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ABSTRACT. - We define an adequate concept of « derivative » of a set
valued map and of its transpose for constructing the « adjoint inclusions »
associated to a trajectory of a differential inclusion minimizing a func-
tional. This result can be applied to the optimal control problem with
non smooth data, in finite or infinite horizon.

RESUME. - On définit une notion convenable de « differentielle »
d’une correspondance et de sa transposee pour construire les inclusions
adjointes associees aux trajectoires d’une inclusion differentielle minimisant
une fonctionnelle. Ce resultat s’applique au probleme de controle optimal
avec des donnees non regulieres en horizon fini ou infini.

INTRODUCTION

Consider the following control system :

where f : (~" x R’~ --~ Rn and U : Rm is a set-valued map.
Let g : R2n --~ given function, and consider the pro-

blem of minimizing g(x(0), x(1)) over the set K of solutions x to (0,1)
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76 H. FRANKOWSKA

Let z be a minimizer.
If U does not depend on x and if the data are smooth enough the Pon-

triagin maximum principle [1 S tells us that for some absolutely continuous
function p : [0.1] ] -~ Rn the following holds:

where u is the control associated with z and [~f ~x (z(t), u ( t )) denotes the

transpose of the Jacobian of f with respect to x at (z(t ), u(t )). The case of
control problem with constraints bearing on initial and final states can
be embedded in the above framework, when g is no longer smooth but
just a fonction taking also infinite values. This is a first motivation to
tackle the non-smooth case.
A series of papers took the issue of adapting this result to the case of

non-smooth functions by using one or another of the many generalized
gradients (see Clarke [8 ] for instance).
To study the necessary conditions in a more general case we have to

consider the set-valued map F : Rn  Rn defined by

and an associated differential inclusion

Under some measurability assumptions on f it can be shown that the solu-
tions to (0.1) and (0.4) coincide. So, to get a characterization of z, we can
just study (0.4). _

Such an approach to optimal control problem was first proposed by
Wazewski in [21 ] and has been the object of consideration by many authors.
See for example, Aubin-Clarke [2 ], Clarke [8 ], Frankowska-Olech [11 ],
lone [12], Lasry-Berliocchi [13], Rockafellar [16].
The question arises naturally how to formulate a maximum principle

for an optimal trajectory of such a differential inclusion.
For obtaining results similar to (0.2), (0.3) in the set-valued case we need

a notion generalizing the derivative and its transpose to a set-valued map
F : Ei, where E, Ei are Banach spaces.
For that purpose we shall adopt the geometric point of view. When F

is a smooth function, the graph of its derivative is the tangent space to
the graph of the function. In the case of a non-smooth function or a set-
valued map F~, we need to define a tangent cone to the graph to be able
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77ADJOINT DIFFERENTIAL INCLUSIONS ...

to use the same strategy. Many candidates for the role of tangent cone to
a set have been proposed : let me mention the contingent cone, introduced
by Bouligand in the early thirties, or the tangent cone introduced by
Clarke [5] ] in 1975.
But whatever the choice of a « tangent cone » TK(x) to a subset K at

a point x E K is, we can use it to define the derivative of a set-valued map F
at a point (x, y) of its graph. ;:

Let T graph (F) (x, y) be the chosen tangent cone and let us call its negative
polar cone the normal cone to K at (x, y), and denote it by

Then the derivative DF(x;y) of F at (x, y) is the set valued map from E
to Ei defined by

and the co-derivative DF(x, y)* of F at (x, y) is the set-valued map from Ef
to E* defined by

which can be regarded as the transpose of DF(x, y), (see a survey in Chap-
ter 7 of the book by Aubin-Ekeland [3 ]).
We define also a generalized gradient of a real-valued function

R u { + oo ~ at x E Dom ( f ) which we denote by af(x). The
necessary conditions then take the following form :
There exists an absolutely continuous function p : [o, 1 ] --~ R n satisfying

the following conditions :

The objective of this paper is twofold. The first one is to derive inclu-
sions (0.2)’ and (0.3)’ using a suitable concept of tangent cone such that
the associated notions of co-derivative and generalized gradient are rea-
sonably small. The second one is related to « calmness assumption »
introduced by Clarke (see [6], [7], [8 ]). We replace it by a « surjectivity
assumption » which states that the « linearized problem » around the opti-
mal solution is solvable. This is a checkable assumption : we shall illustrate
this point in Section 4 as we apply our approach to optimal control with
constraints bearing both on the initial state and the final state. In this

example « calmness » seems to be harder to verify.
In [8 ] Clarke considers a similar problem with a convex valued diffe-

rential inclusion (0.1). He mentions in the comments that it is possible to
treat the nonconvex case assuming in the addition that the problem is
calm. We shall treat directly the nonconvex case.

Vol. 2, n° 2-1985.



78 H. FRANKOWSKA

The intermediate tangent cone plays an important role in this paper.
This is due namely to the fact that we can « compute » the intermediate
tangent cone to the set of solutions to the differential inclusion (0.4) as
the cone of solutions w to the « linearized » differential inclusion

where dF(z(t), z(t j) denotes the intermediate derivative of F at (z(t), z(t))
(see Frankowska [10 ]). This is the reason why we cannot avoid using it
for solving our type of problem. It enjoys also other interesting properties:
in particular, the associated generalized gradient is smaller than
Clarke’s generalized gradient and has the following property: If f is Fre-
chet differentiable at x, then reduces to f’(x) (whereas we require
that f is regularly differentiable for the Clarke generalized gradient to
reduce to f ’(x)).
The choice of a tangent cone is analogous to the choice of an adequate

concept of derivative : it depends upon the problem at hand. Let us men-
tion only that the contingent derivative (cf. Aubin-Ekeland [3 ]) is a gene-
ralization of the Gateaux derivative, the intermediate derivative a gene-
ralization of the Frechet derivative and the Clarke derivative - a

generalization of a continuous Frechet derivative.
In general, the intermediate tangent cone is not convex. In many appli-

cations the convexity is required. Our results can be form.ulated with diffe-
rent convex subcones of the intermediate tangent cone (one among pos-
sible candidates is the Clarke tangent cone, which is always convex and
contained in the intermediate tangent cone). To fix the ideas we shall
choose one particular subcone, the asymptotic tangent cone, which contains
the Clarke cone and coinciding with the intermediate cone when the latter
is convex.
The reader used to Clarke’s notion of tangency may replace the notions

of asymptotic derivative, co-derivative and gradient in Theorem 2.3 by
those obtained through Clarke’s definition, to get the same kind of results.

In Section 4 we give an example of a problem with initial and end point
constraints and study the surjectivity assumption in this case. In this

example « calmness » seems to be harder to verify.
Our results can be applied also to the study of the « generalized Bolza

problem », exactly in the same way as it was done by Clarke in [6 ]. Under
some « reasonable » assumptions the generalized Bolza problem can be
written in differential inclusion form (cf. [6 ]). Then the necessary condi-
tions from Theorem 2.3 can be expressed in terms of the generalized
Euler-Lagrange equation for the Lagrangian.
We devote the first section to a presentation of the asymptotic tangent

cone. Section 2 deals with the necessary conditions satisfied by an optimal
solution to a differential inclusion problem. We state the main result
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and begin the proof, which reduces this problem to an abstract optimiza-
tion problem. This general problem is then studied in the third section.
In the fourth section we give an example of the application of the main
theorem. In the fifth section, we apply the method to a non-convex infinite-
horizon problem, and extend to this case results of Aubin-Clarke [2].

1 ASYMPTOTIC TANGENT CONE
AND ASYMPTOTIC DIFFERENTIAL

OF A SET-VALUED MAP

o

Let E be a Banach space. We denote by B the open unit ball in E and
by ( , ) the canonical bilinear form on E* x E.

Consider a subset K c E and a point x E K. There exist in the literature
different notions of « tangent cones » to K at x. We recall in particular the
definitions of the contingent cone

(see Aubin-Ekeland [3], Chapter 7)
the tangent cone in the sense of Clarke

(see Clarke [8 ], Aubin-Ekeland [3 ~, Chapter 7) and the intermediate tangent
cone

(see Ursescu [19 ]).
The relations (1.1), (1.2), (1.3) can be written in terms of the Kura-

towski lim sup and lim inf in the following way :

Vol. 2, n° 2-1985.
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All the above sets are closed cones satisfying c= IK(x) c: TK(x).
Moreover, is convex. For further properties of CK(x), TK(x) see [3]
[5 ] [8 ] [17 ]. The cone IK(x) is less known. It can be also characterized by
using the distance function.

(1.4) PROPOSITION . - Let dK( y) denote the distance of y E E to K. Then

Consider a function f : E -~ R u { + oo ~ and let epi (f) denote the
epigraph off As an important example we shall study the set f(x)).
We recall first :

(1.5) DEFINITION. - For Q : R x E -~ R u { + set

lim sup inf Q(h, u’) : = sup inf sup inf Q(h, u’)
u’-U E>0 b>~ u’EU+EB

(see Rockafellar [17]).
Let us introduce the following

(1. 6) DEFINITION. - For f : E -~ R u { + oo ~, xEDom ( f)

( 1. 7) PROPOSITION. - Let f, x be as in ( 1. 6) ; then

Proof - Let K = epi ( f) and (u, v) E epi ( i + ~’(x)). Then for all e > 0
o

and all small h > 0 there exist uh E u + EB such that

It implies that for all small h > 0 (~/(x)) + + s) e K. Thus
by (1.4) Conversely, if then by
(1.3) for all ~ > 0 there exist 6 > 0 such that for any h ~ ]0, 6 [ we
1

have (u, [K - (~/(x))] + EB. This means (x,f(x))+h(u, 
and hence

Therefore,

The function i + ~(x)( ~ ) is lower semicontinuous and positively homo-
geneous.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



81ADJOINT DIFFERENTIAL INCLUSIONS ...

In the study of some non-smooth problems we are often led to deal
with convex tangent cones and convex functions. We shall now define
one of them, which is the one we shall be using subsequently :

(1. 8) DEFINITION. - The asymptotic tangent cone to a subset K at x ~ K
is given by

Its negative polar, given by

is called the asymptotic normal cone to K at x.

(1.9) REMARK. - is closed convex cone. One can easily verify
the following relation

The. cones IK(x) and IK(x) have been also used in [l4 ].
As it is done in [3 ] we can define now the derivative to a set-valued map F

from E to a Banach space E 1 .

(1.10) DEFINITION. - The asymptotic derivative of F at (x, y) E graph (F)
is a set-valued map DaF(x, y) : Ei defined by

(1.11) DEFINITION. - The asymptotic co-derivative of F at (x, y) E graph (F)
is a set-valued map DaF(x, y)* : E* defined by

Equivalently:

Let f : E --~ R u { + oo}, x e Dom (/). Define F( y) = f ( y) + R + for
all y E E, i. e. graph (F) = epi ( f ).

(1.12) DEFINITION. - The subset

Vol. 2, n° 2-1985.
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We recall that f is regularly Gateaux differentiable at x E Dom ( f)

if it has the Gateaux derivative f’(x) E E* and for all u E E 
.
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Observe that if f is as above then by (1. 7), is singlevalued and

Remark. The asymptotic gradient is well-defined for Fréchet-diffe-
rentiable functions. Recall that Clarke’s generalized gradient may not
be defined for such functions: they have to be regularly differentiable.

(1.13) DEFINITION. - For all u E E set

We obtain from ( 1. 8), ( 1.11 )

(1.14) PROPOSITION. - = sup [i+ f (x)(u + v) - i + f’(x)(v) ]
v

The following proposition is similar to one from [18] ] concerning the
subgradients of convex functions.

(1.15) PROPOSITION. - If f,g:E  Ru { + oo. ~, f  g and xEE is

such that f (x) = g(x)  + oo. Then

(1.16) LEMMA. - Let W, H, T be Banach spaces and W c H, y e 2(W, T)
be a continuous linear operator and let

be given functions. -

If y has a continuous right inverse and f is locally Lipschitzean at z then
for all W E W we have

Proof.

and since y has a continuous right inverse we also have

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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It implies that

By Lipschitzeanity of f we also have

Adding (1.17) and (1.18) we finally get

Since w is arbitrary, the proof follows.

2. THE DIFFERENTIAL INCLUSION PROBLEM

Let F : Rn  Rn be a set-valued map of closed graph. Consider the
differential inclusion

An absolutely continuous (a. c.) function x : [0,1 ] -~ Rn is a solution
of (2.I) iff

Let K denote the set of all solutions of (2 .1); ~p : (~n -~ R be a Lipschitzean
function; g : (~n x (~n --~ f~ u { + ao }. Then for some c > 0 

-

and the functional defined by f (x) _ ))dt is finite and Lipschitzean
0

on Ll. Consider the following problem

minimize

For all continuous function x set y(x) = (x(0), x(1)).

(2 . 3) THEOREM. - Assume the minimum in (2. 2) is finite, and zeK
is a minimizer. Assume that F is Lipschitzean in some neighborhood
of z( [o, 1 ]), for the Hausdorff metric, and E C(Dom If

the following « surjectivity » assumption holds :
for some p > 1 and all u, e E LP there exists a solution w e W1.P( [Q, 1 ], (~’~) of

Vol. 2, n° 2-1985.
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and for all w E IK(z) n W~~p( [0, 1 ], Rn) n Dom y)(z) there exist
Dom y)(z) w in [0, 1 ], Rn) such that

then there exists a function q e W1,p*((0, 1), Rn) (where 1 p + 1 p* = 1) suchthat P P

We shall prove the above theorem in several steps.

Proof First we introduce the following notations.

y E T) is a « trace operator », y(x) = (x(O), x(l))
L E E) is the operator of differentiation, Lx = x
L* be its transpose.
~ : L1  L~ be defined = { y(t ) E F(x(t )) a. e. ~ .
If q E W 1 ~p*((©, 1), R~) then integration by parts gives

In the new notations, z solves the following problem

(2 . 5) minimize {f(x) + g( yx) : x E W1,1((0, 1), Rn), Lx E (x)}.

(2. 6) LEMMA. - For all we W satisfying

(2.7) 
~ 

(w{t ), w(t )) E z(t )) a. e. in [o, 1 ]
we have w e IK(x) and

Proof. - We proved in Frankowska [7~] ] that I K(z) is the set of
all w W 1 ~ 1 ((o, 1 ), Rn) satisfying (w(t ), E IgraphF (z(t ), z(t )) a. e. in

[0, 1 ]. Thus if w satisfies (2.7) then we IK(z). By (2.4) and since z

is the minimizer if w e IK(z) n Wi~p( [o, 1 ], Rn) n Dom i+(g ~ y)(z) there
exist Dom i + ( g ~ y)(z) w in W such that i + [ f+ g o y ](z) (wn) > 0.
By Lemma 1.16

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Since and are continuous on their domains of definition

we end the proof.

(2. 8) REMARK. - Lemma 2.6 can be viewed as a necessary condition
for z to be a minimum. In order to obtain an « adjoint » necessary condi-
tion we shall use a separation theorem. At this point we need to use convexity
properties. For that purpose, we use a convex sub-cone IK(x). We can
choose Clarke’s tangent cone, but it may be important to use a larger cone,
the asymptotic tangent cone and its related concepts.

(2. 9). - LEMMA. - The cone

is closed, convex and (1 x L) ~ c I K(z).

Proof If (xn, yn) ~  and lim xn = x, lim yn = y in E then
noo n-co

z(t )) is closed and convex cone 6 has the same properties.
The second claim follows from Lemma 2.6. 

-

Let rc- be the negative polar cone to 6.

(2.10) LEMMA . If an a. c. function q E Rn) satisfies

then q also satisfies the requirement of Theorem 2. 3.

Proof be such that ( - q - ~, Assume for a
moment that

on a set ~lC c [0, 1 ] of positive measure. Let

One can easily verify that the map t --~ zlt)) is measurable.

Therefore also the map t - Q(t ) is measurable. Thus there exists a measu-
rable selection E Q(t ) on Let

/*1

Then and ( ( - q - ~, q), 6 > _ ~ { - q - ~, - q){t ), 6{t ) ~ dt > o which
contradicts the definition of ~. °

Vol. 2, n° 2-1985.
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It remains to prove that E a. e. By Fatou’s lemma and
Lipschitzeanity of ~p for all u E L~(0, 1)

10 ia+03C6(z(t))(u(t))dt. But this means that for almost all

t E [0, 1 ] and all p ~ Rn 03BE(t), p ~  i + ))( p) which ends the proof
of our lemma.
Thus the proof of Theorem 2.3 will be complete if we prove that the

assumption of Lemma 2.10 is verified.
This will be shown in the next section where an abstract problem is

treated.

3. THE ABSTRACT PROBLEM

Let Wi, Hi, Ei, T be Banach spaces, Wi be a subspace of Hi and T be
reflexive. Let W, H, E, W c H be reflexive subspaces of Wi, Hi, Ei res-
pectively. Let L E E1), y E T) be given continuous linear

operators.
We are supposing here that H is dense in Hi, that the injection i : W ~ H

is continuous, that L is also a continuous linear operator from W into E, i. e.

and that the
« trace property » y has a continuous right inverse and the kernel Wo

of y is dense in H holds true.
We denote by io the restriction of i to Wo. Let Lo be the restriction of L

to Wo and Lo denotes its transpose. Define

Thus Lo maps Eg to H*.
For the problem considered in Section 2 we have H = E,

and

Equipped with the graph norm Eg is a Banach space. If the « trace pro-
perty » holds then we have the following abstract Green formula ( [1 ])
which corresponds to integration by part from Section 2:
There is a unique operator ~* E T*) such that for all u E W, p E Ea

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Let F : Hi be a set-valued map and

be given. Consider the problem

which contains problem (2.5) as a particular case. Let  c H x E be a
closed convex cone, ~’ - be its negative polar.

Consider closed convex process

defined by

We denote by K the set of all solutions to the inclusion Lx E 

(3 .1) THEOREM. - Assume that zeK provides a finite minimum to
the problem (P), and that f is locally Lipschitzean at z. Further assume
that E C(Dom and ( 1 x c IK(x) and the follow-
ing surjectivity assumption holds true: for all u, e E H x E, there exists
a solution w E W to the problem

and for all there exist 
wn -~ w in W such that

Then there exists q E Eg such that

Proof - Using the assumption (*) exactly as in the proof of Lemma 2. 6
we show that

Since f is locally Lipschitzean at z and H is dense in Hi for the restriction fH
of f to the space H = on H. Therefore is lower semi-
continuous on H. For all W E H, set

Vol. 2, n° 2-1985.
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and

The functions are lower semicontinuous, convex and positively homo-
geneous. The sets IY, HF are closed and convex.

lower semicontinuous, convex, positively homogeneous functions and
~ c H x E be a closed convex cone, and the sets be defined as in (3.3).
Assume that the following set

is closed in W*. Then the following statements are equivalent :

(2) There is q ~ E*0 such:.that :

Proof. - Assume (1) holds. We claim that there is q E E* satisfying

Indeed, assume that it does not hold. By reflexivity of W and the sepa-
ration theorem there is we W such that for all a E n, (r, - q) E ~ -, a’ E ’P

where p  0 is fixed. Hence

for all a E n, a’ E BII, (r, - q) E ~ - . Since ~ - is a cone it implies (w, Lw) E rc
or Lw E G(w). By (1) x(w) + ~(yw) > 0. On the other hand setting r = 0,
q = 0 in (3.6) we get:

The obtained contradiction proves (3 . 5). Let q E E*, a E II, a’ E ~P, r e G*(q)
be such that

Thus for all we Wo we have ( a, w ) + ~ r, w ~ - ~ q, Low ~ - 0. It implies

Since io : H’~ ~ Wo is the canonical injection and Wo is dense in H it
Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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implies E H* and thus that q E By applying now (3. 7) to any w e W
using Green formula and (3.8) we obtain .

Since y(W) = T it implies a’ + f!4* q = 0 or (2).
To prove the converse assume (2) holds. Then there is a E n, a’ E w,

(r, - q) E ~- such that q E Eg and Loq = a + r, - = a’. By Green
formula

and

Assume w e W is such that Lw E G(w). Then

Which proves (1).

(3.9) LEMMA. - Under all assumptions of Lemma 3.4 assume that
for all (u, v, e) E H x H x E there is w e W solving the problem

then j~ is closed in ~V*.

Proof. 2014 Let an = i*03B1n + 03B3*03B1’n + i*rn - L*qn, where 03B1n ~ II, 
(rn, - qn) ~ -, n = l, 2, .... Assume lim an = a in W*. First we

"

shall prove rn, - qn) ~ is bounded. Since H and E are reflexive,
it is enough to show that for all (u, v, e) E H x H x E

(any weakly bounded set is bounded). Fix (u, v, e) e H x H x E and let
W E W be such that

(it exists by assumptions). Then for some y e G(w + u) :

Moreover, { ( an, w ~ ~ is bounded which implies (3 .10). Consequently,
f II rn (I ~~ ~ 11 ?n II ~ are bounded. By reflexivity we may assume

that ( an ), ( rn ~, ~ are weakly convergent to some a, r, q respectively.

Vol. 2, n° 2-1985.
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Because II, Cfi- are closed and convex by Mazur Lemma [10], 
(r, - q) E Let 03C3 be the right inverse of y. Then

Since a* is continuous by the previous part we obtain that x~ is weakly
convergent to a’ = and Thus :

which proves the theorem.

(3.11) Proof of Theorem 3 .1. 2014 We apply Lemmas 3 . 4 and 3 . 9 to pro-
blem (3 . 2). Then we obtain the existence of q E Eg satisfying

(3 .12) Proofof Theorem 2. 3. Assumptions of Theorem 2. 3, Lemma 2. 9,
and Theorem 3.1 imply that the assumption of Lemma 2.10 is verified.
This concludes the proof of Theorem 2. 3.

Let U be a compact separable topological space, and let a continuous
function f : (~n x U ~ be given. Consider a nonlinear control system :

We denote by K the set of all solutions of (4.1). Let two subsets ~1
of ~n and a Lipschitzean function i~n --~ R be giyen. We shall study
the following problem :

Assume a trajectory-control pair (z, M) solves (4.2). We associate with (4.1)
a linear control system

Let denote the reachable set of (4.3) at time 1 by the trajectories
w E W 1 ~p((o, 1), Rn). One can verify that it is a convex cone. Set

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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We shall also assume that the set 1 is such that

Remark. The right-hand side of the above inclusion is the Dubovickii-
Miljutin tangent cone to 1 at z(1).

(4.4) THEOREM. - Assume there exists an open neighborhood V of

z( [0,1 ]) such that ~’~ is continuous on V x U and for almost all t E [0,1 ],
the set-valued map Q : graph F ~ U defined by

is lower semicontinuous at (z(t ), z(t )). If the following surjectivity assump-
tion holds true: for some p > 1

then there exists q E 1) such that

Set F(x) _ ~ f(x, u) : u E U ~. By a Filippov theorem, the set
of solutions K coincides with the set of all solutions of the differential inclu-
sion.

Moreover, the graph of F is closed and F is Lipschitzean on V. Define
g : LJ { + ~ } by

Thus z solves the problem

We shall apply Theorem 2 . 3. For this we need to verify (2.4), to compute
DaF(z(t), z{~ )) and verify the surjectivity assumption.
Vol. 2, n° 2-1985.
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STEP 1. - We claim that for almost all t E [0, 1 ]

Indeed, if (w, s) e z(t )) then for all h > 0 there exist wk, sh such
that lim (wh, sh) = (w, s) and

h-~o+ .

Let U be such that lim uh = u(t) and z(t) + hsh = f(z(t ) + hwh, uh).

(It exists for almost all t by the lower semicontinuity assumption.) Then

since ~f is continuous and U is compact we have
ax

It implies that

Hence

Because (w, s) is an arbitrary point in z(t )), we proved that
Igraph F(Z(t), z(t )) is contained in the right-hand side of the above inclusion.
To prove the equality of (4 . 6), pick up any point r in I and let

uh E U be such that lim uh = u(t )

(It exists for almost all t E [0,1 ].) Then for all w E [Rn we have

. 

which achieves the proof of (4.6).

STEP 2. - It follows from Step 1 that

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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The surjectivity assumption of Theorem 2. 3 has the following form:
for all u, e ~ Lp(o, 1) there exists a solution w E [0, 1 ~ ; of

Let Pl(t) be the matrix (fundamental solution) satisfying

Then the surjectivity condition has the following form : for all v E Lp(o,1)
there exists w e W 1 ~p( [0, 1 ] ; satisfying

and 
’

The reachable set R’(1) of inclusion (4. 7) at time 1 is equal to

Condition (4.8) implies that

or equivalently that :

Since v is an arbitrary function in LP(0, 1) we proved that the surjectivity
assumption is equivalent to

Hence by (4.5) the surjectivity assumption is verified.

STEP 3. - It remains to prove (2.4). Let

and w be defined from the assumption (4.5). For all n > 2 define

We claim that w~ satisfy (2.4).
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Indeed by Lemma 2 . 6 and since IÏc(z), are convex

wn E I K(z), E Moreoyer since w( 1 ) E Int I~ 1 (z( 1 )) by convexity

Hence w~ E Dom y)(z). It is clear that wn -~ w.

Fix n and let u~ be a sequence converging to w~ in W l~~ 1 ((o, 1), Rn) such that

Then z(0) + Wo. Since wn E IK(z) there exists a sequence wn
in W 1 ~ 1 ((0, 1), Rn ) such that 

’

Since F is locally M-Lipschitzean for some constant M for all small h
and almost all t by (4.10)

By a Filippov theorem (see for example Aubin-Cellina [4 ], p. 120) for a
constant M independent of h there exist vh satisfying = 

Hence by (4 . 9) and the assumption
on 1 for all small h z(l) + Using the Lipshitzeanity of 03C6 we
obtain

Which achieves the proof.
Remark. - Observe that when there are no constraints on the final

state (i. e. ~B === then assumption (4.5) is automatically satisfied (because
= (~~). This happens whenever z(l) belongs to the interior 

In this case Theorem 4 . 4 reduces to a non-smooth version of the Pontriagin
principle.
We also observe that in Theorem 4 . 4 we may assume less regularity on f :

instead of assuming that ~f ~x is continuous on V x U it is enou h to sup-
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pose that for some L > 0 f is L-Lipschitzean in the first variable on a neigh-
borhood of z([0,1]) and for almost all t E [0, 1 ]

Then the same conclusions hold true.

5. INFINITE HORIZON PROBLEM

Let U be a compact subset in (~m, A be a n x n matrix, B be a n x m matrix,
xo E ~’~, S > 0 and a locally Lipschitzean function ~p : x R be given.
Consider the following problem :

over the trajectory-control pairs (x, u) satisfying

This problem was studied in Aubin-Clarke [2 ] when U is convex, and by
many other authors.
The abstract theorems of Section 3 can be applied as well to this new

problem, but we would prefer to have more precise results. So we shall
study this problem through the same framework but applying the main
ideas step by step.
We posit the following growth assumption on ~p :

there are numbers c, p >_ 1 such that for every (x, u) and ~ E u) :

It easily implies that

Thus if u ~ Lpm = LP(0, then the integral in (5.1)
is finite.

Let ~4 be the maximum of real parts of the eigenvalues of A.

(5.4) THEOREM. - Under the above assumptions, assume (z, u) solves
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the considered problem and 03B4 > p03BB. Then there exists an a. c. function

q : [0, oo) --~ R n and measurable functions ~ 1, ~2 such that

where jp* > 1 is defined by - + 2014 = 1 provided p > 1. Ifp = 1 we havep 7?*
instead : , ( are bounded.

then we have instead: ( tends to a finite limit as t goes to +oc.

Proof - It is not restrictive to assume that xo = 0. For any u E Ly;,
the solution x to (5.2) is given by

and belongs to W1,p03B4 = { w E H1(o, ~ ; Rn, w E Ln, w E (see [2,
Lemma 3.1]). For all u E set

Then u minimizes f over all u E satisfying u(t ) E U.
The following result is analogous to Lemma 2. 6

Proof - We introduce the following notations

The growth condition implies easily that for the function
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belongs to L~(0, :x; ; Thus the integral (5 . 6) is finite. Hence it is
it is enough to show that for all bounded u 

.

Fix any such u and let hk > 0 be a sequence converging to zero. We can
find a sequence of measurable uniformly bounded functions uk such that
u(t) + E U and lim = u(t ) for all t > 0. Let = 

By the growth condition

Since = min { f (u) : u E Lm, u(t ) E we have

Because of (5.7) we can use Fatou Lemma. Hence

As in the proof of relation (3.5) using a separation theorem we can find
~ 1, ~2 ~ L°° satisfying

and such that for all we have

Let r > 0 be so small that 03BBp + r  5 and let be the norm of 03BE1

m Lp*n(0, ~ ; Rn, e-03B4tdt) where - + 1 * - 1. By the Holder inequality and
p p

since ( _ e~z we obtain
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and

Set

Let be such that exists. Then integrating by part
we have °

whenever ~0 e-A03C4Bu(03C4)d03C4 exists. It implies (iii ). The relations (iv ), (v ) follow
0

as in [2 ]. So the proof is complete.
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