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ABSTRACT. - N >_ 3 be the limiting Sobolev exponent and

open bounded set.

We show that for jEH-1 satisfying a suitable condition the
Dirichlet problem:

admits two solutions uo and U1 in Hl (Q).
Also and for f’>_ o.
Notice that, in general, this is not the case if f= 0 (see [P]).
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282 G. TARANTELLO

On montre que si f E H -1, , f ’~ 0 satisfait une certaine condition alors le
probleme de Dirichlet : u Q et u = 0 dans aS2, admet
deux solutions uo et u2 dans Ho (S2). De plus et si f >__ 0.
On remarque que ce n’est pas le cas, en general, si , f’= 0 (voir[P]).

1. INTRODUCTION AND MAIN RESULTS

In a recent paper Brezis-Nirenberg (B.N.I] have considered the following
minimization problem:

where is a bounded set, and p 2 N ~ N >_ _ 3
N-2

is the limiting exponent in the Sobolev embedding.
It is well known that the infinum in (1.1) is never achieved if f=O

(cf [B]). In contrast, in [B.N.I] it is shown that for this infinum is

always achieved. (See also [C.S.] for previous related results.)
Motivated by this result we consider the functional:

whose critical points define weak solutions for the Dirichlet problem:

We investigate suitable minimization and minimax principles of mountain
pass-type (cf. [A.R.]), and show how, for suitable f ’s, they produce critical
values for I in spite of a possible failure of the Palais-Smale condition.
To start, notice that I is bounded from below in the manifold:

[here ( , ) denotes the usual scalar product in H = Ho (Q)]. Thus a natural
question to ask is whether or not I achieves a minimum in A.
We show that this is the case if f satisfies the following:
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283NONHOMOGENEOUS ELLIPTIC EQUATIONS

where e N 4 N - 2 tN + 2)/4. . More precisely we have:" ~ 
N-2 2 N+2 

" ’

THEOREM 1. - Let f ~ 0 satisfies {*)o. Then

is achieved at a point uQ E A which is a critical point for I and uo > o

for ~ 0.
In addition if f satisfies the more restrictive assumption:

~ u ~ H, f’ 1 , then uo is a local minimum for I. D

Notice that assumption (*) certainly holds if

where S is the best Sobolev constant (cf. [T]).
Also if f = 0 Theorem 1 remains valid and gives the trivial solution

uo=0.
Moreover in the situation where uo is a local minimum for I, necessarily:

This suggests to look at the following splitting for A:

It turns out that assumption (*) implies Ao = ~ 0 ~ (see Lemma 2. 3 below).
Therefore for ~’~ 0 and ( 1 . 4) we obtain uo E A 

+ and consequently

So we are led to investigate a second minimization problem. Namely:

In this direction we have: -

THEOREM 2. - Let satisfies (*). Then cl > co and the infinum in

{1.5) is achieved at a point ul E11- which define a critical point for I.
Furthermore ui >__ 0 for ~’>__ o. D

Vol. 9, n° 3-1992.



284 G. TARANTELLO

Notice that the assumption 0 is necessary in Theorem 2. In fact for

. f ’= 0 we have:

and the infinum in the right hand side is never achieved.
The proofs of Theorem 1 and Theorem 2 rely on the Ekeland’s varia-

tional principle (cf [A.E.]) and careful estimates inspired by these in

[B.N.I].
As an immediate consequence of Theorems 1 and 2 we have the follow-

ing for the Dirichlet problem (1.2).

THEOREM 3. - Problem ( 1 . 2) admits at least two weak solutions uo,
ul E Ho (Q) for f ~ 0 satisfying (*); and at least one weak solution for f
satisfying (*)o.
Moreover 0, u 1 >_ 0 for f ? 0. 0

This result was also pointed out by Brezis-Nirenberg in [B.N.I].
Their approach however uses in an essential way the fact that f does not
change sign. It relies on a result of Crandall-Rabinowitz [C.R.] and

techniques developed in [B.N.2].
Furthermore for f ~’? o it is known that ( 1. 2) cannot admit positive

solution when is too large (see [C.R.], [M.] and [Z]). So our

approach necessarily breaks down when )] f IIH-l is large. In fact we suspect
that assumptions (*)o and (*) on f are not only sufficient but also

necessary to guarantee the statements of Theorems 1 and 2.

By a result of Brezis-Kato [B-K] we know that Theorem 3 gives classical
solutions if f is sufficiently regular and 8Q is smooth; and for .f’>_o, via
the strong maximum principle, such solutions are strictly positive in Q.

Obviously an equivalent of Theorem 3 holds for the subcritical case

where one replaces the in (1.2) by q E 2 2 N In suchN-2 
~ ~ ~ N-2

a case more standard compactness arguments apply, and the proof can
be consistently simplified. The details are left to the interested reader.

Finally going back to the functional I, if f satisfies (*) then Theorem 1

suggests a mountain-pass procedure; which will be carried out as follows.
Take:

be an extremal function for the Sobolev inequality in [RN.
For aEQ let and
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Set

~ - - v - ~ - 

-u ~a ~-E, a J

Ro > 0 fixed.
We have:

THEOREM 4. - For a suitable choice of Ro > 0, a E Q and E > 0 the value

defines a critical value for I, and c >_ cl . D

It is not clear whether or not So no additional multiplicity can
be claimed for (1.2). However, in case C=Cl then it is possible to claim a
critical point of mountain-pass type (cf. [H]) for I in A - . This follows by
a refined version of the mountain-pass lemma (see [A-R]) obtained by
Ghoussoub-Preiss and the fact that A - cannot contain local minima for I

(see [G.P., theorem (ter) part a]).
The referee has brought to our attention a paper of O. Rey (See [R.])

where, by a different approach, a result similar to that of Theorem 3 is
established is sufficiently small.

2. THE PROOF OF THEOREM 1

To obtain the proof of Theorem 1 several preliminary results are in
order.
We start with a lemma which clarifies the purpose of assumption (*).

LEMMA 2 . 1. - Let f ~ 0 satisfy (*). For every u E H, u ~ 0 there exists a
unique t+ = t+ (u) > 0 such that t+ In particular:

and I (t+ u) = max I (tu)

Moreover, if lfu> 0, then there exists a unique t- = t- (u) > 0 such that

In particular,

~].
Vol. 9, n° 3-1992.
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Set cp ~~) = t Easy computations show that
cp is concave and achieves its maximum at

Also

that is

Therefore if then there exists a unique t+ such that:

cp ( t + ) = 03A9fu and tp’ ( t + )  o. Equivalently t 
+ 
u ~ - and

I (t+ u) >_ I (tu) d t -->_ ~~a~.

In case 03A9fu > o, by assumption (*) we have that necessarily

Consequently, in this case, we have unique o  t - such that

and

Equivalently t+ u ~ - and t- u~+.
Vfe[0, ~].

is achieved. In particular satisfies (*), then ~,o > o.
The proof of Lemma 2. 2 is technical and a straightforward adaptation

of that given in for an analogous minimization problem.
It will be given in the appendix for the reader’s convenience.
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Next, for u ~ 0 set

Since for t > o, ~ ~ =1 we have:

given y > 0, from Lemma 2. 2 we derive that

In particular if f satisfies (*) then the infinum (2.2) is bounded away
from zero.
This remark is crucial for the following:

(i. e. Ao = ~ 0 ~).

Proof - Although the result also holds for f= 0, we shall only be
concerned with the 

Arguing by contradiction assume that for some u e A, M 7~ 0 we have

Thus

Condition (2. 3) implies

Vol. 9, n° 3-1992.
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and from (2. 2) and (2.4) we obtain:

which yields to a contradiction. 0

As a consequence of Lemma 2. 3 we have:

LEMMA 2 . 4. - Let f’~ 0 satisfy (*). Given u E A, u ~ 0 there exist E > 0
and a differentiable function t = w ~ H II w I I  E satisfying the

following:

and

Since F ( 1, 0) = 0 and F~ ( 1, 0) _ ~ ~ O u ~ ~ 2 - ( p -1 ) ~ ~ u ~ ~ p ~ o (by Lemma 2 . 3),
we can apply the implicit function theorem at the point ( 1, 0) and get the
result. D
We are now ready to give:

The Proof of Theorem 1

We start by showing that I is bounded from below in A. Indeed for
u e A we have:

Thus:
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In particular

We first obtain our result for f satisfying (*). The more general situation
where f satisfies (*)o will be subsequently derived by a limiting argument.
So from now on we assume that f satisfy (*).
In order to obtain an upper bound for co, let v E H be the unique

solutions for - Du = f. So for f ~ 0

Set to = t - (v»O as defined by Lemma 2 . 1.
Hence to’v E A + and consequently:

This yields,

Clearly Ekeland’s variational principle (see [A. E.], Corollary 5 . 3 . 2) applies
to the minimization problem (1.3). It gives a minimizing sequence { c A

with the following properties:

By taking n large, from (2. 7) we have:

This implies

Consequently 0, and putting together (2.8) and (2.9) we derive:

Vol. 9, n° 3-1992.
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Our goal is to obtain ~ I’ (~J ~ -~ 0 + oo.

Hence let us assume )) I’ >0 for n large (otherwise we are done).

Applying Lemma 2.4 with M=M,. and ~=8-20142014"2014 §>0 small, we

find, tn(03B4):=t[03B4I’(un) ~I’(un)~]
such that

From condition (ii) we have:

Dividing by b > 0 and passing to the limit as 6 - 0 we derive:

where we have set t’n (0) = t’(0), I’(un) ~I’(un)~B.B ))I I’ M)) BI /
Thus from (2.10) we conclude:

for a suitable positive constant C.
We are done once we show that t;~ (o) ~ ] is bounded uniformly on n.
From (2.5) and the estimate (2.10) we get:

I 1! ; 1

Ci >0 suitable constant.
Hence we need to show that [ ([ V u~ ~ ~ 2 - ( p -1 ~ ~ ~ u,~ ~ ~ p ~ [ is bounded away

from zero.

Arguing by contradiction, assume that for a subsequence, which we still
call Un, we have:

From the estimate (2.10) and (2.11) we derive:

II (y > 0 suitable constant)
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and

In addition (2.11 ), and the fact that un E A also give:

This, together with (2.2) implies:

which is clearly impossible.
In conclusion:

Let uo E H be the weak limit in H~ (Q) of (a subsequence of) un.
From (2.9) we derive that: .

and from (2.12) that

i. e. uo is a weak solution for (1.2).
In particular, uo E A.
Therefore:

Consequently un - uo strongly in H and I (uo) = co = inf I. Also from 
(

A 
’

Lemma 2. I and (2. 1 2) follows that necessarily uo e A + .
To conclude that uo is a local minimum for I, notice that for every

u~H with 03A9fu > 0 we have:

(see Lemma 2.1).

Vol. 9, n° 3-1992.
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In particular for we have:

Let E > 0 sufficiently small to have:

From Lemma 2.4, let t (w) > 0 satisfy t (w) (uo - w) E A for every ]]  ~.

Since t (w) ~ 1 as ~w~ ~ 0, we can always assume that

for every w : II w I I  E.

Namely, t (w) (uo - w) E A 
+ and for 0  s  ( I ~~ (uo - w)~I 2 1 /P )

we have,

From (2.14) we can take s =1 and conclude:

Furthermore take, to = t- ( with to |u0| ~+.
Necessarily to >_ 1, and

So we can always take 
To obtain the proof when f satisfies (*)o we shall apply an approxima-

tion argument. To this purpose, notice that if f satisfies (*)o then

y,= (I-E)fsatisfies (*) 1 ).
Set .

(I~M, u) =0, satisfy:

and

Clearly ~ ~ ~ u£ ( ~ 2  C2, for 0  E  1 and C2 > 0 a suitable constant.
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Let u E A +, necessarily fu > 0 and consequentlyn

From Lemma 2.1 applied we find:

with t§ u e 

Since 1  j j 
, from (2, 1 3) it follows that

@ ~ ~ > l 1 ~ l 15

and consequently:

(with C3 > 0 a suitable constant).
Estimate (2.6) with , f ’= f£ and the above inequality imply:

Let ~~ -~ 0, n -~ +oo and uo e H satisfy:

From (2.15) it follows I’(u0), w~ = 0, VweH (i. e. uo is a critical point
for I) and I (uo)  co.

In particular uo E A and necessarily I (uo) = co, (i. e. u£n - uo strongly
in H).

This completes the proof. D

3. THE PROOF OF THEOREMS 2 AND 4

The functional I involves the limiting Sobolev exponent p= 2 N . Thisp ~ 
N-2

compromises its compactness properties, and a possible failure of the P.S.
condition is to be expected.
Our first task is to locate the levels free from this noncompactness

effect.
We refer to [B] and [S] for a survey on related problems where such an

approach has been successfully used.

Vol. 9, n° 3-1992.
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In this direction we have:

PROPOSITION 3.1. - Every sequence c H satisfying:

[c~ as defined in { 1.3)].
B-l -’ II 

- _

as a convergent subsequence.

Namely the (P.S) condition holds for all level 

Proof - It is not difficult to see that (a) and (b) imply that ]) V un ~2 is
uniformly bounded.
Hence for a subsequence of Un (which we still call un), we can find a

Wo e H such that

un - Wo weakly in H.

Consequently from (b) we obtain:

That is Wo is a solution in for (1.2). In particular w0 ~
and I (wo) >_ co.

Write Un = Wo + vn with v,~ - 0 weakly in H.
By a Lemma of Brezis-Lieb [B.L.] we have:

Hence, for n large, we conclude:

which gives:

Also from (b) follows:

and taking into account (3.1) we obtain:

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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We claim that conditions (3.2) and (3.3) can hold simultaneously only if
admits a subsequence, say, which converges strongly to zero,

1.2. ~~Zn~ll~~~ ~--~ +00.
Arguing by contradiction assume is bounded away from zero.

That is for some constant c4 > 0 we have jj 1 > c4, 
From (3.3) then it follows:

and consequently

This yields a contradiction since from (3.2) and (3.3) we have:

for n large.
In conclusion, - wo strongly. D

At this point it would not be difficult to derive Theorem 2, if we had
the inequality:

However it appears difficult to derive (3.4) directly.
We shall obtain it by comparison with a mountain-pass value.
To this end, recall that Following [B.N.I] we set 03A3~03A9 to be a

set of positive measure such that uo > 0 on 03A3 (replace uo with - uo and f
with - f if necessary).

[u~, a and 03BEa defined in (1.6) and (1.7)].

LEMMA 3.1. - For every R > 0 and a. e. a E ~, there exists

Eo = Eo (R, a) > 0 such that:

for 

Proof. - We have:

Vol. 9, n° 3-1992.
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A careful estimate obtained by Brezis-Nirenberg (see formulae (17) and
(22) in [B.N.I]) shows that:

Also from [B.N.2] we have:

where 

and

Substituting in (3.5) and using the fact that uo satisfies (1.2) we obtain:

for a. e. 
Set uo = 0 outside Q, it follows:

where 03C81 (x) = 
1 (1 + | x|2)(N + 2)/2~L1 (RN).

Therefore, setting D = 20142014201420142014201420142014 we derive:J~(l+ ~~

for a. e. (see [F]).
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In other words,

Consequently:

Define:

and assume that q {s) achieves its maximum at 
Set

Since s£ satisfies:

necessarily 0  sE  So and sE - So as E - 0.
Write So ( 1- S£). We study the rate at which b£ ~ 0 as E - 0.
From (3.7) we obtain:

and expanding for b£ we derive:

This implies:

Vol. 9, n° 3- I 992.
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Therefore for Eo = so (R, a) > 0 sufficiently small we conclude

vo s so. D

Our aim is to state a mountain pass principle that produces a value

which is below the threshold co + 1 but also compares with the valueo 
N 

p

c1 = inf I.
A-

To this end observe that under assumption (*), the manifold A- discon-
nects H in exactly two connected components U1 and U2.
To see this, notice that for every Lemma 2.1 I

we can find a unique t + (u) > 0 such that

The uniqueness of t + (u) and its extremal property give that t + (u) is a

continuous function of u.

Set

and

Clearly H - ~1- = U 1 U U ~ and A + C U 1 .
In particular u~ E U 1 .

The Proof of Theorem 4

Easy computations show that, for suitable constant Cs > 0 we have:

lj 
1/2

Set Ro= ( 2014 |C25- ~u0 ~2|)1/2 +1 and fix such that Lemma 3.2
BB /

applies, and the estimate (3.8) holds for all 0s8o.
We claim that

for ~>0 small.
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Indeed

for E > 0 small enough.
For such a choice of Ro and a~03A3, fix E > 0 such that both (3.8) and

(3.9) hold.
Set

Clearly h : ~0, 1 j -~ H given by belongs to ~ . So by
Lemma 2.3 we conclude:

Also, since the range of any h E if intersect A -, we have

At this point the conclusion of Theorem 4 follows by Lemma 3.1 and a
straightforward application of the mountain-pass lemma (cf. [A.R.]). D

The Proof of Theorem 2

Analogously to the proof of Theorem 1, one can show that the Ekeland’s
variational principle gives a sequence c A - satisfying:

But from (3.10) and (3.11), we have:

Thus, by Lemma 3.1, we obtain a subsequence of and u1 ~ H
such that:

Consequently U1 is a critical point for I, U1 E A - (since A is closed)
and I (ul) = cI.

Finally to see that f~0 yields let t+ > 0 satisfy

Vol. 9, n° 3-1992.
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From Lemma 2.1 we conclude:

So we can always take ul >__ o. 0

4. APPENDIX

The Proof of Lemma 2.2

Let be a minimizing sequence for (2.1) such that for u0 ~ H we
have u~ - uo weakly in H and uo pointwise a. e. in Q.

In general )) uo 1. We are done once we show j) uo 
To obtain this, we shall argue by contradiction and assume

Hence write un = uo + wn where wn - 0 weakly in H.
We have

On the other hand,

(see [B.L.]), which gives:

So from (4.1) we conclude:

That is,

Following [B.N.I] for every u E H, and aEQ let 

satisfy the following:
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[recall (x) = ~a (x) (x) with ~a and given in ( 1. 6) and ( 1. 7)] .
We have:

and

[A, B as given in (3.6)].
Thus

Substituting in (4.3) we obtain:

This yields:

and passing to the limit as ~ - 0, we derive:

Therefore from (4.2) we conclude:

and that for every w ~ H necessarily:

Vol. 9, n° 3-1992.
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So setting 60 = N+2 r 1(N-2)/4 >0
and

we obtain that uo weakly satisfies:

Since f ~ 0, in particular, we have that 
Hence for a set of positive measure E c Q we have:

(replace uo with - uo and , f’ with - f if necessarily).
Let a ELand satisfy:

We will reach a contradiction by showing that

for a suitable choice of a ~ 03A3 and ~ > 0 small enough.

To this end, let cg= From (4.4) it follows that c, y Co as
A

s - 0. Set c~== co (1- 8J, ~E --~ 0 as E --3 0. In [B.N.I], Brezis-Nirenberg have
obtained a precise rate at which S£ --~ 0, by showing that, for a. e. a E E,
one has:

with

D = Rdx N(~2+|x|2)(N+2)/2. (See formula ( 2 . 9 ) in [B.N.I].)

Now fix for which (4.7) holds and
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Using (4.5), (4.7) and the definition of co we obtain:

Thus from equation (4.6) we derive:

On the other hand from (4.8) we have:

Therefore:

Vol. 9, n° 3-1992.



304 G. TARANTELLO

Finally, from (4.7) we conclude:

for E > 0 sufficiently small.
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