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ABSTRACT. - We study the asymptotic behavior as s goes to zero of
solutions in to the equation: - 0394u = | u |4/(N - 2a u + s f’{x), where 0
is a bounded domain in RN. We show the existence of solutions to the

problem which blow-up at some well-defined points, depending on f; for
s=0.

Key words : Nonlinear elliptic equations, variational problems with lack of compactness,
limiting Sobolev exponent.

RESUME. - Nous etudions le comportement asymptotique quand 8 tend
vers zero de solutions dans Ho (Q) de 1’equation :

ou Q est un ouvert borne de RN. Nous montrons l’existence de solutions
du probleme qui explosent en des points caracterises precisement en fonc-
tion de f, pour ~ = o.
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1. INTRODUCTION AND MAIN RESULTS

In this paper, we return to the problems of the form

where S~ is a smooth and bounded domain of N &#x3E;_ 3 p -~ andwhere Q is a smooth and bounded domain of ’ - ’ p N-2 2 and

f (x, u) is a term of smaller order than uP, i. e.

The exponent p is critical from the viewpoint of Sobolev embeddings, in
the sense that the injection of LP+ 1 (Q) into is continuous but not

compact. It follows that the functional:

associated to the problem, with F (x, u) = t) dt, does not verify the

Palais-Smale condition: there exist "critical points at infinity", correspond-
ing to concentration phenomena which may occur at some points of the
domain.

In the following, we will focus more specifically on the asymptotic
behaviour with respect to s of the solutions to the problem (Pf)

as E &#x3E; 0 goes to 0.
The existence and multiplicity of solutions to (P~) for 8 sufficiently small

has been proved for some special f - ([BN1], [R 1 ], [R2]) . On the other
hand, for 8=0, the problem becomes more delicate, and we know for
example that ifQ is starshaped, there is no solution [P]. As a consequence,
solutions to (PJ may disappear for 8=0, either vanishing uniformly, or
blowing up at some points of the domain.

In the case where f (x, u) = u, for instance, one has the following results:
(i ) If N &#x3E;_ 4, and (ue) is a family of solutions of concentrating at a

point xo E Q as ~ -~ 0 (in the sense: I D u£ (2 -~ ~xo the Dirac mass
at xo and S the best Sobolev constant). Then, xo e o and
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where

and H is the regular part of Green’s function of the Laplacian onQ,
denoted by G, i. e. :

(ii ) Conversely, if N &#x3E; 5 and if xo e o is a non-degenerate critical point
of cp, there exists for small enough E a family of solutions of (P£) concen-
trating at xo as ~ - 0.

(iii) Finally, if N&#x3E; 5, for 8 small enough there are at least as many
solutions to (Pt) as the category of Q, concentrating as s ~ 0 at critical
points of (p.
The same results hold for the problem

Furthermore, we have very precise estimates about the shape and the
speed of concentration of the solutions of (P’~) as ~ ~ 0 - ([H], [R3], [BP]).
Here we will establish what happens in the case

We denote by (Q~) the problem

(at this point, we do not impose to the solution u to be positive), and let
f be the function defined by

We prove the following results: 
-

THEOREM 1. - (1) Assume  ~ C2 (03A9). Let xo ~03A9 be such that

(2) xo is a non-degenerate critical point of’:

Then there exists a family (uE) of solutions of (QE) concentrating at xo as
E--~0, i. e.
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in the sense of measures, where bxo is the Dirac mass at xo and

is the Sobolev constant. If f&#x3E;0 on Q, (I) is automatically satisfied, and
on Q.

(2) Assume f&#x3E; 0, and jie C1 (Q). For E small enough, (Q~) has at least as

many strictly positive solutions as the category of o, each one concentrating

at a critical point of the function x - (x) as E - 0.
O (X) ’

Remarks:
e lp &#x3E; N, (I + I ) p &#x3E; N, then

e The results of the theorem provide us with equivalents to results (it),
(iii) in the case where f(x, u) = u. One can conjecture that an equivalent

to result (I) is also true, with 03C6 replaced by the function x - (x)
O (X) ’

Concerning the existence of solutions to with minimum regularity
assumptions on f, I. e. (Q), one deduces from a result of Brézis
and Nirenberg [BN2] the following proposition, whose proof is given in
appendix: _

PROPOSITION I . - For f% 0 and E sufficiently small, (Q~) has at least two
solutions. One of these solutions converges uniformly to 0 as E - 0.

COROLLARY. - From the proposition and Theorem 1-(2) we deduce that
f ? is positive and regular [I. e. ?e C1 (Q)], has for E sufficiently small
at least cat (Q) + I solutions, one of them converging uniformly to 0 and the

. 

others concentrating at critical points of the function x - 
(x) 

as E - 0.
o (x) ~’~

The study of problem (Q~) allows us to state the same type of results
concerning the problem

We get: 
_

THEOREM 2. - The results from Theorem 1 and Proposition 1 are valid

for problem (Q£), provided that in all statements f is replaced by g by
g, where g is the function defined by:
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Indeed, if we change the variable in (Q~), writing:

we are led to consider the equivalent problem

(where for sake of simplicity we write vP instead 
In a similar way, writing

(Q~) turns out to be equivalent to the problem

which is exactly (Qg) with] replaced by g. Hence the results for (Q~) follow
immediately from those for (Qg).
We turn now to the proof of the theorems.

2. PROOF OF THE THEOREMS

2.1. Notations

We introduce the functional

on Ho (S~) whose critical points are solutions of 
For ~ E S~ and ~, &#x3E; © we consider the functions

and their projections P ~~s x on Hà (Q), defined by

so that

with
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Expanding b~, x on lQ for "Ad large, we conclude from the maximum
principle that

where and H denotes the regular part of Green’s function.
We note that for all x and for all ~,

with

Define for ~ &#x3E; 0 the subset F 11 of Ho (Q) by

It is proved in [BC] that if is such that distHo ~~~ (u, F,~)  r~, and

r~ is small enough, the problem 
°

has a unique solution in the open set defined by

Then we can look for critical points of J studying those of the functional

where

with ~~ and vo some strictly positive constants, and
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Finally, (a, 7~, x, v) e M is a critical point for K if and only if there exists
(A,B,C)eR x R x RN such that the following equations are satisfied:

The proof of the theorem requires some computations. Only the main
steps will be given here, the details being exposed in [B], [Rl], [R4].

2.2. Analysis of (E)

This analysis will provide us with the first result of Theorem 1. We
consider the last equation (E. 4) of (E). Expanding K in a neighbourhood
of v = 0, we obtain

J (a P ~~, x + v) = J (a P ~~, x) + F«, ~, x (v) + Q«, a., x (v) + R«&#x3E; a., x (v)
with F linear in v, Q quadratic, and R collecting the higher order terms,
i. e.

and

(where for simplicity we denote by 0~ the function 
In [B], [Rl] ] it is proved that the quadratic form Qet, Â, x is positive

definite, with a modulus of coercivity independent of a, X, x, E, if we
assume that 110 and E are small enough. So we may write

where is coercive, with modulus of coercivity independent of a, À,
x, s. From this, starting from the point ( f, v) _ (o, 0) and applying the
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implicit function theorem, we infer: there exists a smooth map which to
each (a, À, x, E) such that

and 80 small enough) associates an element such
that (E. 4) is satisfied for certain real numbers A, B, C. Furthermore

1 v BHÔ = 0 À, x (~ . 12)

Now, let us remark that

~.,..~)HA=- ~P8~,+e7)"-~S~]r v
since

Then, a computation using (2.2), (2.4), (2. 6), the Hôlder inequality and
the Sobolev embedding theorem yields (as in [B], [RI])

From (2.12), the same estimate holds 
Now we are left with the remaining equations, namely the system formed

by (E. 1), (E. 2), (E. 3). Setting

p=~-o,=(N(N-2))~-~-(x (2 .14)

using (2 . 2), (2.4), (2.6) and the estimate that we obtained for 1 v we

get from (2 . 1 ), (2. 8) the expansions:

Ou

Annales de l’Institut Henri Poincaré - Analyse non linéaire



where Va is a smooth function which satisfies the estimate

In the same way we obtain

(N - 2) 2 
6 i

with Vx a smooth function which satisfies

+L~.~6;~~ifN=6; ’
A(N + 4)/2 ~(N - 2)/2 if N&#x3E; 6 ) ]

A last computation provides us with the expansion

ôx

where V x is a smooth function verifying
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We used the notations

Suppose now that xo = 0 E SZ, , f (o) &#x3E; o, and that 0 is a non-degenerate
critical point of the function x ~ ’f (x) .

~P (x) 1 ~ 2
Then we can write

where M is an invertible matrix.
We will assume in the sequel that x is restricted to a neighbourhood W

of 0, such that

As suggested by (2.16), we perform the change of variable

assuming a priori that  1 /2. We note that we then have

and

together with the estimates

and

These estimates will allow us to estimate the numbers A, B, C which were
determined by (E. 4). Indeed, if we take the scalar product in H10 (Q) of

e q uation ( E . 4 ) res p ectivel y with ’ , 

ax 
’ 

, we obtain a
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quasi-diagonal system of linear equations in A, B, C - the coefficients
being estimated by a direct computation using (2. 2), (2 . 4), (2. 6) :

and the right-hand side being given by

The solution of this system yields

Vol. 9, n° 2-1992.
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which allows us to estimate the expressions

using (2. 20) and (2 . 21 ). We therefore conclude that the system of equa-
tions (E. 1), (E. 2), (E. 3) is equivalent to

where V 1, V 2, V 3 are some continuous functions satisfying the estimates

The Brouwer fixed point theorem shows that for E sufficiently small (E’)
has a solution (pE, ~E, which further satisfies:

One easily checks that

with a E = cN - 03C1~, 1 (N - 1 2)/2 - £ (x~) 
1 + 03BE~), and v £ = 03B1~, 03BB~, x~, a solution

E aE ~P ~x£) 
~ ~, ’""f:’ f:, f:

to (QE) by construction, is such that

Moreover, if f &#x3E;__ o, u£ &#x3E; 0 on Q. Indeed, multiplying the equation
- ~u£ _ ~ u£ ~p -1 u; = max (o, - u£) and integrating onQ, we get

On the other hand, the Sobolev inequality yields
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so that we have either or u£ - 0. Remember that

and | ~ |p + 1 - 0 as ~ ~ 0. Therefore, for 8 sufficiently small,
u£ --_ o, and the strong maximum principle shows that uE &#x3E; 0 This
concludes the proof of the first part of Theorem 1.

2.3. Category of the domain and multiplicity of the solutions

We are going to show the multiplicity of the solutions to {Q£) in relation
to the category of the domain Q, looking for solutions in the same form
as before.

More precisely, for e a positive constant to be chosen later on, we
define for E &#x3E; o, c~&#x3E; 0 the open set:

and the function

on with whose critical points provide us with solutions
of The first order derivatives of Jf are given by

The first order derivatives of K having already been estimated, we are left

with the evaluation of the products  ~K ~v, ~v ~03BB&#x3E;H10 and  ~K ~v, ~v ~x&#x3E;H10.
B 9~ ~/ H~ B 3~ ~/ H~

T h. d 
. ~~ 

h.c-To this end, we write 2014 in the form
~?L
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with and w e E~, ~. Thus we have

Furthermore, if we take the scalar product in Hà (n) of (2. 28) with

respectively P 03B403BB, x, ~P03B403BB,x ~03BB, ~P 03B403BB,x ~x , we get a quasi-diagonal I linear system
in a, b, c, whose coefficients are given by (2.22) and the right-hand side
by

The solution of this system then yields

Using the fact that 03C6 (x) - 
1 

N 
as d (x, lQ) - 0 [R2] one sees

(2 d (x, lQ))N ~ 2 
’

that on we have 1 03BB(N-2)/2 = O (e so that from (2 , 15) (2 16)
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(2.17) we get

From (2.29), (2. 30), (2.31) we conclude finally that

In a similar way we find

with (2.12) and (2.13) giving us the estimate

We are now able to estimate the derivatives of Jf on the boundary of
~. One sees easily using (2 . 15) and (2. 27) that for d sufficiently small,

and then 8 sufficiently small, we have for all (p, ~,, x) E 

for a good choice of 0, independent of d and E. Likewise, combining
(2.16), (2. 27) with (2. 32), (2. 34) one gets under the same conditions

Set and denote by the outward normal
vector at x~~03A9d to the boundary of 03A9d. One has the equivalence

03C6’ (x)~ N-2 2N-1dN-1n(x) as R2 and x . n  0 for small enough d .
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by the strong maximum principle (here f is assumed to be positive).
Combining then (2.17), (2.27) with (2. 33), (2. 34) we get, again with the
same conditions on d and 8

At this point, we can deduce from the Ljusternik-Schnirelman theory that
Jf has at least as many critical points in as the category of E.

Now cat ~~d, £ = cat S~d and cat S2d = cat S2 for d sufficiently small, Q being
smooth.

One proves as before that the corresponding solutions of (QE) are strictly
positive. By construction, each of them concentrates at a point of Q as
E ~ 0, and (E) shows that these points are critical for the function

x This concludes the proof of the second part of Theorem 1 .

Remark. - Combining the estimates that we obtain here with those in
[Rl], we can prove considering the problem

the following results (assuming/* is sufficiently regular):
If N = 4, 5, and if jCo E Q, &#x3E; 0, is a non-degenerate critical point of

the function x ~ f (x) . .
cP (x) 1 ~ 2

If N = 6, and if (x0)&#x3E;-1/2, is a non-degenerate critical point
of the function x ~ (x) + 1/2 03C6(x)1/2.

If N &#x3E; 6, and if xo E Q is a non-degenerate critical point of the function p
then there exists a family (Mj of solutions to (R£) concentrating at jCo as

If f’&#x3E; 0, these solutions are strictly positive.

Finally, let us remark that for N = 5, the same result holds if xo is a
non-degenerate critical point 
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APPENDIX

Proof of Proposition 1

H. Brezis and L. Nirenberg consider in [BN2] the problem

where Jl is a fixed real number, cp E H 1 (~), c~ &#x3E; 0, and cp ~ 0.
They prove the existence of Jl *  + oo such that for all Jl E [0, ~,*~ there

exists a smallest regular solution u to the problem, whereas there is no
solution for ~.*. This branch of solutions is obtained applying the

_ 

implicit function theorem starting from the point u (0) = o. Furthermore,
for ~, E [o, ~,*[, the first eigenvalue of the linearized problem at is

positive, so that using the saddle lemma it is possible to prove the existence
of a second solution - also regular.
Now if we takefEH-1 (S2), f _&#x3E;_ 0, and if we define cp by

we have: cp E H6 (Q) , cp &#x3E; 0, and cp ~ 0 - hence the existence of two solutions
to the problem

where we set or, writing the existence of two

solutions to the problem .

for y E ]0, ~.*[. This is the announced result.
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