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ABSTRACT. — This paper presents the thorough mathematical study of
a classical model in chemical engineering: the Langmuir isotherm. This
model has been studied by E. Canon for the distillation, and F. James for
the chromatography. It is a system of » non linear conservation laws
(n=1), which is shown to be strictly hyperbolic. The main property of
this system is that its rarefaction and shock curves coincide, and moreover
are straight lines. This implies a global existence result for the Riemann
problem, as well as the convergence of the Godunov scheme. One can
finally obtain the existence of an entropic weak solution for the Cauchy
problem with any bounded variation initial data.
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ResuME. — Cet article présente ’¢tude mathématique compléte d’un
modele d’équilibre diphasique classique en génie chimique: I'isotherme de
Langmuir. Ce modéle, étudié par E. Canon pour la distillation et F. James
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220 E. CANON AND F. JAMES

pour la chromatographie, est fondé sur ’écriture d’un systéme de n équa-
tions de conservation non linéaires (n>1), dont on démontre la stricte
hyperbolicité. La propriété fondamentale du systéme considéré est que ses
courbes de détente et de choc coincident, et sont des droites. On en déduit
un résultat d’existence globale du probléme de Riemann, ainsi que la
convergence du schéma de Godunov. On obtient finalement l’existence
d’une solution faible entropique au probléme de Cauchy avec donnée
initiale 4 variation bornée.

1. INTRODUCTION

Two chemical engineering processes, distillation and chromatography,
involve matter exchange to separate or analyse mixtures. Under some
assumptions, see [V], [J], [C], one can model these processes by a system
of first order non linear partial differential equations. We give here these
systems, which are very close to each other. One can also mention the
system of electrophoresis, which we shall not study in this paper but still
have the same properties and for which our results remain true. Through-
out this paper, we shall consider a mixture of M+1 chemical species,
denoted with underscripts from 0 to M. These species will be called either
“component” or “species’.

In chromatography one of the species plays a particular part. One of
the phases, which will be denoted 1 is a mobile fluid phase, carried along
by a vector fluid. This vector fluid cannot change phase. It will be our
species 0. Its concentration in phase 1 is assumed to be constant and is
denoted by cl. The second phase is stationary, fluid or solid. The fluid
vector velocity is denoted by » and is assumed to be a positive constant.
The time and space dependent function ¢/ is the concentration of compo-
nent { in phasej. The material balance equations lead to

1 —
0ol (1ol 1782 1.1
0z u Ot €

for i varying from 1 to M. In these equations, ¢ is the fractional void
space of the chromatographic column. It is a constant strictly included
between 0 and 1. We have here M equations and M + 1 species. The last
- equation is simply given by

cy=const, (1.2)
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RESOLUTION OF A CLASS OF QLH SYSTEMS 221

In a distillation column, the M + 1 species can change phase. Moreover,
both phases are mobile, and moving counter-current to each other. We
have typically a vapor phase denoted 1, and a liquid phase, denoted 2.
The variables are here the molar fractions x] (component i in phase;)
defined by

xi= Mc{
2 Cch
m=0
for i=0,...,M and j=1, 2. We have the following conservation laws,
for i varying from 0 to M:
G, G,
—(—Fixi +F,x))+ —(f1 x{ +f,x7)=0, (1.1)
0z ot

where F; is the molar flow in phase j, and f; the hold-up rate in phasej,
defined by

where u; is the velocity in phase j. These quantities are positive constants.
The definition of molar fractions involves

M
Y x=1, (1.2)
m=0

so that the M+ 1 equations in (1.1") are not independent. From now we
shall consider the system (1.1") restricted to the M equations 1 <i<M.
The bounds between (1.1) and (1.1") are obvious: by setting F,=0 in
(1.1", which only means that the phase 2 is stationary, we obtain again
the system (1.1). The boundary conditions are still strongly different and
rather more difficult in the case of distillation, see [C].

Now, we close our systems (1.1) and (1.1°) by relating ¢? (resp. x?) to
the concentrations in mobile phase ¢}, i=1,...,M (resp. to the molar
fractions in vapor phasel x}, i=1,...,M) with a function #, called
isotherm of componenti. From a general point of view, isotherms are
obtained by thermodynamical considerations. Assuming both phases to
be at thermodynamical equilibrium, we get relations analogous to the
Gibbs relations (chemical potential equalities). These relations imply the
existence of the isotherms, and some properties on their derivatives (see
Kvaalen et al. [KNT], James [J]).

In this paper our purpose is to study one of these models of isotherm,
very classical in chemical engineering: the Langmuir isotherm (1916). We
go back to a study, originally due to Rhee, Aris and Amundson: see
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222 E. CANON AND F. JAMES

[RAAI] for chromatography, or [RAA2] for counter-current chromatogra-
phy. We propose a more formal proof of their results: hyperbolicity of
the system, resolution in the large of the Riemann problem. Finally, using
some results of Serre [Se], we get a global existence result for the Cauchy
problem associated to systems (1.1) and (1.1°).

2. ISOTHERM AND EQUILIBRIUM MATRIX

In terms of concentrations the Langmuir isotherm is given by:

K}
— 2.1

1+ Y K,cL

m=1

c2=N

where N is a positive normalization constant such that ¢Z=Nx2. In this
formulation, the coefficients K; are constants, which we shall call Langmuir
coefficients, and satisfy:

0<K,<... <Ky (2.2)
In terms of molar fractions the same isotherm becomes
. x!
xi= il , @.1)

M
1+ Y Bn—Dx,

where the coefficients B, are non-dimensional constants, and are the inverse
of the relative volatilities. The bound between (2.1) and (2.1") is obvious.
For example one can easily deduce (2.1") from (2. 1) by using the definition
of the molar fraction, and setting B;=c} K,. To simplify the calculus and
homogenize our notations, we now introduce non-dimensional variables
which we denote w; for both systems:

w;=K, ¢} (2.3

wi:(Bi_l)xil (2.3)

With these notations, systems (1.1) and (1.1") may be respectively rewrit-
ten as

awi+lﬁ<wi+pﬂ =0, 2.4)
0z u Ot D (w)

where p= NB , and
€

9(_ Biw; g Biw: - '
5;( FIWi+F2D(w))+0t(f1wi+f2D(w)> 0. (2.4)
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RESOLUTION OF A CLASS OF QLH SYSTEMS 223

The function D (w) is given by
M

Dw=1+Y w, 2.5)

i=1

With the convention B,=K; we introduce now the functions &,
i=1,...,M, deduced from the isotherms, and defined by
b (W)= i
D (w)
" Let h be the vector valued function with components 4;, i=1, ..., M. We
set

2.6)

f(w)=w+ph(w),
f,(w)=—-F w+F,h(w),
f,(w)=fiw+t/3h(w),
so that systems (2.4) et (2.4’) can be rewritten as
ow 0

— + —f(w)=0
0z Ot )

0 0
—f,(w)+ —f,(w)=0
P (w) Py (w)

DEeFINITION 2.1. — The matrix J (w), defined by:
J(w)=D (w)h'(w), 2.7
is called equilibrium matrix.
LemMMA 2.1. — If the equilibrium matrix is diagonalizable, then systems
(2.4) and (2.4)" are hyperbolic.

Proof. — Chromatography.
The Jacobian matrix of system (2.4) is given by

_ p
LW =T+ = o J(w), (2.8)

where I is the identity matrix of R™. The result is obvious, and we have,
if A (w) is an eigenvalue of L (w).

P

X(w)=1+D(w)p(w), 2.9

where |1 (W) is an eigenvalue of J(w).

Distillation.

For every regular solution, (2.4") can be rewritten as
ow +L (w) w_ 0,
ot 0z
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224 E. CANON AND F. JAMES

where the matrix L (w) is defined by

J(w) -1 Jw) ,
L(w)= (z D W) flIM> (FZ% FIIM>' 2.8)

The system (2.4') is hyperbolic if L (w) is diagonalizable, so if J(w) is
diagonalizable. We have the formula, analogous to (2.9):

-F +F

(/1 DW)+1;p(w)

If p(w) is an eigenvalue of J(w), with corresponding eigenvector r(w),
then r(w) is an eigenvector of L (w), with corresponding eigenvalue A (w),
defined by (2.9) for chromatography and by (2.9') for distillation.

Now, we just have to study the equilibrium matrix J (w) given by:

( > (K wr ... Kiwy >
J(w)= : . (2.10)
0 Ky/ DP® Kywy ... Kuywy

It is clear that, if they exist, eigenvectors and eigenvalues of J(w) have
to satisfy:

i (w) (K= 1 (w)) = ﬁK w5 (£ (W) @.11)

for i=1,...,M, where, if v is a vector of RM,
M
s(WM)=Y v,
i=1

The Langmuir coefficients K; will play a particular part in this study. Let
us define Ey={weR"; w;>0 for every i}.

ProposiTiON 2.1. —  For every w in Ey, the matrix J(w) has M strictly
positive eigenvalues {1, (W), . . ., Wy (W), such that
O<p, (W <K <p,(wy<...<py(w)<Ky (2.12)

Before proving this proposition we give two liminar results.

Lemma 2.2. — Let r (W) be an eigenvector of L(w). Then s(r(w))#0.

Proof. — Let us assume that s(r(w))=0. Then from (2.11), we have
for all i

i (W) (K; —p(w))=0. 2.13)

Since r(w) is an eigenvector, there exists i such that r,;(w)#0. But since
s(r(w))=0, there exists another j#i such that r;(w)#0. Then equality
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RESOLUTION OF A CLASS OF QLH SYSTEMS 225

(2.13) implies
n(w)=K,=K,
which cannot be true because the coefficients K; are distinct. @
LemMma 2.3. — K, is an eigenvalue for J(w) if and only if w;=0.

Proof. — Let us assume, for simplicity, that w, =0. The matrix J(w) is
then

K, 0 0 0 o 0
K 1 K ...
J(w)= 0 2 . _ 5w 2_W2 Kz:Wz
0 Ky Kywy ... Kywy

and it is obvious that K, is eigenvalue.
On the other hand, if K, is an eigenvalue, the left part of equality
(2.11) is zero, so that w,=0. @

Proof of Proposition 2.1. — From Lemma 2.3, in E,, no K, is eigen-
value. Hence one may divide by K;—u (w) in (2.11). Summing the M
relations obtained, and simplifying by s(r(w)), which, from Lemma 2.2,
is non zero, we get a characterization of the eigenvalues pu (w) of J (w):

M
! Kiw: (2.14)
D(w) /=1 K;—un(w)
Let us now define the function ¥ from R x RM to R by:
v u, w - (2.15)
D( ) i=1 K 1%
To show Proposition 2.1 we just have to establish that the equation
¥ (p,wW)=0
has M simple roots. Since we have
_ -
r(p, W)= — 2.16
v (W 5 ; ) (2.16)

which is strictly positive for weE,, the function p—\y(u,w) is as in
Figure 2.1, and the proof is complete. @

Remark. — Because of Lemma 2.2 one can normalize the eigenvectors
by
s(r(w)=1.
Then, by comparing (2.11) and (2.14), we get a characterization of the
eigenvectors of J(w). If r(w) is an eigenvector of J(w) with corresponding
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PST
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Fic. 2.1. — K, =5, K,=20, K,=35.

eigenvalue p(w), we have indeed

1 K. w,
rwW)=—— i (2.17)
D(w) K;—p(w)
where p(w) is solution of (2.14).
We now give a result about the behavior of the characteristic fields of
our systems.

PROPOSITION 2.2. — For every point in by the characteristic fields are
genuinely nonlinear.

Proof. — Let wel,, and p be the associated solution of (i, w)=0.
From (2.16), we have that \{, (u, w) is strictly positive, so that the implicit
function theorem applies: we have the local existence of a function p(w),
with derivative given by

W(w)dw=— Yo (1 (W), w) dw. (2.18)

1
U (1 (W), W)
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RESOLUTION OF A CLASS OF QLH SYSTEMS 227

Besides, we have, for every veR,
M

, 1 K, dw, v OK,w
WA= S Ky (w)l(Z dw),-; K,—

which means, from (2.14)

M M
1 ¥ Kidw, 1 S dw,.

D(w) =1 K;—p(w) D(w) /=

After simplifications we finally get

Vs (1 (W), w) dw =

ROV o dw,
Vo (1 (W), W) dw= (2.19)
D (w) 121 K;— H(W)
Let r(w) be the eigenvector with associated eigenvalue p (w). From relation
(2.19) and using (2.11) one can immediately deduce

W (1 (W), W) (W) = g(( ))w (1 (W), W) ( (W),
and thus
W (W) x (W)= — (( )) S (W), (2.20)

For the eigenvalues of Jacobian matrix L (w), we finally obtain
— for chromatography, from (2.9)

n(w)
D (w)?
which is non zero, since p(w)>0 and s (r (w))#0;
~ for distillation, we use (2.9'), and we get (omitting for simplicity the
dependences on w),
-F,D.r+F,u.r —F D+F,u
fiD+fop (i D+/ow)?
From (2.20) and relation
D' (w).r (w)=s(r(w)),
we get after simplifications
+
A(w).r(wy=-—-2u(w) LiFa S F 3 s (r (w)). (2.21%
(fiDW)+15n(w)

All involved quantities being positive, the proof is complete. ¢
From (2.20), one can easily deduce the following result

A wr(w)y=-2 s (r(w)), (2.21)

Ar= (D .r+f,1 1),

CorOLLARY 2.1. — Let p, (W) be a simple eigenvalue of J(w), and r,(w) -
the corresponding eigenvector. Then the function g, defined by

Vol. 9, n° 2-1992.



228 E. CANON AND F. JAMES

g (W)y=D (w) p, (W), is a k-Riemann invariant in the following sense:
8 (W) .1 (w)=0.
In other words, D (w) p, (W) remains constant on the integral curve of
the vector r; (w).
We now come to study the rarefaction and shock curves. It will turn
out that these curves coincide. We shall call them wave curves.

3. WAVE CURVES

The following proposition gives the main property of our systems.

ProposiTiON 3.1. — The integral curves of the eigenvectors of L(w) are
straight lines.

Proof. — Once again we omit the dependence on w in the calculations.
On E, r is characterized by

1
K,—wyr,=—K;w;s(r).
(K;—w 5 (r)
Taking the derivative in the direction r, we get:
1 1 1
—wrr+X,—pri.r=—K,ws@.n+ —K,r,()— —K,w;s(r)%
wrr+X—wr Dl,( )D”() o2 ()
Replacing p'.r by its value (2.20), it becomes
1 1 1
Ki—wrir=—Kws.nD+=—K,—wrs@d)— —K,ws()>
(K;—w) 5 (r'.r) D( nyrys(r) D2 (r)
In view of (2.11), we have then
1
Ki—wri.r=—K;w,s(@.r).
K;—wr; 5 (r'.r)

In matrix form, this result becomes:
J—wr.r=0,

in other words, the vector r'.r is an eigenvector of J associated with the
eigenvalue p, and thus colinear to r. Finally on the whole integral curve
of vector r, we have

4 e w@)=a@r w).
dt

This differential equation can be integrated:

r(w()=c(r)r(w(0)),
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RESOLUTION OF A CLASS OF QLH SYSTEMS 229

where c(t)=exp <J‘ a(s) ds). By definition of the integral curve of the

0
vector r, we finally have

dw (1)
dr

=r(w(t)=c(r)r(w(0)),

and the proof is complete. @

CoroLLARY 3.1. — The rarefaction curves of systems (2.4) and (2.4")
are straight lines.

Systems with rarefaction curves as in Corollary 3.1 have been studied
by Temple {T] and Serre [Se]. The notion of strict Riemann invariant (see
[Sm]), which we now recall, arises naturally in this study.

DEerINITION 3.1. — We call strict Riemann invariant a function v from

R™ 10 R, whose gradient is a left eigenvector of L(w) [equivalently J (w)]:
V(W) (W)= (W) V' (W).

In the case of genuinely non linear characteristic fields, Temple has
shown the equivalence of the three following assertions:

1. The integral curves of eigenvectors are straight lines.

2. On a rarefaction curve the system reduces to a single scalar conserva-
tion law.

3. Shock and rarefaction curves coincide.

Assertion 2 implies that the systems become uncoupled in finite time
(see [Se]). According to Serre, we shall call an uncoupled system any
system verifying 1, 2 or 3. For the systems of chromatography and
distillation, we shall directly obtain assertions 2 and 3.

ProposiTiON 3.2. — Let u(w) be a simple eigenvalue of J(w). Then it is
a strict Riemann invariant for the corresponding characteristic field.

Proof. — Using (2.18), we show that the i-th component of p’(w) is
given by

1 1

¥, D(W) K;—p(w)
Let us denote by J' the i-th column vector of J(w): we have, for
m=1,...,M

(3.1)

B (w) = —

B=8, K~ — K

m wm’
D (w)
where 3,, is the Kronecker symbol. Again from (2.18), we obtain
o 11 K, 1 o K
W=~ — [ oo Y, i ]
Y, DwW) | K;—p(w)  D(Ww), =1 K,—p(w)

Vol. 9, n® 2-1992.



230 E. CANON AND F. JAMES

But pu(w) satisfies (2.14), so
1 1 uw
v, D(w) K;—p(w)
By comparing (3.1) and (3. 2), we have, component by component, Propo-
sition 3.2.

We want now to study the shock curves. Let us recall first that, given
two states w? et w? related by a discontinuous solution of the system (2.4),

the velocity o of the discontinuity has to satisfy the Rankine-Hugoniot
jump condition

p(wJI=—

(3.2)

c (w9 —wh) =1 (w9) —f(w9). (3.3

For the system of distillation, this condition becomes
o (f, (w9) — £, () =f, (w¥) — f, (w). (3.3)
PROPOSITION 3.3. — Assume that the two states w® and w° belong to a

rarefaction curve of the system. Let | be the corresponding eigenvalue. The
velocity o is given by

— chromatography
o=1+prt 3.9
— distillation
-F,+
o= _TitFaT (3.4
fitfer

where T is given by
= BOV) _ p(w)
Dw) D(w)

Proof. — Using (3.4) and (3.4"), the Rankine-Hugoniot condition can
be rewritten as

3.5)

T (W —w?) =h (wf) —h (w?).
Component by component, this relation gives
K,wi K, wd,
D) D(w)
_g MaDO)—wiDw)
D (w?) D (w)

Inserting w? D (wf) —w? (w9) in the numerator on the right handside of
this equation, we get

T(wh,— wi)=

m

T(w )=

g M
[KM(W?..—Wi’,.)— Kn¥n 5 (wz—w;:)}

D (w?) D (W) 1
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RESOLUTION OF A CLASS OF QLH SYSTEMS 231

This relation is to compare with (2.11): it establishes that the vector
(w—w?) is an eigenvector of J(w?), associated with the eigenvalue
1D (w?). Thus, we have p(w9)=tD(w?. For every state w?, the vector
(w*—w?) is colinear to r (w%). Thus, the shock curve through w? is a straight
line in direction r(w?). Moreover it coincides with the rarefaction curve
through w. From Corollary 2.1, Dy remains constant along this straight
line. In particular D (w?) p(w?)=D (w¥) p (w%). We thus deduce (3. 5):

R(W) _ p(w)

Dw) Dw)

Proposition 3.3 shows that the integral curve of vector r;(w?), which is a
straight line, contains both the j-rarefaction curve and the i-shock curve.
We shall call it the i-wave curve.

We now give a criterion selecting which part of the i-shock curve is
admissible. Let us recall the classical conditions for a shock to be admis-
sible (Lax[L]). If the system is strictly hyperbolic, a i-shock between w?
and w’, moving with velocity o,, is said to be admissible if and only if

A; (W) >0, > A (wh)
Ao (W) <o, <Xy (W)

T=

ProprosITION 3.4. — In a point of strict hyperbolicity a i-shock is admissi-
ble if and only if p,; (w9) > p, (w9).

Proof. — Relations (2.9) and (2.9°) on the one hand, (3.4) and (3.4")
on the other, can be rewritten as

_ {nw
)‘(w)'°‘<D(w>)

_ (u(wg)>: (u(wd))
o=of —— |=a .
D (w?) D (w9)

The function o is defined by

a({)=1+p{ for chromatography,

a(0)= TFAEE o distillation.

In both cases, the function « is strictly increasing. The first Lax condition

involves in particular
g (wi
0L<ui(w )>>a<ul(w ))_
D (w9) D (w9)

One can immediately deduce that p; (w?) > p, (w?).
On the other hand, if p, (w9 >p,(w?), we get trivially the first Lax
condition. To obtain the second shock condition, we notice that p,_, is a

Vol. 9, n® 2-1992.



232 E. CANON AND F. JAMES
(i—1)-strict Riemann invariant (Proposition 3.2). In particular, p;_;
remains constant along the i-wave curve, so that
Hiog (W =y, (w9).
Thus, if w? is a point of strict hyperbolicity, we have
o (WO =g, (W) <p; (w).

The function o being strictly increasing, one can deduce
- g . d
a(u,_l(m BATLON
D (w?) D (w9)

Ao (W)<o,

which means

which is nothing but the second Lax condition. We proceed on the same
way to get the right part of the Lax condition. 4

In short, the i-wave curve through a point w? in £, is & straight line; a
point w? of this straight line is connected to w9 by

a i-rarefaction if y, (w?) <p,; (w9));

a i-shock if p; (W) > u; (w9).
With these results, we can now start to study the Riemann problem.

4. THE RIEMANN PROBLEM

We want to show first that the equation (2.14) giving the eigenvalues
of J(w) defines in fact a global change of variable mapping the quadrant
Ey onto a rectangle parallelogram of RM. Equation (2.14) is indeed
equivalent to the algebraic equation P (p)=0, where P is nothing but the
characteristic polynom of J (w):

M M
1
P =[] Ki—w— —— X Kiw, [] K;—w. 4.1
i=1 D (W) i=1 j#i
Notice here that (2.14) is only defined on the domain of strictly positive
quantities E,;, while, in view of Lemma 2. 3, the algebraic equation P (1)=0
is also defined on the boundary of the domain. Let us call 5 the function

from E, into RM™, which to w associates the corresponding eigenvalues of
J(w).

ProrosiTion 4. 1. — The function 3¢ is an homeomorphism from Ey onto
the set Cy, defined by

O<y,<K;<...<yy<Ky 4.2)
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RESOLUTION OF A CLASS OF QLH SYSTEMS 233

and the inverse homeomorphism is given by the following explicit formula:

H 1=Ky
w=K,—«—— 4.3)
' H (1—(K/K)

Proof. — First, we prove (4.3). One can notice that the roots of P(u)=0
are precisely the inverses of the roots of the equation Q(v)=0, where Q
is the polynom defined by:

Z w [ TvK;— 1.

Jj#i

.M
v
Q(V)_Bl (vK;—=1)— D,

Let us call y; the roots of P, we have
Q=a I (v- 1}
i=1 Vi
where ay, is the coefficient of the term V™ in Q, given by
M 1 M
=[[Ki— = Y Kw][K;
i=1 D .5 i#j

K.

i

ll”__‘]g

1
D ;

Comparing the two above relations, we get

i 1 \Y
v— i
i i1=_11 ( D

M

—>= IT vK;=D—
Yi i=1

Setting v=1/K,, the only term of the right handside which is non zero is

the term with subscripti. We get then by replacing ay by its value above

M M
1 1 K.

K;. — — — |=w ——11

1‘1-]1 i1=—[1 (Ki )’i) ng(Kz )

From this equality, one can now easily deduce (4.3). On this formula it
is obvious that 4 is one to one, and that ! is continuous. The proof
is complete. ®

We state here the formulas given in [RAA1] or [RAA2]. Figures 4.14a
and 4.15b show respectively the wave curves in the space of conservative
variables w;, and their images by the transformation 4 in the space of
strict Riemann invariants.

Figure 4.2 shows the set C,;. Notice the non strict hyperbolicity points
appearing on the boundary.

2 w; [T (vK;—1).

J#i
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y1=yz=K1

FiG. 4.1a.

FiG. 4.16.

: =y = Ky

FiG. 4.2.

>

The transformation 5# associates to each point w of Ey a point y of

C, such as

vi=ww),  i=1,...,M.
Let w? et w? be two states on the i-wave curve. To these points correspond
y? and y?, satisfying (4.4). In view of Proposition 2.2, we have that for

4.4
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every j#I, W; is invariant on the i-wave curve. Hence, both points y? and
y? satisfy:
=y},  J#L 4.5

In other words, we have

LeMMA 4.1. — The image of the i-wave curve by the homeomorphism H#
is a straight line parallel to the i-th coordinate axis.

More precisely, the image of the part of the i-wave contained in [, is
the segment

K <y<K,

where K,=0.
We are now able to give the main result of this paper, the global explicit
resolution of the Riemann problem.

TueoREM 4.1 (Resolution of the Riemann problem in Ey). — Let us
consider two states W and w* in By. Then there exists an unique solution to
the Riemann problem associated to w8 and w°, consisting of at most M+ 1
constant states connected by a shock or a rarefaction wave.

Proof. — The uniqueness of that kind of solution is a general result
(see [Sm]). The existence comes from the fact that to w? and w* correspond
two vectors y? and y?, belonging to the interior of the parallelogram C,,.
Hence, there exists in C,, a path consisting of segments parallel to the
coodinate axes and connecting y? to y?. We thus define M+ 1 points ¥/,
i=0,...,M, with y°=y% and yM=y’. To each y' corresponds a state
w' e [,. We construct a self-similar solution to the Riemann problem by
joining for every i w' ™! to w' by

a i-rarefaction if yi™* < yi i e. if p(w'™ <, (w');

a i-shock if i~ 1>y i e. if (W™ 1) >p, (wh).

From Proposition 3.4, the i-shock is admissible in the sense of Lax. &

Let us set £=1¢/z. Theorem 4.1 defines a self-similar solution to the
Riemann problem, denoted W (&), without any restrictive condition on the
initial data. This global existence result and the following stability theorem
will lead us to a global existence result for the Cauchy problem.

TureoreM 4.2 (L= and BV Stability). — The resolution of the Riemann
problem is stable in L™ and BV: we have for everyi
Min (; (W9), b (W) < p; (W (8)) < Max (; (W), p(w)) } 4.6)
VT (1 (W (8)) = 1 (W9) — pt; (W) |
Proof. — The function p; is constant excepted on the i-wave, where it

is a monotone fonction of &, taking values in the segment [w! w*!].
Monotonicity obviously involves (4.6). &

Vol. 9, n® 2-1992.
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Remarks. — 1. The L* stability theorem leads to a result of invariance
of the quadrant E. If M species are present at the time =0, we cannot
“loose” one of these species by solving the Riemann problem. This prop-
erty is transmitted to the Cauchy problem.

2. By working in variables w;. we have lost of view the molar fractions.
One can do all the above calculus in terms of molar fractions and get the
same results. Still, the invariance of the quadrant E, becomes then the
invariance of the molar fractions simplex defined by

M
SM={X€RM+1; Xp,>0et Y x,=1 }

m=0

For the details of calculus, see [C].

Theorem 4.2 allows us to establish the L* and BV stability of schemes
based on the resolution of the Riemann problem: Godunov scheme, Glimm
and Lax-Friedrichs schemes. To any couple (Af, Az), where Az is a space
step and At a time step, these schemes associate a sequence of approximate
solutions w of systems (2.4) and (2.4"), provided that they satisfy the so-
called Courant-Friedrichs-Lewy condition (CFL condition):

Az < Max [Suph,(w)|.
A =1

! m=1,..., M w

TueoreM 4.3. — Let us assume the CFL condition to be satisfied. Then,
we have the two following properties:

1. L® Stability: the Godunov scheme defines a sequence (Wi™'; jeZ,
neN) which takes values in A~ (# (wW° (1))).

2. Decrease of the strict Riemann invariants: the functions

z-TV(y; (“;' (-,2)),

fori=1, ... M, are decreasing.

The proof of this result is rather technical, and we shall not give it
there. One can refer to [Se] for the case of two by two systems. In any
dimension the proof is strictly analogous to the one of Serre. For detalils,
see [C] and [J1.

This theorem involves BV estimations on the first order derivatives of
the approximate solutionw. We define a sequence of functions W,, 4, by
associating to every couple (Ar,Az) satisfying the CFL condition, the
approximate solution computed by the Godunov scheme. We prove then
that from this sequence one can extract a subsequence which converges
in"LL,., in L™ weak star, and for almost every couple (¢,z). We obtain
then the convergence of the Godunov scheme to an entropic solution w
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of the systems, satisfying

dUw) , oF(w)

<0
Oz ot

for any entropy U verifying:
— for chromatography, U is convex with respect to w;
— for distillation, U is convex with respect to f, (w).
Finally, we have

THEOREM 4.4. — Systems (2.4) and (2.4), with a Cauchy condition
w(0,)=w° (1), where w° is of bounded variation, have a weak solution in
10, L[ x £y, for every L>0. Moreover this is an entropic solution.

The results stated above for the Godunov scheme are also avalaible for
Glimm and Lax-Friedrichs schemes. The complete explicit resolution of
the Riemann problem allows to construct an exact Riemann solver for
the system of distillation. For chromatography, the situation is still simpler,
since all eigenvalues are positive, so that the Godunov scheme reduces to
a simple upwind scheme. Once again, we refer to [C] and [J] for details
about schemes and calculus, and for numerical results.

5. CONCLUSION

Systems of conservation laws arising in chromatography and distillation
allow a thorough mathematical study. The main property is the fact that
rarefaction and shock curves coincide and are straight lines. We have then
a behavior similar to the scalar case, and can apply similar techniques.
Our systems are the only systems of more than two equations for which
an existence result for the Cauchy problem and the convergence of the
Godunov scheme have been obtained, without any assumption on the
initial data. The explicit resolution of the Riemann problem also appears
to be an excellent tool to valid numerical schemes. We finish by noticing
that these systems may seem like purely academic examples. Still, they
have a precise physical meaning, and the Langmuir isotherm is widely
used in chemical engineering.
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