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ABSTRACT. - Given any constant C>0, we show that there exists
smooth bounded nonstarshaped domains U in [RN (N >_ 5), such that the
problem

has no solution u, whose energy, U|~u|2, is less than C.
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RESUME. - Etant donnee une constante C > 0 arbitraire, nous montrons
qu’il existe des ouverts bornes reguliers non etoiles U de [RN (N > 5), tels
que le probleme

ne possèfde pas de solution u, dont 1’energie, U| O u|2, est plus petite que C.v
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INTRODUCTION

Let U be any smooth open bounded domain in [RN. For N >_ 5, consider
the problem:

where p = N+2 . is the critical Sobolev exponent.
N+2

It is well-known that if U is starshaped, ~~ (U) has no solution [P] and
if U has a nontrivial topology, Bahri and Coron [B.C] have shown that
~N (U) has a solution. On the other hand, Dancer and independently
Ding [D2], were able to construct a contractible domain D, such that

(D) has a solution.
Then, the question arises whether there exists an open domain U,

smooth, bounded and not starshaped, with a trivial topology, on which
~N (U) has no solution.
We define the energy EU (v), where v E Ho (U) as follows:

We shall denote by S the Sobolev constant,

which does not depend on the choice of the domain U.
The main results of our paper are the following:

THEOREM l. - Let ~ be any real number strictly less than SN/2. Then
there exists a bounded domain which is not starshaped such that

has no solution whose energy is less than 2 SNJ2 - ~ .
THEOREM 2. - Assume 5 _ N  8. Then for any constant C > SN~2, there

exists a bounded domain S~~ which is not starshaped such that (~~)
has no solution,whose energy is less than C.

These theorems call for a remark. We construct a nonstarshaped domain
such that our problem has no solution with a prescribed bound for the
energy. We believe the result to be true without the energy constraint.

Also, the statement of Theorem 2 contains a technical condition on the
dimension. This condition is used in estimates concerning the interaction
terms (see Appendix Band [B]). We believe the result to be true for all
dimensions, even in dimensions four and three.

This paper is divided in two parts. In the first part, we construct an
explicit sequence of open sets S~E which are not starshaped and converge
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to the unit ball of R’. Using the method of "moving planes" of Alexan-
droff, in the same way as in [S], in [G.N.N] and in [HB.N], we give some
geometrical properties of any solution of In the second part, we
suppose that ~N (nE) has a solution Ut which satisfies E~E (uE)  C, C being
a given constant. We use the concentration compactness principle introdu-
ced in [P.L.L] to study the behavior of Ut. By the generalization of the
method developed in [R.L], we analyze the location of the concentration
points of UE, when s goes to zero. Finally, a connection between the
geometrical part and the concentration points is displaid. A contradiction
comes out from those facts. Our is chosen to be for s small

enough.

I. GEOMETRICAL PROPERTIES OF THE SOLUTIONS

A. Construction of Qg
We set:

B will denote the open unit ball in [RN and we consider the points P = (0, 1 )
and Mp = (0, p), where p  2014 1 is a fixed constant. For E > 0, B (P, £) is the
ball centered at P with radius s (which is going to be small), CG is the
closed cone with vertex Mp consisting of all those rays which intersect the
sphere oB (P, e) in other words:

w 
- 

r i

Then, I being a fixed constant in ]0, 1[, we define the required ~£ as
follows:

For each E small enough, Qg has a trivial topology, is not starshaped
and not conformal to a starshaped domain. By smoothing the corners,
we may work as if Qg were a smooth domain without changing the nature
of our arguments.

The picture of a projection of Qg.
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B. The moving planes principle

In what follows, we suppose that (UE) has a solution, denoted by u.
The classical results of regularity [B.K] say that ue C1 Next we

have:

LEMMA 2. - Let Xo E QE be such that:

then:

We postpone the proof of this lemma until the end of this section. We
start by introducing some notations. Let À be any nonnegative real number.
Then we denote:

x~ is the reflection of x across TB,

LEMMA 3. - Let A be defined as above. Then we have:

Proof. - By the Hopf Lemma [G.N.N], it follows that:

and by the Serrin Lemma:

either

Then, for all points A of vB n CE there is some e (A) > 0 such
that:
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On the other hand, by compactness there is a finite number of points
in such that:

We set:

Consider k and j such that ~k (~ Q~. We define:

Then, it is easy to verify that:

which proves the lemma.

Now, let 03BB~ and x ~ 03A303BB. We set:

PROPOSITION 4. - If w~ ~ 0 in ~’~, then:

and

Let c (x) be defined by:

Since v still satisfies: - 0394v=vp in 03A303BB, and we have chosen 03BB in 
satisfies:

The function c (x) is clearly a continuous function. Consequently by the
strong maximum principle, we obtain the fact that: w~ > 0 in E’~. On the

other hand, again by the Hopf Lemma, we see that: > 0 in T03BB ~ 03A9~.

Vol. 9, n° 3-1992.
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Since the following equality holds:

the result follows.

COROLLARY 5. - Let such that ~, > o. Then with the notations
introduced above, > 0 in ~~.

Proof. - According to Proposition 4, it suffices to show that there
exists a point yo E ~’~ such that: (yo) ~ 0. Let xn E E’~ be a sequence which
converges to some point x E Because 03BB > 0, x03BB ~ ~03A9~. Then, it is obvious
that: u (x’~) > o. On the other hand:

This shows that for n large enough, w~ (xn) > o.
We consider now:

In order to prove Lemma 2, we have to establish that ~. = 0. We start with:

LEMMA 6. - Let  be defined as above. Then  E A.

Proof - By definition, ~, > 0 and there exists a sequence ~,k such that:

Let x be any point in ~~‘. Then clearly, there is ko such that, 
It follows that:

Clearly, passing to the limit: u (x) __ u (x~‘), and the lemma is proved.
We are now ready to prove Lemma 2. Arguing by contradiction, we

suppose that ~. ~ 0. Then there is a non decreasing sequence k of strictly
positive reals, a sequence of points xk E E such that

Let x be a limit point (passing to subsequence) of xk. Then, and

consequently by Lemma 6,
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It follows that:

Then, by Lemma 6 and Corollary 5 of Proposition 4, we have necessarily:

On the other hand, for every integer k, there exists ~k on the line segment
such that:

According to Proposition 4 and Lemma 6,

and consequently:

This is a contradiction, showing that ~. = 0, and Lemma 2 is proved.
Applying the technique of the moving plane in all directions, one is led

to:

THEOREM 7. - There exists a compact set K c B xN  0 ~, which does
not depend on ~, such that for all ~ > 0, for all solutions u of pN (03A9~):

such then x E K.

In order words, all critical points of the solution u of the problem
~N (S2£) are contained in a compact set K, which does not depend on ~,
and which lies in the lower half ball. For the proof, apply the same
procedure as in Lemma 2, but in all possible directions.

II. AN APPLICATION OF THE CONCENTRATION
COMPACTNESS PRINCIPLE

We are now in position to prove Theorems 1 and 2. We shall suppose
that (nE) has a solution uE, whose energy is bounded by a constant C
which does not depend on 8. From the facts that

BB~ x = {0, xN), l _ xN  I ~
has the same capacity as B and that (B) has no solution by Pohozaev’s
identity, it follows that the sequence uE, extended to B by zero outside Q~,
converges weakly to zero in Arguing as in the first part of [R.L],
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which relies on the work of P. L. Lions, it is easily seen that:

where ~a~ is the Dirac mass at and the convergence is the weak

convergence of measures. We shall say that aj is a concentration point of
We start with a uniform convergence result:

THEOREM 8. - Let K be any compact subset of B, which does not contain
the points l, ..., k. Then, the sequence uE converges uniformly to zero
on the compact K.

Proof - This is a direct application of Theorem A. 2, proved in

Appendix A, which is in the same spirit as the regularity result of Brezis-
Kato [B.K].
From the equation satisfied by Mg, it follows that:

2N
where 2*==~+ 1== 201420142014.

N- 2

Let K/ be an other compact subset which strictly contains K and does
not contain the points ~. From (1) it follows that:

Then apply Theorem A . 2 with 
A direct and basic consequence of Theorem 8 combined with Theorem 7

can be stated as follows:

PROPOSITION 9. - Let K be the compact set introduced in Theorem 8.
Then all the concentration points of the sequence uE are contained in K.
We now set;

where co is such that:

We denote by (a, À) the orthogonal projection onto Hà of the

functions 8 (a, X); that is the unique solution of the problem:

Annales de l’Institut Henri Poincaré - Analyse non linéaire



251A NON EXISTENCE RESULT

The following statement describes the decomposition of the function u£
in terms of the functions (a, X). This result is now classical in the
context of the critical Sobolev exponent, and the reader can consult [B]
and [B.C]. Here, the assumption on the bound of the energy of u£ is
essential.

THEOREM 10. - There exists an integer k’, a sequence (a 1, £, ..., £)
included in (S~~)k~, a sequence £, ..., ~,k., £) in (1~+~, a sequence vE in

Ho whose norm in Ho goes to zero as s - 0 such that:

(i ) k’ >_ k (see Theorem 8);

(ii ) V i =1, ..., k’, 3 ji such that a~ £ 

In (iv), the expressions in the parenthesis denote the scalar product in
the space Ho 
Assume first that EnE (u£) c 2 SN~2 - r~, r~ being as in Theorem 1. Then,

arguing as in [R.L], using Theorems 7 and Proposition 9, we find that
k=k’= 1. Then, we obtain a contradiction between Proposition 9 and
Lemma 10 in [R.L], which states that d (a 1, £, S2£) ~ ~ as E -~ 0, and
Theorem 1 is proved.
To conclude, the generalization of the techniques used in [R.L] leads to

the following:

PROPOSITION 11. - Assume 5  N -- 8. Then there exists an index io, a
sequence ~n which goes to zero as n ~ + oo, such that the sequence

En, 
~ 0 as n - + ~. In other words the sequence cannot

converge to a point of the compact set K. 
The proof of this proposition, which is rather technical, is given in

Appendix B.
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The contradiction between Proposition 11 and Proposition 9 is now

clear, and shows that for E small enough, the problem (SZ£) cannot
have a solution, which is the claim of Theorem 2.
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APPENDIX A

Let Q be a smooth bounded domain in (~N. We consider a function
a (x) in the space L Nj2 (Q) and we denote by Pa the problem:

We recall the following result due to Brezis and Kato [B.K]:

THEOREM A . 1. - Let any solution of Pa. Then for all t >_ l,
u is in L~ (SZ) .

Let aE >_ 0 be a sequence in the space (~), a compact subset K of
Q, such that:

We have:

THEOREM A. 2. - Let u£ E Ho (Q) solution of PaE such that the sequence
(uE) converges weakly to 0 in Ho (Q), and 0. Then for every compact
subset K’ of int K and for all real number t >_ 1 we hawe:

Proof - Let K’ be a compact subset of int K. We consider a Coo cut-
off function cp, such that:

Let a be any real number greater than 1. By theorem A . 1 and the fact

that u£ > o, the function cp uE belongs to Ho (Q). Hence, it makes sens to
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multiply PaE by cp u£, which leads to:

By Holder inequality:

~ 
2N

where 2* = .
N-2

On the other hand, by integrating by parts, we obtain:

In the same way:

On the other hand, by Sobolev inequality,

where S is the Sobolev constant.

Now, using the fact that cp is a Coo function, combining (A. 3) to (A. 6),
we see that there exists C (K, K’, a) > 0 such that:

By (A .1 ), we can choose ê small enough such that

which leads to:

But we assume that u£ converges weakly to 0 in H~ (Q). Hence, if we
choose any a such that:

Vol. 9, n° 3-1992.
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we see that:

This proves that:

Now, taking into account that 2* > 1, we can reiterate the process, and
the proof is complete.

APPENDIX B

We prove in this appendix Proposition 11. We use the notations of part
II, and in particular Theorem 10. These computations, which take into
account the interaction between the singularities, were originally introdu-
ced by Bahri and Coron ([B] and [B.C]), who were the pionneers of those
kinds of arguments.
As in [R.L], we start with an estimate of the Ho norm of v£. The

following holds:

LEMMA B . 1. - We have the estimate:

where 03BEi, ~ = 1 d(ai, ~, ~03A9~)03BBi, ~
.

In what follows, we do not write systematically the index 8,
and we shall write Psi for (~i~ E, ~i~ £)- We multiply the equation satisfied
by u, whose expression is given by (iii) in Theorem 10, by v and obtain,
taking into account (iv):

On the other hand, we have:
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which leads to:

On the other hand, we know by [B] that there exists a constant p, which
just depends on the dimension, such that:

We now combine (B .1 ), (B. 2) and (B. 3) and obtain:

We now study each of the terms appearing in (B. 4). Using the usual
expansion, we have:

We set:

By orthogonality,

then:

We shall denote by Bi the ball centered at ai, whose radius is 
We have:

By the Maximum Principle:

Vol. 9, n° 3-1992.
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so that, as in [R.L], we obtain:

We look at the interaction term:

which is less than

But for any strictly positive real number a, we clearly have:

(use the inequality satisfied by and by [B], we know that:

where 03B8=min ((p-1)(p+1) p,p+1 p), which leads to:where e = rom 
B P 

, P 
which leads to:

On the other hand:

Expanding we have:
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Looking at (B . 4), we know that the term 03B4p-1i v2 vanishes. On the other
hand, by Sobolev and Hölder inequalities, we have:

and it is easy to check that

is a quantity which goes to zero as E goes to zero. It remains the term:

Combining (B. 1), ..., (B . 6), (B. 8), ..., (B . 11) we obtain the fact that
there exist two constants C1 and C2, which do not depend on ~ such that:

and there exists r > 0 such that for e small enough,

which concludes the proof of Lemma B . 1.
In order to prove Proposition 11, we establish:

LEMMA B. 2. - Suppose 5 _- N  8. Then there exist a sequence E,~ which

goes to zero as ~2 2014~ +00, and an index io such that goes to
zero as n - + 00. 

~ ~ 
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Proof. - As in lemma B. 1, we shall not write the index s. We start
with the equation satisfied by v, always using the same expansions:

i

Given an index k we multi 1 B .12 by a= and integrate over S2.PY C ) Y 
~ 

g

Taking into account the relations of orthogonality, we get:

where C is a positive constant. We recall some of the estimates of [R.L]:

where CN is a constant which just depends on N, H is the regular part of
the Green’s function, solution of the problem:
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We now study the interaction terms. From [B], we have:

Both terms

are controled by 03C6i 03B4p-1i|~P 03B4k ~03BB|.

We turn to P 03B4p-1i Inf(P 03B4i, P S . ,) aP sk . We have:
aa.

We start with may write Q = B, U B~. U U Then:
c~

In the same way, we write: Q = Bi U B J U Bk U (Bf U B j U B~). As in the
previous estimate, we get:

We are left with the term .P ~p -1 Inf(v, P ~.l 
~P ~k , which is less thanI ‘ ~ ll 

lX
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C being a positive constant. By Holder inequality:

and

On the other hand,

so that:

Using again the estimates of [B], we obtain:

Given e small enough, there exists kE such that:

Then there exist a fixed index ko and a sequence En which goes to zero as
n goes to infinity, such that Multiplying (B. 13) by ~ 0 1, combin-
ing Lemma B. 1, (B .14), ... , (B .18), we get:

for all N >__ 5. Taking into account the estimate of)) we shall need some
restrictions over the dimension, in order to obtain a o (1} in the second
term of this last inequality. For N = 5, 6, it is easy. If N> 6, we must
have:

Annales de l’Institut Henri Poincaré - Analyse non linéaire



261A NON EXISTENCE RESULT

by the choice of the index ko (C is any positive constant). This is satisfied
when N  8. In this case, we have:

But, by the maximum principle, there exists a strictly positive constant p,
such that:

then goes to zero as n goes to infinity, which is a contradiction with
the fact that the points ako, En should stay in the compact K, and the proof
is complete. 

’

[A.P] F. L. ATKINSON and L. A. PELETIER, Emden-Fowler Equation Involving Critical
Exponent, Journal of non linear analysis T.M.A., Vol. 10, 1986, pp. 755-776.

[B] A. BAHRI, Critical Points at Infinity in Some Variational Problems, Longman, 1989.
[B.C] A. BAHRI and J. M. CORON, On a Nonlinear Elliptic Equation Involving the

Critical Sobolev Exponent. The Effect of the Topology of the Domain, Comm.
Pure and Appl. Math., Vol. 41, 1988, pp. 253-294.

[HB.N] H. BERESTYCKI and L. NIRENBERG, Monotonicity, Symmetry and Antisymmetry
of Solutions of Semilinear Elliptic Equations, Journal of geometry and physics
(to appear).

[B.K] H. BRÉZIS and T. KATO, Remarks on the Schrödinger Operator with Singular
Complex Potential, Journal maths pures et appl., Vol. 58, 1979, pp. 137-151.

[B.P] H. BRÉZIS and L. A. PELETIER, Asymptotics for Elliptic Equations Involving Critical
Growth, Partial Differential Equations and the Calculus of Variations: Essays in
honor of E. DeGiori, F. COLOMBINI et al. Eds., Birkhauser, 1989.

[D1] E. N DANCER, On a Nonlinear Elliptic Equation Involving Critical Sobolev

Exponent (to appear).
[D2] W. Y. DING, Positive Solutions of -0394u=u(N+2)/(N-2) on Contractile Domains (to

appear).
[G.N.N.] B. GIDAS, W. M. NI and L. NIRENBERG, Symmetry and Related Properties via the

Maximum Principle, Comm. Math. Phys., Vol. 68, 1979, pp. 209-243.
[P.L.L] P. L. LIONS, The Concentration Compactness Principle in the Calculus of Vari-

ations, the Limit Case, Rev. Mat. Iberoamericana, Vol. 1, 1985, pp. 145-201.
[R.L] R. LEWANDOWSKI, Little Holes and Convergence of Solutions of 2014 0394u= u(N+2)/(N- 2),

Journ. of nonlinear analysis T.M.A., Vol. 14, n° 10, 1990, pp. 873-888.
[P] S. POHOZAEV, Eigenfunctions of the Equation 0394u+03BBf(u)=0, Dokl. Akad. Nauk

S.S.S.R., Vol. 165, 1965, pp. 33-36.
[S] J. SERRIN, A Symmetry Problem in Potential Theory, Arch. Rational Mech. Anal.,

Vol. 43, 1971, pp. 304-318.

( Manuscript received May 1 6, 1990;
revised June 15, 1990.)

Vol. 9, n° 3-1992.


	A nonexistence result for a nonlinear equation involving critical Sobolev exponent



