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ABSTRACT. - We present an elementary and constructive method to
obtain in several cases the "optimal" estimates needed in the Hilbert
uniqueness method of J. L. Lions for the exact controllability of linear
evolution systems.
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1. INTRODUCTION

In [LIONS 2] and [LIONS 3] a general method was given for the exact
control of evolution systems. It is based on the construction of new Hilbert
spaces corresponding to different uniqueness theorems. In general the
results involve a "sufficiently large" time. The proofs are based on a priori
estimates of the type introduced in [HO]. The purpose of the present
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and at the Universite de Savoie, Chambery, as invited professor.
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paper is to give a method to obtain in several cases the "optimal" estimates
without using uniqueness theorems. This procedure provides more elemen-
tary and constructive proofs.

In this paper we consider the wave equation although the method
applies for more general equations, too. In particular, we shall improve
some results of L. F. Ho and J. L. Lions concerning the boundary control
of Dirichlet resp. Neumann type (cf [HO], [LIONS 3], [LIONS 4]). The
optimality of our results will also be investigated. Some results of the
present paper were stated without proof in [KOMORNIK].

For the general theory of exact controllability we refer to [LIONS 3],
[LIONS 4] and [RUSSELL]. The connection between the exact controlla-
bility and the stabilizability is not considered here; for these questions we
refer to [RUSSELL], [LIONS 3], [CHEN], [LAGNESE], [LASIECKA-
TRIGGIANI] and to [KOMORNIK-ZUAZUA]. Optimal time estimates
are obtained for other equations by different methods in [ZUAZUA]. The
Hilbert uniqueness method applies also to the interior control,
cf [HARAUX 1] and [HARAUX 2].
The author is grateful to J. L. Lions and to E. Zuazua for fruitful

discussions, and to the referee for his suggestions concerning the presenta-
tion of the results.

2. NEUMANN ACTION

Let Q be a non-empty, bounded, open set of class Coo in IRN with
boundary r, Q being locally on one side of r, and denote
v (x) = (v 1 (x), ..., v~ (x)) the unit normal vector to r, directed towards
the exterior of Q.

Let be a second-order elliptic differential operator with
coefficients atl E W1~ 

°° (Q) (throughout this paper we use the summation
convention for repeated indices), then

and there exist positive constants a, ~ such that

Fix a point such that, putting h (x) = x - x°, the differential
operator be also elliptic. Then there is a positive
constant y such that

for all
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Let 11 denote the smallest positive number such that

for all

and set

Example. - If 1 ~, A=A (i. e. and xO=O,
then (3), (4) are satisfied and To = 2.

Let T be a positive number and set Q = (0, T) X=(0, T) x r. Con-
sider the evolution system

where, as usual, ~y/~vA = viaij~jy denotes the "A-normal" derivative of y.
We recall that the system (6), (7), (8) is called exactly controllable if,

for all initial data y°, yl from a suitable space, there exists a corresponding
control v from a suitable space driving the system to rest at time T i. e.
such that

Due to the finite speed of propagation this is not the case unless T is

sufficiently large.
Let us introduce the notations

and

The purpose of this section is to give a more constructive proof of the
following theorem due to J. L. Lions:

THEOREM l. - Assume that T > To. Then for any initial data y° E L2 (Q),
yi (SZ))’ [ = the dual space of H1 (S~)] there exist control functions
vo, vl E LZ (0, T; L2 (I-’+)) and v2 E L2 (0, T; (H1 (r-))’) such that, putting

the solution of (6), (~, (8) satisfies the final conditions (9)..
In [LIONS 3] this result was obtained by the Hilbert Uniqueness Method

(HUM) as follows. Given ~pl E ~ (S~) arbitrarily, first one solves the

VoL 6, n° 2-1989.
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problem

and the problem

(in a suitable sense defined in [LIONS 3]). One obtains in this way a
continuous linear map

An easy calculation shows that

for all 03C81 ~  (SZ) where ~03C3 03C6 denotes the tangential part of
~cp and where B)/ is defined by (10), (11), (12), replacing (cp°, by

.

One then shows that for sufficiently large T the right side of this identity
defines a scalar product on the vector space @ (Q) x ~ (Q) of the pairs
(cpo, cpl) (this corresponds to a uniqueness theorem). Then by the Lax-
Milgram theorem A extends to an isomorphism A : F ~ F’ of a Hilbert
space onto its dual.
Hence the exact controllability follows. Indeed, given 

arbitrarily, one takes

where cp is the solution of (10), (11), (12) corresponding to

(~°, ~1) : =n-1 (~1~ -.v°).
Originally, the above crucial uniqueness theorem was proved by a

compactness argument. Now we shall prove directly the following more
precise inequality:

PROPOSITION 1. - Let

be an arbitrary function satisfying (10) and (11). Define the "energy" of ~
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by the formula

Then E does not depend on t and for any positive number E we have

where C~ and C2 are suitable positive constants independent of the choice
of 
(The constants C1 and C2 may be given explicitely by the proof below.)
The proof of this proposition is based on the following identity, implici-

tely proved in [H4J :

LEMMA. - Let

be an arbitrary function satisfying ( 10) and let C be an arbitrary real
number. Then

Proof - Integrate by parts in the identity

Vol. 6, n= 2-1989.



158 V. KOMORNIK

It follows that

and ( using also the symmetry of that

Hence the case C = 0 of the lemma follows. To conclude in the general
case, it is sufficient to prove that

This follows by integrating by parts in the identity
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indeed,

and

Proof of Proposition 1. - The time-independence of the energy is well-
known. Applying the identity (15) of the above lemma and taking into
account (3) and ( 11), we obtain the inequality

Now we show the inequality

for all tE[O, T]. We apply the Cauchy-Schwarz inequality, the Green
formula and the definition of (4) of 11 as follows:

which implies (17).
Finally we prove that

VoL 6, n° 2-1989.
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for all T]. Introducing the function

t’ E [o, T] we have

Integrating in t’ on [0, T] and dividing by T we obtain (18).
From (16), (17) and (18) we deduce the inequality

If y  2 N, then ( 14) follows (also for s = o) by choosing C = N - y/2 in
( 19). If y >_ 2 N, then ( 14) follows by choosing a sufficiently small positive
number C in ( 19) . 1

Remark 1. - Proposition 1 yields the following uniqueness result

(cf [LIONS 3; Remark 5.3]): if

is such that cp" - 0 cp = 0 in Q on X, (p=0 on E + and V(p=0
on E _ where T > To, then cp = 0. This result may also be obtained as a
consequence of Holmgren’s theorem.

Remark 2. - If SZ = ~x E x (  1 ~ and A = 0, then the condi-

tion T > To of Theorem 2 is optimal. Indeed, it was proved earlier in

[GRAHAM-RUSSELL] that for T  To our system is not exactly control-
lable. We mention that optimal time estimates for exact controllability are
known for other domains, too, cf. [FATTORINI] and [LAGNESE]. We
note also, that in a recent work of [BARDOS-LEBEAU-RAUCH] very

Annales de l’Institut Henri Poincaré - Analyse non 



161EXACT CONTROLLABILITY

precise estimates (of different type) are obtained on T by microlocal
analysis.

Remark 3. - The condition T > To of Theorem 1 is not always optimal.
In such cases we can try to transform the equation and then to apply our
results to the new equation. For example, in the one-dimensional case the
more general equation

with sufficiently smooth positive functions p, p and with a suitable function
q, may be brought by a standard transformation of the independent and
dependent variables to the form

(cf [LAGNESE 1]) and then our previous remark applies. This yields the
optimal time estimates for the original equation, too.

3. DIRICHLET ACTION

We shall now study the exact controllability of the system

The purpose of this section is to improve an earlier result of [HO] by
giving a better condition on T; see also [LIONS 3; Remark 1.7]. We adopt
the notations and hypothesis ( 1)-(5) of the preceeding section.

THEOREM 2. - Assume that T > To. Then for any initial data y° E L2 (SZ),
yl (SZ), there exists a corresponding control function v~L2 (03A3) such
that the solution of the system (20), (21), (22) satisfies the final conditions

Applying the Hilbert Uniqueness Method (cf [LIONS 3] for the details)
it is sufficient to prove the following inequality:

PROPOSITION 2. - Let

be an arbitrary function satisfying

Vol. 6, n’ 2-1989.
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and

Define the "energy" of ~p by the formula

Then E does not depend on t and

Proof. The time-independence of E is well-known. We apply again the
identity (15) of the Lemma. Now (24) implies that

Choosing

and using (3), ( 25) and the definition of E +, we obtain that

Since y > 0 implies that N - C > 0, to prove (26) it is sufficient to show
that

for all t E [0, T].
Observe that in the proof of the inequality ( 17) in the preceeding section

no boundary condition on cp was used. Hence it remains valid in the

present case, too:

However, the boundary integral on the right side of this inequality
vanishes by (24), and the second term of the right side is always _ 0 by
the choice (28) of C. Hence (29) follows..

Remark 4. - We note that the condition T > To in Theorem 2 is

optimal if Q = {x E  1 ~ and A = A. This follows from the results of
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[LAGNESE 1] or [BARDOS-LEBEAU-RAUCH]. Also, it is easy to prove
it directly if N=I. Indeed, let Q=(0,1) and let 0  T  1 (=To). We
claim that, given and arbitrarily, in general there
do not exist control functions vo and vi E L2 (0, T) such that the solution
y (t, x) of the problem

satisfies the final conditions

To prove this, fix y° and yl E (cl (SZ)) such that

If there existed vo and vi E L2 (0, T) such that the solution of the above
problem satisfies (30), then, extending vo and vi by zero to T  t  1, we
would obtain a function y (t, x) such

Applying the method of d’Alembert it is easy to show that the solution
of (32), (33), (34) is given by the formula

for all 0  x  1 and max {x, 1- x~  t  1. Hence (35) is equivalent to
the existence of a constant C such that .

and

for all 0  x  1. Differentiating the first equation and taking into account
that vo (x) is constant near x == 1 by definition, we obtain

which contradicts to (31).

Vol. 6, n~ 2-1989.
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