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ABSTRACT. In this paper we consider the Vlasov Poisson equation in
three space variables in the whole space. We show the existence of dispersion
property. With this dispersion property we are able to prove the existence
of a smooth solution for all times under the following assumption : the ini-
tial data are localised and small enough.

RESUME. - On considère 1’equation de Vlasov Poisson en dimension 3,
dans l’espace entier. On degage une propriete de dispersion. L’utilisation
de cette propriete permet de prouver l’existence d’une solution régulière
pour tout temps, pourvu que les donnees initiales soient localisees et

assez petites.

I. INTRODUCTION

We consider the problem of the existence of a smooth solution of the
Vlasov Poisson equation in 3 space variables. The existence of a smooth
solution in one space variable has been proved by Iordanskii [2], and
in two space variables by Ukai and Okabe [6 ]. The results of [2 ] and [6]
rely on Sobolev type estimates and cannot be extended to higher dimen-
sions. Theses methods do not need any restriction on the size of the initial

data, which have only to be smooth enough but on the other hand they
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give no information on the asymptotic behaviour of the solution. Up to
now there was no results concerning the existence of a global smooth
solution for the Vlasov Poisson equation in three space variables. The
method of [6] ] gives the existence of a local, in time, smooth solution,
and one can prove the existence of a global weak solution (This is due to
Arsenev [1 ]). This weak solution may behave badly for large time and
this may be related to the appearance of some kind of turbulence.
On the other hand many authors (Klainerman [3 ], Klainerman and

Ponce [4 ] and Shatah [S ]) have proved the existence of a global smooth
solution for the non linear wave equation in high dimensions with small
initial data. Their method uses basically the dispersive effect of the linearized
wave equation, to balance the effect of the non linear term.
We will follow a similar route for the Vlasov-Poisson equation: this

equation describes the evolution of the density of particules u(x, v, t ), and
reads

where the potential t ) is given by the equations

and p(x, t ) denotes the total density of charge. -

Now the linearized equation is the transport equation :

whose solution is

If we assume that uo(x, v) is bounded by an integrable function h(x) :

we deduce the decay estimate

thanks to the change of variables v -~ ~ = x - vt, x and t being constant.
The decay of order t - 3 (more generally, of order t-d in any Rd space) in
formula (6), will be the basic ingredient of our proof.

Finally, our result shows that, if the initial data are small enough, the
electric field

Annales de l’Institut Henri Poincaré - Analyse non linéaire



103VLASOV-POISSON EQUATION

decays in like t- 2. No phenomena of turbulence nor solitary wave
may appear in this case. We notice that the time is reversible, and in our

proofs, we only consider the case t > 0.
This paper is organized as follows : in section II, we describe the equa-

tions and the classical estimates. In section III, we prove some results
concerning the Hamiltonian. systems which govern the trajectories of
the particules. In section IV, we build up an iterative scheme which leads
to the existence of a smooth solution. Section V is devoted to the proof of
the uniqueness.

II. DESCRIPTION
OF THE VLASOV-POISSON EQUATIONS

We will denote by ua, (1 __ a  N), N positive functions which describe
the density at the point x, and at the time t, of particules of the type a,
which have the velocity v. We denote by qa and ma their masse and charge.
The variation of ua is described by the equations

As usual we have

The electric field E is related to the variation of the functions ua by the
Poisson equation : ~ ,

If we assume that the functions ua(x, v, t ) are smooth, we deduce from (8)
that the function

is constant whenever (x(t ), is a solution of the Hamiltonian system:

Therefore, the positivity and the x of the functions

ua( . , . , t ) is preserved. Furthermore, since the divergence of the vector
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field v, q°‘ E(x, t ) is zero, we deduce from the Liouville theorem that
B ~a /

the L1(R3x x of u03B1 is also preserved :

III. SOME LEMMATA
CONCERNING THE ELECTRIC FIELD E
AND THE HAMILTONIAN SYSTEM (11)

We begin with some notations. For functions p(x) and u(x, v), we shall
denote by [) p lip and )! the usual LP norms :

For a function p{x, t ) we will write:

LEMMA 1. - Let p(x) be a smooth function belonging to the space
n then for the function ~ given by the formula:

one has the following estimates

(In (14) and (15) the constant C is « universal » ; in (16) D~ denotes any
second order derivative and the constant Co depends on 03B8 E ]0, 1 [).

Proof The proof of these estimates is standard. We describe it here
for sake of completeness. Let r > 0, we have
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Now if we take the infimum of the last term of (17) with respect to r we
obtain (14).
Next for we have :

Once again taking the infimum of the last term of (18) with respect to n
we obtain (15).

~2~
Finally, we compute for i ~ j (the computation is similar for i =, j E_

We have 

In the last term of (19) Co denotes a constant depending on 03B8 and ! 
is the sup norm of the Holder quotient

Now from (19) we deduce the relation

Finally from the inequality

(~) In (19) denotes the Cauchy principal value.
Vol. 2, n° 2-1985.
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we deduce the relation :

which, with (21) gives (16) and the proof of the lemma is complete.
Now, we consider the Hamiltonian system

with the Cauchy data :

We assume that the function E(x, t ) = (Ei (x, t ))i -1, 2, 3 is continuous in (x, t ).
and twice continuously differentiable with respect to x. Furthermore,
denoting by VxE the gradient matrix and the second derivative of E
with respect to x, we assume that V xE and ~2xE are bounded in R3x x 
Therefore, by the classical Cauchy-Lipschitz theorem, equations (24), (25)
have a unique solution

defined for (s, t, x, v) in x x x 

Furthermore, for (s, t ) fixed, the mapping

is twice continuously differentiable.
We are concerned with the behaviour for s E [o, t ] and for t large of the

quantities: . , _ _

We will show that this behaviour can be controlled with some informa-
tions on the asymptotic behaviour, for t going to infinity, of the vector
field E(x, t ).

PROPOSITION 1. - We assume that E(x, t) satisfies the estimates

with ri  1. Then, the following estimates are valid for any (t, x, v) in

(~~ x x lFw, and any s such that 0 _ s _ t.
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where Id denotes the identity matrix of (~3, and C any arbitrary constant.

Proo, f : For any fixed (t, x, v) in R+t x x we write

This matrix satisfies the differential equation, obtained from (24) and (25).

Then, thanks to the Taylor formula, we have

Thus, with (26)

Thanks to integrations by parts, it is easy to see that

Now we can apply Gronwall’s lemma to inequality (33) and we obtain

Now, an integration by parts leads to

Then, as ~  1, (34) and (35) give

which proves (38). The other estimates can be shown in a similar manner.

COROLLARY 1. - Under the hypotheses of proposition l, there exists a
constant ~0 > 0 such that, when the vector field E(x, t) satisfies the estimate

the following facts are true :
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lX
I) The determinant of the matrix - (s, t, x, v) satisfies ihe estimate,

lv
valid for any (x, v, t) in R§J x Rfl x and any s such that 0  s  t:

ii) For any fixed (s, t, x) in (~t x ~t x such that 0 _ s __ t, the

mapping :

is one to one.

Proof i ) We use the notations of Proposition 1 and we write :

Now, thanks to (28), the norm of R(s)/(s - t ) goes to zero when ~ goes
to zero, uniformly with respect to (s, t, x, v), and by the continuity of the
mapping M -~ ~ det M ~, we have (41) for ri small. This proves (i ).

ii ) Now we shall keep (x, t ) fixed, and we denote by 8S the mapping (42)
for a given s. We first notice that for s E [t~, t ], with

the mapping 0~ is one to one. Indeed, suppose that there exists an s* in
[t*, t ] and two distinct values vi, v2 such that

Then we will show that the functions Xi(s) = X(s, t, x, (i =1, 2), which
are two solutions of the problem.

coincide on the interval [s~, t ]. This will prove that vl - v2 :
We denote by z (s) the function

With an integration by parts, we obtain
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As we have

we deduce that

This shows that the function z is identically zero on the interval [s~, t ].
Now, we define a number T by

From what precedes, we have T  t. We will show that such a number
does not exist, which implies that the set of s for which the mapping 0~
is not one to. one, is empty.
We denote by X(v, s), the vector X(s, t, x, v), for any fixed (t, x). Let

be such that.

Then, thanks to (41), we can apply the implicit function theorem to the
function

and prove that there exists a function W(s) defined (  ~, such
that one has

~x 
Furthermore, the estimates (28) on - being mdependant on (~s) in

~

[0, ~]. the number s itself is independant on ~2 

Then according to the definition of T, there exists ~ in ]T - s/2, T [,
and two different values ~, ~~ such that

Thanks to what precedes, there exists a function W defined  8,

verifying (53). Now, for s in the interval ]T - 8/2, T + 8/2 [, the points vi
and W(s) never coincide otherwise this would violate point (i ). We have
therefore proved that T is not an upper bound, which ends the proof of
corollary 1.

REMARK 1. - This result seems very classical, though the authors have
not been able to find it in the literature. The Hamiltonian system (24), (25),
is interpreted as describing the trajectories of the particules starting from
the same point x, with velocity v ranging in L1~3. In geometrical optics (or
in hyperbolic partial differential equations), these curves never intersect
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in the space f~x x (~ L . However, their projection on the subspace 
which describe the rays, or trajectories of the particules may intersect.
This corresponds to the appearance of caustics in optics. The turbulence,
in the Vlasov equation may actually be related to the appearance of caustics;
however, in our approach (small initial data, space dimension equal to 3),
we rule out these phenomenas.

IV. CONSTRUCTION OF THE SMOOTH SOLUTION

THEOREM 1. - We assume that the functions v) for a = l, ..., N,
are twice continuously differentiable, and that they satisfy, the following
estimates, for any pair (x, v) in x and any a :

Then, there exists ~0 > 0, such that for E  Eo the Vlasov-Poisson equations

have a global in time solution such that ua(x, v, t) is continuously differentiable
in x (~u x and such that E(x, t ) and p(x, t ) are continuous in f~x x 
Furthermore, this solution satisfies the following uniform estimates.
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Proof We proceed by iteration and introduce a sequence of functions

in the following manner :
We first define v, t ) by the formula

and the charge p and the Electric field Ei by the equations

Now, suppose that ua(x, v, t ) is defined. Then pn and E~ are defined by
the equations

un+103B1 is now supposed to satisfy the linear transport equation

In order to prove the convergence of the sequences ~a, pn and E~ towards
smooth functions, we will need the basic following estimates, valid for 8
small :

where A is a fixed constant which does not depend on n and E. The estimates
on pn and ~x03C1n will permit us to prove that En converges strongly in a
suitable space, whereas the estimate on will give us the regularity
of the solution. We shall prove that, if these relations are true at order n,
they are also true at order n + 1, provided the initial data are small enough.
To this purpose, we will first consider the case t close to zero (0 _ ~  1)
and use the uniform integrability in v (decay of order ( 1 + ~ v ~ ) - °‘, oc > 3);
then we consider the case t large, and use the uniform integrability in x
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(decay of order (1 + ) a > 3). Of course, the estimates of section III
will be the basic ingredients of the proof in the case t large.

First, it is easily shown by iteration, that En and pn are continuous in (x, t)
and twice continuously differentiable with respect to x. So the solution
of (73) is .

where v), t, x, v) is the solution of the Hamiltonian system

In the sequel, Xa, V~ will mean v), x, v) and C will denote
any numerical constant, which may eventually depend on qa and ma,
but not on E, n, and A. From (75) we deduce the following uniform estimates :

Now, we suppose that relation (74) is true at order n, and we apply
lemma 1 (with 0 = 3/5). Thanks to (77), we obtain

So proposition 1 applies and gives with 81/6  1/CA

with (75) we may now deduce the following estimates on pn + 1:

So, thanks to Liouville’s theorem and to (56), we have

and eventually replacing A by Sup (A, C), we deduce that the second
inequality in (74) is true at order (n + 1).
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Now we consider the case o _ t _ 1, and we have

Therefore we have

and, thanks to (81) and (56), we obtain

So, for 8 small, we have :

Similarly, the same estimate is valid for ~x03C1n+1 and 
We can now consider the case t >_ 1. Estimate (79) and corollary 1 proves

that for e small, the mapping

is one to one, and that we have

Therefore, we can use the change of variables v -~ Xa, in the computation
of the integrals which appear in the right hand side of (81), (82) and (83).
This gives, with (55) :

Similar results hold for 1 and Together with the estimates
in the case t _ 1, these relations prove that the first inequality (74) is true
at order (n + 1), which completes the iteration.
We notice the following three other estimates, which will be of some

interest
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(92) and (93) will be used to prove the convergence of the iterative scheme;
T (94) will be used to prove regularity of the solution.
We have indeed, thanks to (80):

and the same arguments as above lead to (92) and (93). Now, with (73),
(75), (80), we obtain

since equality (86) is valid for any time t, we have for small 8:

Thanks to Lebesgue’s theorem, we deduce that pn is differentiable with
respect to t, and that we have

Furthermore, from (86) and (96), we obtain :

So that Liouville’s theorem leads to

Now, with Lemma 1, we deduce that En is differentiable with respect to t,
~ and that (94) holds.

Now, we prove the convergence of the sequences ua, pn, En, to smooth
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solutions. First we fix a time T positive and prove that En converges in the
strong topology of L~([0,T] ] x ~x): we have

So that ua + 1 _ ui is written

Therefore, thanks to Liouville’s theorem, and to formulae (71), (72), we
obtain:

Now, with estimates (92) and (93) on and with lemma 1, we deduce
that we have

and adding (103) for a ranging from 1 to N, we obtain

which by iteration gives

Thus pn converges in the strong topology of L°°( [o, T ], towards

a function p. Futhermore, with estimates (74) and lemma 1, we deduce
that En converges in the strong topology of L~([0,T] ] x towards E,
and that the pair (E, p) satisfies (61).
Now, with estimates (77), ui converges in the weak star topology of

L~([0,T] ] x x towards a function Urx, which satisfies equation (58)
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in the sense of distributions. Furthermore equation (60) is trivially verified.
It remains to prove the regularity and the initial condition (59).

First, estimates (79) and (94) show that E is continuous in [o, T ] x 
similarly, estimates (74) and (98) prove that p is continuous. On the other
hand, the vector ~~x?u)~a+ 1 is a solution of the equation

where A: is the 6 x 6 matrix :

In particular, thanks to (79), A~ is uniformly bounded in [0, T] ] x (~x,
with respect to n. We deduce that

This proves that O~x,~,~ua+ 1, is a bounded sequence in L~([0,T] ] x ~x x 
A similar proof would show that the sequence ~~x,v~ua+ ~ is also a bounded
sequence in L~([0,T] ] x f~X x So and belong to

L~([0,T] ] x f~x x (I~u). Then, using the Vlasov equation (58), we notice

that and belong to L~loc([0, T] x R3x x 

Since 
2014 

is bounded in virtue of estimate (94), 20142014 
also belongs to

] x R3x x w). So, u03B1 belongs to W2,~loc([0, T] x R3x x (Fw), which
proves that ua is continuously differentiable with respect to (t, x, v). Further-
more, u~ is bounded in [0, T j ] x ~x x ~u ), and if we denote

the compactness of the imbedding.

shows that the initial condition (59) is satisfied.
Finally, the uniqueness theorem (section V) proves that the functions E,

and p are defined for t in [0, + oo ] and that the estimates (62) to (67) are
satisfied. This ends the proof of theorem 1.
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V. UNIQUENESS

THEOREM 2. - Let ~ u~(x, v, t) ~i-1,2 be two solutions of the Vlasov-
Poisson equation for t in [0, T ], and assume that they satisfy the following
estimates

Then, if they coincide for t = 0, they coincide everywhere for t in [0, T ].

Proof.. We will follow the method which has been used to prove the
convergence of p,~ in theorem 1: we will show that the charges

coincide for t E [o, T ]. This implies that the electric fields Ei(x, t ) coincide
so that ua and u; are two smooth solutions of the same linear transport
equation, which will prove the uniqueness.
We have

With an integration with respect to x and v, and using lemma 1 and esti-
mates (111), (112), we obtain:
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Adding (115) for oc ranging from 1 to N gives the Gronwall relation

which proves that pi == p2, and ends the proof of theorem 2.
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