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Conservation laws
for the nonlinear Schrodinger equation
by
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Department of Mathematics, Columbia University, New York
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ABSTRACT. — We propose a method of calculating the operator den-
sities h, n = 0, 1,... of the conservation laws for the guantum nonlinear
Schrodinger equation. It follows from the method that #, are. polynomials
in fields and their derivatives and in the coupling constant. The densities
h, n < 4 are explicitly calculated. Comparison with the integral densities
b, n=20, 1,... for the classical nonlinear Schrdodinger equation shows
that the correspondence between h, and b, breaks down after n = 3.

ReEsuMmt. — On propose une méthode pour calculer les densités opé-
ratoires h, n =0, 1, ... pour les intégrales de 'équation de Schrodinger
non linéaire quantique. Il s’ensuit que les &, sont des fonctions polynomiales
des champs, de leurs dérivées et de la constante de couplage. Les densités
h,, n < 4, sont calculées explicitement. En les comparant avec les densités
intégrales b, n =0, 1, ... pour I’équation de Schrodinger non linéaire
classique, on voit que la correspondance entre b, et h, nest plus valable
pour n > 3.

1. INTRODUCTION

We consider the quantum nonlinear Schrodinger equation (NLSE)
in 1 + 1 space-time dimensions

W, = — W, 4+ 2PN, (1.1)
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68 E. GUTKIN

Its Hamiltonian

H, = - de(qlwxx — cYT2p?) (1.2

is the second quantized form of the many body Hamiltonian

a 2
d
HYY = — > a7t E 8(x;: — x;) (1.3)
i=1 ’ i#j

Hamiltonian (1.3) describes the interaction of N identical particles on
the line via elastic collisions and ¢ is the strength of interaction. The famous
« Bethe Ansatz » [/] [2] exhibits the system of generalized eigenstates
[ Waiky, .., kn) D> = | ak) > of HEY which is complete if ¢ >0. We have

HY | w(k) > = (Z k?) fwy(k) > . (1.4)

i=t

Since Bethe Ansatz eigenstates depend on N quantum numbers ky, . . ., ky
the Hamiltonian (1.3) must be completely integrable. This means that there
are N independent operators H™ n =1, ..., N such that

H®M | Wy(k) > = (Z k?) | Wn(k) > 1.5

i=

N

HP =(-1i) Z@/@xi is of course the total momentum and HYY is the
i=1
Hamiltonian (1.3). Existence of H® should imply the infinite sequence

of independent conservation laws H, n=1,2, ... for the NLSE given
by their operator densities h,
H, = J dx hy(x). (1.6)
We have
hy = (— )P, _ 1.7
hy = (— )P, — c P92, (1.9)

Operators H, are completely characterized by the property that for any N

N
B, 1wk > = (Z k?)l Yu(k) > . (1.9)

i=1
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NONLINEAR SCHRODINGER EQUATION 69

It is desirable to have explicit expressions for the operator densities #,.
In this paper I suggest a method for calculating h, for any n. Using this
method I calculate 5 and 4. In section 4 1 compare h, with the func-
tional densities b, of the integrals of motion for the classical NLSE

i, = — @ux + 2c| @70 (1.10)

Thacker [3] has obtained h; using a completely different approach.
Kulish and Sklyanin [¢] and Thacker [¢4] have integrated (1.1) using
the quantum inverse scattering method. Their method however does not
yield explicit formulas for %, in terms of the fields (*).

2. N-PARTICLE SECTOR

In this section we fix N and omit the superscript N in formulas. The
N

Hamiltonian H, is equal to the Laplacean — z 0%/0x? with the boundary

conditions —

(0/0x; — 6/0x;)F = cF 2.1
on hyperplanes {x; — x; =0} i, j=1,...,N.
Because of the symmetry of function F it suffices to restrict it to
RY={x; <x, < ... <xy} and to impose boundary conditions

(6/6xk+1 — a/ﬁxk)F = ¢F (22)

on hyperplanes x, = x4y k=1,...,N — L
I will use the following fact. There is an operator P on symmetric func-
tions in RN that intertwines Laplacecan with the Neumann boundary

diti
conditions (0/0%ps1 — 9/0x)F = 0 2.3)

and Laplacean with boundary conditions (2.2) for ¢ = 0. The operator P
constructed as follows. For any i # j let P;; be given by

0

(Pijf)(xl....,x!\:',' 4J‘ dte_ﬂf(xl,...,xi;‘t,...,xj“f‘ t,...,xN). (24)

0

Denote by S the operator from all functions fon RN into symmetric func-
tions on R™ obtained by restricting f to R} and then extending it to R™
by symmetry. Then [5]

stﬂ(l — ¢Py). 2.9

i<j

(*) Added in proofs: in a forthcoming paper I show that the formulas for integrals of
the NLSE obtained in [4] via the quantum scattering method are false.
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Denoting by A, the Laplacean with boundary conditions (2. 3) we express
the intertwining property of P by

H2P = PA2 . (2.6)
N

Let A, be given by (— i)" 2 0"/0x} with « higher » Neumann boundary

conditions —

(0/0x1+ 1 — 0/0x)* "1 f=0 2.7

fori=0,1,...,[n/2] — 1 on hyperplanes { x; = x4, } k=1,...,N—1.
Let H, be defined from

PA, = H,P (2.8)

for n =1, .... Since operators A, commute, H, also commute. It follows
from (2.5) that P takes boundary conditions (2. 7) into boundary conditions

(0/0xx 41 — a/axk)ZHIf: 0/0%k+1 — a/axk)Zif 2.9

So H, is equal to (— i)" Za"/ax'; with boundary conditions (2.9) for

i=1
i=0,...,[n/2] — 1. It remains to obtain formulas for H, similar to the
formula (1.3) for H,.

Let g(xy, ..., xy) be an infinitely differentiable function and let f satisfy
the boundary conditions (2.9). Then

N 03
CglHsf) = (- ifjf”'?@(Zggf)- (2.10)

i=1

Integrating by parts and taking (2.9) into account we get

PSRRI P o
CelHalf>y = = (= 0F |d% ) %5

0 0
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Integrating by parts again

<g|H3lf>=(—i)3Jde2; aaf
+ (= i) JdN Zé(xl -~gf

71

rer JdN Z(@x, j>5(xi—xj)§f. 2.12)

After one more integratlon by parts and obvious transformations (2.12)

becomes

(glH3lf> =17 JdN 26 == 8&f
+ (= i) fd Za(x, <6xl

N

which yields

2 3 0
H3 = ("— l)3<2a§ - 5026(Xf - xj)(a_x—i +

i=1 i#j

<ng4If>*JdN Z

Integrating by parts the right hand side
N
o) g
J @ Z 00x; = ( axa;xj
Integrating by parts the first term in (2.16) we get
2 CJ " Zé(x‘ ( ai,)g’(ai

Vol. 2, n° 1-1985.

For H, we have

0

]
0

=)

+ s

62
ax}?)f'

0
Ox

)

2.14

2.15)

(2.16)

2.17)
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Integrating (2.17) by parts again and remembering the second term in (2. 16)
we have

. ot
<ng4lf>=Jd”x25—4gf
Jos Y - 2 )
(=2 5z + 5 B
N 02-
jd Z ( ax)gf
N * &
—ch 25@ ( axax a—)f. (2.18)

The last term in (2.18) can again be integrated by parts yielding

0* 0* 02
— chNxz S+ 5+ 00x; — x))gf
ox?  oxtox;  ox3 ’

itj

N o

l\)ln

c? Jd”x z o(x; — x)0(x; — x)gf. (2.19)
ij*k

From (2.18) and (2.19) we have

2 o
H, = B
+ z oxt z 00x: = ( T oxox, T ax2>

J

0
_CZ (6xi + axiﬁxj+0—)cj>6( —x;)+3¢? 2 00— x;)0(x ;—xx). (2.20)

i iFj*k

3. SECOND QUANTIZED FORM OF H,
A standard calculation gives
1:13 =(_ l)3 jdXTTTxxx

3 0 0
— 5= i) jdx de‘PT(X)‘PT(y)f?(x—y)(— + ——)‘P(X)‘P( y)
2 dx Qdy

= (= i) de P, — 3cP2PY, . (3.1

Annales de I'Institutr Henri Poincaré - Analyse non linéaire
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NONLINEAR SCHRODINGER EQUATION 73

77!3()() = (_ i)a(lPhPxxx - 3CIPT21P\P;¢) . (32)

= J\dxlp lP:4:):::::
0* 0* 82
- J deTT(x)WT(y)é(x y)(a axay y) (xX)¥(y)

2 62 62
—c defdy‘P* ‘P*(y)< axay 6 >5(x VWY (x)¥(y)

+3c2 jdx de de‘P*(X)‘P*(y)‘PT(Z)fs(x = 0Ny = J¥)¥()¥(2). (3.3)

After obvious integrations by parts we have

fl, = J AW, — 20¥T 2P, — cPT2W2 — 20Phyp] g2

~ ¥IPY? + 32WYRPY]. (3.4)
Thus

ha(x) = P nx — 20P12PY,, — cPP2W2 — 209N, W2
— cWIPW? 4 3293 (3.5)

4. COMPARISON WITH CLASSICAL INTEGRALS

The classical NLSE (or Zakharov-Shabat equation [61])
i(ptz —¢xx+2cl¢lz(/? (41)

is a completely integrable Hamiltonian system with infinitely many degrees
of freedom [7]. In particular (4.1) has an infinite number of integrals
of motion B,(@, ¢). The functionals B, are determined by the local den-
sities b,

B.(®, ¢) = J dxb,(P(x), ¢(x)) . 4.2)

—

The densities b, are found from the recurrence relation

d (b
bpp1=0—|—]—c¢ bb; 4.3
+1 qux((l)) Z Jj 4.3)

and i+j=n—1

by = 0p. 4.4
From (4.3) and (4.4) we get
by = o, (4.5)
by =00 —clol* : (4.6)
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74 E. GUTKIN

by = PPrxx — 2c0XP7)x — CPPLp* 4.7
bs = PPrxe — 2004 )x — 200°QPrx — G2

— 3cpPAP%)x — cPPP* + 27 @ ]°. (4.9)
The local densities h and g that differ by a total derivative are equivalent

h ~ g because they define the same functional J dxh(x) = j dxg(x).
We have —w

=

== 3 T2 2 ’
by ~ PQrxx — 2 P (), = b 4.9)

by = PoxPrx + 2@ A@D); + cP*Q: + cPip* + 27 |9 |°® = by, (4.10)

We see from (3.2) that h; differs from b3 by the factor (— i)® only. On
the other hand the difference between h, (3.5) and b, is essential. Replacing
h4 by an equivalent operator density kj the closest that we can get to b} is

M=YLW. . + 20(P1)(F?), + cF12W2 + cPI2¥? 4 329193 . (4.11)

The difference corresponds to.c? | ¢ |° which is a nontrivial density.

5. CONCLUSION

The nonlinear Schrédinger equation (1.1) has an infinite sequence of
conservation laws H, given by the operator densities h(¥'(x), ¥(x)).
The densities %, can be found using the method of sections 2 and 3. It
is clear from the method that h, are polynomials in the fields and their
derivatives. Besides %, are polynomials in the coupling constant c. The
degree of h, in ¢ is [n/2].

Correspondence between #, and the integral densities b, of the classi-
cal NLSE (4.1) breaks down at n = 4.
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