
Radially symmetric cavitation
for hyperelastic materials

C. A. STUART

Departement de mathematiques,
Ecole Polytechnique Federate, Lausanne, CH-1015 Lausanne

Ann. Inst. Henri Poincaré,

Vol. 2, n° 1, 1985, p. 33-66. Analyse non linéaire

ABSTRACT. - The question of radially symmetric cavitation for a ball
of hyperelastic material is considered. It reduces to a non-linear boundary
value problem for a singular second order differential equation. For a
broad class of stored-energy densities, the shooting method is used to
determine whether or not cavitation occurs under various conditions on
the boundary of the ball.

RESUME. - On considere la question de cavitation avec symetrie
radiale d’une boule d’un milieu hyperelastique. Elle est ramenee a un pro-
bleme aux limites non-lineaire pour une equation differentielle singuliere
du deuxieme ordre. Pour une grande classe de densites d’energie, la methode
du tir permet de determiner si oui ou non il y aura cavitation sous des
conditions diverses sur le bord de la boule.
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34 C. A. STUART

1. INTRODUCTION

Let where N ~ 2 and consider a piece of homo-
geneous isotropic material occupying the region Q. Radial deformations
of this body are given by functions u : S~ --~ f~N which have the form,

and U : (0,1) -~ (0, oo). A radial deformation is in equilibrium if u satisfies
the equations of elastostatics and these reduce to an ordinary differential
equation for U which is given in section 2. In order to avoid self-penetration
of the body, it is natural to require U to be strictly increasing on (0,1).
If U(0) = lim U(r) = 0, the deformed body corresponding to U is again
a ball of radius U( 1 ) = lim U(r). If U(0) > 0 the deformed body is a ball
with a spherical hole in the middle. In this case the original solid ball has
ruptured and a spherical cavity of radius U(0) > 0 has formed. The basic
problem is to establish the existence of radial equilibrium deformations
with cavities and to discuss their stability. These issues are the subject
- of a fundamental paper by Ball [1 ].. ’

The contribution which we offer differs from Ball’s work in two respects.
Firstly we deal directly with the ordinary differential equation for U

corresponding to the equilibrium equations. Our results are obtained by a
version of the « shooting method » and so involve only elementary argu-
ments for differential equations as opposed to the combination of varia-
tional and differential equation techniques employed by Ball. Since we
deal only with solutions of the equilibrium equations our discussion cannot
yield a complete analysis of the stability of the solutions. This involves the
study of the energy in a full neighbourhood of a solution in an appro-
priate function space. In this respect our analysis of the problem is less
complete then Ball’s. On the other hand we deal with the general form of
the constitutive assumption for nonlinear hyperelasticity rather than the
special form (4.4) treated by Ball. To carry through our analysis we make
a number of assumptions concerning the function which gives the stored-
energy per unit volume in terms of the deformation. When we interpret
these assumptions in the special case treated by Ball, we find that they
reduce to conditions which are rather similar to (but in some respects
less restrictive than) those introduced by Ball.
Having stressed the differences between the present approach and that

used by Ball, let me close this introduction by acknowledging the extent
to which I have benefitted from the numerous insights contained in Ball’s
paper.
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35CAVITATION

The rest of this article is set out as follows. In section 2 the equilibrium
equations are given and the problem is formulated as a nonlinear boundary
value problem. The main results are then stated informally in section 3
and the method of proof is outlined. Section 4 contains the exact hypotheses
concerning the stored-energy function which are used to obtain these
results. The proofs of the main results are given in section 5, together with
some additional qualitative information about the behaviour of solutions.
Finally in section 6, the energies of the various solutions are compared.

2. FORMULATION
OF THE BOUNDARY VALUE PROBLEM

Let u : Q c [RN -~ be a sufficiently smooth deformation and let S(x)
be the corresponding Piola-Kirchhoff stress matrix at x e Q, [2, Chapter 7 ].
In the absence of body forces, the conditions for equilibrium are that,

and

for ;c E Q, where ~ui ~xj x for 1  i,j  N and t denotes the transpose

of a matrix. The matrix F(x) _ ~ u(x) is referred to as the deformation

gradient at x. Physical deformations are one to one and are subject to the
restriction

[2, Chapter 2].
A material is said to be hyperelastic if there exists a function W : M --~ ~

such that

for all physical (sufficiently smooth) deformations where M is the set of
(N x N)-matrices having positive determinant and

is called the Piola-Kirchhoff stress at F, [2, Chapter 8 ]. The function W is
known as the stored-energy function for the material and the Cauchy stress
at F E M is defined by

Vol. 2, n° 1-1985.



36 C. A. STUART

The assumptions of frame indifference and isotropy of the material imply
[7; section 3 ] that W can be expressed in the following way :

-~ R is a symmetric function and v 1, v2, ..., vN are

the eigenvalues of It follows from this that

and so the conditions (2.2) are satisfied by every physical (sufficiently
smooth) deformation of a hyperelastic material. Thus the conditions for
equilibrium reduce to,

for x E Q, where T is given by (2. 5).
For a hyperelastic material, the total stored energy of a deformation

u : Q -~ !RN is given by

and the equilibrium equations (2.9) are seen to be conditions that u be a
stationary point of E in some suitable function space.

Henceforth S~ _ ~ x E  1 ~ and we consider only radial defor-
mations :

where U : (0, 1) ~ (0, oJ). Thus,

is a symmetric matrix with eigenvalues,

Hence,

if and only if U’(r) > 0. In keeping with (2. 3) we require that
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37CAVITATION

and we note that this excludes self-penetration of the body. Furthermore
for a radial deformation,

and

where Oi denotes the i-th partial derivative of 03A6 evaluated at the argu-

ment U‘ r 
U{r) . , ! U(r) ! iment U’( ), , ..., . With this notation, the equations (2.9)

for equilibrium for a radial deformation reduce to,
1

which is a second order ordinary differential equation for U : (0,1) -~ (0, oo).
In a displacement boundary value problem [2, Chapter 10 ] the value

of u is prescribed for all x E For a radial deformation, this amounts
to specifying the value of U at r = 1. Thus

For a radial deformation without a cavity we have

whereas, if there is a cavity,

In the case of a cavity (vacuous), the Cauchy stress on the boundary of the
cavity should be zero. Thus we require

, . 
. 

/

cavity is filled by material with hydrostatic pressure y, then (2 . 20) is replaced
by .- - .

Summarising these formulae, the problem of radially symmetric cavitation
for a displacement boundary value problem for a homogeneous isotropic
hyperelastic material can be formulated as follows. Find

Vol. 2, n° 1-1985.



38 C. A. STUART

such that

and either

or

where denotes the i-th partial derivative of 0 evaluated at

and

Using our Lemma 8 and the fact that (2.23) can be written as

it follows from Ball’s Theorem 4. 2 that if U satisfies (2.22) to (2.26) then
the function u defined by (2.11) belongs to for all p E [1, N) and
is a weak solution of the system (2.9) in the usual sense.

Cavitation is also of interest for other types of boundary value problem.
In a Cauchy traction boundary value problem the Cauchy stress is pres-

cribed for all Thus -

where y : f~N is a given function and n(x) denotes the unit outward
normal to the deformed boundary at the point u(x). For a radial defor-

mation (2 .11 ), we have n(x) = x = x since = 1 } and
. 

r

for x E Thus the function y must have the form, y(x) = Px for x E aS~
where P E R is a given constant. For radial deformations the problem for
the Cauchy traction problem reduces to the system (2.22) to (2.26) with
the condition (2. 24) replaced by

where P ~ R is a given constant.
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39CAVITATION

In a dead-load traction boundary value problem, it is the Piola-Kir-

chhoff stress which is prescribed at for all x E aSZ. Thus

where y : aS~ ~ [RN is a given function and N(x) is the unit outward nor-
mal to 8Q at the point x. For a radial deformation, N(x) = x for x E 8Q and

Thus the fonction y must have the form y(x) = px for x E a~, where p e R
is a given constant. For radial deformations (2 .11 ), the problem of cavita-
tion for the dead-load traction boundary value problem reduces to the
(2.22) to (2.26) with the condition (2.24) replaced by

where p e R is a given constant.
Our results are obtained primarily for the displacement boundary value

problem. However they do yield some information about both the Cauchy
and dead-load traction problems. Observe that if we have a radial solution
of a Cauchy traction problem there exists a value /). > 0 (depending on P
and denoted À(P)) for which this solution satisfies the displacement boundary
condition,

Conversely, by considering all radial solutions of the displacement problem
for all positive values of A we obtain the solutions to all Cauchy traction
problems for all possible values of P. If U satisfies the displacement pro-
blem with U( 1 ) = ~., it satisfies the Cauchy traction problem for

Similarly, we obtain solutions of the dead-load traction problem for

Finally we note the expression for the total energy of a radial deformation
associated with each of these boundary value problems :

where is the surface area of the unit sphere in (~N, and ED, EC and ET
refer to the displacement, Cauchy traction and dead-load traction problems
respectively.

Vol. 2, n° 1-1985.



40 C. A. STUART

3. DESCRIPTION OF THE RESULTS

The analysis of the boundary value problem (2.22) to (2.26) is based
upon the following observations.
For a > 0, replace the conditions (2.25) and (2.26) by the condition,

Let U{~,, a) denote the (unique) solution of the initial value problem posed
by (2.22) to (2.24) and (3.1). Solving the original boundary value pro-
blem (2.22) to (2.26) then amounts to identifying, for each A > 0, those
values of a > 0 such that a) satisfies either (2.25) or (2. 26).
For a > ~, > 0, we show that U(A, a) cannot be defined on all of the

interval (o, 1 ] and so such solutions cannot lead to solutions of (2 . 25)
or (2.26). For a = A > 0, it is easily seen that -

and so U(/)., /).) satisfies (2.22) to (2.25). This is a homogeneous radial
deformation without cavity. For 0  a  ~, we show that U(~,, a) is defined
on (0, 1 ] and that U"(r) > 0 on (0,1). Hence we have

Furthermore we find that for 0  a  ~.,

where

and U = a). Thus, for 0 , ac  03BB, solving the problem (2 . 22) to (2. 26)
amounts to finding a such that r(A, a) = 0.

Let t~ --_ ~ (~., a) E ~2 : OCt  /). }. We show that r : d -~ f~ is continuous,

where a formula for is given. The function g : (0, oo) is continuous
and strictly increasing with lim = - oo and lim g(03BB) = oo.

[It is important to realise that

In fact,

From the properties of r and g which have just been described, it follows

. Annales de l’Institut Henri Poincaré - Analyse non linéaire



41CAVITATION

that there exist a value À * > 0 and a continuous function w : (~.*, oo) -~ (0, oo)
such that w(~,) E (o, À) for all ~, > ~,* and

Thus, for 0  ~.  ~,*, the problem (2.22) to (2.26) has only one solution,
namely U(~,, A) and this has no cavity. For ~, > ~,*, the problem has exactly
two solutions, namely U(A, À) and U(~,, w{~,)). The deformation correspon-
ding to U(~,, w(~.)) has a cavity of radius R(~,) = w(~,))(o) > A - w(~,) > 0.
We show that R is a strictly increasing, concave continuous function

with lim = 0 and lim = oo.

In fact, the thickness of the shell is £ - R(03BB)  w(03BB) and li m w(03BB) = 0.
Furthermore, U(03BB, w(03BB)) converges to the homogeneous deformation

U(A*, A*) uniformly on compact subsets of (o, 1 ] as ~, -~ ~,* +. In this
sense there is a bifurcation from the homogeneous solutions to solu-
tions with cavities at À = ~,*. See Figures 1 and 2.
We now discuss the location of the critical value ~,*. A value of ~, such

that A, ..., ~,) = 0 is called a natural radius for the body because,
for such values of A, the Piola-Kirchhoff (equivalently Cauchy) stress

associated with the homogeneous deformation U(~., À)(r) = Ar is everywhere
zero in Q. Our assumptions imply the existence of at least one natural
radius, but since we make no assumption about the monotonicity of
~1-N~~(~, ..., ~~), there may be several such values. In any case, if ~nat
is any natural radius then ~,* > This follows from the fact that

The exact value of ~,~ . can only be obtained in very special cases because
the formula which gives g(~,) involves the integration of a function Q(~.)
which is defined as the (unique) solution of a first order ordinary diffe-
rential equation satisfying the initial condition, _ ~, at t = ~,. In

general, this solution Q(~.) is not known explicitly and so only estimates
for g(~,) can be found by using approximations to Q(~,). This implicit cha-
racter is common to our bifurcation equation, g{~,) = 0, and to Ball’s
bifurcation equation [1, (7.31)] ] which also involves the solution of a
differential equation. However our equation is obtained in a more direct
way from the equilibrium equation. For ~, > 0, let EDt (A) be the total
energy of the homogeneous displacement U(A, A) and, for ~, > ~.*, let

ED~ (~,) be the total energy of the solution U(~,, w(~.)) having a cavity. It
turns out that

and

Vol. 2, n° 1-1985.



42 C. A. STUART

FIG. 1. - The solutions corresponding to the branch a = ~, are the homogeneous defor-
mations U(~,, À)(r) = Àr and have no cavities. The solutions corresponding to the branch
a = have cavities of radius R(~,). There are no other solutions.

FIG. 2. - The cavity radius, R(~,), is an increasing, strictly concave function of ~, with

For the displacement problem, the energy of the solution w(~,)) increases conti-
nuously from EDt(~.*) to + oo as ~~ increases from ~.* to +00, where is the energy
of the homogeneous deformation U(~,*, ~.*)(r) = ~,*r. Furthermore EDc(Â)  
for all ~. > ~,*.
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43CAVITATION

FIG. 3. - For the Cauchy traction problem, let R(P) = be the cavity radius for
P E (0, P*) where Àp is the unique solution of P = hp, ..., As P increases

from 0 to P*, Àp decreases continuously from + oo to /!,* and the energy, EC~(P), decreases
continuously from + oo to ECt(P*) (the energy of the homogeneous deformation r -~ 

FIG. 4. - In the dead-load traction problem, there may be several values, such that

p = Àp, ..., In any case, as p tends to + oo, the radii of cavities tend to

infinity and the energies of solutions also tend to infinity.
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Our hypotheses imply that,

indicating that cavitation is energetically favourable for the displacement
problem when £ > ~,*. We also have that ED~ {~,) is strictly increasing on
{~,*, oo) with

The Cauchy stress on the boundary of Q for the solution U(~,, w(~,)) is,

and it turns out that this quantity is strictly decreasing as A varies from ~,~
to oo, with

(the Cauchy stress for the homogeneous solution 03BB*)) and lim V(03BB) = 0.
Thus the Cauchy traction problem has a solution with a cavity if and only
if the constant P in (2. 28) satisfies Pe(0,P*) where P*= [~,* ]1-N~1(~,*,
~,*, ..., ~,*). For each P E (0, P*), there is a unique solution of the Cauchy
traction problem having a cavity and this solution is given by U(Ap, w(Ap))
where Ap is the unique value of ~, > ~,* such that ~, i - N~ 1 (w(~,), ~., ..., ~,) = P.
We observe that lim R(Àp) = oo and lim R(Àp) = 0. The total energy

P-->0+ p-~p*- ~ ~ -"

associated with the deformation U(Ap, w(Ap)) for the Cauchy traction pro-
blem is, by (2.33) and (3.2),

and our hypotheses imply that lim ECc(P) = + oo .

For the dead-load traction problem, we denote by D(03BB) the Piola-
Kirchhoff stress on aS~ for the solution U(~,, w(~,)). Thus, for ~, > r~*,

Our hypotheses do not ensure the monotonicity in £ of this quantity,
but we do show that lim D(03BB) = 03A61(03BB*, 03BB*, ..., 03BB*) (the Piola-Kir-

chnoff stress p* for the homogeneous solution U(03BB*, 03BB*)) and lim D(03BB) = oo.

From this we can conclude that the dead-load traction problem has a
solution with a cavity if and only if the constant p in (2.29) belongs to
a semi-infinite interval G and (p*, oo) c G. For p E G there is at least

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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one value of À > À* such that ... , ~,) = p and we denote such
a value by Ap. The total energy associated with the deformation w(Ap))
for the dead-load traction problem is, by (2.34) and (3.2),

See Figure 4. 
,- . -J

4. ASSUMPTIONS ON THE STORED-ENERGY FUNCTION

We consider the function introduced in (2.7).

A1) ~ : (O, !R is of class C3 and symmetric. Thus

whenever cr is a permutation of the N variables (v 1, ..., vN). It follows that

and

Since we are concerned only with radial deformations our considerations
only involve 0 and its partial derivatives evaluated at arguments of the
form v2 = v3 ... == vN and this will be indicated by writing

..., t ) > 0 Vq, oo) and  constants C > 0 and to > 0
such ... , t ) > whenever 0  q  t and t  to .

A3) Vb > 0 we have

and

and

AS) > --(X) and 03A62 - 03A61 - 03A612  0 ~q, t~(0,~) with 
q - t

where the partial derivatives of 03A6 are evaluated at (q, t, ... , t ).

Vol. 2, n° 1-1985.
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Let P : (0, 00)2 and R : (o, 00)2 -~ R be the functions defined as
follows :

..., t) = ~2(t., t, ..., t ) it is easily seen that P and R are of
class C1 on (0,00)2.

A6) 3 constants A > 0, B > 0 and 0  N - 1 such that

Clearly (A7) is implied by the assumption that 3 constants e > 0, to > 0,
K > 0 and y  2(N - 1), such that

In his article on cavitation Ball considers stored-energy functions which
have the following special form :

where § and h are real-valued functions defined on (0, oo). We now intro-
duce a series of hypotheses about ~ and h which will imply that 0 satisfies
the conditions (Al) to (A7).

Thus § and h are strictly convex on (0, 

From (Bl) and (B2) it follows that ~’(s) > 0 Vs > 0 and that § and ~°
are bounded on (0, b ], Vb > 0. Furthermore t ~ is strictly increasing
on (0, oo) and 03A6 is bounded below. (4.5).

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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B3) ~ constants A > 0, B > 0 and 0  N - 1 such that

and

B4) ~ constants A > 0 and so > 0 such that

Hence we have that lim h’(s) = - oo and lim h(s) = + oo
s-~o+ 

The hypotheses for Ball’s work on cavitation are given on pages 593 and 600
of his paper and it is rather easy to compare them with (Bl) to (B5). In
particular, for functions ~ of the form,

we see that Ball’s hypotheses require 2 ~ y  N whereas as (B1) to (B5)
are satisfied provided that 1  y  N. On the other hand the assumptions
(Bl) and (B5) on h are a shade more restrictive than those required by Ball.

Let us check that when 0 has the form (4.4), the assumptions (Bl) to (B5)
do indeed imply that 3) satisfies the conditions (Al) to (A7).

Clearly (B1) implies (AI) and, setting p = qtN-l,

Thus (A2) also follows from (Bl) and it is easy to verify (A3) and (A4) using
the assumptions (Bl), (B2), (B4) and (B5).
For (A5) we note that

by (Bl). 
’ ’

For 03A6 of the form (4.4) we find that

Since by {4.5), t -~ is strictly increasing on {o, ao~, we have that
0R{q,t), 

Vol. 2, n° 1-1985.
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Furthermore

Hence, by (B3), R(q, t) ~ 2(A + for 0  q  t. Thus we see that (A6)
is satisfied.
For (A7), we note that for q ~ t,

Thus for 0  q  t, since cjJ"(q) > 0 and > 0 we have

By (B2) we can choose 8 > 0 and to > 0 such that

Then

Using (B3) we now see that (4 . 3) is satisfied and consequently (A7) is verified.
We close this section with a few remarks about our hypotheses.
Remark. 2014 1. We have shown above how to verify our hypotheses when

the function 0 has the special form (4.4). Although this form is consistent
with the usual axiom s for the constitutive assumption in hyperelasticity,
it is by no means implied by them. In fact for N = 3, it is quite common
to take the function ~ in the following form :

where h and 03C8 are real-valued functions defined on (0, oo). In much the
same way as we have done for the form (4.4), it is not hard to give condi-
tions on 03C6, h and 03C8 which ensure that a function C of the form (4. 6) satisfies
(Al) to (A7).

2. In (A5) it is assumed that ~ is bounded below, but this part- of the
assumption is only used to discuss the energy of the solutions in section 6.
The basic results on existence, given in section 5, do not require this assump-
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tion. Clearly this requirement, that inf 0 > - oo, can be replaced by
inf 03A6 = 0 without loss of generality.

3. The inequalities ~ 11 > 0 and R > 0 are implied by the strict rank-one
convexity of W and are referred to as the tension-extension inequality and
Baker-Ericksen inequality respectively [1 ].

4. The assumptions (A3) and (A4) can be interpreted in terms of the
Cauchy stresses correspondirig to the homogeneous deformations
x -~ diag (q, t, ..., t )x and x -~ tx of a unit cube and unit ball res-

pectively.
5. The inequality ~2 ~ - t 1 - ~ ~2  0 in (A5) does not seem to 

. 

have
q - t .

a physical interpretation, but is discussed on page 583 of [1 ]. Likewise

the growth conditions on 03A611, Rand - in (A2), (A6) and (A7) seem to be3?
of a technical rather than a physical nature.

5. PROOFS OF THE RESULTS

We discuss the boundary value problem (2.22) to (2.26). As described
in section 3, we approach this problem by considering the following initial
value problem,

where

and, as usual, denotes the i-th partial derivative of C evaluated at the
argument .

With this notation, we observe that (5.1.) is equivalent to the equation,

and so, by (Al) and (A2), the classical Picard theorem establishes the
existence of a unique maximal solution of the system (5 .1) to (5.3) for
each pair (~., a) E (0, 00)2. This solution will be denoted by

Vol. 2, n° 1-1985.
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where J(~,, a) is an open sub-interval of(0, oo), containing r = 1. For a),
let

where U = U(~,, a). Then T(~,, a) gives the Cauchy stress via (2. 20). Noting
that (5.1) can be written as,

we see that

for r E where T = a), U = a) and R is defined by (4 . 2).

LEMMA 1. - a) 0  a  ~, and a) we have ,

where U = a) and T = 

b) For 0  a = À and r E ~,), we have

c) For 0  ~.  a and r E J(~,, a) we have

Suppose that ~r0~J(03BB, x) such that 20142014 
== 0 at r == r0. Then

Thus U satisfies (5.1) and the initial conditions

Now it is easily verified that w(r) = tr is a solution of this initial value

problem and so by the uniqueness of the solution we have that

. 

Clearly this implies that a = A = t, contradicting the fact that 0  a  A.

Annales de l’Institut Henri Poincaré - Analyse non linéaire



51CAVITATION

. Hence we see that  0 on J(A, a).

From (A5) and (5.4) it now follows immediately that

since = U ( ) - - 2 U(r) ’ , we have that " > 0 for since 
B r 

= 

r rl r 
’ we have that r > 0 for (03BB,03B1)

.

Finally from (A6) and equation (5. 5), we see that T’(r) > 0 for reJ(1, a).
b) Clearly V(r)=Âr satisfies (4 . 2) and (4 . 3) with a = ~,. Since ~. > o we

have U(r) > 0 and U’(r) > 0 for r > 0.
c) The proof is similar to part (a).

Proof - a) Suppose that 0  a  ~. and that t --_ a) > o. By
the maximality of U, at least one of the following cases must occur :

Since U’(r) > 0 on J(~ a), we have that 0   l  r  1. Thus

(i ) cannot occur. 
~ i 

,

By Lemma l(a), U"(r) > 0 on J(~., oc) and so

Hence U(r) > ~, + (l - l)cx > ~, - a for r E J{~,, a) and so (ii) cannot occur.
Furthermore, U’(r)  U’(l) for 1  r  1 and hence (iii) cannot occur.
For p E J(A, a), it follows from (5.5) that

for l  p  1-, by (A6) since (U(r) r)’  0 and U(r) r  U(1) l for re [ , 1].
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Thus T(p)  T(l) + (N - 1)K ~t-Ndt where t = 20142014 and c = 20142014. .
. 

Jc ~ ~

Hence, we have that for l jp  1,

But

Setting b = lim we have shown that £  b  oo and so, if

lim U’(r) = 0, it follows from (A3) that lim T(r) == 2014 00. Hence we" ’ ~ 

must conclude that lim U’(r) > 0 and (iv) does not occur.
. 

This proves that inf J(~,, a) = 0 for 0  a  /L The case a = ~. > 0 is

trivial since U(~,, A)(r) = ~,r.
- b) By Lemma l(c), U"(r)  0 on J(~,, a). Therefore

A
Since U(r) > 0 for r E oc), it follows that inf J(~., ~x) ~ 1 - - > 0.

(X

From Lemma 2(b) we see that there cannot be a solution
of the boundary value problem corresponding to a case where 0  ~,  ex.

The solutions ~T(~,, ~.) corresponding to fx = ~. > 0, do indeed give solu-
tions of the system (2.22) to (2.25). Henceforth we need only consider
the case 0  a  A and for this we set

LEMMA 3. - For (~,, a) E 0 and 0  r  1 we have the following
inequalities :

where

In particular

- Proof - This follows easily from Lemmas and 2(a).

LEMMA 4. - For (~,, a) E A, let U(r) = U(~,, a)(r).
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Then q = q(~., a) is defined on [~., oo ) and 0  q(t )  t for oo ).
Furthermore, q(~,, a) is the unique solution of the first order equation:

satisfying the initial condition

Let Q(~,) be the unique solution of (5 . 6) satisfying the initial condition:

Then Q(A) is defined on and

Furthermore for 0  a  ~, ,

q{~., a) and Q(~.) are strictly decreasing on [~., oo)
and

Remark. - Since lim q{03BB, a)(t ) = 0, we have that

lim U/(r) = 0 for U = U(03BB, a) with (03BB, a) E ® .

Proof By Lemmas 1, 2 and 3, U(r) is strictly decreasing on (0,1 ],
r

Furthermore

Hence the equations (5.1) and (5.4) become

and (5.6) respectively where P is defined by (4.1). Since the right hand side
of (5 . 6) is C~ on (o, ©o )2 and (Al), (A2) hold, the Picard theorem ensures
the existence and uniqueness of the solution to the initial value problems
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(5 . 6), (5 . 7) and (5.6), (5 . 8). The assertions concerning q(~,, a) all follow

from the uniqueness and continuous dependence of solutions of (5.6), (5 . 7)
on the data (~,, a).
To complete the proof of the lemma, we need only show that Q(À) is

defined on all of [~,, oo) and that lim Q(~,)(t) = 0.
too

Clearly Q(~.)(t ) > 0 and Q(~.)’(t )  0 for all t in the domain of Q(~.).
In particular Q(~.)(.t )  t for t > ~,.

Setting S(t ) = t 1- N~ ~ (Q(~.)(t ), t, ... , t ) it follows from (5.5) that S

satisfies

for all t in the domain of Q{~,). Then arguing as in the proof of Lemma 2(a),

we find that the domain of Q(03BB) contains [03BB, oo), and that dS  (t )  0~t~ [03BB, oo).
dt

Thus t ~ - N~ 1 (Q(~)(t ), t, ... , t )  ~,1- N~ 1 (~., ... , ~.) for t > ~, and so if

lim Q(03BB)(t ) = b > 0 we obtain a contradiction to the assumption (A3).

Hence we have lim Q(03BB)(t) = 0.
t~ ~

where Q(/).) is defined in Lemma 4. Then

Proof 2014 ~) By (A6), R(Q(~,)(t ), t ) > 0 for t E [~., oo) and so

Since 0  Q(À)(t)  t, it follows from (A6) that

It follows that g(~.) > - oo and 3À.o > 0 such that

The limits in (c) now follow from (A4).
b) As above
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pointwise on (~,o, oo) as ~, --~ Ao. By the dominated convergence theo-
rem (since f3  N - 1), it follows that g(~,) -~ g(~,o) as À. -~ Ao and so g
is continuous on (0, oo).

For 0  03B1  03BB, we set

Recall from Lemma 1 (a) that for 0  a  ~,, T(~,, a) is strictly increasing
on (0,1] ] and that T(~,, À)(r) = ~, ~ - N~ 1 (~,, ~,, ... , ~,) for £ > 0. Thus for

(~., a) E A, we have 

and ~(~, 2) = ~,1- N~ 1 (~,, ~,, ..., ~,). From (A2) it follows that

LEMMA 6. - a) V(A, a) E 0, z{~,, a) > - oo .
b) i : : d -~ f~ is continuous.

c) b’~, > 0, i(~., . ) : (0, A) -~ (~ is strictly increasing, lim (x) == 2014 o0

and lim a) = g{~,), where g is the function defined in Corollary 5.

d) doc > 0, i{ . , a) : (03B1, ~) ~ R is strictly increasing.
e) g : (0, oo ) -~ R is strictly increasing.
Proof - a, b) For 0  p  1, it follows from (5 . 5) that,

where T = T(~,, a), U = U(~,, a) and t, q = q(À., a) are as defined in Lemma 4.
Since 0  q(t )  t, it follows from (A6) that 0  R(q(t ), t ) ~ A + Bt~
for t > ~, where f3  N - 1.

In particular, i(~,, (x) > - oo since ~3  N - l, and i(~,, a)  ~.1- N~1 (oc, ~,, ... , ~.}.
From (A3), it follows that lim ~(~,, a) _ - oo .

Furthermore by Lemma 4 and the dominated convergence theorem
we see that

/ ~.
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converges to ao) as (2, a) -~ (Ao, ao) in A. Thus r is continuous on

(0, oo). Similarly we have that lim a) = g(03BB).

c) For

But, according to Lemma 4, if 0  a  a 1  A,

we have q(~,, 0153)(t)  ~,

and so from (A2) it follows that

Hence a) 6 -

To prove that in fact there is strict inequality, we set

Then by (5. 5) we have that S = S(A, a) satisfies

Suppose that 0  a  cxi  ~, and that i(~., a) = i(~,, al).

Set

Then lim S(t ) = lim Si(t) and so, for a > A

where y  2(N - 1), by (A7) since lim q(t ) = 0.
But 

by (A2) provided that t > to.
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Hence

Since - 2N + 1 + y  -1 it follows by a standard argument that > o-o
such that Si(a) = for all a 1 and consequently that = q(t )
for all t  t1. Thus q 1 (t ) = q(t ) for all t 03BB and so 03B1 = o:i.

This proves that for 0  a  a 1  A we must have

d ) Let U = U(~ a) and set w(r) = U(cr) for r E 0 1 ] and c E (0,1 ].
c

It is easy to check that w satisfies (5.1) and that

For ~,l > A, it follows from Lemma 1 (a) that 3 a unique value of e E (0,1)

such Furthermore, 0  U’ c  U‘ 1 - a. Setting a = U’ c
c

where U(c) - 21, we thus have that and that w = a 1 )-
c

But -

Hence

Thus a) = i(~.1,  z(~.1, a) by part (c). This proves that i( . , a) is

strictly increasing on (a, oo ).
From parts (c) and (d ), it follows easily that g is strictly increasing on

(0, oo ).

THEOREM 7. - Let g : (0, be the function defined in Corol-

lary 5.

a) There exists a unique value ~,* E (0, oo) such that g(~,*) = 0. There
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exists a continuously differentiable strictly decreasing function w on

(~,*, oo) such that 0   ~, and

Furthermore lim w(~) = /)* and lim w(A) = 0 .
A-~*+ 

" 

b) For /L > A*, let U = U(/L, w(03BB)). For  > 03BB, there exists a unique value
U(c) U(cr)

c = c( ) e (0,1) such that 20142014 = . Then w( ))(r) =  for 0  r  1
c c

and w( ) = U’(c). The function c: (03BB, oo) ~ (0,1) is continuously diffe-
rentiable and strictly decreasing with lim c( ) = 0.

Then for 0  ~,  A*, is the only solution of (2.22) to (2.26) and
Ut(~)(o) = 0.
For A > A*, and U~(~.) are the only solutions of (2.22) and (2.26)

and Ut(~)(~) = 0  U,(;L)(0).
As ~, --~ A* +, converges to uniformly on compact subsets

of (0, 1 ].
d) For ~. > ~,*, let R~(~,) = be the radius of the cavity. Then R,

is a strictly increasing, concave continuous function on (~,*, oo) with

Furthermore Re is of class C2 on (A*, oo and 1.( ’ ) 
d~,

Proof By Corollary 5 (b) and (c) and Lemma 6 (e), there exists a unique
value ~,* E (0, oo) such that g(~,*) = 0. Furthermore for A  ~,*, a)  0

For /(. > ~.*, there is a unique value w(A) E (0, À) such that w(~,)) = 0
and lim w(A) = A*.

Now fixing A > A* and setting U = U(03BB, w(A)) we have as in part (d)
Lemma 6 that, for  > 03BB, w(/l) = U’(c( )) where c( ) is the unique value

of c in (0,1) such that U(c) - . Since  0 for 0  r  1, it follows

that c is a continuously differentiable function of p on (03BB, w) and that
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Hence

by Lemma 1(a). Also

Thus we see that parts (a), (b) and (c) of the theorem are easy consequences
of the preceding lemmas.

and

It now follows that R~ is of class C2 on (~,, oo ) and that

t- B. / B ~J J I W J

by Lemma 
Since lim = 0, it follows from (5.10) that lim = oo, and

from (5.11) that lim d R‘ - 1.{ ) .

It follows from (5.11) that R~ is strictly increasing on (A*, oo) and so
lim Rc(03BB)  Rc(03BB) for all 03BB > 03BB*.

By Lemma I(a), Rc(03BB)  Uc(03BB)(r) for all r E (0,1).
Thus 0 ~ lim R~{~,}  U~{~,}{r) for all ~, > ~,* and all r E (0, 1)..~~~,*+ r

But U~(~.)(r} converges to À*r as ~, --~ A* + for each r E (0, 1). Hence we
see that lim R~(~.} = 0." ~

Remarks. 1. In the notation of Theorem 7, we find that for ~, > ~,*,

where U = U(~~, w(i~ )), and

where the partial derivatives of C are evaluated at (w( ~c), ,u, ... , ~c~ and P
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is the function defined by (4.1). To verify (5.13) we note that by (5.9)
and (5.12),

2. These formulae give some information about the function V defined
by (3.3) which relates the Cauchy traction problem to the displacement
problem. In fact, for  > 03BB > 03BB*, we have

Hence lim V(p) = lim T(A, w(03BB))(r) = w(03BB)) = 0 since lim = 0.
rO 

’~ 

~ 

Furthermore V is continuously differentiable and

Thus V is strictly decreasing.

6. COMPARISON OF THE ENERGIES OF SOLUTIONS

We consider the energies of the solutions of the problem (2 . 22) to (2. 26).
Recall that in the notation of section 5, ~,) denotes the homo-
geneous deformation r ~ Àr which has no cavity. For 03BB > 03BB*,
denotes the solution U(A, w(~,)) which has a cavity of radius R~(~,) > 0.
From (2.10), it follows that,
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and

where U = U~(A) for ~. > ~.*.

LEMMA 8. - For ~, > ~,*, let U = U~(~,) = U(~,, w(~,)) and T = T(~,, 
Then there exist positive constants K1, K2 and to (depending on À) such that

and

where j3 is the constant in (A6).
se the variables : t t = U’ r introProof - We use the variables: t = 

U(r) , q(t)= U’(r) introduced 
in

Lemma 4. 
~

Since

and so by (A6),

Thus,

and

Remark. In the notation of Lemma 8, U satisfies

/ U(r) U(r)B _ .where Ci and C~ are evaluated at U’(r), 20142014, ..., 20142014 . Furthermore,
B ~ ~ /
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and so by Lemma 1(a), d dr{rN-103A61} > 0 on (0,1). According to Theo-

rem 4.2 of [1 ], the function u : ~ x E (~N : ~ x ~  1 ~ --~ [RN defined by

is u a weak solution of (2. 9) provided that

By Lemma 8,

since Also, for 0  E  1,

By Lemma 8,

LEMMA 9. - For A > ~,*, let U = U~(~,) = w(~,)) where s’

(~,*, oo) -~ f~ is the function defined in Theorem 7. Then, 
’

Proof - Since U satisfies (5.1), it is easily checked that U also satisfies
the following « conservation law » for 0  r  1,
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/ U(r) U(r)Bwhere 03A6 and 03A61 are evaluated at U’(r), 20142014, ..., 20142014 . Thus for 0  5  1

Since U( 1 ) _ ~., U‘( 1 ) = w(À) and

it follows that

By (A5) we can assume that inf 03A6 = 0, and SO it follows that

JlHence lim U‘(s), , ... , 
U(s) s) 

exists and since rN -1 ( 03A6| dr  oo,

we must have
1 

’

Recalling that EDc(03BB) = coN ~rN-103A6dr, the proof is complete.

THEOREM 10. 2014 Let and be the energies defined by (6.1)
and (6. 2). Then,

Furthermore, is a continuously differentiable, strictly increasing
function of À on (~.*, oo) with

Proof For 0  a  a) = ~,, ..., ~,) + [~ - a ]~1(ac, ~., ... , ~,).
Then for £ > ~,*,

by (A2), where yv(~,)  y(~,)  ~..
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Since lim w(~)=0, there exists ~i > 0 such that

Furthermore

by (5.12) where the partial derivatives of 03A6 are evaluated at (w(03BB), A, ..., 03BB,).
Now,

by Lemma I(a). Hence - EDc(À) > 0 for 03BB > 03BB*.bY ( ) 
d~ 

~( )

Remarks. - 1. We can obtain some information about the energies
of the solutions with cavities for the Cauchy traction problem. From (3 . 4), let

for ~, > ~,~, by Lemma 10. Hence,

by (A6). Thus the function defined by (3.4) is strictly decreasing
on (0, P*).

2. To obtain some information about the dead-load traction problem
and to ensure that

we seem to need an extra hypothesis about C.

THEOREM 11. In addition to the assumptions (Al) to (A7), suppose that
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Then lim 03A61(w(03BB), 03BB, ...,03BB) = oo and so lim - EDc(03BB)= lim EDc(03BB) = oo.

Proof For 03BB > 03BB*, let U = U(A, w(A)). In the notation of Lemma 4,
we have

where S(~)=~ ...~). Since lim S(~)=T(~ w(/L))=0, it follows
that

Now given any M > 0, ~E > 0 and to > 0 such that

Since q(t) --~ 0 as t -~ oo, it follows that ~to > 0 such that

Thus ...~) ~ M for all t > to and so ...~) = oo.

for ED (03BB) and 
d 
ED (03BB) follow from Theorem lo.The limits for and - follow from Theorem 10.

Remarks, I. By (A8), we also have that lim 
d 

= + w by (6 . 4).

Thus we conclude that lim ECc(P) = oo. Furthermore Theorem 11

implies that the function D given by (3. 5) for the dead-load traction pro-
blem has the property that lim D(03BB) = oo.

2. When the function 03A6 has the special form (4.4),

Hence we see that the conditions (Al) to (A8) are all satisfied provided
that § and h satisfy the conditions (Bl) to (B5) of section 4 and, in addition,
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