On nonhomogeneous elliptic equations involving critical Sobolev exponent

by

G. TARANTELLO (*)

Carnegie Mellon University, Department of Mathematics, Pittsburgh, PA 15213, U.S.A

ABSTRACT. – Let $p = \frac{2N}{N-2}$, $N \ge 3$ be the limiting Sobolev exponent and $\Omega \subset \mathbb{R}^N$ open bounded set.

We show that for $f \in \mathbf{H}^{-1}$ satisfying a suitable condition and $f \neq 0$, the Dirichlet problem:

$$\begin{cases} -\Delta u = |u|^{p-2} u + f & \text{on } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

admits two solutions u_0 and u_1 in $H_0^1(\Omega)$.

Also $u_0 \ge 0$ and $u_1 \ge 0$ for $f \ge 0$.

Notice that, in general, this is not the case if f = 0 (see [P]).

Key words: Semilinear elliptic equations, critical Sobolev exponent.

Résumé. – Soit $p = \frac{2N}{N-2}$ l'exposant de Sobolev critique et $\Omega \subset \mathbb{R}^N$ un domaine borné.

Classification A.M.S.: 35 A 15, 35 J 20, 35 J 65.

^(*) This research has been supported in part by NSF, Grant DMS - 9003149.

On montre que si $f \in H^{-1}$, $f \neq 0$ satisfait une certaine condition alors le problème de Dirichlet : $\Delta u = |u|^{p-2} u + f$ dans Ω et u = 0 dans $\partial \Omega$, admet deux solutions u_0 et u_2 dans $H_0^1(\Omega)$. De plus $u_0 \geq 0$ et $u_1 \geq 0$ si $f \geq 0$.

On remarque que ce n'est pas le cas, en général, si f = 0 (voir [P]).

1. INTRODUCTION AND MAIN RESULTS

In a recent paper Brezis-Nirenberg (B.N.1] have considered the following minimization problem:

$$\inf_{u \in \mathcal{H}, ||u||_p = 1} \int_{\Omega} (|\nabla u|^2 - fu) \tag{1.1}$$

where $\Omega \subset \mathbb{R}^{N}$, is a bounded set, $H = H_0^1(\Omega)$, $f \in H^{-1}$ and $p = \frac{2N}{N-2}$, $N \ge 3$

is the limiting exponent in the Sobolev embedding. It is well known that the infinum in (1.1) is never achieved if f=0

(cf. [B]). In contrast, in [B.N.1] it is shown that for $f \neq 0$ this infinum is always achieved. (See also [C.S.] for previous related results.)

Motivated by this result we consider the functional:

$$I(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \frac{1}{p} \int_{\Omega} |\mathbf{u}|^p - \int_{\Omega} fu, \quad u \in \mathbf{H};$$

whose critical points define weak solutions for the Dirichlet problem:

$$-\Delta u = |u|^{p-2} u + f \quad \text{on } \Omega
 u = 0 \quad \text{on } \partial \Omega.$$
(1.2)

We investigate suitable minimization and minimax principles of mountain pass-type (cf. [A.R.]), and show how, for suitable f's, they produce critical values for I in spite of a possible failure of the Palais-Smale condition.

To start, notice that I is bounded from below in the manifold:

$$\Lambda = \{ u \in \mathbf{H} : \langle \mathbf{I}'(u), u \rangle = 0 \}$$

[here $\langle \ , \ \rangle$ denotes the usual scalar product in $H=H^1_0(\Omega)$]. Thus a natural question to ask is whether or not I achieves a minimum in Λ .

We show that this is the case if f satisfies the following:

$$\int_{\Omega} f u \le c_{N} (\|\nabla u\|_{2})^{(N+2)/2} \tag{*}_{0}$$

 $\forall u \in H$, $||u||_p = 1$, where $c_N = \frac{4}{N-2} \left(\frac{N-2}{N+2}\right)^{(N+2)/4}$. More precisely we have:

THEOREM 1. – Let $f \neq 0$ satisfies $(*)_0$. Then

$$\inf_{\Lambda} I = c_0 \tag{1.3}$$

is achieved at a point $u_0 \in \Lambda$ which is a critical point for I and $u_0 \ge 0$ for $f \ge 0$.

In addition if f satisfies the more restrictive assumption:

$$\int_{\Omega} fu < c_{N} (\|\nabla u\|_{2})^{(N+2)/2} \tag{*}$$

 $\forall u \in H$, $||u||_p = 1$, then u_0 is a *local minimum* for I. \square Notice that assumption (*) certainly holds if

$$|| f ||_{H^{-1}} \le c_N S^{N/4}$$

where S is the best Sobolev constant (cf. [T]).

Also if f=0 Theorem 1 remains valid and gives the trivial solution $u_0=0$.

Moreover in the situation where u_0 is a local minimum for I, necessarily:

$$\|\nabla u_0\|_2^2 - (p-1)\|u_0\|_p^p \ge 0 \tag{1.4}$$

This suggests to look at the following splitting for Λ :

$$\Lambda^{+} = \left\{ u \in \Lambda : \|\nabla u\|_{2}^{2} - (p-1) \|u\|_{p}^{p} > 0 \right\}$$

$$\Lambda_{0} = \left\{ u \in \Lambda : \|\nabla u\|_{2}^{2} - (p-1) \|u\|_{p}^{p} = 0 \right\}$$

$$\Lambda^{-} = \left\{ u \in \Lambda : \|\nabla u\|_{2}^{2} - (p-1) \|u\|_{p}^{p} < 0 \right\}.$$

It turns out that assumption (*) implies $\Lambda_0 = \{0\}$ (see Lemma 2.3 below). Therefore for $f \neq 0$ and (1.4) we obtain $u_0 \in \Lambda^+$ and consequently

$$c_0 = \inf_{\Lambda} I = \inf_{\Lambda^+} I.$$

So we are led to investigate a second minimization problem. Namely:

$$\inf_{\mathbf{A}^{-}} \mathbf{I} = c_{\mathbf{1}}.\tag{1.5}$$

In this direction we have:

Theorem 2. — Let $f \neq 0$ satisfies (*). Then $c_1 > c_0$ and the infinum in (1.5) is achieved at a point $u_1 \in \Lambda^-$ which define a critical point for I.

Furthermore $u_1 \ge 0$ for $f \ge 0$. \square

Notice that the assumption $f \neq 0$ is necessary in Theorem 2. In fact for f = 0 we have:

$$\inf_{\Lambda^{-}} I = \inf_{u \neq 0} \frac{1}{N} \left[\frac{\|\nabla u\|_{2}^{2}}{\|u\|_{p}^{2}} \right]^{N/2} = \frac{1}{N} \left[\inf_{\|u\|_{p}=1} \|\nabla u\|_{2}^{2} \right]^{N/2}$$

and the infinum in the right hand side is never achieved.

The proofs of Theorem 1 and Theorem 2 rely on the Ekeland's variational principle (cf. [A.E.]) and careful estimates inspired by these in [B.N.1].

As an immediate consequence of Theorems 1 and 2 we have the following for the Dirichlet problem (1.2).

Theorem 3. — Problem (1.2) admits at least *two* weak solutions u_0 , $u_1 \in H_0^1(\Omega)$ for $f \neq 0$ satisfying (*); and at least *one* weak solution for f satisfying (*)₀.

Moreover $u_0 \ge 0$, $u_1 \ge 0$ for $f \ge 0$. \square

This result for $f \ge 0$ was also pointed out by Brezis-Nirenberg in [B.N.1]. Their approach however uses in an essential way the fact that f does not change sign. It relies on a result of Crandall-Rabinowitz [C.R.] and techniques developed in [B.N.2].

Furthermore for $f \ge 0$ it is known that (1.2) cannot admit positive solution when $||f||_{H^{-1}}$ is too large (see [C.R.], [M.] and [Z]). So our approach necessarily breaks down when $||f||_{H^{-1}}$ is large. In fact we suspect that assumptions $(*)_0$ and (*) on f are not only sufficient but also necessary to guarantee the statements of Theorems 1 and 2.

By a result of Brezis-Kato [B-K] we know that Theorem 3 gives *classical* solutions if f is sufficiently regular and $\partial\Omega$ is smooth; and for $f\geq 0$, via the strong maximum principle, such solutions are *strictly* positive in Ω .

Obviously an equivalent of Theorem 3 holds for the *subcritical* case where one replaces the power $p = \frac{2 \text{ N}}{\text{N} - 2}$ in (1.2) by $q \in \left(2, \frac{2 \text{ N}}{\text{N} - 2}\right)$. In such

a case more standard compactness arguments apply, and the proof can be consistently simplified. The details are left to the interested reader. Finally going back to the functional I, if f satisfies (*) then Theorem 1 suggests a mountain-pass procedure; which will be carried out as follows.

Take:

$$u_{\varepsilon}(x) = \frac{\varepsilon^{(N-2)/2}}{(\varepsilon^2 + |x|^2)^{(N-2)/2}} \qquad \varepsilon > 0, \quad x \in \mathbb{R}^{N}$$
 (1.6)

be an extremal function for the Sobolev inequality in \mathbb{R}^N .

For $a \in \Omega$ let $u_{\varepsilon, a}(x) = u_{\varepsilon}(x - a)$, and

$$\xi_a \in C_0^{\infty}(\Omega)$$
 with $\xi_a \ge 0$ and $\xi_a = 1$ near a . (1.7)

Set

$$\mathcal{F} = \begin{cases} h : [0, 1] \to \text{H continuous, } h(0) = u_0 \\ h(1) = R_0 \xi_a u_{\varepsilon, a} \end{cases}$$

 $R_0 > 0$ fixed.

We have:

Theorem 4. – For a suitable choice of $R_0 > 0$, $a \in \Omega$ and $\epsilon > 0$ the value

$$c = \inf_{h \in \mathscr{F}} \max_{t \in [0, 1]} I(h, (t))$$

defines a critical value for I, and $c \ge c_1$. \square

It is not clear whether or not $c=c_1$. So no additional multiplicity can be claimed for (1.2). However, in case $c=c_1$ then it is possible to claim a critical point of mountain-pass type (cf.[H]) for I in Λ^- . This follows by a refined version of the mountain-pass lemma (see [A-R]) obtained by Ghoussoub-Preiss and the fact that Λ^- cannot contain local minima for I (see [G.P., theorem (ter) part a]).

The referee has brought to our attention a paper of O. Rey (See [R.]) where, by a different approach, a result similar to that of Theorem 3 is established when $f \neq 0$, $f \geq 0$ and $||f||_{\mathbf{H}^{-1}}$ is sufficiently small.

2. THE PROOF OF THEOREM 1

To obtain the proof of Theorem 1 several preliminary results are in order.

We start with a lemma which clarifies the purpose of assumption (*).

LEMMA 2.1. – Let $f \neq 0$ satisfy (*). For every $u \in H$, $u \neq 0$ there exists a unique $t^+ = t^+(u) > 0$ such that $t^+ u \in \Lambda^-$. In particular:

$$t^{+} > \left[\frac{\|\nabla u\|_{2}^{2}}{(p-1)\|u\|_{p}^{p}} \right]^{1/(p-2)} := t_{\max}$$

and $I(t^+u) = \max_{t \ge t_{max}} I(tu)$

Moreover, if $\int_{\Omega} fu > 0$, then there exists a unique $t^- = t^-(u) > 0$ such that $t^- u \in \Lambda^+$.

In particular,

$$t^{-} < \left\lceil \frac{\|\nabla u\|_{2}^{2}}{(p-1)\|u\|_{p}^{p}} \right\rceil^{1/(p-2)}$$

and $I(t^-u) \leq I(tu), \forall t \in [0, t^+].$

Vol. 9, n° 3-1992.

Proof. – Set $\varphi(t) = t \|\nabla u\|_2^2 - t^{p-1} \|u\|_p^p$. Easy computations show that φ is concave and achieves its maximum at

$$t_{\max} = \left[\frac{\|\nabla u\|_{2}^{2}}{(p-1)\|u\|_{p}^{p}} \right]^{1/(p-2)}.$$

Also

$$\phi(t_{\max}) = \left[\frac{1}{p-1}\right]^{(p-1)/(p-2)} (p-2) \left[\frac{\|\nabla u\|_2^2 \cdot (p-1)}{\|u\|_p^p}\right]^{1/(p-2)},$$

that is

$$\varphi(t_{\text{max}}) = c_{N} \frac{\|\nabla u\|_{2}^{(N+2)/2}}{\|u\|_{p}^{N/2}}.$$

Therefore if $\int_{\Omega} fu \leq 0$ then there exists a unique $t^+ > t_{\max}$ such that: $\phi(t^+) = \int_{\Omega} fu$ and $\phi'(t^+) < 0$. Equivalently $t^+ u \in \Lambda^-$ and $I(t^+ u) \geq I(tu) \, \forall \, t \geq t_{\max}$.

In case $\int_{\Omega} fu > 0$, by assumption (*) we have that necessarily

$$\int_{\Omega} f u < c_{N} \frac{\|\nabla u\|_{2}^{(N+2)/2}}{\|u\|_{p}^{N/2}} = \varphi(t_{\text{max}}).$$

Consequently, in this case, we have unique $0 < t^- < t_{\text{max}} < t^+$ such that

$$\varphi(t^+) = \int_{\Omega} f u = \varphi(t^-)$$

and

$$\varphi'(t^{-}) > 0 > \varphi'(t^{+}).$$

Equivalently $t^+ u \in \Lambda^-$ and $t^- u \in \Lambda^+$.

Also $I(t^+u) \ge I(tu)$, $\forall t \ge t^-$ and $I(t^-u) \le I(tu)$, $\forall t \in [0, t^+]$.

Lemma 2.2. – For $f \neq 0$

$$\inf_{\| u \|_{p=1}} \left(c_{\mathbf{N}} \| \nabla u \|^{(N+2)/2} - \int_{\Omega} f u \right) := \mu_{0}$$
 (2.1)

is achieved. In particular if f satisfies (*), then $\mu_0 > 0$.

The proof of Lemma 2.2 is technical and a straightforward adaptation of that given in [B.N.1] for an analogous minimization problem.

It will be given in the appendix for the reader's convenience.

Next, for $u \neq 0$ set

$$\psi(u) = c_{N} \frac{\|\nabla u\|_{2}^{(N+2)/2}}{\|u\|_{p}^{N/2}} - \int_{\Omega} fu.$$

Since for t > 0, $||u||_p = 1$ we have:

$$\psi(tu) = t \left[c_{\mathbf{N}} \| \nabla u \|_{2}^{(\mathbf{N}+2)/2} - \int_{\mathbf{Q}} fu \right];$$

given $\gamma > 0$, from Lemma 2.2 we derive that

$$\inf_{\|u\| \ge \gamma} \psi(u) \ge \gamma \mu_0. \tag{2.2}$$

In particular if f satisfies (*) then the infinum (2.2) is bounded away from zero.

This remark is crucial for the following:

LEMMA 2.3. – Let f satisfy (*). For every $u \in \Lambda$, $u \neq 0$ we have

$$\|\nabla u\|_2^2 - (p-1)\|u\|_p^p \neq 0$$

(i. e. $\Lambda_0 = \{0\}$).

Proof. – Although the result also holds for f=0, we shall only be concerned with the case $f \neq 0$.

Arguing by contradiction assume that for some $u \in \Lambda$, $u \neq 0$ we have

$$\|\nabla u\|_{2}^{2} - (p-1)\|u\|_{p}^{p} = 0$$
 (2.3)

Thus

$$0 = \|\nabla u\|_{2}^{2} - \|u\|_{p}^{p} - \int_{\Omega} fu = (p-2) \|u\|_{p}^{p} - \int_{\Omega} fu.$$
 (2.4)

Condition (2.3) implies

$$\|u\|_p \ge \left(\frac{S}{p-1}\right)^{1/(p-2)} := \gamma,$$

Vol. 9, n° 3-1992.

and from (2.2) and (2.4) we obtain:

$$\begin{split} 0 < \mu_0 \gamma \leq & \psi(u) = \left[\frac{1}{p-1} \right]^{(p-1)/(p-2)} (p-2) \left[\frac{\|\nabla u\|_2^2 (p-1)}{\|u\|_p^p} \right]^{1/(p-2)} - \int_{\Omega} fu \\ &= (p-2) \left(\left[\frac{1}{p-1} \right]^{(p-1)/(p-2)} \left[\frac{\|\nabla u\|_2^2 (p-1)}{\|u\|_p^p} \right]^{1/(p-2)} - \|u\|_p^p \right) \\ &= (p-2) \|u\|_p^p \left(\left[\frac{\|\nabla u\|_2^2}{(p-1)\|u\|_p^p} \right]^{(p-1)/(p-2)} - 1 \right) = 0 \end{split}$$

which yields to a contradiction.

As a consequence of Lemma 2.3 we have:

LEMMA 2.4. – Let $f \neq 0$ satisfy (*). Given $u \in \Lambda$, $u \neq 0$ there exist $\varepsilon > 0$ and a differentiable function t = t(w) > 0, $w \in H ||w|| < \varepsilon$ satisfying the following:

$$t(0) = 1$$
, $t(w)(u-w) \in \Lambda$, for $||w|| < \varepsilon$,

and

$$\langle t'(0), w \rangle = \frac{2 \int_{\Omega} \nabla u \cdot \nabla w - p \int_{\Omega} |u|^{p-2} uw \int_{\Omega} fw}{\|\nabla u\|_{2}^{2} - (p-1) \|u\|_{p}^{p}}.$$
 (2.5)

Proof. – Define $F : \mathbb{R} \times H \to \mathbb{R}$ as follows:

$$F(t, w) = t \|\nabla(u - w)\|_{2}^{2} - t^{p-1} \|u - w\|_{p}^{p} - \int_{\Omega} f(u - w).$$

Since F(1, 0) = 0 and $F_t(1, 0) = \|\nabla u\|_2^2 - (p-1)\|u\|_p^p \neq 0$ (by Lemma 2.3), we can apply the implicit function theorem at the point (1,0) and get the result. \square

We are now ready to give:

The Proof of Theorem 1

We start by showing that I is bounded from below in Λ . Indeed for $u \in \Lambda$ we have:

$$\int_{\Omega} |\nabla u|^2 - \int_{\Omega} |u|^p - \int_{\Omega} fu = 0.$$

Thus:

$$\begin{split} \mathbf{I}(u) = & \frac{1}{2} \int_{\Omega} |\nabla u|^{2} - \frac{1}{p} \int_{\Omega} |\mathbf{u}|^{p} - \int_{\Omega} fu = \frac{1}{N} \int_{\Omega} |\nabla u|^{2} - \left(1 - \frac{1}{p}\right) \int_{\Omega} fu \\ & \geq \frac{1}{N} ||\nabla u||_{2}^{2} - \frac{N+2}{2N} ||f|_{\mathbf{H}^{-1}} ||\nabla u||_{2} \geq -\frac{1}{16N} [(N+2) ||f|_{\mathbf{H}^{-1}}]^{2}. \end{split}$$

In particular

$$c_0 \ge -\frac{1}{16 \,\mathrm{N}} [(\mathrm{N} + 2) \, \| \, f \, \|_{\mathrm{H}^{-1}}]^2.$$
 (2.6)

We first obtain our result for f satisfying (*). The more general situation where f satisfies $(*)_0$ will be subsequently derived by a limiting argument. So from now on we assume that f satisfy (*).

In order to obtain an upper bound for c_0 , let $v \in H$ be the unique

solutions for $-\Delta u = f$. So for $f \neq 0$

$$\int_{\Omega} fv = ||\nabla v||_2^2 > 0.$$

Set $t_0 = t^-(v) > 0$ as defined by Lemma 2.1. Hence $t_0 v \in \Lambda^+$ and consequently:

$$\begin{split} \mathbf{I}\left(t_{0}\,v\right) &= \frac{t_{0}^{2}}{2} \|\,\nabla\,v\,\|_{2}^{2} - \frac{t_{0}^{p}}{p} \|\,v\,\|_{p}^{p} - t_{0}\,\|\,\nabla\,v\,\|_{2}^{2} \\ &= -\frac{t_{0}^{2}}{2} \,\|\,\nabla\,v\,\|_{2}^{2} + \frac{p-1}{p}\,t_{0}^{p}\,\|\,v\,\|_{p}^{p} < -\frac{t_{0}^{2}}{N} \|\,\nabla\,v\,\|_{2}^{2} = -\frac{t_{0}^{2}}{N} \|\,f\,\|_{\mathbf{H}^{-1}}^{2} \end{split}$$

This yields,

$$c_0 < -\frac{t_0^2}{N} \|f\|_{H^{-1}}^2 < 0.$$
 (2.7)

Clearly Ekeland's variational principle (see [A.E.], Corollary 5.3.2) applies to the minimization problem (1.3). It gives a minimizing sequence $\{u_n\}\subset\Lambda$ with the following properties:

(i)
$$I(u_n) < c_0 + \frac{1}{n}$$
.

(ii)
$$I(w) \ge I(u_n) - \frac{1}{n} \|\nabla(w - u_n)\|_2$$
, $\forall w \in \Lambda$.

By taking n large, from (2.7) we have:

$$I(u_n) = \frac{1}{N} \int_{\Omega} |\nabla u_n|^2 - \frac{N+2}{2N} \int_{\Omega} f u_n < c_0 + \frac{1}{n} < -\frac{t_0^2}{N} ||f||_{H^{-1}}^2$$
 (2.8)

This implies

$$\int_{\Omega} f u_n \ge \frac{2}{N+2} t_0^2 \| f \|_{H^{-1}}^2 > 0.$$
 (2.9)

Consequently $u_n \neq 0$, and putting together (2.8) and (2.9) we derive:

$$\frac{2t_0^2}{N+2} \|f\|_{\mathbf{H}^{-1}} \le \|\nabla u_n\|_2 \le \frac{N+2}{2} \|f\|_{\mathbf{H}^{-1}}. \tag{2.10}$$

Our goal is to obtain $||I'(u_n)|| \to 0$ as $n \to +\infty$.

Hence let us assume $\|\mathbf{I}'(u_n)\| > 0$ for *n* large (otherwise we are done).

Applying Lemma 2.4 with $u=u_n$ and $w=\delta \frac{I'(u_n)}{\|I'(u_n)\|} \delta > 0$ small, we

find,
$$t_n(\delta) := t \left[\delta \frac{\mathbf{I}'(u_n)}{\|\mathbf{I}'(u_n)\|} \right]$$

such that

$$w_{\delta} = t_n(\delta) \left[u_n - \delta \frac{I'(u_n)}{\|I'(u_n)\|} \right] \in \Lambda.$$

From condition (ii) we have:

$$\frac{1}{n} \|\nabla(w_{\delta} - u_{n})\|_{2} \ge \mathbf{I}(u_{n}) - \mathbf{I}(w_{\delta}) = (1 - t_{n}(\delta)) \langle \mathbf{I}'(w_{\delta}), u_{n} \rangle
+ \delta t_{n}(\delta) \langle \mathbf{I}'(w_{\delta}), \frac{\mathbf{I}'(u_{n})}{\|\mathbf{I}'(u_{n})\|} \rangle + o(\delta).$$

Dividing by $\delta > 0$ and passing to the limit as $\delta \to 0$ we derive:

$$\frac{1}{n}(1+|t'_{n}(0)|\|\nabla u_{n}\|_{2}) \ge -t'_{n}(0)\langle I'(u_{n}), u_{n}\rangle + \|I'(u_{n})\| = \|I'(u_{n})\|$$

where we have set
$$t'_n(0) = \left\langle t'(0), \frac{\mathrm{I}'(u_n)}{\|\mathrm{I}'(u_n)\|} \right\rangle$$
.

Thus from (2.10) we conclude:

$$\left\| \mathbf{I}'(u_n) \right\| \leq \frac{C}{n} (1 + \left| t_n'(0) \right|)$$

for a suitable positive constant C.

We are done once we show that $|t'_n(0)|$ is bounded uniformly on n. From (2.5) and the estimate (2.10) we get:

$$|t'_n(0)| \le \frac{C_1}{\|\nabla u_n\|_2^2 - (p-1)\|u_n\|_p^p}$$

 $C_1 > 0$ suitable constant.

Hence we need to show that $|\|\nabla u_n\|_2^2 - (p-1)\|u_n\|_p^p|$ is bounded away from zero.

Arguing by contradiction, assume that for a subsequence, which we still call u_n , we have:

$$\|\nabla u_n\|_2^2 - (p-1)\|u_n\|_p^p = o(1).$$
 (2.11)

From the estimate (2.10) and (2.11) we derive:

$$||u_n||_p \ge \gamma$$
 $(\gamma > 0 \text{ suitable constant})$

and

$$\left[\frac{\|\nabla u_n\|_2^2}{p-1}\right]^{(p-1)/(p-2)} - \left[\|u_n\|_p^p\right]^{(p-1)/(p-2)} = o(1).$$

In addition (2.11), and the fact that $u_n \in \Lambda$ also give:

$$\int_{\Omega} f u_n = (p-2) \| u_n \|_p^p + o(1).$$

This, together with (2.2) implies:

$$0 < \mu_0 \gamma^{(N+2)/2} \le \| u_n \|_p^{p/(p-2)} \psi(u_n)$$

$$= (p-2) \left[\left[\frac{\| \nabla u_n \|_2^2}{p-1} \right]^{(p-1)/(p-2)} - [\| u_n \|_p^p]^{(p-1)/(p-2)} \right] = o(1).$$

which is clearly impossible.

In conclusion:

$$\|\mathbf{I}'(u_n)\| \to 0 \quad \text{as } n \to +\infty.$$
 (2.12)

Let $u_0 \in H$ be the weak limit in $H_0^1(\Omega)$ of (a subsequence of) u_n . From (2.9) we derive that:

$$\int_{\Omega} f u_0 > 0$$

and from (2.12) that

$$\langle I'(u_0), w \rangle = 0, \quad \forall w \in \mathbf{H},$$

i.e. u_0 is a weak solution for (1.2).

In particular, $u_0 \in \Lambda$.

Therefore:

$$c_0 \le I(u_0) = \frac{1}{N} \|\nabla u_0\|_2^2 - \int_{\Omega} f u_0 \le \lim_{n \to +\infty} I(u_n) = c_0.$$

Consequently $u_n \to u_0$ strongly in H and $I(u_0) = c_0 = \inf_{\Lambda} I$. Also from Lemma 2.1 and (2.12) follows that necessarily $u_0 \in \Lambda^+$.

To conclude that u_0 is a local minimum for I, notice that for every $u \in H$ with $\int_{\Omega} fu > 0$ we have:

$$I(su) \ge I(t^{-}u)$$
for every $0 < s < \left[\frac{\|\nabla u\|_{2}^{2}}{(p-1)\|u\|_{p}^{p}} \right]^{1/(p-2)}$
(2.13)

(see Lemma 2.1).

Vol. 9, n° 3-1992.

In particular for $u = u_0 \in \Lambda^+$ we have:

$$t^{-} = 1 < \left[\frac{\|\nabla u_0\|_2^2}{(p-1)\|u\|_p^p} \right]^{1/(p-2)}.$$
 (2.14)

Let $\varepsilon > 0$ sufficiently small to have:

$$1 < \frac{\|\nabla (u_0 - w)\|_2^2}{(p-1)\|u_0 - w\|_p^p}$$

for $||w|| < \varepsilon$.

From Lemma 2.4, let t(w) > 0 satisfy $t(w)(u_0 - w) \in \Lambda$ for every $||w|| < \varepsilon$. Since $t(w) \to 1$ as $||w|| \to 0$, we can always assume that

$$t(w) < \left[\frac{\|\nabla (u_0 - w)\|_2^2}{(p-1)\|u_0 - w\|_p^p} \right]^{1/(p-2)}$$

for every $w: ||w|| < \varepsilon$.

Namely, $t(w)(u_0 - w) \in \Lambda^+$ and for $0 < s < \left[\frac{\|\nabla (u_0 - w)\|_2^2}{(p-1)\|u_0 - w\|_p^p} \right]^{1/(p-2)}$ we have.

$$I(s(u_0-w)) \ge I(t(w)(u_0-w)) \ge I(u_0).$$

From (2.14) we can take s=1 and conclude:

$$I(u_0-w) \ge I(w), \quad \forall w \in H, \quad ||w|| < \varepsilon.$$

Furthermore if $f \ge 0$, take, $t_0 = t^-(|u_0|) > 0$ with $t_0 |u_0| \in \Lambda^+$. Necessarily $t_0 \ge 1$, and

$$I(t_0|u_0|) \leq I(|u_0|) \leq I(u_0).$$

So we can always take $u_0 \ge 0$.

To obtain the proof when f satisfies $(*)_0$ we shall apply an approximation argument. To this purpose, notice that if f satisfies $(*)_0$ then $f_{\varepsilon} = (1 - \varepsilon)f$ satisfies $(*) \forall \varepsilon \in (0, 1)$.

Set

$$I_{\varepsilon}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \frac{1}{p} \int_{\Omega} |u|^p + (1 - \varepsilon) \int_{\Omega} fu, \quad u \in H.$$

Let $u_{\varepsilon} \in \Lambda_{\varepsilon}^+ = \{ u \in H : \langle I_{\varepsilon}'(u), u \rangle = 0, \|\nabla u\|_2^2 - (p-1)\|u\|_p^p > 0 \}$ satisfy:

$$I_{\varepsilon}(u_{\varepsilon}) = \inf_{\Lambda_{\varepsilon}} I_{\varepsilon} := c_{\varepsilon}$$

and

$$\langle I'_{\varepsilon}(u_{\varepsilon}), w \rangle = 0, \quad \forall w \in H.$$
 (2.15)

Clearly $\|\nabla u_{\varepsilon}\|_{2} \leq C_{2}$, for $0 < \varepsilon < 1$ and $C_{2} > 0$ a suitable constant.

Let $u \in \Lambda^+$, necessarily $\int_{\Omega} fu > 0$ and consequently

$$(1-\varepsilon)\int_{\Omega} fu > 0, \quad 0 < \varepsilon < 1.$$

From Lemma 2.1 applied with $f=f_{\varepsilon}$ we find:

$$0 < t_{\varepsilon}^{-} < \left\lceil \frac{\|\nabla u\|_{2}^{2}}{(p-1)\|u\|_{p}^{p}} \right\rceil^{1/(p-2)}$$

with $t_{\varepsilon}^- u \in \Lambda_{\varepsilon}^+$.

Since $1 < \frac{\|\nabla u\|_2^2}{(p-1)\|u\|_p^p}$, from (2.13) it follows that

$$I_{\varepsilon}(t_{\varepsilon}^{-}u) \leq I_{\varepsilon}(u)$$

and consequently:

$$c_{\varepsilon} \leq I_{\varepsilon}(t_{\varepsilon}u) \leq I_{\varepsilon}(u) \leq I(u) + \varepsilon ||f||_{H^{-1}} ||\nabla u||_{2} \leq I(u) + \varepsilon C_{3}$$

(with $C_3 > 0$ a suitable constant).

Estimate (2.6) with $f=f_{\varepsilon}$ and the above inequality imply:

$$-\frac{1}{16N}[(N+2)||f||_{H^{-1}}]^2 \leq -\frac{1}{16N}[(N+2)||f_{\varepsilon}||_{H^{-1}}]^2 \leq c_{\varepsilon} \leq c_0 + \varepsilon C_3.$$

Let $\varepsilon_n \to 0$, $n \to +\infty$ and $u_0 \in H$ satisfy:

- (a) $c_{\epsilon_n} \to \overline{c} \leq c_0, n \to +\infty$
- (b) $u_{\varepsilon_n} \to u_0$, $n \to +\infty$ weakly in H.

From (2.15) it follows $\langle I'(u_0), w \rangle = 0$, $\forall w \in H$ (i. e. u_0 is a critical point for I) and $I(u_0) \le c_0$.

In particular $u_0 \in \Lambda$ and necessarily $I(u_0) = c_0$, (i. e. $u_{\varepsilon_n} \to u_0$ strongly in H).

This completes the proof. \Box

3. THE PROOF OF THEOREMS 2 AND 4

The functional I involves the limiting Sobolev exponent $p = \frac{2 \text{ N}}{\text{N} - 2}$. This compromises its compactness properties, and a possible failure of the P.S. condition is to be expected.

Our first task is to locate the levels free from this noncompactness effect.

We refer to [B] and [S] for a survey on related problems where such an approach has been successfully used.

In this direction we have:

Proposition 3.1. – Every sequence $\{u_n\}\subset H$ satisfying:

(a)
$$I(u_n) \to c \text{ with } c < c_0 + \frac{1}{N} S^{N/2}$$

 $[c_0 \text{ as defined in } (1.3)].$

 $(b) \| \mathbf{I}'(u_n) \| \to 0$

as a convergent subsequence.

Namely the (P.S) condition holds for all level $c < c_0 + \frac{1}{N} S^{N/2}$.

Proof. – It is not difficult to see that (a) and (b) imply that $\|\nabla u_n\|_2$ is uniformly bounded.

Hence for a subsequence of u_n (which we still call u_n), we can find a $w_0 \in H$ such that

$$u_n \to w_0$$
 weakly in H.

Consequently from (b) we obtain:

$$\langle I'(w_0), w \rangle = 0, \quad \forall w \in H.$$
 (3.1)

That is w_0 is a solution in $H_0^1(\Omega)$ for (1.2). In particular $w_0 \neq 0$, $w_0 \in \Lambda$ and $I(w_0) \geq c_0$.

Write $u_n = w_0 + v_n$ with $v_n \to 0$ weakly in H.

By a Lemma of Brezis-Lieb [B.L.] we have:

$$||u_n||_p^p = ||w_0 + v_n||_p^p = ||w_0||_p^p + ||v_n||_p^p + o(1).$$

Hence, for n large, we conclude:

$$\begin{aligned} c_0 + \frac{1}{N} \mathbf{S}^{N/2} > &\mathbf{I}(w_0 + v_n) = I(w_0) + \frac{1}{2} \|\nabla v_n\|_2^2 - \frac{1}{p} \|v_n\|_p^p + o(1) \\ &\geq c_0 + \frac{1}{2} \|\nabla v_n\|_2^2 - \frac{1}{p} \|v_n\|_p^p + o(1). \end{aligned}$$

which gives:

$$\frac{1}{2} \|\nabla v_n\|_2^2 - \frac{1}{p} \|v_n\|_p^p < \frac{1}{N} S^{N/2} + o(1).$$
 (3.2)

Also from (b) follows:

$$o(1) = \langle \mathbf{I}'(u_n), u_n \rangle = \|\nabla w_0\|^2 - \|w_0\|_p^p - \int_{\Omega} fw_0 + \|\nabla v_n\|_2^2 - \|v_n\|_p^p + o(1)$$

$$= \langle \mathbf{I}'(w_0), w_0 \rangle + \|\nabla v_n\|_2^2 - \|v_n\|_p^p + o(1)$$

and taking into account (3.1) we obtain:

$$\|\nabla v_n\|_2^2 - \|v_n\|_p^p = o(1).$$
 (3.3)

We claim that conditions (3.2) and (3.3) can hold simultaneously only if $\{v_n\}$ admits a subsequence, $\{v_{n_k}\}$ say, which converges strongly to zero, i.e. $\|v_{n_k}\| \to 0$, $k \to +\infty$.

Arguing by contradiction assume that $||v_n||$ is bounded away from zero. That is for some constant $c_4 > 0$ we have $||v_n|| \ge c_4$, $\forall n \in \mathbb{N}$.

From (3.3) then it follows:

$$||v_n||_p^{p-2} \ge S + o(1),$$

and consequently

$$||v_n||_n^p \ge S^{N/2} + o(1).$$

This yields a contradiction since from (3.2) and (3.3) we have:

$$\frac{1}{N}S^{N/2} \leq \frac{1}{N} \|v_n\|_p^p + o(1) = \frac{1}{2} \|\nabla v_n\|_2^2 - \frac{1}{p} \|v_n\|_p^p + o(1) < \frac{1}{N}S^{N/2}$$

for n large.

In conclusion, $u_{n_k} \to w_0$ strongly. \square

At this point it would not be difficult to derive Theorem 2, if we had the inequality:

$$\inf_{\Lambda^{-}} I = c_1 < c_0 + \frac{1}{N} S^{N/2}. \tag{3.4}$$

However it appears difficult to derive (3.4) directly.

We shall obtain it by comparison with a mountain-pass value.

To this end, recall that $u_0 \neq 0$. Following [B.N.1] we set $\Sigma \subset \Omega$ to be a set of positive measure such that $u_0 > 0$ on Σ (replace u_0 with $-u_0$ and f with -f if necessary).

Set
$$U_{\varepsilon, a}(x) = \xi_a(x) u_{\varepsilon, a}(x), \quad x \in \mathbb{R}^N$$
;

 $[u_{\varepsilon, a}]$ and ξ_a defined in (1.6) and (1.7)].

Lemma 3.1. – For every R > 0 and a.e. $a \in \Sigma$, there exists $\varepsilon_0 = \varepsilon_0(R, a) > 0$ such that:

$$I(u_0 + RU_{\epsilon, a}) < c_0 + \frac{1}{N}S^{N/2}$$

for every $0 < \varepsilon < \varepsilon_0$.

Proof. – We have:

$$I(u_0 + RU_{\varepsilon, a}) = \int_{\Omega} \frac{|\nabla u_0|^2}{2} + R \int_{\Omega} \nabla u_0 \nabla U_{\varepsilon, a} + \frac{R^2}{2} \int_{\Omega} |\nabla U_{\varepsilon, a}|^2$$
$$- \frac{1}{p} \int_{\Omega} |u_0 + RU_{\varepsilon, a}|^p - \int_{\Omega} fu_0 - R \int_{\Omega} fU_{\varepsilon, a}. \quad (3.5)$$

A careful estimate obtained by Brezis-Nirenberg (see formulae (17) and (22) in [B.N.1]) shows that:

$$\| u_0 + RU_{\varepsilon, a} \|_p^p = \| u_0 \|_p^p + R^p \| U_{\varepsilon, a} \|_p^p + p R \int_{\Omega} |u_0|^{p-2} u_0 U_{\varepsilon, a}$$

$$+ p R^{p-1} \int_{\Omega} U_{\varepsilon, a}^{p-1} u_0 + o [\varepsilon^{(N-2)/2}] \quad \text{for a. e. } a \in \Sigma.$$

Also from [B.N.2] we have:

$$\|\nabla \mathbf{U}_{\varepsilon, a}\|_{2}^{2} = \mathbf{B} + O(\varepsilon^{N-2})$$
 and $\|\mathbf{U}_{\varepsilon, a}\|_{p}^{p} = \mathbf{A} + O(\varepsilon^{N})$

where

$$\mathbf{B} = \int_{\mathbb{R}^{N}} |\nabla u_{1}(x)|^{2} dx, \ \mathbf{A} = \int_{\mathbb{R}^{N}} \frac{dx}{(1 + |x|^{2})^{N}}$$

and

$$S = \frac{B}{A^{2/p}}. (3.6)$$

Substituting in (3.5) and using the fact that u_0 satisfies (1.2) we obtain:

$$\begin{split} \mathbf{I}\left(u_0 + \mathbf{R}\mathbf{U}_{\varepsilon,\,a}\right) &= \frac{1}{2} \int_{\Omega} |\nabla\,u_0|^2 + \mathbf{R} \int_{\Omega} \nabla\,u_0\,.\nabla\,\mathbf{U}_{\varepsilon,\,a} + \frac{\mathbf{R}^2}{2} \mathbf{B} - \frac{1}{p} \int_{\Omega} |u_0|^p - \frac{\mathbf{R}^p}{p} \mathbf{A} \\ &- \mathbf{R} \int_{\Omega} |u_0| \, |u_0^{p-2}\,\mathbf{U}_{\varepsilon,\,a} - \mathbf{R}^{p-1} \int_{\Omega} \mathbf{U}_{\varepsilon,\,a}^{p-1} \, u_0 - \int_{\Omega} f u_0 - \mathbf{R} \int_{\Omega} f \mathbf{U}_{\varepsilon,\,a} + o\left[\varepsilon^{(\mathbf{N}-2)/2}\right] \\ &= \mathbf{I}\left(u_0\right) + \frac{\mathbf{R}^2}{2} \mathbf{B} - \frac{\mathbf{R}^p}{p} \mathbf{A} - \mathbf{R}^{p-1} \int_{\Omega} \mathbf{U}_{\varepsilon,\,a}^{p-1} \, u_0 + o\left[\varepsilon^{(\mathbf{N}-2)/2}\right] \end{split}$$

for a. e. $a \in \Sigma$.

Set $u_0 = 0$ outside Ω , it follows:

$$\begin{split} \int_{\Omega} \mathbf{U}_{\varepsilon, a}^{p-1} u_0 &= \int_{\mathbb{R}^{N}} u_0(x) \, \xi_a(x) \frac{\varepsilon^{(N+2)/2}}{(\varepsilon^2 + |x-a|^2)^{(N+2)/2^{dx}}} \\ &= \varepsilon^{(N-2)/2} \int_{\mathbb{R}^{N}} u_0(x) \, \xi_a(x) \frac{1}{\varepsilon^N} \psi_1\left(\frac{x}{\varepsilon}\right) dx, \end{split}$$

where
$$\psi_1(x) = \frac{1}{(1+|x|^2)^{(N+2)/2}} \in L^1(\mathbb{R}^N)$$
.

Therefore, setting D = $\int_{\mathbb{R}^N} \frac{dx}{(1+|x|^2)^{(N+2)/2}}$ we derive:

$$\int_{\mathbb{R}^{N}} u_{0}(x) \, \xi_{a}(x) \frac{1}{\varepsilon^{N}} \psi_{1}\left(\frac{x}{\varepsilon}\right) dx \to u_{0}(a) \, D$$

for a.e. $a \in \Sigma$ (see [F]).

In other words,

$$\int_{\Omega} U_{\varepsilon,a}^{p-1}(x) u_0(x) dx = \varepsilon^{(N-2)/2} u_0(a) D + o(\varepsilon^{(N-2)/2}).$$

Consequently:

$$I(u_0 + RU_{\varepsilon, a}) = c_0 + \frac{R^2}{2}B - \frac{R^p}{p}A - R^{p-1}u_0(a)D\varepsilon^{(N-2)/2} + o[\varepsilon^{(N-2)/2}].$$

Define:

$$q(s) = \frac{s^2}{2} \mathbf{B} - \frac{s^p}{\mathbf{P}} \mathbf{A} - s^{p-1} u_0(a) \mathbf{D} \, \varepsilon^{(\mathbf{N}-2)/2}, \qquad s > 0$$

and assume that q(s) achieves its maximum at $s_{\varepsilon} > 0$.

Set

$$S_0 = \left(\frac{B}{A}\right)^{1/(p-2)}.$$

Since s_{ε} satisfies:

$$s_{\varepsilon} B - s_{\varepsilon}^{p-1} A = (p-1) u_0(a) D \varepsilon^{(N-2)/2} s_{\varepsilon}^{p-2}$$
 (3.7)

necessarily $0 < s_{\varepsilon} < S_0$ and $s_{\varepsilon} \to S_0$ as $\varepsilon \to 0$.

Write $s_{\varepsilon} = S_0 (1 - \delta_{\varepsilon})$. We study the rate at which $\delta_{\varepsilon} \to 0$ as $\varepsilon \to 0$.

From (3.7) we obtain:

$$\left(\frac{\mathbf{B}^{p-1}}{\mathbf{A}}\right)^{1/(p-2)} (1 - \delta_{\varepsilon} - (1 - \delta_{\varepsilon})^{p-1}) = (p-1)\frac{\mathbf{B}}{\mathbf{A}} (1 - \delta_{\varepsilon})^{p-2} \, \varepsilon^{(N-2)/2} \, u_0(a) \, \mathbf{D};$$

and expanding for δ_{ϵ} we derive:

$$(p-2) \left(\frac{{\rm B}^{p-1}}{{\rm A}}\right)^{1/(p-2)} \delta_{\varepsilon} = (p-1) \frac{{\rm B}}{{\rm A}} u_0(a) \, {\rm D} \, \varepsilon^{({\rm N}-2)/2} + o \, (\varepsilon^{({\rm N}-2)/2}).$$

This implies:

$$\begin{split} \mathrm{I} \left(u_0 + \mathrm{R} \mathbf{U}_{\varepsilon, \, a} \right) & \leq c_0 + \frac{s_\varepsilon^2}{2} \mathbf{B} - \frac{s_\varepsilon^p}{p} \mathbf{B} - s_\varepsilon^{p-1} \, u_0 \, (a) \, \mathbf{D} \, \varepsilon^{(\mathbf{N}-2)/2} + o \, (\varepsilon^{(\mathbf{N}-2)/2}) \\ & = c_0 + \frac{\mathrm{S}_0^2}{2} \mathbf{B} - \frac{\mathrm{S}_0^p}{2} \mathbf{A} - \mathrm{S}_0^2 \, \mathbf{B} \, \delta_\varepsilon + \mathrm{S}_0^p \, \mathbf{A} \, \delta_\varepsilon - \mathrm{S}_0^{p-1} \, u_0 \, (a) \, \mathbf{D} \, \varepsilon^{(\mathbf{N}-2)/2} + o \, (\varepsilon^{(\mathbf{N}-2)/2}) \\ & = c_0 + \frac{1}{\mathrm{N}} \, \mathbf{S}^{\mathbf{N}/2} - \mathbf{S}_0^{p-1} \, u_0 \, (a) \, \mathbf{D} \, \varepsilon^{(\mathbf{N}-2)/2} + o \, (\varepsilon^{(\mathbf{N}-2)/2}). \end{split}$$

Vol. 9, n° 3-1992.

Therefore for $\varepsilon_0 = \varepsilon_0(R, a) > 0$ sufficiently small we conclude

$$I(u_0 + RU_{\varepsilon, a}) < c_0 + \frac{1}{N}S^{N/2}$$
 (3.8)

 $\forall 0 < \varepsilon < \varepsilon_0$.

Our aim is to state a mountain pass principle that produces a value which is below the threshold $c_0 + \frac{1}{N} S^{N/2}$ but also compares with the value $c_1 = \inf I$.

To this end observe that under assumption (*), the manifold Λ^- disconnects H in exactly two connected components U_1 and U_2 .

To see this, notice that for every $u \in H$, $||u|| = ||\nabla u||_2 = 1$ by Lemma 2.1 we can find a unique $t^+(u) > 0$ such that

$$t^+(u)u \in \Lambda^-$$
 and $I(t^+(u)u) = \max_{t \ge t_{max}} I(tu)$.

The uniqueness of $t^+(u)$ and its extremal property give that $t^+(u)$ is a continuous function of u.

Set

$$U_1 = \left\{ u = 0 \text{ or } u : ||u|| < t^+ \left(\frac{u}{||u||}\right) \right\}$$

and

$$\mathbf{U}_{2} = \left\{ u : \|u\| > t^{+} \left(\frac{u}{\|u\|} \right) \right\}.$$

Clearly $H - \Lambda^- = U_1 \cup U_2$ and $\Lambda^+ \subset U_1$.

In particular $u_0 \in U_1$.

The Proof of Theorem 4

Easy computations show that, for suitable constant $C_5 > 0$ we have:

$$0 < t^{+}(u) < C_{5}, \quad \forall u : ||u|| = 1.$$

Set $R_0 = \left(\frac{1}{B}|C_5^2 - ||u_0||^2|\right)^{1/2} + 1$ and fix $a \in \Sigma$ such that Lemma 3.2 applies, and the estimate (3.8) holds for all $0 < \varepsilon < \varepsilon_0$.

We claim that

$$w_{\varepsilon} := u_0 + R_0 \, \xi_a \, u_{\varepsilon, a} \in U_2 \tag{3.9}$$

for $\varepsilon > 0$ small.

Indeed

$$\begin{aligned} \|\nabla w_{\varepsilon}\|_{2}^{2} &= \|\nabla (u_{0} + R_{0} \xi_{a} U_{\varepsilon, a})\|_{2}^{2} \\ &= \|u_{0}\|_{2}^{2} + R_{0}^{2} B + o(1) > C_{5}^{2} \ge \left[t^{+} \left(\frac{w_{\varepsilon}}{\|w_{\varepsilon}\|} \right) \right]^{2}, \end{aligned}$$

for $\varepsilon > 0$ small enough.

For such a choice of R_0 and $a \in \Sigma$, fix $\varepsilon > 0$ such that both (3.8) and (3.9) hold.

Set

$$\mathscr{F} = \begin{cases} h: [0, 1] \to H \text{ continuous, } h(0) = u_0 \\ h(1) = R_0 \xi_a u_{\varepsilon, a} \end{cases}$$

Clearly $h:[0, 1] \to H$ given by $h(t) = u_0 + t R_0 \xi_a u_{\epsilon, a}$ belongs to \mathscr{F} . So by Lemma 2.3 we conclude:

$$c = \inf_{h \in \mathcal{F}} \max_{t \in [0, 1]} I(h(t)) < c_0 + \frac{1}{N} S^{N/2}$$
 (3.10)

Also, since the range of any $h \in \mathcal{F}$ intersect Λ^- , we have

$$c \ge c_1 = \inf_{\Lambda^-} I. \tag{3.11}$$

At this point the conclusion of Theorem 4 follows by Lemma 3.1 and a straightforward application of the mountain-pass lemma (cf. [A.R.]).

The Proof of Theorem 2

Analogously to the proof of Theorem 1, one can show that the Ekeland's variational principle gives a sequence $\{u_n\} \subset \Lambda^-$ satisfying:

$$I'(u_n) \to c_1$$

$$||I'(u_n)|| \to 0$$

But from (3.10) and (3.11), we have:

$$c_1 < c_0 + \frac{1}{N} S^{N/2}$$
.

Thus, by Lemma 3.1, we obtain a subsequence $\{u_{n_k}\}$ of $\{u_n\}$ and $u_1 \in H$ such that:

$$u_{n_k} \rightarrow u_1$$
 strongly in H.

Consequently u_1 is a critical point for I, $u_1 \in \Lambda^-$ (since Λ^- is closed) and $I(u_1) = c_1$.

Finally to see that $f \ge 0$ yields $u_1 \ge 0$, let $t^+ > 0$ satisfy

$$t^+ \mid u_1 \mid \in \Lambda^-$$
.

From Lemma 2.1 we conclude:

$$I(u_1) = \max_{t \ge t_{max}} I(tu_1) \ge I(t^+ u_1) \ge I(t^+ |u_1|).$$

So we can always take $u_1 \ge 0$. \square

4. APPENDIX

The Proof of Lemma 2.2

Let $\{u_n\}$ be a minimizing sequence for (2.1) such that for $u_0 \in H$ we have $u_n \to u_0$ weakly in H and $u_n \to u_0$ pointwise a.e. in Ω .

In general $||u_0||_p \le 1$. We are done once we show $||u_0||_p = 1$.

To obtain this, we shall argue by contradiction and assume

$$||u_0||_p < 1$$
.

Hence write $u_n = u_0 + w_n$ where $w_n \to 0$ weakly in H.

$$\mu_{0} + o(1) = c_{n} \|\nabla u_{n}\|^{(N+2)/2} - \int_{\Omega} f u_{n} = c_{N} (\|\nabla u_{0}\|_{2}^{2} + \|\nabla w_{n}\|_{2}^{2})^{(N+2)/4} - \int_{\Omega} f u_{0} + o(1) \quad (4.1)$$

On the other hand,

$$1 = \| u_0 + w_n \|_p^p = \| u_0 \|_p^p + \| w_n \|_p^p + o(1)$$

(see [B.L.]), which gives:

$$||w_n||_p^2 = (1 - ||u_0||_p^p)^{2/p} + o(1).$$

So from (4.1) we conclude:

$$\mu_{0} + o(1) = c_{N}(\|\nabla u_{0}\|_{2}^{2} + \|\nabla w_{n}\|_{2}^{2})^{(N+2)/4} - \int_{\Omega} fu_{0}$$

$$\geq c_{N}[\|\nabla u_{0}\|_{2}^{2} + S(1 - \|u_{0}\|_{p}^{p})^{2/p} + o(1)]^{(N+2)/4} - \int_{\Omega} fu_{0},$$

That is,

$$c_{N}[\|\nabla u_{0}\|_{2}^{2} + S(1 - \|u_{0}\|_{p}^{p})^{2/p}]^{(N+2)/4} - \int_{\Omega} fu_{0} \leq \mu_{0}.$$
 (4.2)

Following [B.N.1] for every $u \in H$, $||u||_p < 1$ and $a \in \Omega$ let $c_{\varepsilon} = c_{\varepsilon}(a) > 0$ satisfy the following:

$$||u+c_{\varepsilon}U_{\varepsilon,a}||_{p}=1$$

[recall $U_{\varepsilon, a}(x) = \xi_a(x) u_{\varepsilon, a}(x)$ with ξ_a and $u_{\varepsilon, a}$ given in (1.6) and (1.7)]. We have:

we have:

$$\|\nabla (u + c_{\varepsilon} U_{\varepsilon, a})\|_{2}^{2} = \|\nabla u\|_{2}^{2} + c_{\varepsilon}^{2} \|\nabla U_{\varepsilon, a}\|_{2}^{2} + o(1)$$

$$= \|\nabla u\|_{2}^{2} + c_{\varepsilon}^{2} B + o(1) \quad (4.3)$$

and

$$1 = \| u + c_{\varepsilon} U_{\varepsilon, a} \|_{p}^{p} = \| u \|_{p}^{p} + c_{\varepsilon}^{p}, \| U_{\varepsilon, a} \|_{p}^{p} + o(1) = \| u \|_{p}^{p} + c_{\varepsilon}^{p} A + o(1)$$
[A, B as given in (3.6)].

Thus

$$c_{\varepsilon}^{2} = \frac{1}{\mathbf{A}^{2/p}} (1 - ||u||_{p}^{p})^{2/p} + o(1). \tag{4.4}$$

Substituting in (4.3) we obtain:

$$\|\nabla (u + c_{\varepsilon} U_{\varepsilon, a})\|_{2}^{2} = \|\nabla u\|_{2}^{2} + \frac{\mathbf{B}}{\mathbf{A}^{2/p}} (1 - \|u\|_{p}^{p})^{2/p} + o(1)$$

$$= \|\nabla u\|_{2}^{2} + \mathbf{S} (1 - \|u\|_{p}^{p})^{2/p} + o(1).$$

This yields:

$$\mu_{0} \leq c_{N} \| \nabla (u + c_{\varepsilon} U_{\varepsilon, a}) \|_{2}^{(N+2)/2} - \int_{\Omega} f(u + c_{\varepsilon} U_{\varepsilon, a}) \\
= c_{N} (\| \nabla u \|_{2}^{2} + S (1 - \| u \|_{p}^{p})^{2/p})^{(N+2)/4} - \int_{\Omega} fu + o (1),$$

and passing to the limit as $\varepsilon \to 0$, we derive:

$$\mu_0 \le c_N \left[\| \nabla u \|_2^2 + S \left(1 - \| u \|_p^p \right)^{2/p} \right]^{(N+2)/4} - \int_{\Omega} f u, \quad \forall u \in H, \quad \| u \|_p < 1.$$

Therefore from (4.2) we conclude:

$$c_{\mathbf{N}}[\|\nabla u_0\|_2^2 - \mathbf{S}(1 - \|u_0\|_p^p)^{2/p}]^{(N+2)/4} - \int_{\Omega} f u = \mu_0$$
 (4.5)

and that for every $w \in H$ necessarily:

$$\frac{d}{dt} \left[c_{N} \left[\| \nabla (u_{0} + tw) \|_{2}^{2} + S \left(1 - \| u_{0} + tw \|_{p}^{p} \right)^{2/p} \right]^{(N+2)/4} - \int_{\Omega} f(u_{0} + tw) \right]_{t=0} = 0.$$

That is:

$$\begin{split} \frac{\mathbf{N}+2}{2} c_{\mathbf{N}} & \left[\| \nabla u_{0} \|_{2}^{2} + \mathbf{S} \left(1 - \| u_{0} \|_{p}^{p} \right)^{2/p} \right]^{(\mathbf{N}-2)/4} \\ & \times \left[\int_{\Omega} \nabla u_{0} \cdot \nabla w - \mathbf{S} \left(1 - \| u_{0} \|_{p}^{p} \right)^{(2-p)/p} \int_{\Omega} \left| u_{0} \right| u_{0}^{p-2} w \right] \\ & - \int_{\Omega} f w = 0, \qquad \forall \ w \in \mathbf{H}. \end{split}$$

So setting
$$\sigma_0 = \frac{N+2}{2} c_N \left[\| \nabla u_0 \|_2^2 + S (1 - \| u_0 \|_p^p)^{2/p} \right]^{(N-2)/4} > 0$$
 and

$$\lambda_0 = \frac{S}{(1 - \|u_0\|_p^p)^{(p-2)/p}}$$

we obtain that u_0 weakly satisfies:

$$-\Delta u_0 = \lambda_0 |u_0|^{p-2} u_0 + \frac{1}{\sigma_0} f. \tag{4.5}$$

Since $f \neq 0$, in particular, we have that $u_0 \neq 0$.

Hence for a set of positive measure $\Sigma \subset \Omega$ we have:

$$u_0(a) > 0, \quad \forall a \in \Sigma,$$

(replace u_0 with $-u_0$ and f with -f if necessarily). Let $a \in \Sigma$ and $c_{\varepsilon} = c_{\varepsilon}(a)$ satisfy:

$$\|u_0 + c_{\varepsilon} U_{\varepsilon, a}\|_p = 1.$$

We will reach a contradiction by showing that

$$I(u_0 + c_{\varepsilon} U_{\varepsilon,a}) < \mu_0$$

for a suitable choice of $a \in \Sigma$ and $\varepsilon > 0$ small enough.

To this end, let $c_0^p = \frac{1 - \|u_0\|_p^p}{A}$. From (4.4) it follows that $c_{\varepsilon} \nearrow c_0$ as $\varepsilon \to 0$. Set $c_{\varepsilon} = c_0 (1 - \delta_{\varepsilon})$, $\delta_{\varepsilon} \to 0$ as $\varepsilon \to 0$. In [B.N.1], Brezis-Nirenberg have obtained a precise rate at which $\delta_{\varepsilon} \to 0$, by showing that, for a.e. $a \in \Sigma$, one has:

$$\delta_{\varepsilon} \mathbf{A} c_0^p = \varepsilon^{(N-2)/2} \left[c_0 \int_{\Omega} |u_0(x)| u_0^{p-2}(x) \, \xi_a(x) \frac{dx}{|x-a|^{N-2}} + c_0^{p-1} u_0(a) \mathbf{D} \right] + o(\varepsilon^{(N-2)/2}) \quad (4.7)$$

with

$$D = \int_{mN} \frac{dx}{(\epsilon^2 + |x|^2)^{(N+2)/2}}.$$
 (See formula (2.9) in [B.N.1].)

Now fix $a \in \Sigma$ for which (4.7) holds and

$$\int_{\Omega} \frac{|u_0|^{p-2} u_0 \, \xi_a}{(\varepsilon^2 + |x-a|^2)^{(N-2)/2}} \to \int_{\Omega} \frac{|u_0|^{p-2} u_0 \, \xi_a}{|x-a|^{N-2}} \quad \text{as } \varepsilon \to 0. \quad (4.8)$$

Using (4.5), (4.7) and the definition of c_0 we obtain:

$$\begin{split} \mathbf{I}(u_0 + c_0 \, \mathbf{U}_{\varepsilon,\,a}) &= c_{\mathbf{N}} \bigg[\| \nabla u_0 \|_2^2 + 2 \, c_{\varepsilon} \int_{\Omega} \nabla u_0 \, . \, \nabla \, \mathbf{U}_{\varepsilon,\,a} + c_{\varepsilon}^2 \, \| \, \nabla \, \mathbf{U}_{\varepsilon,\,a} \, \|_2^2 \bigg]^{(\mathbf{N} + 2)/4} \\ &- \int_{\Omega} f u_0 - c_{\varepsilon} \int_{\Omega} f \, \mathbf{U}_{\varepsilon,\,a} \\ &= c_{\mathbf{N}} \bigg[\| \nabla u_0 \|_2^2 + 2 \, c_0 \int_{\Omega} \nabla u_0 \, . \, \nabla \, \mathbf{U}_{\varepsilon,\,a} + c_0^2 \, (1 - 2 \, \delta_{\varepsilon}) \, \mathbf{B} + o \, [\varepsilon^{(\mathbf{N} - 2)/2}] \bigg]^{(\mathbf{N} + 2)/4} \\ &- \int_{\Omega} f u_0 - c_{\varepsilon} \int_{\Omega} f \, \mathbf{U}_{\varepsilon,\,a} = c_{\mathbf{N}} \big[\| \nabla u_0 \|_2^2 + c_0^2 \, \mathbf{B} \big]^{(\mathbf{N} + 2)/4} - \int_{\Omega} f u_0 \\ &+ \frac{\mathbf{N} + 2}{4} \, c_{\mathbf{N}} \big[\| \nabla u_0 \|_2^2 + c_0^2 \, \mathbf{B} \big]^{(\mathbf{N} - 2)/4} \bigg[2 \, c_0 \int_{\Omega} \nabla u_0 \, . \, \nabla \, \mathbf{U}_{\varepsilon,\,a} \\ &- 2 \, c_0^2 \, \delta_{\varepsilon} \, \mathbf{B} \bigg] - c_0 \int_{\Omega} f \, \mathbf{U}_{\varepsilon,\,a} \\ &+ o \, [\varepsilon^{(\mathbf{N} - 2)/2}] = \mu_0 + c_0 \bigg[\sigma_0 \int_{\Omega} \nabla u_0 \, . \, \nabla \, \mathbf{U}_{\varepsilon,\,a} \\ &- \int_{\Omega} f \, \mathbf{U}_{\varepsilon,\,a} \bigg] - \sigma_0 \, c_0^2 \, \mathbf{B} \, \delta_{\varepsilon} + o \, [\varepsilon^{(\mathbf{N} - 2)/2}]. \end{split}$$

Thus from equation (4.6) we derive:

$$I(u_0 + c_{\varepsilon} U_{\varepsilon, a}) = \mu_0 + \sigma_0 \lambda_0 c_0 \int_{\Omega} |u_0|^{P-2} u_0 U_{\varepsilon, a} - \delta_0 c_0^2 B \delta_{\varepsilon} + o [\varepsilon^{(N-2)/2}].$$

On the other hand from (4.8) we have:

$$\int_{\Omega} \left| u_0 \right|^{p-2} u_0 \, \mathbf{U}_{\varepsilon, \, a} = \varepsilon^{(N-2)/2} \int_{\Omega} \frac{\left| u_0 \left(x \right) \right|^{p-2} u_0 \left(x \right)}{\left| x - a \right|^{N-2}} \xi_a (x) \, dx + o \left[\varepsilon^{(N-2)/2} \right].$$

Therefore:

$$\begin{split} & I\left(u_{0} + c_{\varepsilon} U_{\varepsilon, a}\right) \\ &= \mu_{0} + \sigma_{0} \left[\varepsilon^{(N-2)/2} \lambda_{0} \int_{\Omega} \frac{\left|u_{0}\left(x\right)\right|^{p-2} u_{0}\left(x\right)}{\left|x-a\right|^{N-2}} \xi_{a} - c_{0}^{2} B \delta_{\varepsilon} \right] + o\left[\varepsilon^{(N-2)/2}\right] \\ &= \mu_{0} + \sigma_{0} \left[\frac{S \varepsilon^{(N-2)/2}}{(1-\left|\left|u_{0}\right|\right|_{p}^{p})^{(p-2)/2}} c_{0} \int_{\Omega} \frac{\left|u_{0}\right|^{p-2} u_{0}}{\left|x-a\right|^{N-2}} \xi_{a} - B c_{0}^{2} \delta_{\varepsilon} \right] + o\left(\varepsilon^{(N-2)/2}\right) \\ &= \mu_{0} + \sigma_{0} \left[\frac{S}{A^{(p-2)/p} c_{0}^{p-2}} \varepsilon^{(N-2)/2} c_{0} \right. \\ &\times \int_{\Omega} \frac{\left|u_{0}\right|^{p-2} u_{0}}{\left|x-a\right|^{N-2}} \xi_{a} - B c_{0}^{2} A \delta_{\varepsilon} \right] + o\left[\varepsilon^{(N-2)/2}\right] \\ &= \mu_{0} + \sigma_{0} \frac{B}{A c_{0}^{p-2}} \left[\varepsilon^{(N-2)/2} c_{0} \int_{\Omega} \frac{\left|u_{0}\right|^{p-2} u_{0}}{\left|x-a\right|^{N-2}} \xi_{a} - c_{0}^{p} A \delta_{\varepsilon} \right] + o\left[\varepsilon^{(N-2)/2}\right]. \end{split}$$

Finally, from (4.7) we conclude:

$$I(u_0 + c_{\varepsilon} U_{\varepsilon, a}) = \mu_0 - \sigma_0 \frac{B}{A} c_0 u_0(a) D \varepsilon^{(N-2)/2} + o(\varepsilon^{(N-2)/2}] < \mu_0$$

for $\varepsilon > 0$ sufficiently small.

REFERENCES

- [A.R.] A. Ambrosetti and P. Rabinowitz, Dual Variational Methods in Critical Point Theory and Applications, J. Funct. Anal., Vol. 11, 1973, pp. 349-381.
- [A.E.] J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Pure and Applied Mathematics, Wiley Interscience Publications, 1984.
- [B] H. BREZIS, Some Variational Problems with Lack of Compactness, Proc. Symp. Pure Math., Vol. 45, part 1, F. BROWER Ed., Amer. Math. Soc., 1986, pp. 165-201.
- [B.L.] H. Brezis and T. Kato, Remarks on the Schrodinger Operator with Singular Complex Potential, J. Math. Pure Appl., 58, 1979, pp. 137-151.
- [B.K.] H. Brezis et E. Lieb, A Relations Between Pointwise Convergence of Functions and Convergence of Integrals, Proc. Amer. Math. Soc., Vol. 88, 1983, pp. 486-490.
- [B.N.1] H. Brezis et L. Nirenberg, A Minimization Problem with Critical Exponent and Non Zero Data, in "Symmetry in Nature", Scuola Norm. Sup. Pisa, 1989, pp. 129-140.
- [B.N.2] H. Brezis et L. Nirenberg, Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents, Comm. Pure Appl. Math., Vol. 36, 1983, pp. 437-477.
- [C.S.] L. CAFFARELLI et J. SPRUCK, Variational Problems with Critical Growth and Positive Dirichlet Data (to appear).
- [C.R.] M. CRANDALL et P. RABINOWITZ, Some Continuation and Variational Method for Positive Solutions of Nonlinear Elliptic Eigenvalue Problems, Arch. Rational Mech. Anal., Vol. 58, 1975, pp. 207-218.
- [F] G. FOLLAND, Real Analysis, Wiley Interscience, N.Y., 1984.
- [G.P.] N. GHOUSSOUB et D. PREISS, A General Mountain Pass Principle for Locating and Classifying Critical Point, Ann. I.H.P. Analyse non linéaire, Vol. 6, n° 5, 1989. pp. 321-330.
- [H.] H. HOFER, A Geometric Description of the Neighbourhood of a Critical Point Given by the Mountain Pass Theorem, J. London Math. Soc., Vol. 31, 1985. pp. 566-570.
- [M.] F. MERLE, Sur la non-existence de solutions positives d'équations elliptiques surlinéaires, C. R. Acad. Sci. Paris, T. 306, Serie I, 1988, pp. 313-316.
- [P.] S. POHOZAEV, Eigenfunctions of the Equation $\Delta u + \lambda f(u) = 0$, Soviet Math. Dokl.. Vol. 6, 1965, pp. 1408-1411.
- [R.] O. REY, Concentration of Solutions to Elliptic Equations with Critical Nonlinearity (submitted).
- [S.] M. STRUWE, Variational Methods and their Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Lecture notes E.T.H., Zurich, 1989.
- [T.] G. TALENTI, Best Constant in Sobolev Inequality, Ann. Mat. Pure Appl., Vol. 110. 1976, pp. 353-372.
- [Z.] X. ZHENG, A Nonexistence Result of Positive Solutions for an Elliptic Equation. Ann. I.H.P. Analyse nonlinéaire, Vol. 7, n° 2, 1990, pp. 91-96.

(Manuscript received June 13, 1990: revised January 7, 1991.)