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ABSTRACT. - This paper studies the multiplicity of solutions of the
problem:

depending on the parameter t for certain terms ~. The main hypothesis

on f is that, setting/+ = lim f ~x’ S~ in the interval ~ ~- ~ f+ [ there are- 

s

eigenvalues of - 0394 with the Dirichlet homogeneous boundary conditions
on Studying the « bifurcation from infinity » of the solutions of the
problem, multiplicity or sharp multiplicity results are obtained in the
case that such eigenvalues are the first two or the first three or only one
and simple. In such a way we improve or sharpen previous results of Lazer
and McKenna, Hofer, Gallouet and Kavian and of the author.

RESUME. - Nous etudions le nombre de solutions du probleme :

est fixée et t est un parametre. L’hypothese principale sur f est la sui-

vante. Posons f± = hm f(x, s) s ; alors l’intervalle ]f-, f+ [ contient au

moins une valeur propre de 1’operateur ( - A) avec condition de Dirichlet
au bord. Nous etudions la « bifurcation de l’infini » des solutions du pro-
bleme pour obtenir une estimation (dans certains cas exacte) du nombre
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de solutions. Nous considerons principalement les cas ou ] f _, f+ [ contient
les deux premieres valeurs propres, les trois premieres, ou seulement une
valeur propre simple. Nos resultats ameliorent ou precisent certains tra-
vaux de Lazer et McKenna, Hofer, Gallouet et Kavian, et de nous-meme.

1. INTRODUCTION

Let Q be a given open bounded domain, Q c I~n with smooth boundary
aSZ. The quasi-linear Dirichlet problem:

has recently been studied by many authors under the assumption :

We denote by 03BB2, ..., 03BBj, ... the sequence of the eigenvalues of - 0394
on Ho(~), repeating each one as many times as its multiplicity. We also
denote by 03C6k a given eigen-function corresponding to the k-th eigenvalue 03BBk
and which we suppose is normalized in L~(Q). It is well known that the
first eigenvalue ~,1 1 is simple and that ~ 1 has a constant sign, we choose
~1 > 0.
The problem (1.1) has a particular interest when there are some eigen-

values 03BBk in ] f _ , f+ [. It has been first studied when/-  Ai  f+  03BB2
in [7] ] and subsequently in [2 ] [3 [4]. Less sharp results have been obtained
in [5 ] [~ ] [7] when the last inequality : f +  ~.~ is dropped. Actually in [6 ],
the nonlinearity f is allowed to grow more than linearly. The growth restric-
tions have also been subsequently relaxed in [8 ] [9 ]. In these papers the
problem (1.1) has been substantially studied taking h = and showing
that (1.1) has no solution for large positive values of t and has at least
two solutions for large negative t.

More recently higher multiplicity results have been obtained, beginning
with [1 Q ], assuming f -   ~.2  f +  ~, ~ . The hypotheses in [1 D have
been relaxed in [11 ] [12]. Stronger results were obtained in [13] ] [14].
These prove a particular case (i. e. for k = 2) of a conjecture formulated
in [15 ] and proved therein for the ordinary differential equation.

This conjecture states that if f-  03BB1 and 03BBk  f+  03BBk+1 then problem
(1.1) has at least 2k solutions for h = 1 and large negative t. One can
also suppose this estimate to be somehow optimal. In this paper we prove
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a result in this direction stating a sharp estimate on the number of solu-
tions for k = 2, moreover we shall prove the existence of exactly six solu-
tions in some cases where ~,3  f+. In this situation in [14 ] the existence
of at least five solutions is proved. We also study (1.1) when in [f- ,1+ ]
there is exactly one eigenvalue and it is simple. This problem was first
studied in a particular case in [7~] ] and subsequently more generally in [17]
[18 ].
We also give these results in a sharp form, therefore we generalize those

in [19]. Finally further multiplicity results under this last assumption
have been given in [2~] ] [21 ]. In this case we also compute the exact number
of the solutions.
The paper is divided in two sections. In the first we make a general study

of the problem, in the second we give the applications stated above.
In the following we shall denote by E the Hilbert space L~(Q) with norm

and scalar product respectively denoted and ( . , . ). E is ordered by
the positive cone P of the functions a. e. positive in Q. It is well known
that this ordering makes E a lattice. We adopt the usual notation:

2. GENERAL REMARKS

We assume (Fi) in the stronger form :

a) g(u) = f (u) - f’+u+ + ,f u- is a bounded function
(Fz) 

b) ) f E = lim f’(s)
We point out that (F2) (a) is assumed in order to simplify the compu-

tations while (F2) (b) is a relevant condition which cannot be completely
dropped. This condition has been assumed previously so as to determine
the exact number of solutions of some elliptic problems in [19 ] and in [21 ].
Moreover, in the case f-  ~,1  f+  ~2 the exact number of solutions
has been studied assuming that f is a smooth convex function, see e. g. [4 ],
and, of course, this implies (F2) (b).

In order to study (1.1) we also consider the problem

where § is a given term in E.
In view of our applications we always suppose that the ~(x) = 0 }

has zero Lebesgue measure, however this will not be necessary in all cases
but will avoid some difficulties. This condition implies, see [22 ], page 53
and [19 ], prop. 1, that, if u is a solution of (2 .1), also the u(x) = 0 ~
Vol. 2, n° 2-1985.
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has zero measure. We shall denote the Lebesgue measure by Ii. Given u,
we also denote by x(u) the characteristic function of the positive set of u, i. e.

PROPOSITION 2.2. - Given p, q > 1, q  p let us consider the operator
( . ) + , from Lp(S2) into which sends u into u + . If u ~ LP is such that

~c( ~ x u(x) = fl ~ ) = 0, then, given ~ > 0, there exists a neighbourhood U
of u such that, if we write : v + - x(u)v = z(v) for v E U, then the function z is
a Lipschitz mapping with Lipschitz constant less or equal than ~ from U
into Lq.

Proof. 2014 Let 1 = 1 - q . Given E and having that the convergence in Lp
r p

implies the convergence in measure, we choose U in such a way that Vv E U.

and the constant a is such that:

This can be done by using the assumption ,u( ~ x : u(x) = 0 } ) = 0. We denote
by Q(s, v) the union of the two sets appearing on the left-hand side of (2. 3)
and (2 . 4). One has :

Therefore, for given v, w E U, the following holds :

Using Holder inequality and taking into account that

that is :
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REMARK 2. 8. - The previous proposition states in particular that ( . ) +
is Frechet differentiable in u. However, since it cannot be C1 in a neigh-
bourhood of u, one needs all of proposition 2. 2 in order to apply the local
inversion theorem.
Now we set : a(u) = f+ x(u) - f- x( - u) when ,u( ~ x : u(x) = 0 }) = 0. By

the previous remark u is a nondegenerate solution of (2.1) iff the problem

has only the trivial solution v = 0.
By the local inversion theorem, every nondegenerate solution of (2.1)

is an isolated solution. Moreover the above results imply that it has non-
zero local degree.
We denote by 03A3 the set of the pairs (, f + , f - ) such that (2.1) has a solu-

tion 0 for § = 0. A complete general description of 03A3 is not known.
However some results in this direction are known, see [23] ] [77] ] [18 ],
and they cover all the cases which we treat in this paper.
We denote by K the operator (- ~) -1 from H -1 (S~) into and

we consider it as a compact operator on E in view of Sobolev’s imbedding
theorems. The following proposition generates some interest in finding
nondegenerate solutions of (2.1).

PROPOSITION 2.10. - Assume that j is a positive integer and that (2.1)
nondegenerate solutions. Also assume (F2) (a) holds and h = in (1.1).

Then the~~e exist to E ~ such that (1.1 ~ has at least j solutions ij’ t > to.

Proof Let u2, ... , u~ be j nondegenerate solutions of (2.1). Since
the operator on To on E which sends u into u - K( f + u + - f u - ) has in ui
a derivative with a continuous inverse, we can choose a neighbourhood U~
of u; in such a way that the norm of To(u) - K~ is bounded from below
by a positive constant c if u E We can also suppose that U 1, U2, ..., U~
are disjoint sets and that Vi :

as shown in [24 ], Theorem 4 . 7.
denote by g* the Nemytskii operator induced by g and we set

T=To-Kg~~ 1
It is easy to verify that, if t > to = K~( (03A9))2 sup I g the homo-

topy H(s, u) _ (1- s)Tou + sTu for s E [o, 1 ] is admissible in tUi in order
to compute the Leray-Schauder topological degree. Therefore we get:

(2.12) deg (T, tUi, = deg (To, tUi, = deg (To, U~, 0

using the positive homogeneity of To.

Vol. 2, n° 2-1985.
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Since (2.12) holds for any i = 1, 2, ..., j and the sets tU; are disjoint,
the statement easily follows. /

In order to give a sharp estimate of the number of solutions of (1.1)
we need the following lemmas.

LEMMA 2.13. - Let u E E be such that ~c{ ~ x E Q : u(x) = 0 ~ ) = 0 and
let be a sequence ofelements ofE converging in measure to u. Moreover
assume (F2) (b) holds and denote by f~ the Nemytskii operator induced by f’.

Then for any given sequence of positive real numbers such that
tn -~ + oo : converges to a(u) in LP(Q) for any 1  p  + oo.

Proof - Let B > 0 be given and fix M > 0 such that for s > M :

(with the + sign taken according to the sign of s). Furthermore let us choose
a > 0 in order to  2a ~  8. Finally we find 
such that, for n > v, there exists a subset c Q such that f1(Qn)  ~
and sup [ u - un [  a. These conditions imply that, out of a set of measure

~~~n

less or equal than 2E : ~ u ~ > a, [ > oc, uun > 0. Moreover if we also take v
such that: tn > a -1 M for n > v, this will imply that, out of the same set
~ f*(un) - au [  B. Therefore, by easy computations:

n

Given a E L~(Q) one can consider the eigenvalue problem

It is well known that, if a > 0 in a set of positive measure, then the positive
numbers v for which (2 .15) has a nontrivial solution are the terms of a

sequence vi(a), v2(a), ..., via), ... diverging to + ~. Since each eigen-
value vj has finite multiplicity, we can repeat it in the sequence as many
times as its multiplicity.

It is also known (see [25 ]) that, for any j, v j is a continuous and strictly

decreasing function in Therefore, for p  n , lemma 2 .13 yields
the following : 

~

COROLLARY 2.16. - Let uEE be such that 
and suppose vj(a(u)) ~ 1 Vj E N. Then there exists a neighbourhood U of u
and a positive real number to such that b~t > to, Vv E tU, ~ 1
and sign [(v~( f~ (v)) -1 ] = sign [(v~~{a(u))) - 1].
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We also need the following lemmas.

LEMMA 2.17. - Assume (F2) (a) and that and let 03C6 ~ E
be given. Assume that U is a neighbourhood of all the solutions of (2 .1 ~ .
Then there exist to E L~ such that (1. ~ ~ has no solution u E E ~ tU for h = 
t > to.

~roo~ f: - Choose by contradiction a sequence in E B U and a
sequence of real numbers diverging to + oo in such a way that tnun
is a solution of (1.1} for h = Dividiving both the sides of (1.1) by tn
one gets :

The assumption (~ f+ , f _ ) ~ ~ implies that the sequence un is bounded in E
and this implies by (2.18) that it is also bounded in By the
compactness of the Sobolev’s imbedding it has a subsequence converging

o -

to some u E E BU. Taking the limit in (2.18) one finds that u is a solution
o

of (1.1), which is a contradiction since u ~ U. tt

LEMMA 2.19. - Assume ( f+, f-) ~ 03A3 find that all the possihle solutions
of (1.1) are nondegenerate. Then (1.1) has a finite number of solutions.

Proof The statement follows from a simple compactness argument
since remark 2.8 implies that any solution is isolated. /

Collecting the results in this section we get the following :

THEOREM 1. - Let (F2) hold and let ( f + , f _ ) ~ E. Moreover suppose that
(2.1) has no degenerate solution. Then {2.1) has a finite number j of solutions
and (1.1) has exactly j solutions for h = t~ and t large positive, and they
are nondegenerate.

Proof By the previous lemma (1.1) has a finite number of solutions
u~, u2, ..., u~. For any == 1, 2, ..., j we choose a neighbourhood Ui in
such a way that the results of proposition 2.10 and Corollary 2.16 hold.
By proposition 2 .10, (1.1) has at least a solution in each Ui for h = t ~
.nd large positive t. Using Corollary 2.16 we find that these solutions are
not degenerate since the ui are not degenerate. Moreover for any possible
solution u E t U~ we get :

and this implies that one has exactly a solution M in each Finally
.1

lemma 2.17 states that (1.1) has no solution u ~ ~t Ui.
i= 1

Vol. 2, n° 2-1985.
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REMARK 2 . 21. - In order to apply the previous theorem one has in
general to prove « a priori » that {~ f ’+ , f _ ) ~ E, and that (2 .1) has no degene-
rate solution. This does not seem to be a simple matter in the general case.
However we can prove this in some cases of particular interest, as we shall
do in the next section.

3. APPLICATIONS

We treat first the case f-  ~,1  ~, 2  f +  ~.3 . Multiplicity results
under this assumption have been given in several recent papers, see e. g. [13 ],
[14 ]. In the last two papers it is proved that, if one assumes (Fi), then (1.1)
has at least four solutions for h = 1 and large negative t. In order to
apply Theorem 1, we prove:

LEMMA 3.1. - Assume f-  a 1 and ~.k for a given integer k > 2,
take ~ _ - c~ ~ . Then u is a solution of (2 .1 ~ which changes sign in Q,
one has

Proof 2014 We use in a relevant way that the functions vj are strictly
decreasing in L~‘~2(S2). Let us point out that (2.1) has the positive solution
u = ( f+ - ~.l) ~ ~ ~ and the negative solution u = ( f - ,~ 1) ~ 1 ~ 1. Writing
(2 .1) for u and fi and subtracting we get :

, ...f’+(~ - u+) 
Let us use the notation a = 

_ 
.

We have the inequalities : 
u - u

By (3 . 3) v j( a) = 1 for some j and by (3 . 4) this j belongs to { 1, 2, .... , k -1 ~.
One makes similar computations with u and finds a function a such that

= 1 for some j’ E ~ 1,2, ..., k - 1 } and

the statement follows..

LEMMA 3 .8. -  ~  /L? ./+  ~3. Then, .for (~ == 2014 (~i,
(~2.7~ has exactly four solutions and they are nondegenerate.
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P~oo~ f: The statement follows from the previous lemma which ensures
that any solution which changes sign is nondegenerate and has local degree
- l. Since we know that the solutions of constant sign only are u and fi and
that they have local degree 1, by using the equality:

which is proved in [23 for large positive r, we complete the proof..

REMARK 3.10. - The solutions of unconstant sign also have a varia-
tional characterization since they can be found by using the mountain-pass
theorem, [26 ], Theorem 2 .1. Therefore the computation of the local degree
can be also made by using the results in [13 ].

REMARK 3.11. - In the case f+ = Àk one has a branch of positive
solutions which are given by fi +~ ~ for t/1 belonging to a closed convex
bounded and absorbing neighbourhood A of zero in the eigenspace Vk
corresponding to ~,k . In the following lemma we study some properties
of this set of solutions.

LEMMA 3 .12. - Suppose f+ - ~k, ~ _ - ~ 1. T hen ~ + A is an isolated
set of solutions and, if one also assumes ~,k_ 1  ~,k, it has local degree (-1)k- I.

Proof By continuity choose a neighbourhood C of fi + A such that

if u E C and ~c{ ~ x : u(x) = 0 } ) = 0 then  c  1. Of course

lemma 3.1 implies that in C there is no solution which changes sign.
This situation is preserved if we make a little perturbation of the data
taking/+  ~,k. In this case lemma (3 .1) tells that in C there is only the
positive solution and, since it has local degree (- l)k-1 the lemma is proved.

REMARK 3.13. - If k = 3, by applying the previous lemma and
lemma 3.1 and arguing as in lemma 3.8 we find that, for f-  and

~,2  f+ - ~.3 and § = - ~i, problem (2.1) has exactly two solutions
of unconstant sign.

LEMMA 3.14. - Suppose ~,2 and ~,3 be simple and f-  ~ I be given.
Then there exist E > 0 such that if ~.3  f+  ~,3 + E then (2 .1 ~ has exactly
six solutions for 03C6 = - 03C61 and they are nondegenerate.

Proof We know that for f+ - ~3 there are exactly two solutions of
unconstant sign and that they are nondegenerate. Therefore they are
preserved for small perturbations of f+ . Moreover, since the preceding
lemma states that deg (To, C, - = 1 and, by continuity, for e small
enough all the solutions which are out of C and which change sign have
local degree - 1, we have exactly two solutions which change sign out of C;
finally for any solution u E C, which changes sign, by lemma 3.1 and a conti-
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nuity argument one gets : v2(a(u))  1  v3(a(~)). Since the positive solution
fi belongs to C and it has local degree - 1 using again that

one concludes that also in C there are exactly three solutions and that they
are not degenerate..
Using these lemmas we can now give some results concerning the pro-

blem (1.1). We shall always choose h = and we shall refer to (2.1)
assuming c~ _ ~ 1.
THEOREM 2. - Assume (F2) hold and let: f-  ,~ 1  a~2  f+ . Then there

exist to E IR such that (1.1 ~ has at least four solutions for t  to, Moreover

if we also assume f+  ~.3, then the solutions are exactly four and they are
nondegenerate.

Proof - The first part of the statement is proved in [13 ~,~ Vj.
Therefore we and choose k in such a way that  ~.k.
We use the ideas in lemma 2.10 to find a neighbourhood U of u and to E IR
such that (1.1) has a solution in tU for t  to (one can observe that this
is the negative solution found in [11 ] Theorem 1). After we use lemma 2.13
to state that this negative solution is nondegenerate and that for any u E tC :
vk_ ~( f~(u))  1. In [13 ], it is proved that (1.1) has also a solution u, found
by using the mountain pass theorem and that it has local degree -1. Since
v2(~’~(u)) > 1, as shown in [13 ] and k > 3, it follows that u  tC. We argue
as in Lemma 2.10 to prove that: deg (T, tC, Kt ~ 1 j ~ 0. Therefore one
gets the existence of a third solution in tC and since deg (T, B(0, r), Kt ~ l) = 0
if r is large enough (depending on t ), see [23 ], one also has :

So we finally find a fourth solution in B(o, r) B t C.
The last part of the statement immediately follows from Theorem 1

and lemma 3.8. II

REMARK 3.16. - In the previous proof we used (F2) (b) also to prove
an existence result. It is not difficult to observe that assumption is not
completely essential in this case. However if one wants to drop it, one
can work as in [l 1 ] § 3 in order to prove This requires a variational
approach to (1.1) and we do not want to introduce it here.
The following is a straightforward consequence of Theorem 1 and

lemma 3.14.

THEOREM 3. - Suppose ~ 2 and ~.3 be simple and f-  ~?~ be given. Then
there exist ~ > 0 such that  f+  ~.3 + E then (l .1 ) has exactly six dis-
tinct solutions for large negative t and they are nondegenerate.
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In the following we shall always suppose that 03BBk is a given simple eigen-
value, k ~ 1, and that  f -  03BBk  f+  03BBk+1. Problem (1.1) has been
studied in this case in [17 ]. In that paper it is proved that there exists a
unique constant C( f+, ,f-) such that (2 .1) has a solution u, (u, cPk) = 1,
for § = The function C defined in this way on ]~,~ _ 1, [2,
turns out to be continuous and strictly decreasing in each of the two varia-
bles, moreover: C(~,k, ~.k) = 0. Using the positive homogeneity of {2 .1 ),
one easily sees that CCf+, f-) > 0 is equivalent to ask that (2.1) has a
solution u, 0 for § = We refer to [77] for more informations
on the function C and on the possibility to compute its sign. We use it

now to give the following result.

THEOREM 4. - (F2) holds and C( f +, f-) > 0, take h = 

Then for large positive t (1.1) has exactly a solution u such that (u, 0

and it is nondegenerate, for large negative t (1.1) has no solution u such that
(u, ~ 0.

Proof The theorem follows from a version of Theorem 1 on the half
space { u : (u, ~~) > 0 }, which can be proved in the same way, if we show
that any solution u of (2.1) is nondegenerate if § = Suppose by contra-
diction that it is not true and let v be a nonzero function such that :

By (2.1) and the Fredholm alternative we get (v, = 0. Now we denote

by K’ the inverse of - 0 - 
~k-1 + ~k+1 

I on with the homogeneous
2

Dirichlet boundary condition, and by L the mapping which sends ~ E ~k in

where we denote by Pk the orthogonal projection onto Vk == tR - ~k .
It is not difficult to see that L is a contraction on ~k and L(0) = 0. Since

(3.17) states that L(v) = v, v = 0 follows..
One can consider the analogous of the previous theorem replacing ~~

by - ~k, which is equivalent to changing the order of the variables of C.
Combining these one gets results of zero-two solutions in a sharp form,
see [17]. Finally we point out that the analogue of the role of the condi-
tion { f + , f _ ) ~ E, which was assumed in Theorem 1, is played by the implicit
assumption: C( f+, f-) ~ Q ( [17 ]). In the last application of this paper
we assume on ( f+, f ) the same condition as in the previous theorem
while we take h = in (1.1) and § = ± 03C61 in (2.1). We use a compa-
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rison argument like in lemma 3.1. However (2.1) has now the positive
solution only with the - sign and has a negative solution with the + sign.

LEMMA 3.18. - Let u be a solution of unconstant sign of (2.1) for
03C6 = ± 03C61. Then u is nondegenerate and  1  where
the - sign is taken while vk(a(u))  1  vk+ 1(a(u)) when the + sign is taken.
The proof of this lemma is completely similar to that of lemma 3.1 if

one takes into account the difference pointed out above.
+ Using this lemma we can compute the exact number of solutions
of (2.1) arguing as in lemma 3.8. To this aim we recall that when

C( f+ , f )C{ f , f+) ~ 0 then it is possible to compute the degree deg (To,
B(o, r), + if r is large enough and we have:

LEMMA 3 . 20. - Suppose C(, f ’+ , f _ ) > 0, C( f _ , f ’+ ) > 0. Then (2 .1 ~ lzas
one solution for the + sign and three for the - sign. Sup-

pose C( f+ , f _ )  0, C{ f _ , f+ )  0. Then (2 .1 ) has exactly three solutions
for the + sign and exactl y one for the - sign. Suppose C( , f + , , f _ )C(~ , f + )  o.
Then (2 .1 ) has exactly two solutions for both + and - sign.
Moreover all these solutions are nondegenerate.

Proof. We prove the first statement and omit the proof of the last
two, since it is completely similar. With r~ = c~ ~ one has the negative solu-

tion u = 1 - 1 J .~-W . Obviously it has local degree ( - 1 ) k -1. Since we

easily see that (2.1) has no positive solution, and therefore we know by
lemma (3 .18) that any other solution has local degree ( - 1)k, by the first
inequality in (3 .19) we see that {2.1) has no more solutions. For § = - c~~
we find the positive solution u which has local degree (- 1)k and by
lemma (3 .18) we know that any other solution has local degree ( - l )k -1.
Therefore, by using the first equality in (3 19), we see that (2.1) has exactly
two more solutions..
We finally state a straightforward consequence of the previous lemma

and Theorem 1, which sharpen similar results in [20 ] and [21 ].

THEOREM 5. - Let hold and  f-  ~k  _ f+  ~.k + 1 ~ If we
take h = in {1.1) the following holds.

l,f’ C( f+, f_) > 0 and C( f_, , f’+) > o then (1.1 ) has exactly one solution
for t large positive and exactly three for t large negative.

- Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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If C~f+, f- )  0 and C(.f_, f+)  0 then (1.1~ has exactly three solutions
for large positive t and exactly one for large negative t.

IfC( f+ , f -)C~ f - f+)  0 then ~l .1 ) has exactly two solutions for large t
in modulus.
Moreover all these solutions are nondegenerate.
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