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ABSTRACT. — The question of radially symmetric cavitation for a ball
of hyperelastic material is considered. It reduces to a non-linear boundary
value problem for a singular second order differential equation. For a
broad class of stored-energy densities, the shooting method is used to

determine whether or not cavitation occurs under various conditions on
the boundary of the ball

REsumt. — On considére la question de cavitation avec symétrie
radiale d’une boule d’un milieu hyperélastique. Elle est ramenée a un pro-
bléme aux limites non-linéaire pour une équation différentielle singuliére
du deuxiéme ordre. Pour une grande classe de densités d’énergie, la méthode
du tir permet de déterminer si oui ou non il y aura cavitation sous des
conditions diverses sur le bord de la boule.
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34 C. A. STUART

1. INTRODUCTION

LetQ = {xeRN:|x| < 1} where N > 2 and consider a piece of homo-
geneous isotropic material occupying the region Q. Radial deformations
of this body are given by functions u : Q@ — RN which have the form,

U(r)
u(x)=Tx where O<|x|=r<l1
and U : (0,1) — (0, o). A radial deformation is in equilibrium if u satisfies
the equations of elastostatics and these reduce to an ordinary differential
equation for U which is given in section 2. In order to avoid self-penetration
of the body, it is natural to require U to be strictly increasing on (0, 1).
If U(0) = rl_@{)n)r U(r) = 0, the deformed body corresponding to U is again

a ball of radius U(1) = ,l_ifln, U(r). If U0) > 0 the deformed body is a ball

with a spherical hole in the middle. In this case the original solid ball has
ruptured and a spherical cavity of radius U(0) > 0 has formed. The basic
problem is to establish the existence of radial equilibrium deformations
with cavities and to discuss their stability. These issues are the subject
-of a fundamental paper by Ball [/].

The contribution which we offer differs from Ball’s work in two respects.
Firstly we deal directly with the ordinary differential equation for U
corresponding to the equilibrium equations. Our results are obtained by a
version of the « shooting method » and so involve only elementary argu-
ments for differential equations as opposed to the combination of varia-
tional and differential equation techniques employed by Ball. Since we
deal only with solutions of the equilibrium equations our discussion cannot
yield a complete analysis of the stability of the solutions. This involves the
study of the energy in a full neighbourhood of a solution in an appro-
priate function space. In this respect our analysis of the problem is less
complete then Ball’s. On the other hand we deal with the general form of
the constitutive assumption for nonlinear hyperelasticity rather than the
special form (4.4) treated by Ball. To carry through our analysis we make
a number of assumptions concerning the function which gives the stored-
energy per unit volume in terms of the deformation. When we interpret
these assumptions in the special case treated by Ball, we find that they
reduce to conditions which are rather similar to (but in some respects
less restrictive than) those introduced by Ball.

Having stressed the differences between the present approach and that
used by Ball, let me close this introduction by acknowledging the extent
to which I have benefitted from the numerous insights contained in Ball’s

paper.
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CAVITATION 35

The rest of this article is set out as follows. In section 2 the equilibrium
equations are given and the problem is formulated as a nonlinear boundary
value problem. The main results are then stated informally in section 3
and the method of proof is outlined. Section 4 contains the exact hypotheses
concerning the stored-energy function which are used to obtain these
results. The proofs of the main results are given in section 5, together with
some additional qualitative information about the behaviour of solutions.
Finally in section 6, the energies of the various solutions are compared.

2. FORMULATION
OF THE BOUNDARY VALUE PROBLEM

Letu:Q < RN —» RN be a sufficiently smooth deformation and let S(x)
be the corresponding Piola-Kirchhoff stress matrix at x € Q, [2, Chapter 7].
In the absence of body forces, the conditions for equilibrium are that,

N

i{Sij(x)}zo for 1<i<N 2.1
axj
=1
and

S(x)F(x) = F(x)S(xY, (2.2)

ou;
for x e Q, where F;{x) = a—u (x)for 1 < i,j < Nand ¢ denotes the transpose
x .

of a matrix. The matrix F(x) = Vu(x) is referred to as the deformation
gradient at x. Physical deformations are one to one and are subject to the

restriction
det Vu(x) > 0 forall xeQ (2.3)

[2, Chapter 2].
A material is said to be hyperelastic if there exists a function W: M - R
such that
S(x) = T(Vu(x)) for xeQ, (2.4
for all physical (sufficiently smooth) deformations where M is the set of
(N x N)-matrices having positive determinant and

oW
T(F) = F ) for FeM (2.5

is called the Piola-Kirchhoff stress at F, {2, Chapter 8]. The function W is
known as the stored-energy function for the material and the Cauchy stress
at F e M is defined by

_T(EF
" detF

T(F) (2.6)
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36 C. A. STUART

The assumptions of frame indifference and isotropy of the material imply
[1; section 3] that W can be expressed in the following way:

WF) =D, ...,0n) for FeM, 2.7

where @: (0, 0¥ —» R is a symmetric function and v,,v,, ..., vy are
the eigenvalues of (F'F)%. It follows from this that
T(F)F* = FT(Fy YVFeM (2.8)

and so the conditions (2.2) are satisfied by every physical (sufficiently
smooth) deformation of a hyperelastic material. Thus the conditions for
equilibrium reduce to,

N 6 |
25; {T,i,-(Vu(x))} for 1<i<N, (2.9)

for xeQ, where T is given by (2.5).
For a hyperelastic material, the total stored energy of a deformation
u: Q — RNis given by

Eu) = J W(Vu(x))dx (2.10)

and the equilibrium equations (2.9) are scen to be conditions that u be a
stationary point of E in some suitable function space.

Henceforth Q = { xe RN: | x| < 1} and we consider only radial defor-
mations:

ux)=—="x for O0<|x|=r<1 (2.11)
¥

where U : (0, 1) — (0, o). Thus,

U Ur | x®x
Vu(x) = ﬂI + [U'(r) — ﬂ:‘ 6? (2.12)
r r ¥
is a symmetric matrix with eigenvalues,
U(r) :
v; =U(r) and v;=-— for 2 <i<N.

’
Hence,

det Vu(x) = U'(r) [E@]N M
r

if and only if U’(r) > 0. In keeping with (2.3) we require that
U'(ry>0 for 0<r<1 (2.13)
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CAVITATION 37

and we note that this excludes self-penetration of the body. Furthermore
for a radial deformation,

T(Vu(x)) = @1 + [@; — D,]

d
o [ue) o ), Tx@x
T(Vu(x)) = U'(r) T — q)2 U (r) ——;— q)2 r2

xX® x
2

(2.14)

(2.15) -
where ®; denotes the i-th partial derivative of ® evaluated at the argu-
U(r) U(r) . . : .

ment | U'(r), —, ...,——]. With this notation, the equations (2.9)

r
for equilibrium for a radial deformation reduce to,

d

raq)x:(N—l)[q’z—qh] (2.16)

which is a second order ordinary differential equation for U: (0, 1) — (0, c0).

In a displacement boundary value problem [2, Chapter 10] the value
of u is prescribed for all x e Q. For a radial deformation, this amounts
to specifying the value of U at r = 1. Thus

Ul =4 where 4> 0 isgiven. (2.17
For a radial deformation without a cavity we have
U) = rlirglJr U(r) =0, (2.18)

whereas, if there is a cavity,
U(0) > 0. (2.19)

In the case of a cavity (vacuous), the Cauchy stress on the boundary of the
cavity should be zero. Thus we require

-
lim T(Vu(x))i: — lim [E@} "o, ¥ = 0 (2.20)

r—=0+ r ¥

(r)

U
where @, is evaluated at ( (r), — (r)) (More generally, if the
r

cavity is filled by material with hydrostatlc pressure y, then (2. 20) is replaced

by 1—-N
lim ([Er@} O, = y) (2.21)

Summarising these formulae, the problem of radially symmetric cavitation
for a displacement boundary value problem for a homogeneous isotropic
hyperelastic material can be formulated as follows. Find

UeC([0,1]) n C?((0, 1))
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38 C. A. STUART

such that
U@r) >0 and U@ >0 for 0<r<1, (2.22)
r%®1=(N—1)[®2—<D1] for 0<r<1, (2.23)
' Ul)=4>0 (2.24)
and either Uy =20 (2.25)
or U@©) >0 and lim T(r) =0 (2.26)

where ®; denotes the i-th partial derivative of ® evaluated at

(U’(r), v . @)

r - r
Tr) = [Er@} . D,. (2.27)

Using our Lemma 8 and the fact that (2.23) can be written as

and

%{TN71®1 } = (N - l)rﬂ-zq)z,

it follows from Ball’s Theorem 4.2 that if U satisfies (2.22) to (2.26) then
the function u defined by (2.11) belongs to W-2(Q) for all pe [1, N) and
is a weak solution of the system (2.9) in the usual sense.
Cavitation is also of interest for other types of boundary value problem.
In a Cauchy traction boundary value problem the Cauchy stress is pres-
cribed for all x € Q. Thus -

T(Vu(x)n(x) = y(x)  for xedQ

where y: 80 — RN is a given function and n(x) denotes the unit outward
normal to the deformed boundary at the point u(x). For a radial defor-

mation (2.11), we have n(x) = T~ X since 9Q = {xeRY:|x|=1} and
r

T(Vu(x))x = [U(1)]* "N, (U(1), UQ), ..., U1)x
for x € 0Q. Thus the function y must have the form, y(x) = Px for xe 0Q
where Pe R is a given constant. For radial deformations the problem for
the Cauchy traction problem reduces to the system (2.22) to (2.26) with
the condition (2.24) replaced by
[UMT ~NoUr(1), U(), ..., U(1) = P (2.28)
where Pe R is a given constant.

Annales de I'Institut Henri Poincaré - Analyse non linéaire



CAVITATION 39

In a dead-load traction boundary value problem, it is the Piola-Kir-
chhoff stress which is prescribed at for all x € 6Q. Thus

T(Vu(x))N(x) = y(x) for xedQ,

where y: 8Q — RY is a given function and N(x) is the unit outward nor-
mal to éQ at the point x. For a radial deformation, N(x) = x for x e dQ and

T(Vu(x))x = @,(U’(1), U1), ...,Ul)x  for xedQ.

Thus the fonction y must have the form y(x) = px for x € 9Q, where pe R
is a given constant. For radial deformations (2.11), the problem of cavita-
tion for the dead-load traction boundary value problem reduces to the
(2.22) to (2.26) with the condition (2.24) replaced by

O, (U(1), UL, ..., Ul) =p (2.29)

where pe R is a given constant.

Our results are obtained primarily for the displacement boundary value
problem. However they do yield some information about both the Cauchy
and dead-load traction problems. Observe that if we have a radial solution
of a Cauchy traction problem there exists a value A > 0 (depending on P
and denoted A(P)) for which this solution satisfies the displacement boundary
condition,

U(l) = AP).

Conversely, by considering all radial solutions of the displacement problem
for all positive values of A we obtain the solutions to all Cauchy traction
problems for all possible values of P. If U satisfies the displacement pro-
blem with U(1) = 4, it satisfies the Cauchy traction problem for

P=1""No(U(1),4,...,4) (2.30)
Similarly, we obtain solutions of the dead-load traction problem for
p=0,(UM), 4, ..., 4). (2.31)

Finally we note the expression for the total energy of a radial deformation
associated with each of these boundary value problems:

PU (1)¥
EC(®) = ED () ~ —— o, (2.33)

ET (u) = ED (1) — pU (Non, (2.34)

where wy is the surface area of the unit sphere in RN, and ED, EC and ET
refer to the displacement, Cauchy traction and dead-load traction problems
respectively.
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40 C. A. STUART

3. DESCRIPTION OF THE RESULTS

The analysis of the boundary value problem (2.22) to (2.26) is based
upon the following observations.
For a > 0, replace the conditions (2.25) and (2.26) by the condition,

U(l) = a. 3.1)

Let U(4, o) denote the (unique) solution of the initial value problem posed
by (2.22) to (2.24) and (3.1). Solving the original boundary value pro-
blem (2.22) to (2.26) then amounts to identifying, for each A > 0, those
values of a > 0 such that U(4, «) satisfies either (2.25) or (2.26).

For ¢ > 4 > 0, we show that U(4, «) cannot be defined on all of the
interval (0,1] and so such solutions cannot lead to solutions of (2. 25)
or (2.26). For o = 4 > 0, it is easily seen that

U(4, A)r) = Ar for r>0

and so U(4, A) satisfies (2.22) to (2.25). This is a homogeneous radial
deformation without cavity. For 0 < a < A, we show that U(4, ) is defined
on (0, 1] and that U”(r) > 0 on {0, 1). Hence we have

0<A—a< U, a)0) < 4.
Furthermore we find that for 0 < o < A,
(A @) = lim T(L, a)r) exists
- U PN Ul U
where T, a)r) = [—@] <1>1<U'(r),ﬂ,. . ﬂ)
r r r

and U = U(4, a). THus, for 0 < a < A, solving the problem (2.22) to (2.26)
amounts to finding « such that (4, a) = 0.
Let A={(A, 0)e R*: 0<a < A }. Weshow that7: A — Ris continuous,

74, .):(0,1) - R is strictly increasing,
T(.,a): (o, 00) = R is strictly increasing
Jim (4, 0) = — and Am (4, ) = g(d)

where a formula for g(A) is given. The function g: (0, ) — Ris continuous
and strictly increasing with lim_g(A) = — oo and lim g(4) =
[It is important to realise that
gA) = 1A, A=) # 1A, ) = A1 ND(A4, 4, ..., A).
Infact,  gi) = dhA") <t(LA)  VA>0.]
From the properties of ¢ and g which have just been described, it follows
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CAVITATION 41

that there exist a value A* > 0and a continuous function w : (4*, c0) — (0, c0)
such that w(i)e (0, A) for all A > A* and

{(LoeA:tha)=0}={(AWA): 1> 1*}.

Thus, for 0 < A < i*, the problem (2.22) to (2.26) has only one solution,
namely U(A, 1) and this has no cavity. For A > A*, the problem has exactly
two solutions, namely U(4, 1) and U(4, w(4)). The deformation correspon-
ding to U(4, w(A)) has a cavity of radius R(1) = U4, w(4))(0) > 1—w(1) > O.
We show that R is a strictly increasing, concave continuous function
with _lim R(4) =0 and lim R(4) = oo.

In fact, the thickness of the shell is A — R(1) < w(1) and }gg w(d) = 0.

Furthermore, U(4, w(1)) converges to the homogeneous deformation
U(4*, 2*) uniformly on compact subsets of (0,1] as A — A*+. In this
sense there is a bifurcation from the homogeneous solutions to solu-
tions with cavities at A = A*. See Figures 1 and 2.

We now discuss the location of the critical value A*. A value of A such
that ®,(4, 4, ..., A) = 0 is called a natural radius for the body because,
for such values of i, the Piola-Kirchhoff (equivalently Cauchy) stress
associated with the homogeneous deformation U(4, A)(r) = Aris everywhere
zero in Q. Our assumptions imply the existence of at least one natural
radius, but since we make no assumption about the monotonicity of
AUR®, (A, ..., A), there may be several such values. In any case, if Agy
is any natural radius then A* > A_,. This follows from the fact that

g) < AUNOU(L A, ..., D) YA>0.

The exact value of A* .can only be obtained in very special cases because
the formula which gives g(4) involves the integration of a function Q(4)
which is defined as the (unique) solution of a first order ordinary diffe-
rential equation satisfying the initial condition, Q(A)(t) =41 at t = 4. In
general, this solution Q(4) is not known explicitly and so only estimates
for g(1) can be found by using approximations to Q(4). This implicit cha-
racter is common to our bifurcation equation, g(4) = 0, and to Ball’s
bifurcation equation [/, (7.31)] which also involves the solution of a
differential equation. However our equation is obtained in a more direct
way from the equilibrium equation. For 1 > 0, let ED, (1) be the total
energy of the homogeneous displacement U(4, 1) and, for A > A*, let

ED, (4) be the total energy of the solution U(4, w(4)) having a cavity. It
turns out that

ED, () = N®(, 4,...,0) VA>0
and N

ED, (A):% {DW(A), A, ..., A)
+ A= WO WAL A . D)) YA A% (3.2)
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42 C. A. STUART

Y

A* A

F1G. 1. — The solutions corresponding to the branch a« = 1 are the homogeneous defor-
mations U(4, A)(r) = Ar and have no cavities. The solutions corresponding to the branch
o = w() have cavities of radius R(A). There are no other solutions.

. —
»
A
FiG. 2. — The cavity radius, R(%), is an increasing, strictly concave function of 1 with
. . . dR(A)
0= lim R(4) = lim {1 — R(A)} and lim —— =1
A ax iAo v dA

For the displacement problem, the energy ED(4) of the solution U(4, w(4)) increases conti-
nuously from ED,(A*) to + o0 as A increases from A* to + co, where ED,(4*) is the energy

of the homogeneous deformation U(A*, A*)(r) = A*r. Furthermore ED.(2) < ED,4)
for all 4 > A*.
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CAVITATION 43

R(P)
* >
P P
Fic. 3. — For the Cauchy traction problem, let R(P) = R(4p) be the cavity radius for
P (0, P*) where Ap is the unique solution of P = i} "N®(w(4p), dp, . . ., 4p). As P increases

from O to P*, Ap decreases continuously from + co to A* and the energy, EC(P), decreases
continuously from + co to EC,(P*) (the energy of the homogeneous deformation r — A*r).

cavity radius, R(A b )
. —
Vo
p¥ p
Fic. 4. — In the dead-load traction problem, there may be several values, Ap, such that

p = DOy(w(dp), Ap, - . ., Ap). In any case, as p tends to + oo, the radii of cavities tend to
infinity and the energies of solutions also tend to infinity.

Vol. 2, n° 1-1985.



44 C. A. STUART

Our hypotheses imply that,
ED, (1) < ED, (1) YA > A*
indicating that cavitation is energetically favourable for the displacement

problem when A > A*. We also have that ED, (1) is strictly increasing on
(A*, o0) with

Alig& ED. (1) = ED, (1¥) and }Eg ED.,(4) = + «©

The Cauchy stress on the boundary of Q for the solution U(4, w(A)) is,
V) = A2 Now(d), 4,...,4) (3.3)

and it turns out that this quantity is strictly decreasing as A varies from A*
to oo, with
lim V(4) = [A*]) ND (A%, A%, ..., %)

A A*

(the Cauchy stress for the homogeneous solution U(A*, 1*))and }im V(4)=0.

Thus the Cauchy traction problem has a solution with a cavity if and only
if the constant P in (2.28) satisfies P e (0, P*) where P*= [A*]! "N, (A1*,
A*, ..., A%). For each P (0, P*), there is a unique solution of the Cauchy
traction problem having a cavity and this solution is given by U(Ap, w(Ap))
where Ap is the unique value of A > A* such that 1* "N®;(w(A), 4, ..., )=P.
We observe that Pki& R(4p) = oo and pl.i%R R(Jp) = 0. The total energy

associated with the deformation U(4p, w(4p)) for the Cauchy traction pro-
blem is, by (2.33) and (3.2),

EC.(P) = ED, (4p) — P4} %
= %E { ®(W(4p), Ap, - . ., Ap) — W(Ap)D1(W(Ap), Ap, - . ., Ap) } G-

and our hypotheses imply that Plirgl+ EC.(P) = + .

For the dead-load traction problem, we denote by D(A) the Piola-
Kirchhoff stress on 9 for the solution U(4, w(4)). Thus, for 1 > A*,

Our hypotheses do not ensure the monotonicity in A of this quantity,
but we do show that llirirtlJr D(4) = ©4(4*, A%, ..., A*) (the Piola-Kir-
chnoff stress p* for the homogeneous solution U(4*, A*)) and }im D(1)= c0.

From this we can conclude that the dead-load traction problem has a
solution with a cavity if and only if the constant p in (2.29) belongs to
a semi-infinite interval G and (p*, ) = G. For pe G there is at least
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CAVITATION 45

one value of A > A* such that ®;(w(4), 4, ..., 1) = p and we denote such
a value by 4. The total energy associated with the deformation U(Ap, w(Ap))
for the dead-load traction problem is, by (2.34) and (3.2),

ET. () = ED. (3,) — pAyoon
= X UML), g s )= [N = Dy W) 100 y) A )}

(3.6)
See Figure 4.

4. ASSUMPTIONS ON THE STORED-ENERGY FUNCTION

We consider the function introduced in (2.7).

Al) ®:(0,0)N - R is of class C* and symmetric. Thus

D(o(vy, ...,08) = Dy, ..., 08)

whenever ¢ is a permutation of the N variables (v, . . ., vy). It follows that
Oy(vy, ..., 0n) = Oa(v1, ..., V) if Uy =0y
and Dy(vq, ..., 00)=Divy, ...,on) for 22 if v,=0v5...=0vn.

Since we are concerned only with radial deformations our considerations
only involve @ and its partial derivatives evaluated at arguments of the
form v, = vy ... = vy and this will be indicated by writing

Dyq,t,...,1t) for g, te(0, o).
A2) ®y4(g, t,...,t) > 0Vq, te(0, ) and 3 constants C > 0 and t, > 0

such that ®;(q,t,...,t) = C2®™ "V whenever 0 < g <t and t = t,.
A3) ¥b > 0 we have

lim N oLt ==
(@0)~(0,b) q)l(q’ t7 s t) oo
and
lim ' NDd(g,t,...,t) = + 0.
(@)~ (b, ) ila )
Ad) lim ! Nd,(t,t,...,1)= — ©
=0+
and lim ! N®(t,t,...,t) = + @
t— o
D, — @

AS) inf ® > —oo and tl —®,, <0  Vq,te(0,00) with g#t
q—

where the partial derivatives of @ are evaluated at (g, ¢, ..., 1).
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46 C. A. STUART

Let P:(0,0)* > R and R:(0, ©0)> > R be the functions defined as
follows:
D)= Dy(g 1y st
(DZ(CL t7 s t) l(q ) fOr q £t
Pg, t) = q-—t 4.1
(I)lz(t,t,...,t)—q)ll(t,t,...,t) for q = t

( qq’l(% ta' . >t)_tq)2(q’ ta' . 7t) -

if q#t
R(g, t) = q-—t (4.2)
q)l(t, ..., t)+t[q)11(t, t.. .,t)—q)lz(t, t,.. ,t)] 1fq=t

Since @4(t, ¢, ..., t) = Dyt t, ..., t) it is easily seen that P and R are of
class C! on (0, c0)2.

A6) J constants A > 0,B > 0and 0 < 8 < N — 1 such that
0 <R(gt) <A+ Bt for 0O<g<t.
A7) 3 constants ¢ >'0, to >0, K >0and 0 <y < 2(N — 1) such that
IR(g,t)—R(g1, )| < Kt'|g—q, | for 0<q,q;<¢ and t=t,.

Clearly (A7) is implied by the assumption that 3 constants ¢ > 0, ¢, > 0,
K > 0and y < 2(N — 1), such that

< K¢ for O0<g<e and t>=1t,. 4.3)

‘6R .
a_q(qa )

In his article on cavitation Ball considers stored-energy functions which
have the following special form:

Dy, ...,00) = Z o(v;) + h<ﬂ ui) 4.4

i=

where ¢ and h are real-valued functions defined on (0, c0). We now intro-
duce a series of hypotheses about ¢ and h which will imply that ® satisfies
the conditions (A1) to (A7).

Bl) ¢:(0,00) - R and h:(0,0) - R are both of class C* and
¢"(s) > 0, h'(s)=6>0 Vs> 0.
Thus ¢ and h are strictly convex on (0, c0).
(B2) ¢'(0 +)=0.

From (B1) and (B2) it follows that ¢’(s) > 0 Vs > 0 and that ¢ and ¢’
are bounded on (0, b1, Vb > 0. Furthermore t — t¢’(¢) s strictly increasing
on (0, 0) and ® is bounded below. 4.5).
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B3) dconstants A > 0, B> 0and 0 < f < N — 1 such that
¢'(t) < A+ Bt’
and t¢”(t) < A + Bt? Vi>0.
B4) 1 constants A > 0 and sy > 0 such that

sh'(s) < — A for O0<s<sg.

Hence we have that E%nJr K'(s) = — o0 and lir(gl+ h(s) = 4 oo.
B5) ) lim h'(s) = + 0.

The hypotheses for Ball’s work on cavitation are given on pages 593 and 600
of his paper and it is rather easy to compare them with (B1) to (B5). In
particular, for functions ¢ of the form,

P(s) = us’ where >0 and y>0,

we see that Ball’s hypotheses require 2 < y < N whereas as (B1) to (B5)
are satisfied provided that 1 < y < N. On the other hand the assumptions
(B1) and (B5) on h are a shade more restrictive than those required by Ball.
Let us check that when @ has the form (4.4), the assumptions (B1) to (B5)
do indeed imply that @ satisfies the conditions (Al) to (A7).
Clearly (B1) implies (A1) and, setting p = qtN~*,

Di(q,t, ..., 1) = ¢'(q) + " 'H(p)
®2(q9 t, e t) = ¢'(t) _+_ qtN—Zhl(p)
D1i(g 1, .., 1) = ¢"(q) + 2T Vh(p)
Oy5(g, 1, .o 1) = T2 (p) + N (p).
Thus (A2) also follows from (B1) and it is easy to verify (A3) and (A4) using

the assumptions (B1), (B2), (B4) and (BS).
For (A5) we note that

0, - ¢'(t) — ¢'(a) L3
2 I Dy, = — qt?N: 3y

<0
g - (p)

by (B1).
For @ of the form (4.4) we find that
a9'(@) — 1¢')
R(g, 1) = q—t
d'(t) + td"(t) for g=t.

Since by (4.5), t - t¢’(t) is strictly increasing on (0, c0), we have that
0 <R(g,t), Vg, t > 0.

for g#t
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Furthermore R(g,t) < sup {s¢’(s)}  for g <t
<s<t

gsss

= sup { ¢'(s) + s¢”(s) }.

FESE Y

Hence, by (B3), R(g, t) < 2A + Bt?) for 0 < g < t. Thus we see that (A6)
is satisfied.

For (A7), we note that for g # ¢,
oR t{'t)— '@} 99"
A (q: t) = 2 + .
dq (g—1) q-—t
Thus for 0 < g < t, since ¢”(g) > 0 and ¢’(q) > 0 we have
q¢”(q) R td'(t)

< — < .
g—t 9q (q—1t)

By (B2) we can choose ¢ > 0 and t, > 0 such that

1
0<qd”(g) <2A and t—q>—2—t for O<g<e and t=21.
Then

— (g, t)| < max
Jq

q¢”(q) t¢'(t) }
t—q (@—1)?

< max{4—?,4¢;(t)}.

Using (B3) we now see that (4. 3) is satisfied and consequently (A7) is verified.
We close this section with a few remarks about our hypotheses.

Remark. — 1. We have shown above how to verify our hypotheses when
the function ® has the special form (4.4). Although this form is consistent
with the usual axiom s for the constitutive assumption in hyperelasticity,
it is by no means implied by them. In fact for N = 3, it is quite common
to take the function ® in the following form:

3
®(vy, vz, v3)= z d(v;) + h(v1203) +Y(v102) + Y(v203) + Y(vav,)  (4.6)

where ¢, h and i are real-valued functions defined on (0, co0). In much the
same way as we have done for the form (4.4), it is not hard to give condi-

tions on ¢, h and ¥ which ensure that a function ® of the form (4. 6) satisfies
(A1) to (A7)

2. In (A5) it is assumed that ® is bounded below, but this part of the
assumption is only used to discuss the energy of the solutions in section 6.
The basic results on existence, given in section 5, do not require this assump-
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tion. Clearly this requirement, that inf @ > — oo, can be replaced by
inf ® = 0 without loss of generality.

3. The inequalities @;,; > 0and R > 0 are implied by the strict rank-one
convexity of W and are referred to as the tension-extension inequality and
Baker-Ericksen inequality respectively [/].

4. The assumptions (A3) and (A4) can be interpreted in terms of the
Cauchy stresses corresponding to the homogeneous deformations
x — diag (g, ¢, ...,t)x and x — tx of a unit cube and unit ball res-
pectively.

D, -0
5. The inequality 2—t—1 — ®,, < 0 in (AS) does not seem to have
q pr—
a physical interpretation, but is discussed on page 583 of [/]. Likewise
R
the growth conditions on @, R and e in (A2), (A6) and (A7) seem to be
q

of a technical rather than a physical nature.

5. PROOFS OF THE RESULTS

We discuss the boundary value problem (2.22) to (2.26). As described
in section 3, we approach this problem by considering the following initial
value problem,

o
rddI:(N—l)[d)z—(I)l] for 0<r<t1 (5.1)

r
uly=4 Ul)=ua, (5.2)
where Ur)>0 and U'(r)>0 for O<r<1, (5.3)

and, as usual, ®; denotes the i-th partial derivative of ® evaluated at the
argument

(U’(r),Uwr(r—),...,I—j?>e(0,oo)N for 0<r<i.

With this notation, we observe that (5.1) is equivalent to the equation,

r®;7U"(r) = (N — 1) {(1)2 -0, — (U’(r) - @)@12 } (5.4

and so, by (A1) and (A2), the classical Picard theorem establishes the
existence of a unique maximal solution of the system (5.1) to (5.3) for
each pair (4, ) € (0, c0)?. This solution will be denoted by

U4, ): J(4, ) — (0, o0)
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where J(4, «) is an open sub-interval of (0, ), containing » = 1. For rel(4, o),

let
T2, ) = [Hr@] <I>1(U’(r), vy H@)

r r

where U = U(4, ). Then "I"(/l, o) gives the Cauchy stress via (2.20). Noting
that (5.1) can be written as,

d
E { TN_I(D1 } = (N — l)rN_z(Dz >

T _ 1)[2@]NR(U'&), @)(@) 5.5)
dr r r r :

for reJ(A, o) where T= T(4, o), U = U(A, a) and R is defined by (4.2).

we see that

LEMMA 1. — a) O <a < A and rel(A, o) we have

<@> <0, U”"r)>0, (@) >0 and T(r)>0

r r
where U = U(4, @) and T = T(4, ).
b) For 0 < o = 4 and re J(4, 4), we have
U(r) = Ar, T(r) = A*~N,(4, A, ..., 4) and J(4 A) = (0, 0).
¢) ForO < A < aand r € J(4, a) we have
[S[GAY
—}>0 and U”(r)<0.

r

Proof.—a) Atr =1, (@>’:a—l<0.

r

U ?
Suppose that Jrye J(4, «) such that <ﬂ> =0 at r = ry. Then
r

Ul(ro)
To
Thus U satisfies (5.1) and the initial conditions
U(ro) = tro, U'(ro) =1,

Now it is easily verified that w(r) = tr is a solution of this initial value
problem and so by the uniqueness of the solution we have that

U'(r) =

=t (say).

U(r) = wr) = tr forall rel(A, a).
" Clearly this implies that & = A = t, contradicting the fact that 0 <a < A.
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ury
Hence we see that { —— ] < 0 on J(4, a).
r

From (AS5) and (5.4) it now follows immediately that
u”(r)> 0 for relA, a).

since <H£r‘)>”= U”(r)_%(_[@)’, we have that (w)">0 for rel(4, a).

r r r r
Finally from (A6) and equation (5.5), we see that T'(r) > 0 for relJ(4, o).
b) Clearly U(r)= Ar satisfies (4.2) and (4.3) with a=A1. Since 1 > 0 we
have U(r) > 0 and U’(r) > 0 for r > 0.
¢) The proof is similar to part (a).

LemMMAa 2. — g) For O < a < A, inf J(4, o) = 0.

A
b) For 0 < A<a, inf Jha)=1-2>o0.
o

Proof. — a) Suppose that 0 < o < 4 and that | = infJ(4, «) > 0. By
the maximality of U, at least one of the following cases must occur:

. U)

i) lim — = oo,
r—l+ r
U

i) lim —(r) =0,
rol+  y

iif) lirlr}r U'(r)= oo,

iv) rllrlr}r U'(n=0.

U uQ
Since U’(r) > 0 on J(4, «), we have that 0 < ﬂ < —E—)for I <r<1.Thus
r

(i) cannot occur.
By Lemma 1(a), U”(r) > 0 on J(4, &) and so
U@r) — U = (r — HU(D) for rel(4, o).
Hence U(r) = A + (I — D > 4 — a for r e J(4, o) and so (ii) cannot occur.
Furthermore, U’(r) < U’(1) for [ < r < 1 and hence (iii) cannot occur.
For pe J(4, a), it follows from (5.5) that

<—ov-nx [ 220
LT r

‘ Uy U U1 ‘
for I<p<1, by (A6) since (ﬂ> < 0 and —@ S—;—) for re [, 1].
r r
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= ~ g U(r) U(p)
Thus T(p) = T() + N — DK | t™7dt where t = — and ¢ = —p—
Hence, we have that for [ <p <1,
T(p) > TA) + K {c'™N = A1"N) > T(1) — KA N

and so lim "I“(p) > — 0.
p—l+

i = U
But Tr) = [Er@] (I>1(U'(r), Hr(r—) o _(2)

,
. .U
Setting b = rgﬂ — we have shown that 1 < b < oo and so, if
,1_1.511 U’'(r) = 0, it follows from (A3) that lirﬂ ’I"(r) = — o0. Hence we
must conclude that lirlrl U’(r) > 0 and (iv) does not occur.
This proves that infJ(A,«) = 0 for 0 <« < A. The case a = 41 >0 is
trivial since U(4, A)(r) = Ar.
b) By Lemma 1(c), U”(r) < O on J(4, o). Therefore
U@ < U(1) + (r — HU(1) for rel(d, o)
=i+ - a. A
Since U(r) > 0 for re J(A, @), it follows that infJ(A, 2} = 1 — — > 0.
o

Remark. — From Lemma 2(b) we see that there cannot be a solution
of the boundary value problem corresponding to a case where 0 < 4 < a.
The solutions U(4, A) corresponding to o = A > 0, do indeed give solu-

tions of the system (2.22) to (2.25). Henceforth we need only consider
the case 0 < a < 4 and for this we set

A={(AhneR*:0<a<i}.

LEMMA 3. — For (L, ®)eA and 0 <r <1 we have the following
inequalities :

a) : O<l—a<Ur)<4i

b) 0<U(r)<a

) Tr) < AL NDy (o, 4, .., A) < AV MDA A ..., A)
where U = U4, a) and T= "I"(/l, o).

In particular
UO = lim U >2—-a>0 and lim Tr) < A0 (4,4, ..., 4).
Proof. — This follows easily from Lemmas 1(a) and 2(a).

LemMa 4. — For (4, a)e A, let U(r) = U(4, a)(r).
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u(r)
——and q(t) = U'(r).

,
Then g = g(4, «) is defined on [4,00) and 0 < g(¢) <t for te(4, o).
Furthermore, g(4, ) is the unique solution of the first order equation:

D@11(g, t, ..., 1)g'=(N—=1)[P(q, 1) —@12(q, t, . . ., )] (5.6
satisfying the initial condition

Sett =

q(d) = a. (5.7)
If (A, ) — (Ao, atp) in A, then

g(A, aXt) — qldo, ao)(t) pointwise on (1, co)
and, if 0 < o0 < oy < A; then
g4, a)t) < g(A, a1 )t) Ve [4, o).
Let Q(4) be the unique solution of (5.6) satisfying the initial condition:

g(A) = A (5.8)
Then Q(A) is defined on |4, o0) and

0 < g(A,a)t) < QANt) for te[i o) and O<a< A.
Furthermore for 0 < a < A,
g4, ) and Q) are strictly decreasing on [4, oo)
lim q(4, o0(t) = lim QUA)(¢) = 0.

Remark. — Since tlim g(4, a)(t) = 0, we have that

and

111101 U =0 for U=Ua) with (Aa)eA.

U
Proof. — By Lemmas 1, 2 and 3, —(r—) is strictly decreasing on (0, 1],
r

. U@ U
lim — = + oo, Im——-=71 and O<g(t)<t Vie [4, ).
r=0+ p r=1 p
d dt d ' d d
Furthermore r—=r——=r E(Q —=(q—1t)—.
dr dr dt ¥ dt dt

Hence the equations (5.1) and (5.4) become
d D, = (N — 1)P(g, 1)
dl’ 1= ( q,

and (5. 6) respectively where P is defined by (4.1). Since the right hand side
of (5.6) is C! on (0, o0)* and (A1), (A2) hold, the Picard theorem ensures
the existence and uniqueness of the solution to the initial value problems
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(5.6), (5.7) and (5.6), (5.8). The assertions concerning g(4, &) all follow
from the uniqueness and continuous dependence of solutions of (5.6),(5.7)
on the data (4, «).

To complete the proof of the lemma, we need only show that Q(4) is
defined on all of [A, c0) and that ,llm QA)t) = 0.
Clearly Q(A)(t) > 0 and Q(1)'(t) < 0 for all t in the domain of Q(A).
In particular Q(A)() < ¢t for t > A.
Setting S(t) = t! " NOL(Q)(®), t,...,t) it follows from (5.5) that S
satisfies
ds
dt

for all t in the domain of Q(4). Then arguing as in the proof of Lemma 2(a),

= — (N = 1)t NR(QU)(¢), t)

ds
_ we find that the domain of Q(4) contains [4, co),and that o (t) < 0Vte[A, ).

Thus ' "NO(QAXY), t,...,t) < AL "N®d;(4,...,4) for t> 4 and so if
lim Q(A)(t) = b > 0 we obtain a contradiction to the assumption (A3).
t— o0

Hence we have }Lm QA)t) = 0.

COROLLARY 5.-— For A > 0 set

[ee]

g() = AP N0y (A, 4, .., A) — (N — I)Jv 1" NR(QA)(t), t)dt

A

where Q(1) is defined in Lemma 4. Then

a) — 0 < g(A) < A" NOy(4, 4, ..., 4) forall A>0,
b) g:(0,0) -» R iscontinuous,
) ’ lim g(4) = — and  lim g(4) = + 0.

Proof. — a) By (A6), R(Q(A)¢),t) > 0 for te [A, o0) and so
gl) < A ND (A A, .. L A).
Since 0 < Q(A)(t) < ¢, it follows from (A6) that

@

g) = AV ND (AL A L., ) — (N — 1)j tN{A + Brf ) dt with f<N—1

A

It follows that g(4) > — oo and 34, > O such that
g) = AN (LA, L. L) — 1 Yi> Ao.

The limits in (¢) now follow from (A4).
b) As above

[MRQANE), )1 <t ™N{A+Bf} V=1 and QU)) — Qo))
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pointwise on (g, 00) as A — Ao. By the dominated convergence theo-

rem (since § < N — 1), it follows that g(1) — g(do) as A — 1, and so g
is continuous on (0, co).

For 0 < o < A, we set
(4, o) = lim T(A, 0)(r) .

Recall from Lemma 1 (a) that for 0 < a < 4, T(,l o) is strictly increasing

n (0,1] and that T(4, A)r) = AL N®;(4 4, ...,4) for 4> 0. Thus for
(4, @) € A, we have

(4, o) < T(4, o)(1) = A1 "Ny (e, 4, . . ., A)
and t(4, 4) = A1 "Ny (4, 4, .. ., A). From (A2) it follows that
(4, @) < (4, 4) YA, 0)eA.

LEMMA 6. — a) V(4, 0)e A, 1(4, 0) > — o0.

b) 1: A - R is continuous.

) VA >0, 1(4, .): (0, A) - R is strictly increasing, ljrgl+ (A, 0) = ~ oo
and liﬂn, (A, ) = g(4), where g is the function defined in Corollary 5.

d) Ve >0, (., 00): (o, 00) — R is strictly increasing.

e) g:(0,00) - R is strictly increasing.

Proof. — a, b) For 0 < p < 1, it follows from (5.5) that,

- - 1 U —-N
T(p>=T(1)+(N—1)J Ed R(u ()—@)( ())

)
P

= 2N (o, 4, .. .,i)—(N—l)J tNR(q(t), t)dt

where T = T(1, o), U = U(A, @) and t, g = g(4, o) are as defined in Lemma 4.
Since 0 < g(t) <t, it follows from (A6) that 0 < R(q(t),t) < A + Bt#
fort 2 A where f < N — 1.
U
Since ﬂ> A for 0<p<1 and 11mﬂ— + oo, we have that
p

AN (o, —~(N— 1)J N {A+Bi? } di< T(p)
< ANO(o, A,y ., A).

In particular, 7(4, @)> — oo since <N —1, and 1(4, ®) <A' "N®y(, 4,. . ., A).
From (A3), it follows that limo (4, o) = — co.

Furthermore by Lemma 4 and the dominated convergence theorem
we see that

A, 0)=A'"NDy (o, A, ..., )—(N=1) va t NR(g(4, a)(t), £)dt
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converges to (g, o) as (4, ®) — (g, %) in A. Thus 7 is continuous on
(0, 00). Similarly we have that 1_131_ (4, o) = g(4).

¢) For
(hayed, (ko) = lim T, a)(r)
ur PN U U
— lim [ﬂ] (I)1<U’(r), v Jl)) where U = U( )
r=0+| r r r
= tlim ! NO (g(4, a)(t), ¢,...,t) in the notation of Lemma 4.
But, according to Lemma 4, if 0 < o < ay < 4,

we have g, a)(t) < g an)t) Vi
and so from (A2) it follows that

@,(q(A, a)(t),t, - .., 1) < Dylg(d, a)(), 2, ..., 1) vVt = 4.
Hence 1(4, @) < 1(4, ay).
To prove that in fact there is strict inequality, we set
S(t) = t* " ND(glt), t, .. ., 1).
Then by (5.5) we have that S = S(4, a) satisfies

J ] v
-‘ES(I) = — (N — D)t NR(g(t), t) for t> 4.

Suppose that 0 < a < «; < A and that (4, @) = ©(4, ay).

Set q(t) = g4, (),  q:(t) = q(4, 21)t),
S(t) = S(4, a)t),  Si(t) = S(4, a)(2),

Then }Lrg S(t) = }Lm Sy(t) and so, for ¢ > 4

o)

Si(0) = S(e) = (N — 1)J t™ N {R(gs(t), t)—R(g(r), 1) } dt .
Thus OSSI(a)—S(a)S(N—l)J‘OO t™NKt' { q4(t)—q(t) } dt for o>00

where y < 2(N — 1), by (A7) since tlim ql(t)ztlim qt) = 0.
But B o

Sl(t)~s(t)=tl_N { (Dl(ql(t)s L..., t)_q)l(q(t)’ ..o t)}

1

=N {q,(t) - q(t)}J 011(yga(t) + (1 = y)g@)t, ..., 1)y

0
=t N {gy(t) — qt)}C*N"Y  where C>0
by (A2) provided that ¢t > t,.
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Hence
0<Sl(a)—S(a)<(N—1)C‘1KJ t‘ZN“”{Sl(t)—S(t)}dt for o6=o0,.

Since —2N+1+7y< —1 it follows by a standard argument that 3¢, > g,
such that S;(6) = S(o) for all o > o, and consequently that q,(t) = 4(¢)
forallt = t;. Thus q,(t)=q(t)forallt = land so a = a;.

This proves that for 0 < a < a; < 4 we must have

(4, a) < (4, o).

d) Let U =U(4, «) and set w(r) = ( "

for re(0,1] and ce(0,1].
It is easy to check that w satisfies (5.1) and that

Ulc
w(l) = - w(1) = U'(c).

For A, > A, it follows from Lemma 1 (a) that 3 a unique value of ce(0, 1)

such thatﬁ = A,.Furthermore,0 < U’(¢} < U’(1) = a. Setting o, =U"(c),
c

where—i62 = A;, wethushave that0 <o, <o <A< 1; andthat w=U(4;, o).

c
But
Fhy, a)lr) = [f)} ( 0", @)
_ [U(Cr)}l N ( U U(cr) U(cr))
| oer (cr) oy
= T(4, a)(cr).
Hence

oy, o) = lim T, a)r) = lim T3, a)en)
= lim T, a)r) since ce(0,1)
=14, o).

Thus (A, &) = 7(A;, &;) < 7(4;,®) by part (c). This proves that (., a) is
strictly increasing on (e, ).

From parts (c) and (d), it follows easily that g is strictly increasing on
(0, c0).

THEOREM 7. — Let g:(0,0) —» R be the function defined in Corol-
lary 5.

a) There exists a unique value A* €(0, o0) such that g(4*) = 0. There
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exists a continuously differentiable strictly decyreasing function w on
(A*, o0) such that 0 < w(d) < 1 and

((LoyeA:t(ha)=0} = {(4 wh): 1e(d*, «)}.

Furthermore 1li£r*1+ w(d) = A* and }1}2 wd) =0.
b) For A > A*, let U = U(4, w(4)). For u > A, there exists a unique value
¢ = () € (0, 1) such that —(—) — 1. Then Ul (i) = > for 0 < r<1
¢

and w(p) = U’(c). The functlon c:(4,00) — (0,1) is continuously diffe-
rentiable and strictly decreasing with lim ¢(u) = 0.
p=

c) For 1> 0, let U, 4) = U, 4).
For 1> A*, let U () = U4, w(d)).

Then for 0 < 4 < A*, U,4) is the only solution of (2.22) to (2.26) and
U/4)0) = 0.

For A > A*, U/ and U/4) are the only solutions of (2.22) and (2.26)
and U4)(0) = 0 < U)(0).

As A — A* +, U[4) converges to U,(A*) uniformly on compact subsets
of (0, 1].

d) For A > A* let R (1) = U[A)(0) be the radius of the cavity. Then R,
is a strictly increasing, concave continuous function on (4*, co) with

lim R(A) =0 and lim R () = o0.
A= A* A A=

dR (A
Furthermore R, is of class C? on (A*, c0) and 11m di )

Proof. — By Corollary 5 (b) and (¢) and Lemma 6 (¢), there exists a unique
value A* € (0, o0) such that g(4*) = 0. Furthermore for A < A* (4, &) <0
for0<a< A

For A > A*, there is a unique value w(d) € (0, A) such that (4, w(1)) =
and hm w(d) = A%

Now fixing A > A* and setting U = U(4, w(1)) we have as in part (d)
Lemma 6 that, for u > A, w(p) = U’(c(u)) where ¢( ) is the unique value

Ul(¢)

U ?
of ¢in (0, 1) such that —— = p. Sin <ﬁ> < 0for0 < r < 1, it follows
¢ ¥

that ¢ is a continuously differentiable function of u on (4, oé) and that

(il
du - ¥

1‘2

= 0 — 0

r=c(u)

< 0.
r=c(u)
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dw(g) o de(w) U |
Hence *E—— U (C(#)) d# = m e <0 (59)

by Lemma 1(a). Also
lim w(y) = lim U’(c(y) = 11_{1(1) U'(r) =0.

u— o Uu—co
Thus we see that parts (a), (b) and (c) of the theorem are easy consequences
of the preceding lemmas.
d) Let g > A > A* and set U = U/ A). Then

U(0)
Re(w) = U, W(p)(0) = — (5.10)
oW
dR (1) U(0) de(p) U(0)
= — = — 0. (5.
M T T T a0 - U0 b D O &
It now follows that R, is of class C? on (4, c0) and that
Ry _ UOU"() de(y)
du? [FU(r) = UM |=eq du
U(0)*U"(r)
=7 <0,
[rUI(r) - U(r)]3 r=c{u)

by Lemma 1(a).
Since lim c(y) = 0, it follows from (5.10) that lim R (u) = oo, and
H— o 1~ o

c

= 1.

from (5.11) that lim
pooo dy

It follows from (5.11) that R, is strictly increasing on (1*, c0) and so
lh?}+ R(4) < R (A) for all 1 > A*

By Lemma 1(a), R(4) < U A)#) for all re(0, 1).

Thus 0 < lkigh R(A) < UA)(r) for all A > A* and all r (0, 1).

But U(4)(r) converges to A*r as 1 — A* + for each re(0, 1). Hence we
see that }i_)n}* R (1) = 0.

Remarks. — 1. In the notation of Theorem 7, we find that for u> A> 1*,

U U
Oy (w(it) gt - o p) = (Dl(U’(r), —;(r—) N ,r(r—)> (5.12)
r=c(u)
where U = U(4, w(4)), and
40,

e Drw(p) + (N = DOyy = (N = DP(W(p), ) (5.13)

where the partial derivatives of ® are evaluated at (w(y), 4, . . ., @) and P
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is the function defined by (4.1). To verify (5.13) we note that by (5.9)
and (5.12),

Oy W) + (N - )0y, =

B U(r) U r*U"(r)
‘4)11( o= "”) [rU'(n—U()]

+(N—1)<I>12< ), —
by (5.4).

w2

)
r r

r=c(p)

=(N—1)P( ()ﬂ)

¥

r=c{p)

2. These formulae give some information about the function V defined
by (3.3) which relates the Cauchy traction problem to the displacement
problem. In fact, for u > A > A*, we have

TRD (w #) By pt)

u
Z[ } (()@9@)
r r r=c(p)
T(

A WP =y where U = U(L w(d)). (5.14)

Hence lim V( W= lin(} T(A, w))r) = (A, w(d)) = 0 since lim e(y) = 0.
H— o r— [ Endlc o]
Furthermore V is continuously differentiable and

Ve _d
d—#—a{‘u @ (W(p), p, ..‘,u)}

d
- (N = DR, + p' N—0,
du

i

= —(N—Du ™Rw(p),p) <0 by (5.12) and (A6).
Thus V is strictly decreasing.

6. COMPARISON OF THE ENERGIES OF SOLUTIONS

We consider the energies of the solutions of the problem (2.22) to (2.26).
Recall that in the notation of section 5, U(4)=U(4, 1) denotes the homo-
geneous deformation r — Ar which has no cavity. For 1> A* U,(J)

denotes the solution U(4, w(4)) which has a cavity of radius R/(A) > 0.
From (2.10), it follows that,

ED(4) = E(U l))—wnj ®A, A, ..., T dr

6.1)
—ﬁ(l)(ll ,A) forall A>0
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and
1
ED,() = E(UM) = wNJ o(um, 2. ,Hr(L)>rN‘1dr 6.2
0
where U = U/4) for A > A*.

Lemma 8. — For A > A%, let U = U,}) = U(4, w(d)) and T=T(%, w(})).
Then there exist positive constants K, K, and ¢, (depending on 1) such that

0<Tr)<KN"1F  for O<r<rg

Un U(r)>
s e s ey —r

and 0<®, (U (), —= < K,r# for O<r<ry

where 8 is the constant in (A6).

u(r)

Proof. — We use the variables: t = —, g(t)=U’(r) introduced in
Lemma 4. r
Setting S(t) = t* "N®,(q(t), ¢, ..., t), we have that
ds(t)
dt
Since ,llm S(t) = hm T(r) = (4, W) =
S(t) =N - 1)J “NR(g(s), s)ds

t

= — (N — 1)t ™R(g(¢),t) for t> 4.

and so by (A6),
0<S(t)<(N—1)J sTN{A + Bs’}ds for =t
. ,

< KN+ for t>1,.

() —N+ﬁ+1 KrN‘l*ﬁ
Thus, 0< T(r) < K[ " :| < U—(W

=K,/ 178 for O<r<rg

| N-—1
and 0<®<U()Ur(r)...,y-(r—)> [U(r)] T

r r

U B
< Kl:_@:| S KA 8 =K,r# for O0<r<ryg.
’

Remark. — In the notation of Lemma 8, U satisfies

%{rN-lq)l}=(N_ N2, for O<r<l1,
U(r) U(T))
> R r

where @, and ®, are evaluated at ( (r), — . Furthermore,

Nl = U(r)N_lT(r)
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d

and so by Lemma 1(a), e {rN"'®, } > 0 on (0,1). According to Theo-
r

rem 4.2 of [I], the function u: {xeRN:|x| <1} — RN defined by
U(r)x

u(x) = for 0<|x|<1
is u a weak solution of (2.9) provided that

™1, and '@, belongto LY0,1).
By Lemma 8, '

1 1 1
J‘ I rN-l(Dl ‘ dr = \[ rN_l(Dldr < J’ K2TN_1#ﬂdr < OO
0 0

0

since 0 < B < N — 1. Also, for 0 < e < 1,

1
J | N1D, | dr =

(N_‘l) £
1

Ld
- @4 N-1
Y £rdr{r O, }dr
1
- ! {rN(Dllﬁii—JrN“l(Dldr}.
(N—l) &

1
By Lemma 8, J | PN, dr < oo .
0

LEMMA 9. — For 1> 4% let U = UfA) = U(4, w(4)) where w:
(A*, 0) — R is the function defined in Theorem 7. Then, '

L ~ (U()U:r) . @> d

.
and EDM):% {OWA), & ., )+ [A— WD) 1D W), 4. ., ). (6.3)

r< o,

11mrN(I)<U( , 00 E@) —0
r

r

Proof. — Since U satisfies (5.1), it is easily checked that U also satisfies
the following « conservation law » for 0 < r < 1,

— { o — NU(N®, + NTTUND, } = NN 1o,
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U
where ® and @, are evaluated at (U’(r), _(r_) _U—(r_)) Thusfor0<s< 1,

3 e ey

r r

1
NJ M lddr = {0 — NU(N®; + N UMD, ) [EZL.

Since U(1) = 4, U’(1) = w(A) and
lim 10, = lim U T wib)e) = UOM " o(4, w(d) = 0.
it follows that

li_{%{SN(D<U'(S),E£i), .. ,Hs(i)> + NJI rN_ICDdr}

= OwA), 4, ..., 4) + [ = WD ]P (W), 4, ..., A).
By (A5) we can assume that inf @ = 0, and so it follows that

1 1
OSJ rN_l(Ddr=J N dldr< .

0 0

i U U T L
Hence 111‘1(’)1 sSot U'(s), —, ...,—— |exists and since | r | @ dr< oo,
s S S
we must have 0

5 e e ey

s—=0 s S

U U
lim qu><U'(s),ﬁ (S)> —0.
. .
Recalling that ED(4) = wa N~ 1ddr, the proof is complete.
0
TueoreM 10. — Let ED,(4) and ED/A) be the energies defined by (6.1)
and (6.2). Then,

ED(4) < ED(i) forall A> i*.

Furthermore, EDJA) is a continuously differentiable, strictly increasing
function of A on (A*, c0) with

d
T AED(D)} = ox®i(wD) 4., ) >0 for 4> F,
lim ED()=ED(#*)  and  liminfi~2{ ED(4) — ED(})} > 0.

Proof —For0 < o < Aletf (L, )=D{ot, 4, ..., ) + [A—a]D(a, 4,. .., A).
Then for 4 > A%,
N .
P {ED(4)—EDd4) } = f(4, 4) — f(4 w(4))

=% [A — wd) POy 1(y(A), 4, ..., ) > 0

by (A2), where w(d) < ¥{4) < A.
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Since }im w(4)=0, there exists A; > 0 such that

A — W) 2@, (v(DA, .., A = CA2N  for A= A,

Furthermore
d _ on d . _ On of of dw
7 ED/(4) = N 4 S, W)= ~ { a1 4, W(i))+£ (4, w(A) T o }

= % {(N=1D®,+®; + [A—wA) [(N—1)®; 5+ [A—w(d) @, w'(4)} = onD;

by (5.12) where the partial derivatives of @ are evaluated at (w(d), 4, . . ., 4).
Now, ~
O,(w(A), 4, ..., ) = ANTITA, wA))(1)
> INTIT(L w(A)0) = 0,
d
by Lemma 1(a). Hence m ED.(4) > 0 for 2 > A*.

Remarks. — 1. We can obtain some information about the energies
of the solutions with cavities for the Cauchy traction problem. From (3.4), let

EC() = ED() — 2 0yu(d), 4,
= %{ OWA), 4, .. ., ) — WAD(W(A), 4, ..., 1)},

for A > A* by Lemma 10. Hence,

d i
— BC{}) = % { D) + (N — 1)y — WD, + wl) 71/1’1 }

N-1)
N

= W R(w(A), 1) > 0 for A > A*,

by (A6). Thus the function EC/(P) defined by (3.4) is strictly decreasing
on (0, P*).

2. To obtain some information about the dead-load traction problem
and to ensure that

lim ED/A) = lim EC/(P) = o
Ao P—-0+
we seem to need an extra hypothesis about ®.

THEOREM 11. — In addition to the assumptions (A1) to (A7), suppose that
(A8) lim R(g,t)= 0.

(g,1)—(0, )
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d
Then }Lm ®,(w(d), 4, ...,4) = oo and so }Lm 1 EDC(1)=}£m ED (4)= 0.

Proof. — For A > A*, let U=U(4, w(4)). In the notation of Lemma 4
we have

d
o Sty = — (N — 1)t ™NR(g, t), 1) for t> 21

where S(t)=1t* "N, (q(t), t, . . ., t). Since tlim St)=1(4, w(A)=0, it follows
that *

S(t)=(N - 1) jm s~ NR(g(s), s)ds.

Now given any M > 0, 3¢ > 0 and £, > O such that
Rig.t)>M if O0<g<e and 1>t,.
Since g(t) — 0 as ¢ — oo, it follows that 3t, > 0 such that
R{g@),t) > M forall t>1t,.
Hence ' St)=M!™N  forall t>1t,.

Thus ®,(q(2),t, ...,t) = M for all t > t, and so tlim Di(q(t), ...,1) = oo.

-
= ,11132 ®,(gt), t,...,t) = o0.

U U
BNMAJQQMW%~WMﬂ%%GW%?VWJg

d
The limits for ED(4) and 7 EDJ) follow from Theorem 10.

d
Remarks. 1. By (A8), we also have that }Lm 7 EC(A) = + o by (6.4).

Thus we conclude that Plirgl+ EC/(P) = . Furthermore Theorem 11

implies that the function D given by (3.5) for the dead-load traction pro-
blem has the property that }Lm D(4) = co.

2. When the function ® has the special form (4.4),
_ 1) — ')
t—q

Hence we see that the conditions (A1) to (A8) are all satisfied provided
that ¢ and h satisfy the conditions (B1) to (B5) of section 4 and, in addition,

R(qg, 1) for t#gq.

tl_i’m P'(t)= 0.
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