
Comparison results for elliptic and parabolic
equations via Schwarz symmetrization

A. ALVINO, G. TROMBETTI

Dipartimento di Matematica
e Applicazioni « R. Caccioppoli »,

Universita di Napoli,
via Mezzocannone 8, 80134 Napoli

P.-L. LIONS

Ceremade,
Université Paris-Dauphine,
place de Lattre de Tassigny,

75775 Paris Cedex 16

Ann. Inst. Henri Poincaré,

Vol. 7, n° 2, 1990, p. 37-65. Analyse non linéaire

ABSTRACT. - We study various extensions to general linear or nonlinear,
elliptic or parabolic operators of a celebrated result due to G. Talenti. We
give several comparison results for solutions of such problems involving the
solutions of conveniently symmetrized problems, using Schwarz spherical
symmetrization.
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Nous étudions diverses extensions a des opérateurs ellip-
tiques ou paraboliques generaux, linéaires ou non linéaires, d’un résultat
célèbre du a G. Talenti. Nous donnons aussi divers résultats de majoration
des solutions de tels problèmes par les solutions de problèmes convenable-
ment symetrises, a l’aide de la symétrisation de Schwarz.
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1. INTRODUCTION

It is well known that by means of Schwarz symmetrization it is possible
to establish sharp estimates for solutions of second order elliptic and
parabolic equations. To be more specific let us consider (see [7], [24], [28])
the following problem

where the coefficients (i, j=1, ... , n) are measurable functions such
that

Moreover if ~2# is the ball of f~n centered in 0 such that and
II is the symmetrized function of I (see [6]), let us consider the following
problem

If u (x), v (x) are the solutions of (1.1), (1.3) respectively, then

u# (x) __ v (x). Obviously such a result allows us to estimate any Orlicz
norm of u (x) simply evaluating the same norm of the solution v (x) of
(1 . 3).
The arguments leading to the above result have been extended to general

elliptic equations by either weakening ellipticity condition (1.2) (see [3],
[4]) or taking into account lower order terms (see [5], [6], [ 11 ], [19], [25],
[26]).

In this paper we first study linear elliptic equations of a general form
that is with first and zero order terms. And we give two comparison
results (Theorems 1 and 2) with different constraints on the coefficients
of the lower order terms. In all cases we obtain spherically symmetric
problems whose structures depend on the hypotheses on the coefficients.
From Theorem 1, following an idea of [27], we derive a comparison
result for solutions of parabolic equations. Finally we consider quasilinear
equations (see also [23] for a similar result). Most of these results have
been announced in [1].

2. ELLIPTIC EQUATIONS: MAIN RESULTS

If Q is an open, bounded set of (~n, let S2# be the ball of (~n, centered at
0, whose measure is Q); we set == Cn R~ where Rg is the radius of S2#
and Cn is the measure of the unit ball of f~". If cp (Q) the function
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39SYMMETRIZATION AND COMPARISON RESULT

is the distribution function of cp and

is the decreasing rearrangement of cp. The spherically symmetric decreasing
rearrangement (or symmetrized function) of cp (x) is defined by

In addition to the above rearrangements it is useful to consider the
increasing rearrangement of cp, that is the function

likewise we define by

the spherically symmetric increasing rearrangement of cp.
For an exhaustive statement of the properties of rearrangements we

refer to [2], [6], [12], [16], [17] and to the appendix of [25]; we just want to
point out the Hardy inequality

where f (x), g (x) are measurable functions.
Furthermore we recall the following known result.

LEMMA 1. - Let f (s), g (s) measurable, positive functions such that

if h (s) >_ 0 is a decreasing function then

Now let us consider the following general elliptic operator

and the Dirichlet problem

Vol. 7, n° 2-1990.
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Besides ( 1. 2) we require the additional conditions

with co (x) E L°° (Q) .
Finally let us consider the symmetrized problem

. - _ .... ~, ~ , v ,

where co (x) = max (co (x), 0), co (x) = max ( - co (x), 0); we have the follow-
ing comparison result.

THEOREM 1. - We assume that the coefficients of L satisfy ( 1 . 2), (2. 3)
and (2.4); if the problem (2.5) has a spherically symmetric decreasing
solution v (x) = v# (x) (this condition is certainly satisfied if co (x) >_ 0) then
the Dirichlet problem (2 . 2) has a solution u (x). Moreover

(i) if co (x) >_ 0 and c~ (x) ~ 0, then

holds for all s e [0, si] where si = sup ( s : (co)* (s) = 0 ) and

holds for s E [sl, ( Q I];
(ii) if co (x) _ 0 then (2. 6) holds for s E [0, Q] ;
(iii) if 0 then (2 . 6) holds in [0, s2] and (2 . 7) in ]s2, ( S2 ~] where

Compared to other known results Theorem 1 appears to be the most
general in that we are able to handle (in a non trivial way) all the lower
order terms. Obviously if for example b 1= di = o, we recover known results
(see [6], [ 11 ], [25] for the cases (i), (ii) and [19] for the case (iii)).
We want here to give an example showing that part (i) of Theorem 1 is

in general optimal. Indeed one possible way to test the optimality of part
(i) is to ask what is the smallest nonnegative constant 8 such that

Annales de l’Institut Henri Poincaré - Analyse non linéaire



41SYMMETRIZATION AND COMPARISON RESULT

Our example shows that one has to take b > 0 in general and then by a
simple scaling argument one sees that « the optimal 8" is of the form

8n R/v where 8n is a constant depending only on n. Part (i) gives ~n _ 1 /
and the determination of 8n is an open question.

In order to show that the above inequality cannot hold in general, we
now sketch how to build a counterexample. We consider the example
when n =1, f E ~ + ( f~), Q = ( - R, R), E > 0 and we introduce the solutions

of

Then, if the agove inequality were valid with S > 0, a simple argument
yields that we would deduce

Then we would let R go to +00 and then E go to 0, thus obtaining
r r

where u and v are respectively the unique viscosity solutions in 
of

Indeed the convergence for fixed E > 0 as R goes to + oo is easily proved
by ODE considerations (for example) while we may apply the general
results on viscosity solutions of M. G. Crandall and P.-L. Lions [13] in
order to deduce the convergence as E goes to 0: observe that in both cases
the convergence is uniform in R (extending by 0 to R the functions uR,
vR), thus allowing to pass to the limit in (2. 8).

Therefore, we will have obtained the desired counter example if we
show that (2. 9) is not true in general. To this end, we observe that since
v is even we have for all x ? 0

thus

while u is even is even and we have, assuming in addition that f is
constant on [ 1, 2],

Vol. 7, n° 2-1990.



42 A. ALVINO, G. TROMBETTI AND P.-L. LIONS

Therefore

and we conclude choosing f even ( l~) such that = f (1) =1, f
is constant on [1,2] and ( ( f ~ ( L 1  2 (2 - e -1 ) . Indeed in such a case, (2 . 9)
cannot hold for arbitrary large s.
Now we assume that the coefficients of L satisfy ( 1. 2) and, instead of

(2. 3), (2.4), the following conditions

In agreement with these constraints let us consider the symmetrized prob-
lem

Then we obtain the following comparison result

THEOREM 2. - If conditions ( 1. 2), (2 1 0), (2 .11 ) hold and the problem
(2 .12) has a solution v (x) = v# (x), then there exists a solution u (x) of (2 . 2);
moreover (2. 6) holds for all s E [0, SZ I].
The above result is known provided that only one of the two terms

is present (see [5], [25]). Therefore Theorem 2 solves completely the prob-
lem when both terms (2.13) are in the structure of the operator L.

3. PROOF OF THEOREM 1

As well as in the proofs of other similar results, the basic idea is, first,
to derive a differential inequality for the rearrangement u* of the solution
u (x) of ( 1. 2) and then to gain the desired result making use of maximum
principles. The first aim is achieved by integrating on the level sets of

u (x) and using, as main tools, the isoperimetric inequality, the coarea-
formula, Schwarz and Hardy inequalities.

If h > 0 and t E [0, sup u ~ [, let us write
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In view of the definition of weak solution of (2. 2), using (3 .1 ) as test
functions, we have:

Bv the elliDticitv condition ( 1. 2), letting h tend to zero we obtain

here we have used the fact that

goes to zero as h - 0; we rewrite (3 . 2) in the form

and proceed to evaluate all the terms by the following inequalities

Vol. 7, n° 2-1990.
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where Jl (t) denotes the distribution function of u (x).

The inequalities (3 . 4) are consequence of the isoperimetric inequality [14],
Fleming-Rishel coarea formula [15] and Schwarz inequality (we refer to
[24] for a complete proof), (3.7) can be easily deduced from Hardy
inequality (2.1). With regard to (3 . 6), from (2. 3) we obtain

on the other hand

since from (3 . 4)

we easily obtain (3.6). It remains to show (3. 5) and for this purpose we
observe that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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and then by (2. 4)

Writting we get

Vol. 7, n° 2-1990.
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Collecting (3.5), (3. 6), (3. 7) we thus have

We now make use of Gronwall’s lemma:

so that, by (3 . 8)

Hence, by standard arguments (see [25])

Let us consider problem (2 . 5) and its solution v (x) = v# (x); obviously
the arguments leading to (3.9) proceed in the same way except that
equalities now replace inequalities in the details. Thus in place of (3.9)
we obtain the differential equality

where v* (s) is the decreasing rearrangement of v (x).

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Remark 1. - If g (x) = g# (x) is such that

we can insert g* (s) instead of f * (s) in (3. 9), (3 .10). Obviously now the
function v* (s) in (3.10) is the rearrangement of the solution of (2 . 5) with
. f # (x) replaced by g# (x).

For the discussion of (3 . 9), (3.10), we distinguish different cases depend-
ing upon the sign of co (x).
We begin by considering the simple case co (x) = 0. We then have

integrating on [s, ( S2 ~] we obtain (2 . 6). This result is already known if
bi = 0 or bi are "sufficiently smooth" (see [25]).

Case (i). - and We note that this case could fall
within the previous one simply disregarding the zero order term; in such
a way, however, we can just compare u* (s) with the rearrangement vo (s)
of the solution of the problem

On the other hand one can yield more precise estimates for u* (s) by
handling carefully the zero order term in order to compare u (x) with the
smaller function v (x) ( _ vo (x)). For example, if bi = di = 0, (2. 6) fails but
it is replaced by the weaker inequality

The previous inequality is fully satisfactory for our ends because it
allows us to estimate Orlicz norm of u by the same Orlicz norm of v (see
[6], [11], [ 19]) .

Let us write w (s) = u* (s) - v* (s) and from

(3 . 9), (3.10) we have

Writing

Vol. 7, n° 2-1990.
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(3.13) can be interpreted in terms of the following problem

By the maximum principle we have W (s)  0 that is

moreover by virtue of Lemma 1 [with we obtain

From (3 .14) it follows that u* (s 1 ) _ v * (s 1 ); on the other hand in [0, s1]
(3.13) is replaced by ( - u*)’ -- ( - v*); therefore we get u* (s) _ v* (s) in

[0, This completes the proof in case (i).
Case (ii). - co (x) _ 0 and Let us assume initially co (x)  0

a. e. in Q so that (co )* (s) > 0 in [0, Q ~[. From (3 . 9), (3.10) we obtain

where w (s) = u* (s) - v* (s). Writing

we have

We note here the importance of the hypothesis on the existence of a
symmetrically decreasing solution v (x) = v# (x) of problem (2. 5) ; indeed it
provides a maximum principle for (3 .15) by arguments involving the first
eigenvalue À1 of the following problem

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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In fact the problem

has [see (3 . 10)] the following positive solution

hence by using, with slight modifications, the same arguments than in [6]
(see also [18]) we obtain that À1 is greater then one: thus we can conclude
(see [6] again) that

i. e. (2.6). Finally we remark that (2.6) also provides an existence result
for problem (2. 2).

In order to dispense with the initial assumptions concerning co (x) we
proceed by approximation. For example we consider the following problem

in QI, v£ E Ho (S2#)
If E is small enough this problem has a symmetrically decreasing solution
v£ (x) = vE (x). By the above result (we replace co by co - E) we obtain
u* (s) _ vE (s) for all s E [o, ~ S2 ~]. Since we can estimate (uniformly with
respect to E) L2 and Hà norms of Vt, by continuity arguments, v~ converges
in L2 to the solution of (2. 5) and then v* (s) = lim vi (s); so we obtain
(2. 6) again.
Case (iii). - (x) - cg (x) and ct (x), Co Let us denote

by

we assume initially 
’

(cj)* (s) is continuous at so. (3 .16)
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Writing

from (3 .17), (3 .16) we obtain

Proceeding as in case (ii) we have W~ (s) _ 0 in [0, so] i. e.

Writing now

from (3 .17) and (3 .18) we obtain

Proceeding as in case (i) we have

and also

Finally from (3 .17), (3 .18) we deduce

integrating between and s i , using (3 . 20), we get

This completes the proof of case (iii). At last we can remove the hypothesis
(3 .16) proceeding by approximations.
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Remark 2. - The above proof shows in fact that if, for instance, co is
a nonnegative constant and we set

then we have for x~03A9#

and U, V satisfy homogeneous Neumann conditions on In particular
this yields on (0, Ra)

and cp solves

4. PROOF OF THEOREM 2

In this section we assume that the coefficients of L satisfy hypotheses
( 1. 2), (2 .10), (2 .11 ). If u (x) is a solution of (2 . 2), proceeding as in the
previous section, from (3. 2) and (2 .11 ) we have

Vol. 7, n° 2-1990.
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The bounds of the terms in the right hand side can be achieved as follows:

and

Recalling (3 . 7) thus we have

where

hence

for a. e. t E [0, sup u I[. Denoting by 03C8 (t) the function on the left side of
(4 . 2), since t (t)1-1/n converges as t goes to + oo, we deduce that 03C8 (t) is

Annales de Henri Poincaré - Analyse non linéaire
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a bounded function; moreover

Thus by (4. 2) and (4. 3) we can write

By Gronwall’s lemma we have

hence from (3 . 4) we obtain

Consequently, setting ~, (t) = s, since goes to 0 as a ~ 0, we
get

Vol. 7, n° 2-1990.
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As in the previous section our objective is to compare u* (s) with the
solution of the following equation

Obviously v* (s), the rearrangement of the spherically symmetric decreas-
ing solution v# (x) of (2.12), is solution of (4 . 5): indeed (4 . 5) can be
deduced in the same way as (4.4), starting from the problem (2.12), by
using only equalities.
From (4.4), (4. 5) writing

we have

As well as case (iii) of Theorem 1 (see section 3) we are now in position
to assert that W’ (s) _ 0 and then u* (s)  v* (s) for all s E [0, |03A9 I]. Thus the
Theorem is proved.

5. PARABOLIC EQUATIONS

Let Q denote the cylindrical domain of (~n + 1 given by Q x [0, T] (T > 0);
we consider the initial boundary-value problem

where the coefficients (x, t), bi (x, t), di (x, t), c (x, t) E L°° (Q),
I(x, t) E L2 (Q), uo (x) E L2 (Q); furthermore we assume

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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with (0, T) and 

with (0, T) and 

with Co (t) E L°° (0, T), Finally, we assume

and we set Ao = inf (R (t)/v (t)).
Besides we consider the following "symmetrized" problem in the

cylindrical domain Q# = S2# x [0, T]

where g (x, t) E L~ (Q") and vo (x) E L‘ (SZ~).
In all this section we adopt the following convention: if h (x, t) is defined

in Q we denote by h# (x, t) the symmetrized function, with respect to x, of
h (x, t) for t fixed.
Then we assume

THEOREM 3. - Let u (x, t), v (x, t) denote the solutions of (5 .1 ), (5 .1 )’
respectively ; if conditions from (5 . 2) to (5 . 9) are fulfilled then

- - , . _ _ _ , , _ y _ _ _ -_

where

Vol. 7, n° 2-1990.



56 A. ALVINO, G. TROMBETTI AND P.-L. LIONS

It suffices to prove the theorem for the case co (t) ~ co > 0 otherwise we
replace u (x, t) by e -’~ t u (x, t) where À is a sufficiently large constant.

Initially we assume R (t)/v (t) piecewise constant, i. e. there exists a
subdivision

of [0, T] such that

we put Ai=Rdvi: obviously Moreover we divide [0, T] into
m >_ k subintervals by introducing the points

we assume that there exist k -1 indices j1j2 ... jk-1 such that

moreover

Now, following an idea of [27], we replace the term ut in (5.1) by a
difference quotient; we begin by writing

we thus consider the problem

where u(O) = u°.
If for example t2 obtain from (5 . 2), (5 . 3).

Annales l’Institut Henri Poincaré - Analyse non linéaire
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furthermore setting

we have, if cp + (Q)

hence

At last writing

we have

In fact let e (x) be a function (see [12]) such that

and

Vol. 7, n° 2-1990.
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then

recalling (5.7) and (5.9) we obtain (5.14).
Therefore (5.10) is an elliptic problem: let denote its solution. From

(5.11), (5.12), (5.13) and (5.14), by virtue of Theorem 1 and Remark 1
we infer

where v(1) is the solution of

with v(O) = v°.
Now we want to prove inductively that

where is the solution of

and is the solution of

obviously the functions (x), (x), etc. are defined like (x), (x),
etc.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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In order to prove (5.16) we proceed in the same way as in the previous
case if, for example, then the condition (5.14) becomes

Since

and Ao __ A1 (R (t)/v (t) is increasing!), by virtue of lemma 1 we have

Then proceeding as in the proof of (5.4) we obtain (5.17). In the same
way we proceed beyond 

Finally we set

From (5.16) we have

for a. e. t E [0, T]. Then letting m - oo, converge to u, v
respectively (see [20]), we obtain the result.
At last we assume that R (t)/v (t) is not piecewise constant. Let vn, Fn

be piecewise constant functions on (0, T) such that Fn is

nondecreasing, and

We then set Clearly, 0  R" _ (const. ind. of n) and Rn -+ R a. e.
on (0,T). Let us observe that replacing if necessary R by R+8 (for all
~ > o) we may assume inf ess R > O.
Next we consider

and we observe that we may now apply the preceding proof to the case
when aij, b i, di, c, v, R are replaced by a ~, bn, d?, cn, vn, Rn. And we
conclude easily by letting n go to 00 .

Vol. 7, n° 2-1990.
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6. QUASILINEAR EQUATIONS

For the sake of simplicity we consider the following Dirichlet problem

where a~~ (x), H (x, ~) are measurable functions verifying ellipticity condi-
tion (1.2) (with v= 1) and the following growth condition

with f E L + (S2), Co > 0, p E [ 1, 2].

THEOREM 4. - Under the conditions ( 1. 2), (6 . 2), if there exists a solution
v (x) ( = v# (x)) of the problem

then (6. .1) has a solution u (x); moreover

for all functions (3 concave, nondecreasing on [0, oo).
If (6 .1 ) has a weak solution u (x), by using the functions (3 .1 ) as test

functions, we have

From ( 1. 2) letting h -~ 0 we obtain

hence, by (6. 2) and Hardy inequality.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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We proceed to estimate the last integral in the above inequality

Then we obtain

and, by Gronwall’s lemma,

finally by (3 . 8)

Hence, by a standard way (see also section 3), we have

and then, in euclidean coordinates with u* (s) replaced by the spherically
symmetric rearrangement u# (x),

Vol. 7, n° 2-1990.
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Obviously we also have

where v (x) ( = v# (x)) is the solution of (6.1)’.
With the help of (6. 6), (6. 7) we can now prove that

That is trivial if p = 1. Thus we assume p E ] l, 2]. Let A be the set of 8 ( > o)
such that

We distinguish two cases: in the first case we assume A ~ Q~. We set
bo = sup A ( > o). If So  R~ we have from (a), (b)

hence by a continuity argument we obtain

when for some E > o: we have thus arrived at a

contradiction.

Finally if A = 0 let us consider the problem

if E > 0 is sufficiently small, (6. 9) has solution vE (x) = (vE)# (x).
From (6. 6) we get

Annales de l ’Institut Henri Poincaré - Analyse non linéaire
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Since

we have

hence from (6.10)

Likewise from (6 . 7) (with VI, f’ replaced by v#~, II + E) we have

Therefore we obtain

hence, for some 8 > 0

thus we are again in the first case, therefore

Letting E - 0 we obtain (6. 8). Obviously (6. 8) implies the desired result
(6 . 3).

Furthermore by (6. 5), (6. 8) we get

Vol. 7, n° 2-1990.
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that is (6.4).
Finally from (6.4) and (6.5), by standard tools (see [8], [9], [10]) we

can establish an existence result for the Dirichlet problem (6.1).
Remark 3. - The preceeding result can be extended to elliptic operators

of the following type

where

The arguments in Theorem 4 proceed in essentially the same way except
that

replaces (3. 8) in the details.

Remark 4. - The condition fe L °° (Q) can be relaxed; it is enough to
consider a sequence of L°° (S2) functions going to f in some 
Obviously we need to guarantee the boundness of the solution v (x) of
(6 . 7): to this aim it suffices that q > n/2.
Remark 5. - We emphasize that, if p = 2, (6 .1 )’ has a solution iff the

first eigenvalue of the operator (- A - Coil) with homogeneous. Dirichlet
boundary condition is strictly positive.
Remark 6. - Generally if, for example, is suffi-

ciently small (6 .1 )’ has a super solution. Hence, by standard tools, we can
deduce the existence of a solution v (x) of (6.1)’ (see also [23]).
Remark 7. - The estimate (6.4) in its full generality seems to be new.

Observe that it clearly applies to Talenti’s original result [24] (take co = 0)
and that 03B2 (03C3) = for all a >__ 0 and a E [0, 1], is admissible, hence (6 . 4)
yields a comparison for the Lq norm when 0  q _ 2.
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