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ABsTRACT. — We prove the existence of periodic solutions with prescri-
bed energy for a class of N-body type problems.
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Risumi. — Nous démontrons Pexistence de solutions périodiques a
énergie fixée pour une classe de problémes de type N-corps.

1. MAIN RESULTS

The aim of this paper is to prove the existence of periodic solutions
with prescribed energy for a class of second order Hamiltonian systems,
including the N-body problem. Precisely, we set Q=R"\ {0} and consider

(*) Supported by Italian Ministry of Education.
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188 A. AMBROSETTI AND V. COTI-ZELATI

a potential V of the form

1
V(x)ZV(xl,...,xN)=~ Z Vu(xl_xj) (11)
1<i2jEN
where x;eR¥, x=(x,,...,xy)eR"* and V,;eC*(Q,R) (i,j=1,...,N).
Given m;>0 (=1, ...,N) and heR, we seek for periodic solutions of

mxy+V, V(xy, .. ,x0)=0 (1<i<N)  (Ph.1)

(Ph) %Zmi]xg OP+Ve, (@), .. ..xx(@)=h  (Ph.2)
Here V (resp. V,) denotes the gradient (resp. the gradient with respect x;).
We will use the notation x.y, or simply xy (resp.|x D to denote the
Euclidean scalar product of any two vectors x, y € R™ (resp. the Euclidean
norm of x).

We assume V (x) is in the form (1.1) with V;; satisfying:

(V1) Vij(é)zvji &), VEeQ;

(V2) 3aell,2] such that VV;(£) £z —aV;(§)>0, VEe;

(V3) 36€10,2[ and r>0 such that VV;(Q)ES -8V, (E) for all
0<|E|=n

(V4) V(&) > 0as |&| > .

Remarks. — For future references let us note explicitely some conse-

quences of the preceding assumptions. First of all, (V2)-(V3) imply, respec-
tively:

Vi;©=— |§1I v|E|>0 (1.2)
Vi,-(é)g—l—;?, VOo<|E|<r (1.3)

Here and always in the sequel ¢, ¢y, ¢,, etc. denote positive constants.

1
Moreover, since VV (x) x=— Y V'V, (x;—x,)(x;—x;), then from (V2)-
iFj
(V3) it follows:
VV(x)xzZ—aV(x)>0, Vx=(xp, .. .5Xn)s X #X; 1.4
VV(x)x< -8V (x), Vx=(xy,...,x), O0<|x;—x;|Sr. (1.5)

By a solution of (Ph) we mean an x(f)=(x;(#)), <;<n such that x is
periodic with period T>0 and for all 7, j=1, . . .,N there results

(i) x;eH*2(0, T;R¥);

(i) the set €= {te[O T]: x; ()= x;(#) } has measure zero;

(iii) x; is C? on [0, T\ ¥ and satisfies (Ph. 1)-(Ph.2) therein.

A solution x such that €+#J (resp. = ) is called a collision (resp.
non-collision). We anticipate that our solutions are possibly collisions,
found as limit of non-collisions.
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CLOSED ORBITS OF FIXED ENERGY 189

The main results of this paper are:

THEOREM A. — Suppose (V1)-(V4) hold. Then for all h<0 problem (Ph)
has a periodic solution.

THEOREM B. — Suppose V satisfies (V1), (V3), (V4) and
(V2) 3ael0,2[ such that VV;(£) £z —aV;(6)>0, VEeQ;
(V5) V;€C*(Q,R) and 3V V;(§) £+ V;(§)£.£>0.

Then for all h<0 (Ph) has a periodic solution.

It is worth pointing out that Theorems A and B above cover the case

m,m;
of the N-body problem, namely when V;(§)= — L xeR3 and (Ph.1)

I3
is nothing but the equation of motion of N bodies in R® of position
X, .. .,Xxy and masses my, . .., my subjected to their mutual gravitational
attraction. In fact, it is immediate to verify that the potentials

v, ©)=- 2

well as (V95).
Theorems A and B must be related with the results of [1] where problem

satisfy both the assumptions (V1)-(V4) with a=38=1, as

1
(Ph) has been studied for potentials of the form V (x)x~ — —, a>0.
X

Actually, Theorem B extends Theorem 4. 12 of [1] to problems of the N-
body type under quite similar assumptions, in particular (V2) and (V5).
On the contrary, in Theorem A we eliminate (V5) but require that (V2)
holds for a>1.

Both the proofs of theorem A and B are based upon critical point
theory. In the latter we employ the same techniques of [1]: roughly, (V5)
allows us to find solutions of (Ph) looking for critical points of a functional
f constrained on a suitable manifold M, where the Palais-Smale condition
(PS) holds true.

The proof of Theorem A is more direct and relies on an application of
the Mountain-Pass theorem tof. Actually, when (V2') is substituted by
the stronger (V2) it is possible to prove that (PS) holds for f without
constraints. An example shows that indeed the lack of (PS) arises when
V(€)= —]&|7* with a<1.

Existence of periodic solutions with prescribed period for some classes
of N-body problems has been proved in [3], [4], [5]. On the contrary, we
do not know any result in the large concerning the existence of trajectories
with prescribed energy.

Vol 9, n° 2-1992.



190 A. AMBROSETTI AND V. COTI-ZELATI

2. APPROXIMATE PROBLEMS

Let us introduce the following notation:
H=H!2?(S!,R"

H#={ueH:u<t+%)= —u(t)}

E={u (ul,.. o) el (i=1,.. ., N)}
{ueE:u;(D#u; (t) v, z;éj}

(u] o) juv Jufe=|

Here and always in the sequel fstands for J dt. Tt is well known that
(4]
| is a norm on H_ equivalent to the usual one and one has:

llul[z4 ]
As an immediate consequence, for all u=(u,, . . .,uy) €E setting

eefle =20 [

’

u

2 (u,veH#).

there results
lullezclu@®], Vi Q2.1

Define the following functionals on A,:
1
f= Ful. [ vy

Formally, it is known (cf.[1], see also Lemma 2 below) that critical points
of fon A, give rise, after a rescaling of time, to periodic solutions of
(Ph). Actually, since A, is an open subset of E, critical point theory cannot
be employed directly. A device to overcome this problem has been used
n [1] (see also [3], [S]) and consists in substituting V with

1

V.(x)=V(x)—eW (x), W)= 3 (e>0)
15i<jsN Ixi_lez
Note that from (1.4) it follows:
VV.(x)x=VV(x)x+2eW(x)>0 2.2)

Let us set f,(u)= %Hul[é-f[h—Va(u)]). Since h—V,(u)>h+eW (1), one

can show (see, for ex.[5]) that f, is suitable for the critical point theory
because there results

u, —u, weaklyin E, and uedh, = JVa u)— —o0 (2.3
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CLOSED ORBITS OF FIXED ENERGY 191

The procedure to find solutions of (Ph) will consists in two steps: first,
critical points of f, are found, giving rise to solutions x, of corresponding
approximate problems; second, we show that x, coverge, as € >0, to a
solution of (Ph).

Let us start with:

LemMa 1. — For any £>0, let u,€ A, be such that f%(u)=0 and |2, ]|>0
and set

fVVE(ue) u,
[ S —— | 2.4

B (LA

Then x_(t):=u, (0, 1) is a non-collision solution of
mx;' +V, V. (xq, ..., x0)=0 (Ph.1l¢)

1
22

Proof. — The proof is similar to that of Lemma 2.3 of [1] and therefore
we will be sketchy. From f (»,)=0 it follows:

Hullﬁﬁh V. )] - HuHEfVV(u)u

FV. (e, (0, xn (D) =h (Ph.2¢)

and hence [¢f. (2.2)];
ﬁh V, ()] = JVV(u)u >0 (2.5)
Moreover u, = (#, ;); <;<x satisfies:
[, ot [ Vwar= 2 [V V.m0
Yo=C(v,, ... ,on)€E

and hence, dividing by ! ” u, ||? and using (2. 5):

ZZ f fVVE(us)Fo, Vo=(o,,...,00€E  (2.6)

Next, since V;(x)=V;(x), one shows as in [5], Thm. 1.1, that (2.6) holds
not only for all veE but also for all ve HN=HxHx ... xH (N-times).
Thus u, satisfies

o mul + V, V. @)=0 2.7

Rescaling the time, one finds that x,_ (1) =u (@, ¢) satisfies (Ph. 1 ¢). Integrat-
ing (2.7) the conservation of the energy (Ph.2¢) holds, too. M

Vol. 9, n® 2-1992.



192 A. AMBROSETTI AND V. COTI-ZELATI
3. EXISTENCE OF CRITICAL POINTS OF f,

Critical points of f, on A, will be found by means of the Mountain-
Pass Theorem. Let us begin proving:

LemMma 2. — There exist p, B> 0 such that

(i) f,() =B for all €>0 and all ue Ao, ||ullz=p;

(ii) there exist £,>0, uq, ty € Ag with ||t ||g < p<|| uy ||g. such that £, (u,),
fo(u)<B, VO<eZe,.

Proof. — First of all let us remark that from (1 .2) it follows

—V(x)=—~ V,(—x)z 2 > 2
,g, )2 2,; |xi— xl Ix[© } 3.

VO<|x,—x;|<r

Using (3.1) joinly with (2.1) one deduces:

ﬁ(u)%llull%j[h—vw ;%IIuHEH

proving (i).
To complete the proof we take u= (i (1), . . ., un (1)), with

ui(t)=§cos<2n(t+ é))%—n sin<2n<t+ é)) (i=1,...,N)

where &, neR* satisfy: |£|=|n|=1, En=0.
For R>0 we consider

R = SR [ 13-V, R

o Lo 2l sl

Note that lui & —u; () { = g;; is independent on ¢ and hence

1
igj l u; (0 —u; () !2

=c,.
From this it follows:

1 .8

Ru)=-R? 2 A-VRu+ 2=

fR= R ul} [ v R+ S |

Since | Ru; ()~ Ru; ()| =R a;;, then h<0 and (V4) imply

lim sup [h - jV (R u)] <0

and hence f,(Ru) » — oo as R - oo, proving the existence of u;€ A, such
that ||, ||>p and f, (u,) <B.
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CLOSED ORBITS OF FIXED ENERGY 193

Lastly, let R>0 be small enough and recall that |w,(f)~u;(1)|=a; is
constant. Then using (1. 3) one finds

¢ c
- VRu(@))=s 2 Y g;8<-5
Ru®)= 2 ¥ a*s &
Hence

L RuWE gRZHuHé-F c;R* %+ cqe

Since 0 < 8 < 2, then the existence of £, >0 and u,, satisfying (i) follows. W
Next, we investigate the Palais-Smale [in short (PS)] condition. For this,
some lemmas are in order.

LemMA 3. — Let u,€Aq be such that

{ fiw)sc

™ 72 () —O.

Then ||u,|le<c".

Proof. — Since f(u) =f, (1), from f,(u,) < c we infer
1 1
- —Hunlléfvwn)éc— ~hlju, |2 (3.2)
2 2 .
Setting o, ,=0,=(f:(4,) |u,) one has:
o, = ||, |3 J[h*Ve (u,)— %VVa (u,) u,,:l
Using (1.4) we deduce:

cn=llunlléﬂh—V(un)— %VV(u")unJ
éflunlléﬂh—@— g)V(un)]. (3.3)

oushlmli+ (1= 2 e hlln D= 2hlu e,

From (3.2) and (3. 3) it follows

and thus

a r
- Eh “ un ”I23§CZ+ l fa (un) “ H un ”E
Since 4 is negative we infer ||u,|[;<c¢. W

LEMMA 4. — Let u, be a sequence satisfying (*). If |u,|, — 0 then limup

Je () =0.

Vol. 9, n® 2-1992.



194 A. AMBROSETTI AND V. COTI-ZELATI

Proof. — Let us set
r,=min{|u,()]: 0511}, R,=max {|u,(n]: 05151}
We claim that R,/r,=c,. To see this we argue by contradiction. Suppose

. R
that (without relabeling) —Z — co, and let ¢, and s, be such that

R,=|u,(t,)| and r,=|u,(s,) |- One has

1, |4

T |ty ()| & e | |172| | e
<[ flar] " [] écznunuﬁ[jmz} -

R
Since log —* — oo, then

r HunIIEU—I%IZ]Ma o (3.4)

Furthermore, from [u,,]oO —0 and (3.1) it follows J‘h—V(u,,)—> o0. In

n

particular, J[h— V (u,)]>0 for n large and hence, using (3.4) we infer

1 1
f)=3 llunllé.j[h—V(u,,HsW(un)]z gllunlléfw =,

a contradiction with f; (4,) < ¢, proving the claim.
Next, let us set

Yn=—JV(u..)
1

| B, 3 [ W
From [see (3.2)]

O A 6.9

it follows that

cn
(A v,

A=
[h .= (1/2) fV V(u,) u,}

N | —
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CLOSED ORBITS OF FIXED ENERGY 195

Using (1.5) one has JVV(u,,) u, <0y, and hence
<1 o[ty
T2 [ (1= (8/2) .l

Since o, — 0 and vy, — oo then limsup A, <0.
To estimate B, we use again (3.1) and (3.5) yielding, respectively:

[h+yn— %JVV(u,,)u,,]>h+(l— §>yn>h+c3ﬁun|_“ (>0)
||unllE[h+Yn_ %jvv(un)un:]: :

These two inequalities imply
h+ C3 J] u, I_“

[l e =
. cs [

oo

From r,<|u,(f)|£R, we deduce

Bné”fz(un)” (h+C3 Rn—a)z

Since R,/r,<c,, a=1 and ||f;(#,)| — 0, it follows that B, —0. Finally,
from

and hence

S |/2 ()

fs<un>=A,.+§Bn

we infer that lim supf; (»,) £0. This completes the proof of the lemma. M
We are now in position to prove:
LEMMA 5. — The functional f, satisfies:

PS*) Ifu,eA, is such that 0<B<f. (u,)=<c, and [, (u,) >0, then (up to
a subsequence) u, - u* € A,.

Proof. — From lemma 3 it follows that ||«, |l <¢" and 3u* €E such that
(up to a subsequence) u, — u*, weakly and uniformly in [0, 1]. From
lemma4 we infer that u* #0, otherwise limsupf, (¥,) <0, in contradiction

with f, (u,) 2 B>0. If u*€dA,, then (2.3) implies 4 — JVE (u,) = + co. This

Vol. 9, n® 2-1992.



196 A. AMBROSETTI AND V. COTI-ZELATI

and (3.6) would contradict f; (u,) < ¢, proving that u*e A,. Hence:

1iminf|]unHEg|[u*||E>0 (3.6)
as well as

V(u,) -V u*), W (u,) > W (u*), VV@u)u, - VV@u*u* (3.7

Moreover from

= il [ 5Vt 39V
we infer
Gn
l| |2

Taking into account (3.6), (3.7) and since o, — 0 we can pass to the limit
into (3.8) yielding

J[h—va(u,.)]%vaa(un)uﬁ (3.8)

j[h—Vs (u,)] —»% JV V. w®u*>0 (3.9
Finally, from f (u,) — 0 it follows:

(unlv)J[h—Vs(un)]— ;Hu,.H%JVVs(un)v—*O, VoeH"

Then (3.9) and JV V.(u,)v— jV V. (@*)v imply that u, — u* strongly
inE. N
LEMMA 6. — Let (V1)-(V4) hold. Then Fey>0 such that V0 <e=<g, there

is u,€ Ay such that f.(u)=0. Moreover 3a,b>0 such that 0<a<||u,|g<b,
V0<e=g,.

Proof. — Lemmas 2 and 5 allow us to apply the Mountain-Pass
Theorem [2] yielding a critical point u,e A, of f,. From the min-max
characterization of f; (u,) it follows:

fe () £max f,(Ru)ysmax f, (Ru)=c. (3.10)

R>0 R>0

Since f:(u)=0, then the arguments of lemma3 imply the existence of
b>0 such that ||, ||z <b. Furthermore from (2.5) we infer readily

h= j [Va ()5 SV V. @) ua]= j [v @)+ 5V V@) }

If [{u,||g — 0 as € = 0, then |u, |, — 0 and (1.4) implies

h§(1— g)jV(ue), (3.11)
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CLOSED ORBITS OF FIXED ENERGY 197

while (2.7) yields J V (u,) —» —co. This and (3.11) lied to a contradiction,

proving the lemma. M

4. PROOF OF THEOREM A

Let u, the Mountain-Pass critical point of f, given by Lemma6. Since
|lu.]le>0, from Lemma 1 it follows that x,(f)=u,(®.¢) is a solution of
(Ph.1¢)-(Ph.2¢). Furthermore, again from lemma 6 one has that
l|u.lle<b, and u, > u (¢ > 0) uniformly in [0,1]. In order to show that
u=(u;); <;<n glves rise to a solution of (Ph) we follow the same procedure
as in [1]. For completeness we outline these arguments referring to [1] for
more details. First, one proves that

@) Fe:V(u(@)#h.

In fact, otherwise, V(u(f))=h, hence ueA, and V(u)—->V(u),
VV(u,)u,— VV(@u, uniformly in [0, 1]. Then

hZJV(uE)-i- %VV(uE)uE—»JvV(u)—i- %VV(u)u=h+ %JVV(u)u

implies J VV(u)u=0, a contradiction because VV (x) x> 0.

Next, one shows:
(it) 31w ()F#u;(2) for some i#).
Otherwise, the components u, ; of u, are such that |u, ;—u, ;| >0

uniformly in [0, 1] for all i,j and (1.2) implies JV (u) > —oo. On the

other side, using (1.5) one finds

h=JV(uS)+ %VV(ue)u g(l— g)JV(uE),

a contradiction.

Next, we claim that for the ®, given by (2.4) the following estimate
holds:
(i) 30<Q,<Q, such that Q< <Q,.

To prove this fact, let us take a closed interval I < [0,1], with mea-
sure |I|>0, such that wu;(1)#u;(¢), V(u(t))#h, Viel. Such an interval

exists because of (i) and (ii) above. Since A—V_ (u,)= —;—VVa (u)u,>0 and

Vol. 9, n® 2-1992.



198 A. AMBROSETTI AND V. COTI-ZELATI

[l ||g <5, it follows

JV V.(u)u, 2 Jh -V.(u) 2 J h—V_(u,)
o= = > (4.1)
IEAIF: e fiE b?
Furthermore, from V, (i, (1)) = V (u(#)) (uniformly onI), 21— V_(x,) >0 and
(1) it follows that A—V (¥)>0 on I. Then, taking also into account that
{I|>0, we infer:

2j[h*Vg(uE)] 2j[h—V(u)]
2> X - I = >0 4.2
From (4.1) and (4.2) it follows immediately that o,=Q,>0.
In a similar way, using lemma 6 and (3.10) we find:

2 rvi
_h de_oy

[ eI luflE ~ o
As a consequence of (iii) one has that w, - ®. Letting x(f)=u(w?), a
standard argument shows that x solves (Ph) (see the proof of theorem4.12
of [1] and [5]). This completes the proof of the theorem A. H

®

5. PROOF OF THEOREM B

The proof of Theorem B requires different arguments, because when
(V2) is replaced by the weaker (V2') the (PS*) condition can fail (see
Example below). The difficulty can be overcome, as in [1], by looking for
critical points of f, constrained on a suitable manifold.

Referring to [1] for more details, let us outline the proof.

Set g(u):= j[V (w)+ %V V(u) u:l and note that

(fé(u)lu)zlluﬂfsj[h—V(u)— %VV(u)u]ﬂluH%(h—g(u))

Hence, if » is any possible critical point of f,, then g(u)=#h. Setting
M, ={ueA,:g(w)=h}, it turns out that, under assumptions (V1), (V2),
(V3), (V4), M, # &, Vh<0. Furthermore, (V5) implies that (g’ (u)|u)#0,
VueM, and hence M, is a (smooth) manifold of codimension 1 in E.
Moreover, if u is a critical point of f, on M, there results /(1) =Ag (1)
for some AeR. From this it follows:

(i@ )= @[
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CLOSED ORBITS OF FIXED ENERGY 199

Since (f7(u)|u)="0 for ue M, while (g’ ()| ) #0, then A=0 and f; (u)=0.
Noticing that YueM, there results ||u|[z>0, then Lemma 2 implies
x, () :=u(w, ) solves (Ph.1g)-(Ph.2¢), with », given by (2.4). To find
critical points of f, on M, we first note that for all ue M, there results

fw= i [[ul? JV V.(w)u>0. Moreover, repeating the arguments of

Lemmas 4.5-6 of [1] [the fact that now the potential V has the form (1.1)
requires minor changes, already indicated in the preceding section] one
shows that f, satisfies (PS) on M,. As a consequence f, achieves the
minimum on M,. Let us remark explicitely that here we do not need to
use min-max arguments, because, in view of the symmetry assumption
(V1), we are working in A,. Lemmas 4.9-10-11 of [1] enable us to show
that v, >u and ®, > ® as & -0, yielding a solution x(#):=u(wt) of
(Ph). H

The following example shows that the (PS) condition can fail when
V (2) is replaced by (V2'). For simplicity we take a potential V (x)= —|x|~®
and not in the form(1.1).

Example. — Let us consider

1 1
f. (W= —][u“é.ﬂih—i— —+ iz] 0<a<l)
2 Jul " ul
We claim that for all keN there exists a sequence u,=u, , such that
@) fo(u) > 2k n? e;
(i) fe(u,) 0.
To see this, we take a sequence r, —» 0 and set (using complex notation)
u, (H=r,e2m",

Since 2 < 1 there results:

Sow)=2k>n?r2(h+r, " +er;?) > 2k>n’e,

£
u,v—2— {u,v).
Jore=2 )
(f;(u,,)|v)=4k21rzr,,vk(h+r,l‘“+sr,,_2)—4k21r2rka<§rn_°‘_1+srn_3>

=4k27r2rnvk<h+ (1—' %)r,f“)—»(),

proving (i).
Furthermore one has readily:

(f;(un)lv)=(h+r;°‘+grn_2)fu;v’+2k2n2rf<—

o
a+2
Fn

Letting v= X v e2™ it follows:

and (ii) follows.
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