the existence of periodic solutions with prescri-
bed energy for a class of N-body type problems.
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RESUME. - Nous demontrons l’existence de solutions periodiques a
energie fixee pour une classe de problemes de type N-corps.

1. MAIN RESULTS

The aim of this paper is to prove the existence of periodic solutions
with prescribed energy for a class of second order Hamiltonian systems,
including the N-body problem. Precisely, we set and consider

(*) Supported by Italian Ministry of Education.
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a potential V of the form

where and VijEC1(Q,R) (i, j =1, ... , N).
Given mi> 0 (t= 1, ..., N) and h E R, we seek for periodic solutions of

Here V (resp. V x) denotes the gradient (resp. the gradient with respect x1).
We will use the notation x. y, or simply xy (resp. to denote the
Euclidean scalar product of any two vectors x, y E Rm (resp. the Euclidean
norm of x).
We assume V (x) is in the form ( 1.1 ) with Vij satisfying:

(V2) that 

(V3) ~ ~ E ]o, 2[ and r > 0 such for all

0~~~_r;
(V4) Vi; (~) ~ 0 as ~ ~ ~ -~ oo .
Remarks. - For future references let us note explicitely some conse-

quences of the preceding assumptions. First of all, (V2)-(V3) imply, respec-
tively :

Here and always in the sequel c, c1, c2, etc. denote positive constants.

Moreover, since then from (V2)-

(V3) it follows:

By a solution of (Ph) we mean an such that x is

periodic with period T > 0 and for all i, j = 1, ..., N there results
(i ) _

(ii) the set ~ _ ~ t E [0, (t) (t) ~ has measure zero;
(iii) x~ is C2 on [0, and satisfies (Ph .1 )-(Ph . 2) therein.
A solution x such that L ~ ~ (resp. =0) is called a collision (resp.

non-collision). We anticipate that our solutions are possibly collisions,
found as limit of non-collisions.
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The main results of this paper are:

THEOREM A. - Suppose (Vl)-(V4) hold. Then for all h  0 problem (Ph)
has a periodic solution.

THEOREM B. - Suppose V satisfies (V 1 ), (V3), (V4) and
(V2’) ~ a E ]o, 2[ such 
(V5) VijEC2 (Q, R) and 3 + V;j (~) ~ ~ ~ > o.

Then for all h  0 (Ph) has a periodic solution.

It is worth pointing out that Theorems A and B above cover the case

of the N-body problem, namely when and (Ph. 1)

is nothing but the equation of motion of N bodies in R3 of position
xl, ..., xN and masses ml, ..., mN subjected to their mutual gravitational
attraction. In fact, it is immediate to verify that the potentials

Vij (03BE)= - mimj |03BE| satisfy both the assumptions (Vl)-(V4) with 03B1=03B4=1, as

well as (V5).
Theorems A and B must be related with the results of [1] where problem

(Ph) has been studied for potentials of the form V (x)~ - 1 |x|03B1 , a>0.

Actually, Theorem B extends Theorem 4.12 of [1] to problems of the N-
body type under quite similar assumptions, in particular (V2’) and (V5).
On the contrary, in Theorem A we eliminate (V5) but require that (V2)
holds for a. > 1.
Both the proofs of theorem A and B ’are based upon critical point

theory. In the latter we employ the same techniques of [1]: roughly, (V5)
allows us to find solutions of (Ph) looking for critical points of a functional
f constrained on a suitable manifold M, where the Palais-Smale condition
(PS) holds true.
The proof of Theorem A is more direct and relies on an application of

the Mountain-Pass theorem to f. Actually, when (V2’) is substituted by
the stronger (V2) it is possible to prove that (PS) holds for f without
constraints. An example shows that indeed the lack of (PS) arises when

Existence of periodic solutions with prescribed period for some classes
of N-body problems has been proved in [3], [4], [5]. On the contrary, we
do not know any result in the large concerning the existence of trajectories
with prescribed energy.

Vol. 9, n° 2-1992. 
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2. APPROXIMATE PROBLEMS

Let us introduce the following notation:

Here and always in the sequel stands for ~o dt. It is well known that

|| ui || ( is a norm on H # equivalent to the usual one and one has:

As an immediate consequence, for all setting

there results

Define the following functionals on Ao:

Formally, it is known (cf. [I], see also Lemma 2 below) that critical points
off on Ao give rise, after a rescaling of time, to periodic solutions of
(Ph). Actually, since Ao is an open subset ofE, critical point theory cannot
be employed directly. A device to overcome this problem has been used
in [1] (see also [3], [5]) and consists in substituting V with

Note that from ( 1 . 4) it follows:

Let us set £ (u) 2 2 ] ] u ] ) [ . J[h - V~ (u)]) . Since h - V~ (u) > h + s W (u) , one

can show (see, for ex. [5]) that f£ is suitable for the critical point theory
because there results

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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The procedure to find solutions of (Ph) will consists in two steps: first,
critical points of h are found, giving rise to solutions x~ of corresponding
approximate problems; second, we show that XE coverge, as s - 0, to a
solution of (Ph).

Let us start with:

LEMMA 1. - For any E > o, let u~ ~ 0 be such and || Mg > 0
and set

Then x£ (t) : = u£ t) is a non-collision solution 

Proof. - The proof is similar to that of Lemma 2 . 3 of [1] and therefore
we will be sketchy. it follows:

and hence [cf. (2.2)]:

Moreover satisfies:

and hence, dividing by  u 2 and using 2. 5 :
2

Next, since Vij (x) = Vji (x), one shows as in [5], Thm. 1 . 1, that (2 . 6) holds
not only for all v E E but also for all v E HN = H x H x ... x H (N-times).
Thus uE satisfies

Rescaling the time, one finds that jCg (t) = u£ t) satisfies (Ph. 1 E). Integrat-
ing (2 . 7) the conservation of the energy (Ph. 2 s) holds, too ..

Vol. 9, n° 2-1992.
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3. EXISTENCE OF CRITICAL POINTS OF fE

Critical points of f£ on Ao will be found by means of the Mountain-
Pass Theorem. Let us begin proving:

LEMMA 2. - There exist > 0 such that

(i ) , all E > 0 and all 

(ii ) there exist Eo> 0, uo, ul E Ao with || u0 || E  p  I ul such that f ’E (uo),

Proof. - First of all let us remark that from ( I . 2) it follows

Using (3 .1 ) j oinly with (2 . 1 ) one deduces:

proving (i).
To complete the proof we take u = (ul (t), ..., uN (t)), with

where §, satisfy: ] § = I r~ ~ ==1, ~r~ = o.
For R > 0 we consider

Note that I Ui (t) (t) = is independent on t and hence

From this it follows:

Since R Ui (t) - R Uj (t) = then h  0 and (V4) imply

and hence proving the existence of ui ~ 0, such
that > p and h (u 1 )  p.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Lastly, let R > 0 be small enough and recall that is
constant. Then using (1.3) one finds

Hence

Since 0  6  2, then the existence of ~0 > 0 and uo satisfying (ii ) follows..
Next, we investigate the Palais-Smale [in short (PS)] condition. For this,

some lemmas are in order.

LEMMA 3. - Let un E Ao be such that

c’.

Proof. - Since f (u) _ fE (u), from f~(un)  c we infer

Setting = = ( f £ (un) one has:

Using ( 1. 4) we deduce:

From (3 . 2) and (3. 3) it follows

and thus

Since h is negative we infer ]  c’.. 
.

LEMMA 4. - Let un be a sequence satisfying (*). If I un ~ ~ ~ 0 then lim up
It ~.

Vol. 9, n° 2-1992.
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Proof - Let us set

we claim that Rn/rn To see this we argue by contradiction. Suppose

that (without relabeling) Rn -~ oo, and let t n and s n be such that
rn

R = |un (t ) and rn = un (sn) |. One has

Since log Rn ~ ~, then
Yn

Furthermore, from |un|~ ~ 0 and (3 .1 ) it follows h - V ~ ~. In

particular, [h - V (un)] > 0 for n large and hence, using (3 . 4) we infer

a contradiction with h (un) __ c, proving the claim.
Next, let us set

From [see (3 . 2)]

it follows that

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Using ( 1. 5) one has ~ V un  03B403B3n and hence

Since an  0 and yn ~ oo then lim sup An  0.
To estimate Bn we use again (3 . 1 ) and (3 . 5) yielding, respectively:

These two inequalities imply

and hence

un (t) we deduce

Since oc ? 1 and ~i f £ (un) ~~ --~ ©, it follows that Finally,
from

we infer that lim sup h (un)  0. This completes the proof of the lemma..
We are now in position to prove:

LEMMA 5. - The functional f ’E satis, f ’ies:

(PS +) If un E Ao is such that 0  (3 _ fE (u~) _ c, and (un) - 0, then (up to
a subsequence) un -~ u* E Ao.

Proof - From lemma 3 it follows that II Un and 3 u* eE such that

(up to a subsequence) un -~ u*, weakly and uniformly in [0, 1]. From
lemma 4 we infer that u* ~ 0, otherwise lim sup fE (un) __ o, in contradiction

with!. (un) _>_ 13 > 0. If u* E aAo, then (2 . 3) implies h - V, (un) --~ + oo . This
Vol. 9, n° 2-1992.
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and (3 . 6) would contradict fE  c, proving that u* E Ao. Hence:

as well as

Moreover from

we infer

Taking into account (3 . 6), (3 . 7) and since 0 we can pass to the limit

into (3. 8) yielding

Finally, from f £ ~ 0 it follows:

Then (3 . 9) and ~ V£ (un) v ~ O V£ (u*) v imply that un ~ u* strongly

in E. /

LEMMA 6. - Let (V 1 )-(V4) hold. Then ~ Eo > 0 such that d 0  E _ Eo there
is u£ E Ao such that f £ (uE) = 0. Moreover ~ a, b > 0 such that 0  a ||E c b,

Proof. - Lemmas 2 and 5 allow us to apply the Mountain-Pass

Theorem [2] yielding a critical point u£ E 110 of , f£. From the min-max
characterization of fE (u£) it follows:

Since f E = 0, then the arguments of lemma 3 imply the existence of
b > 0 such Furthermore from (2. 5) we infer readily

If II as e - 0, then - 0 and (1.4) implies

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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while (2. 7) yields V - - oo . This and (3 . 11 ) lied to a contradiction,

proving the lemma..

4. PROOF OF THEOREM A

Let u£ the Mountain-Pass critical point of h given by Lemma 6. Since
Mg 0, from Lemma 1 it follows that x£ (t) = u£ t) is a solution of

(Ph. .1 E)-(Ph . 2 ~). Furthermore, again from lemma 6 one has that

Mg and (~ ~ 0) uniformly in [0, 1]. In order to show that
gives rise to a solution of (Ph) we follow the same procedure

as in [1]. For completeness we outline these arguments referring to [1] for
more details. First, one proves that

In fact, otherwise, V (u (t)) = h, hence u E Ao and V - V (u),
V V u£ -~ ~ V (u) u, uniformly in [0, 1]. Then

a contradiction because O V (x) x > o.

Next, one shows:
(ii ) ~ t : ui (t) ~ u~ (t) for some i ~ j.
Otherwise, the components u£, i of uE are such that | u£, i - | ~ 0

uniformly in [o, 1 ] for all i,j and ( 1 . 2) implies V (u£) ~ - c~o . On the
other side, using ( 1. 5) one finds

a contradiction.

Next, we claim that for the Dg given by (2.4) the following estimate
holds:

such that 

To prove this fact, let us take a closed interval I c [0, 1], with mea-
sure I I > o, such that ui (t) ~ u~ (t), V (u (t)) ~ h, V t E I. Such an interval

exists because of (i ) and (ii ) above. Since and

Vol. 9, n° 2-1992.
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|| u~ ||E S b, it follows

Furthermore, from V~ (t)) - V (u (t)) (uniformly on I), h - Vg > 0 and

(i ) it follows that h-V(u»O on I. Then, taking also into account that
> 0, we infer:

From (4 . 1 ) and (4 . 2) it follows immediately that 
In a similar way, using lemma 6 and (3.10) we find:

As a consequence of (iii) one has that c~. Letting x (t) = t), a
standard argument shows that x solves (Ph) (see the proof of theorem 4 .12
of [1] and [5]). This completes the proof of the theorem A..

5. PROOF OF THEOREM B

The proof of Theorem B requires different arguments, because when
(V2) is replaced by the weaker (V2’) the (PS + ) condition can fail (see
Example below). The difficulty can be overcome, as in [I], by looking for
critical points of f~ constrained on a suitable manifold.

Referring to [1] for more details, let us outline the proof.

Hence, if u is any possible critical point then g (u) = h. Setting
Mh = ~ u E Ao : g (u) = h ~, it turns out that, under assumptions (VI), (V2’),
(V3), (V4), d h  o. Furthermore, (V5) implies that (g’ (u) ~ u) ~ 0,
 u ~ Mh and hence M,, is a (smooth) manifold of codimension 1 in E.

Moreover, if u is a critical point of f~ on Mh there results (u)=03BBg’ (u)
for some From this it follows:

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Since for u E Mh while (g’ (u) then ~, = 0 

Noticing that  u~Mh there then Lemma 2 implies
solves (Ph . 1 ~)-(Ph . 2 E), with ~£ given by (2 . 4). To find

critical points of It on Mh we first note that for all u ~ Mh there results

Moreover, repeating the arguments of

Lemmas 4 . 5-6 of [1] [the fact that now the potential V has the form (1.1)
requires minor changes, already indicated in the preceding section] one
shows that It satisfies (PS) on Mh. As a consequence £ achieves the
minimum on Mh. Let us remark explicitely that here we do not need to
use min-max arguments, because, in view of the symmetry assumption
(VI), we are working in Ao. Lemmas 4 . 9-10-11 of [1] enable us to show
that u£ - u and c~E ~ c~ as s - 0, yielding a solution x (t) : = u (m t) of

(Ph) . N

The following example shows that the (PS) condition can fail when

V (2) is replaced by (V2’). For simplicity we take a potential V (x) _ - ~ x 
and not in the form ( 1 . 1).

Example. - Let us consider

We claim that for all k E N there exists a sequence un = un, k such that

To see this, we take a sequence rn ~ 0 and set (using complex notation)
un (t) = rn ei 2 n kt-

Since a  1 there results:

proving (i).
Furthermore one has readily:

Letting it follows:

and (ii) follows.

Vol. 9, n° 2-1992.
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