Vol. 9, n° 3, 1992, p. 337-338.

Analyse non linéaire

Addendum to Closed orbits of fixed energy for a class of N-body problems

by

A. AMBROSETTI

Scuola Normale Superiore, Pisa

and

V. COTI ZELATI

University of Napoli, Faculty of Architecture, Napoli

In Lemma of 6 the paper Closed Orbits of fixed energy for a class of N-body problems, published on this Journal (Vol. 9, No. 2, 1992, pp. 187-200) it is claimed that critical points of f_{ε} are found by applying the Mountain-Pass Theorem. Actually, such a Theorem needs to be slightly changed, in order to make it applicable in Lemma 6. We indicate below the required modification.

Let $\Sigma_{\rho} = \{ u \in \Lambda_0 : ||u|| \ge \rho \}, \Gamma_{\rho} = \{ p \in \mathbb{C}([0, 1], \Sigma_{\rho}) : ||p(0)|| = \rho, p(1) = u_1 \},$ and

$$c = \inf_{p \in \Gamma_{p}} \max_{0 \leq \xi \leq 1} f_{\varepsilon}(p(\xi)).$$

Hereafter, $0 < \varepsilon \leq \varepsilon_0$. By Lemma 2 (i), $a \geq \beta > 0$. Suppose c is not a critical level for f_{ε} . Since (PS⁺) holds, then there exist m > 0 and $k \in]0$, $\beta/2[$ such that $||f'_{\varepsilon}|| \geq m$, for all $u \in \Lambda_0 \cap \{c - k \leq f_{\varepsilon}(u) \leq c + k\}$. Let $\eta(s, u)$, $\eta:[0, \tau_u[\times \Lambda_0 \to E$ denote the steepest descent flow satisfying

$$\frac{a\eta}{ds} = -X(\eta), \qquad \eta(0, u) = u,$$

where X is, as usual, a pseudo-gradient vector field for f_{ε} , such that (i) X(u) = 0 if $f_{\varepsilon}(u) \leq c - 2k$ or $f_{\varepsilon}(u) \geq c + 2k$, (ii) $X(u) = f'_{\varepsilon}$ if $c - k \leq f_{\varepsilon}(u) = c + k$, and (iii) $f_{\varepsilon}(\eta(s, u)) \leq f_{\varepsilon}(u), \forall 0 \leq s < \tau_{u}$ (see the Deformation lemma in [2]).

Since, as a consequence of (2.3), $f_{\varepsilon}(u) \to +\infty$ whenever $u \to v \in \partial \Lambda_0 - \{0\}$, then (iii) above readily implies that $\eta(s, u) \in \Lambda_0$ whenever $u \in \Lambda_0$ and $\eta(s, u) \neq 0$.

Let us show that $\tau_u \ge \rho/2$, for all $u \in \Sigma_{\rho}$. According to the preceding remark, this follows in the usual way if $\|\eta(s, u)\| > \rho/2$, $\forall s < \tau_u$ (indeed, in such a case $\tau_u = +\infty$). Otherwise, let $S \in]0, \tau_u[$ be such that $\|\eta(S, u)\| = \rho/2$, for some $u \in \Sigma_{\rho}$. Then

$$\frac{\rho}{2} \leq \left\| \eta\left(\mathbf{S}, u\right) - u \right\| \leq \int_{0}^{\mathbf{S}} \left\| \mathbf{X}(\eta) \right\| \leq \mathbf{S},$$

proving the claim.

Note also that the same arguments used to prove Lemma 2 (i) yield that $(f'_{\varepsilon}(u)|u) > 0$, $\forall u \in \Lambda_0$, $||u|| = \rho$. Therefore $||\eta(s, u)|| < \rho$, whenever $s \ge 0$ and $u \in \Lambda_0$, $||u|| = \rho$.

After these preliminaries, let $k' < \min(k, \rho/4m)$ and let $p \in \Gamma_{\rho}$ be such that $\max_{\xi} f_{\varepsilon}(p(\xi)) < c+k'$. Consider the path $p_1(\xi) = \eta\left(\frac{\rho}{2}, p(\xi)\right)$. Using the properties of the vector field X, one shows in the standard way that $\max f_{\varepsilon}(p_1(\xi)) < c-k'$. Moreover, $p_1(1) = u_1$, whereas, as noted before, $\|p_1(0)\| < \rho$. Let $\xi_0 = \min\{\chi \in [0, 1] : \|p_1(\xi)\| > \rho, \forall \xi \in]\chi, 1]\}$. Setting $q(\xi) = p_1(\xi_0 + \xi(1 - \xi_0))$, it follows that $q \in \Gamma_p$ as well as $\max f_{\varepsilon}(q(\xi)) < c-k'$, a contradiction which shows that c is a critical level for f_{ε} .