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ABSTRACT. - In this paper we extend the Van der Waals-Cahn-Hilliard

theory of phase transitions to the case of a mixture of n non-interacting
fluids. By describing the state of the mixture as given by a vector density
function u = (UI’ ..., un), the problem consists in studying the asymptotic
behaviour as E - 0 + of minimizers of the energy functionals:

under the volume constraint with m~Rn fixed. The function
W, which represents the Gibbs free energy, is non-negative and vanishes
only in a finite number of points ai, ..., ak E Rn. The result is that the
minimizers asymptotically approach a configuration which corresponds to
a partition of the container Q into k subsets whose boundaries satisfy a
minimality condition.
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RESUME. - Dans cet article nous étendons la théorie des transitions de

phase de Van der Waals-Cahn-Hilliard au cas d’un mélange de n fluides
non interageants. En supposant 1’etat du mélange decrit par une fonction
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68 S. BALDO

vectorielle de densite u = (ui, ..., un), le problème consistera dans l’étude
du comportement asymptotique par E - 0 + des minimisants des energies :

sous la contrainte de volume u (x) dx = m, avec mER" fixe. La fonction
W représente 1’energie libre de Gibbs, a valeurs non negatives et qui est
nulle sur un nombre fini de points ai, ..., ak ERn. Nous obtenons alors
que les minimisants approchent asymptotiquement une configuration qui
corresponds a une partition du container Q en k sous-ensembles dont les
bords satisfont a une certaine condition de minimalité.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

We briefly recall the theory for a single fluid (see, for example, [GM]).
Suppose we have a fluid, contained in an open set Q c RN, of total mass
m and density given by a function u defined on Q.
Under isothermal conditions, the stable configurations of the fluid are

given by the functions u which minimize the total energy:

among all u such that Ju (x) dx = m and u (x) >_ 0. Here W is a nonnegative
function that represents the Gibbs free energy relative to an ideal fluid,
and E is a small parameter that takes into account the energy connected
with the formation of interfaces.
Assume that W acts as in Figure 1 and that (  m  ~i ( SZ (, , where

I Q denotes the volume of Q.
Note that the solutions of the variational problem ( 1.1 ) have a certain

regularity, at least U E H1 (Q), while it is physically reasonable that the
density u should be a piecewise constant function admitting only the values
a and P (i. e. the fluid splits into two phases). On the other hand, experience
indicates that stable configurations must minimize the surface area of the
interfaces between the phases, and so we cannot simply neglect the gradient
term in ( 1. 1 ) .
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The idea to overcome such difficulties is to study the asymptotic behavi-
our of the variational problem ( 1.1 ) as E -~ 0 + . The problem was recently
solved in full generality by Modica [Ml]. He proved that, if u£ is a solution
of the variational problem (1.1) and uE converges in L 1 (Q) as E - 0+
to a function uo, then uo takes only the values a and fi and the set

E = ~ x E SZ : u (x) = oc ~ minimizes the surface area of its boundary among
all subsets of Q having the same volume.

It should be remarked that Modica’s result does not work for more
than two phases. For instance, with 
the limit density uo takes again only two values: either a and fi, or fi and
y, depending on m. The multiphases systems, as well as the mixtures of
non-interacting fluids, can be studied by passing from the scalar case u E R
to the vector case u E R". This is the aim of the present paper.

Let Q c RN, N~2 be open and bounded, with lipschitz-continuous
boundary. Suppose we have n fluids that we can describe with a vector-
valued density function u = (ul, ..., un) ELl (Q; Rn): each scalar component
of u is the density of an ingredient of the mixture. The appropriate
constraint are again, with obvious meaning of the symbols,

where m = (ml, ... , mn) E Rn is given and satisfies the condition min

{ a i , ... , _ 
m i 

_ max{ a 1, ... , ak } for every i =1, ... , n. By physical I(Xl’ ..., (Xk ~ ] Q ] 
~ max (Xl"’" (Xk lor every 1- ,..., n. Y P ysical

considerations, it seems to be reasonable that the free energy of the mixture
is the sum of the free energies of the components. So we assume that the
free energy of the fluid is a nonnegative, continuous function W (u),
defined for u > o, which vanishes in a finite number of points
03B11, ..., 
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For example, if n = 2 and with W1 i and
W2 acting as in Figure 1 with zeros Pi and a2, ~i2, then k = 4 and

(ai, = (al ~ ~2)~ a3 = (Pi. CX2)’ a4 = (~1 ~ ~2)~
We need also the following technical assumption on W: there exist K1,

K2 E R with 0  K,  K2, such that:

for every [K1, 
We can now state our main result. For every A c RN denote by lA its

characteristic function, by a* A its reduced boundary (cf. Giusti [Gi]), by
~ A ~ its Lebesgue measure, by HN _ 1 (A) its (N - 1 )-dimensional Hausdorff
measure. For every i, j E { 1, ..., k ~ define

THEOREM. - For every E > 0, let uE be a solution of the minimization
problem:

Assume that the functions uE converge in L1 (~, Rn), as E ~ 0+, to a function
uo. Then

k

where Si, ..., S~ is a partition of S~ which minimizes the quantity

k

among all other partitions of o such that 03A3|Si (oci = m.
i= 1

We mention that results of this type in the vector case have been recently
obtained by P. Sternberg [S] and I. Fonseca &#x26; L. Tartar [FT]. In [S] the
problem is studied by taking n = 2 and W which vanishes on two simple
smooth curves in the plane and without assuming any constraint. In [FT]
the problem is studied with n arbitrary, but k = 2, and with the same
volume constraint as in the present paper. Furthermore. Ambrosio [A]
has announced general results in the case in which the set of zeros of W
is essentially any closed subset of Rn. All the mentioned papers, as well as
the present paper, rely on the r-convergence theory.
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I wish to thank Professor L. Modica for suggesting me this research as
subject of my thesis for the "Laurea in Matematica" at the university of
Pisa.

2. PRELIMINARY RESULTS

For any vEL1 (Q), it is usual to define

for any open subset A of Q. If 03A9|Dv| + oo, then u~BV (Q); in this

case the set function A~A|Dv is the trace on the open subsets of Q of

a borel measure on Q, which will be denoted by ~ ] for any borel

subset E of Q. If v is the characteristic function ls of a measurable subset
S of Q, then we let

and P g (S) is called perimeter of S in Q, because 
in the case that S has a smooth boundary. For every S, it is possible to
construct a subset 0* called reduced boundary of S, such that

Denote by R~ the set of all u E Rn such that u >_ 0, that is 0, ..., 0.
On R~ we define the following metric:

which is the riemannian metric derived from W 1 ~2 .
For § E R +, let cp~ (~) = d (~, ai), i =1, ..., k, where a; are the zeros of W.

We begin with a simple result on the metric d.

PROPOSITION 2 . .1. - The function cpi is locally lipschitz-continuous. More-
over, if u E H1 (Q) (~ L°° (Q), then cpi ° u E W1~1 (Q) and the following inequal-
ity holds:
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Proof - We omit the very easy proof that cp~ is locally lipschitz-
continuous. If the following inequality holds:

for any Q’ open set in Q, then, by the Radon-Nikodym Theorem,
is a L 1 function and (2 .1 ) immediately follows. Let us prove

(2. 2).
Consider the case u~C1 (Q). The function 03C61 u is locally lipschitz-

continuous, and then differentiable almost everywhere in Q. Let x be a
differentiability point for be a sequence converging to x in Q
and CJh be the segment We have, by definition of the
metric:

By applying the Mean Value Theorem to the right-hand side integral,
dividing by and passing to the limit we obtain

and (2. 2) follows.
Suppose now U E H1 (Q) n L~ (Q), and c C~ (Q) be a sequence

such that in H~(Q). Suppose also that and

Duh (x) --~ Du (x) almost everywhere in Q.
By using the Dominated Convergence Theorem and the Fatou’s Lemma

we obtain for any g E Co (Q’; 1 in Q’ :

and the proposition is proved..
Let J.1 and v be two regular positive Borel measures on Q. We define

the supremum J.1 v v of  and v as the smallest regular positive measure
which is greater than or equal to J.1 and v on all borel subsets of Q. We

Annales de l’Institut Henri Poincaré - Analyse non linéaire



73MINIMAL INTERFACE CRITERION

have:

for any open subset A of Q.
Let u be a function such that W (u (x)) = 0 almost everywhere and
u E BV (Q); hence

k

where S1, ... , Sk are pairwise disjoint sets in SZ such that SZ U Si = o.
i=1

PROPOSITION 2 . 2. - Denote ~i the Borel measure ~i : E H I D u) I.
Then Pn (Si)  + oo for i =1, ... , k and

Proof. - Let us prove that the perimeters of the sets Si in S2 are
bounded. By applying the coarea-type Fleming-Rishel formula:
~ . .

where di = min (d (ai, a j)); hence P~ (Si)  + oo .
j= 1,..., k

j*i

Suppose we have proved that for every index ~’= 1, ..., k and for every
open set Q’ c Q we have:

Since we have ( cpl (oc~) - cpl (a~) ~ _ d(ai, (Xj) for any i, j, l =1, ..., k, and the
equality holds for l = i or l = j, the result follows from the lemma below,
by passing to the measure theoretical supremum in (2. 5).
We now prove (2 . 5). Note that for any J c ~ l, ..., k ~ we have

L
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In fact, reasoning as in Vol’pert [Vo]:

An inductive argument on the cardinality of J proves (2.6). We now
return to the proof of (2. 5). Suppose for simplicity that i =1 and that the
indices are numbered in such a way that

(It’s possible that there are indices j such that but the
changes in the proof are trivial.) By the Fleming-Rishel formula we obtain:

Reordering the terms in the sum, we finally obtain (2. 5). .
LEMMA 2 . 3. - Let  be a regular positive borel measure on SZ, B l, ... , Bm

be disjoint borel subsets of SZ with finite ~.-measure and ch, i =1, ... , m,
h = l, ... , k be positive coeffcients. Define

rit m

Then v = V Jlh.

Proof. - We omit the easy proof..
On the basis of the previous proposition, we define, for any (Q):

and we obtain that, if Fo (u)  + oo, then
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We now recall the definition of r-convergence [DGF]:
be a sequence of real-extended functionals on L~ (Q), Go a

functional of the same kind. We say that G~ r-converges to Go as h ~ +00
at a point (Q), and we write:

if and only if the following relations hold:

As immediate consequence, we obtain the following result (see [DGF]):

PROPOSITION 2.4. - Assume Go(u)=r- lim for every
h - + o0

Let M~, be such that every
h E N. Ifuh  uo in L1 (Q), then:

The result we shall prove in the next sections is the following. Define,
for any UEL1 (Q),

THEOREM 2. 5. - For every 0,

Our main result is now a consequence of Theorem 2.5. Indeed, by the
hypothesis uE - uo. Proposition 2 . 4 yields that Fo admits a minimum
value and uo is a minimum point of Fo. Furthermore, the fact that this
minimum value is obviously finite gives the formula for the asymptotic
value of the energies FE 

3. THE PROOF OF THE MAIN RESULT

To prove our main result in the form of Theorem 2. 5 we only need to
prove the statements (2. 8) and (2. 9) in the definition of r-convergence.

Vol. 7, n° 2-1990.
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Proof of (2 . 8). - Let ~h~0 be a fixed sequence. It is not restrictive to
assume lim FEh (uh) exists and it is finite, being trivial the other cases.

By choosing a subsequence uhk that converges to u pointwise almost
everywhere in Q, and by Fatou’s Lemma, we obtain:

hence W (u (x)) = 0 almost everywhere in Q because W is a continuous and
nonnegative function.
We now need to prove that

We further reduce the problem by making the sequence M~, to be equi-
bounded. If this is not true, by using the technical assumption (1 . 2) on
W, we can replace uh by the uh obtained trough truncation of each scalar
component by Kl and K2. Note that uh - u in L1 (Q) and the integrals in
the right-hand side of (3 .1 ) decrease. Then, (cpi ° uh) - (cpl ° u) in L (Q) for
every i =1, ..., k, because of the continuity of and lower semicontinuity
yields:

Thus:

Recalling Proposition 2.1 we finally obtain:
k

Proof of (2 . 9). - Fix If is such that Fo (u) _ + oo,
the construction of the sequence u£~ is trivial. Therefore assume
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k

u(x)=03A3 03B1i1Si(x), with Si, ... , Sk pairwise disjoint sets with finite peri-

meter in Q such that 

The following lemma, whose proof is given in appendix, and a diagonal
argument allows us to consider partitions such that the sets Si, ..., Sk are
polygonal domains in RN, with (aSi n = 0:

LEMMA 3.1. - Let ..., as before. Then there exists a sequence
{ Si, ~ ~ ~ , Sk ~h E N of partitions of S2 such that:

(i) Shi is a polygonal domain and HN _ 1 n ~03A9) = 0 for any i = l, ..., k,
hEN;

The following lemma, that will be essential in the construction of our
sequence uh, generalizes an idea of Modica [M2].
We suppose for simplicity that for any i, j = 1, ..., k, i ~ j, there exists

the distance-minimizing geodesic connecting a; and i. e. we suppose
that there exists a C1-path Yij such that and

oc~) = W 1~2 ( dt. We shall see later how to change the
proof if such geodesics does not exist. Note that it is not restrictive to
assume Yi~ (t) ~ ~ o, b’ t E (o,1 ).
LEMMA 3. 2. - Consider the following ordinary differential equations:

where i, j = l, ..., k, i ~j and 03B4> 0 is a fixed constant.
Thus, for every s > 0, there exist a lipschitz-continuous function

xE~ Rn and three constants C1, C2, C3 (depending only on ~) such
that:

Vol. 7, n° 2-1990.
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(iii) I, f ’ j > i, on the 0  ti  C 1 E for any
x£ depends only on t~, and we can write:

xE (ti) = Ct~)) [where yE solves (3 . 2)] for any t; such that x£ ~ ai)
(Note: if j= k, ignore the condition t~  0, that makes no sense.)

Proof - To prove the lemma, we only need to find the constants C 1,
C2, C3 and to define x£ at the points different from those considered in
(i). First we search the solutions of (3 .1), for fixed i, j. The function

is obviously increasing and, we immediately obtain:

,~E  E~-1~2 length (y~~). Now, the inverse function [0, ~ [0, 1] of ~rE
satisfies the differential equation (3 .1 ). We extend the function to the
whole R by putting:

Now Yt is a lipschitz-continuous function satisfying (3.1) in all the points
where y£ ~ 1. Putting:

we can define XE on the strips as in (iii). We choose

If

we have |D~~ ( _ K/E. Standard extension results for lipschitz-continuous
functions allow one to define ~~ on the whole Rk- l, with suitably
chosen..

The last lemma has to do with tubular neighborhood of polygonal
domains, and we omit the standard proof.

LEMMA 3 . 3. - Let Q be an open set in RN, A a polygonal domain in RN
with aA compact and such that HN _ 1(~A ~ aS2) = o. Put:
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Then there exists a constant r~ > 0 such that h is lipschitz-continuous on
x E RN : I h (x) I  r~ ~, and D h (a) ( =1 for almost all x E H,~.

Finally, if St denotes the set ~ x E RN : h (x) = t ~ we have:

Let us return to the proof of (2.9) for polygonal domains. We define,

Fix 8 > 0. For s small enough we have D h~ (x) I = 1 a. e. on the set

for all i=1, ...,k.
Consider the sequence of functions:

Putting i = l, ... , k -1, we obtain:

where the last equality follows from the coarea formula. By Lemma 3.3

we have Jn and we conclude that in L~(Q). If

= ~ we define Mg. Otherwise we put:

Each scalar component of the vector ~E is (in absolute value) less than or
equal to C 1 E. Let xo be a point in the interior of the set Q (~ S 1 (if it is
empty, the changes in the proof are trivial). If E is small enough, the open
ball BE = B (xo, is contained in ~ x : uE (x) = a 1 ~, by definition of uE.
Define:

Vol. 7, n° 2-1990.
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where and ffiN-l 1 is the volume of the (N -1 )-

dimensional unit ball. The functions u. satisfy the constraint u£ = m for E
small enough, and converge in L 1 (Q) to u. It remains to give a sharp
estimate of lim sup FE (uE). Let us consider the following partition of Q:

for l, ...,k~ and 
, k ,

If we put:

we obviously have:
k

lim sup FE (uE) _ ~ lim sup F~ (UE, Q~)
i- 1 

+ L lim sup FE (uE, + lim sup FE (uE, BJ + lim sup FE (uE, Q~). (3 . 3)
J s-~0+ E -+ 0 + E-~0+

The first sum of the right-hand side of (3.3) vanishes on Q~ because

Since:

and g - 0 for E -~ 0, we have

lim sup F~ BJ==0.

Now define: ~’>7. Since

Q~ c U by using Lemma 3.2 we obtain:
u
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Putting now or and employing again
the coarea formula we have:

Remark that, for almost all p>0, we have 1 (aSi n IS)) = o. Thus,
recalling Lemma 3. 3, we have:

Passing to the infimum for p > 0, we finally have lim 
e~0+

and then

It remains to estimate the terms of (3 . 3) of the form lim sup FE 
e-0+

We have:

(by using the coarea formula)

(by remarking that aE = sup as

Bt /

E-~0)

Vol. 7, n° 2-1990.
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[by using eq. (3.1)]

By collecting all previous inequalities, we conclude that

Recall that the functions depend on 8. Passing now to the infimum
for b > 0 we obtain:

and, by a simple diagonal argument, (2.9) is proved. The proof is now
almost completed, modulo the existence of geodesics connecting any two
zeros of W. If such geodesics do not exist, we could choose approximate
geodesics Y ~ such that

reasoning as above, we construct a sequence uf such that

and again a diagonal argument completes the proof..

4. FINAL REMARKS

In this Section we prove a compactness result in L1 (Q) for the family
of minima.

PROPOSITION 4 .1. - Let ~ u£ ~E > o be a sequence such that, for each E > 0,
uE is a minimum point of FE. Let us suppose that there exists a constant
M>O such that almost all x~03A9 and for all E > o. Then there
exists a sequence 0 such that ~ uEh converges in L1 (SZ).

Proof. - Since the sequences {03C6i ° 

uE }~>0 are bounded in Ll (SZ) for
every i =1, ..., k, using the results obtained in Section 3 to prove the

Anuulo.s de l’Institut Henri Poincaré - Analyse non linéaire



83MINIMAL INTERFACE CRITERION

inequality (2. 8), we have:

Furthermore, reasoning as for the proof of (2 . 9), we obtain that {FE 
is equibounded. Thus, by using Rellich’s Theorem in BV (Q), there exist k
functions f ’1, ... and a sequence Eh  0 such that cp i ~ u£h -~ f in L 1 (Q)
and pointwise a. e., for every i =1, ..., k. We now define:

Let us turn to the convergence it is of course sufficient to prove
pointwise a. e. convergence. Let A={xEQ:lim the

E-0+

equiboundedness of F~ (Ut) implies that ( A ~ = 0; hence, for a. a. x E Q, the
limit points of are in the set ~ a 1, ... , ak ~ . On the other hand,
for a. a. if u~hk (x)~03B1j, we have that (x))~03C6i(03B1j),
cpi (x)) --~_ f (x) = 0; therefore cp~ (Ctj) = 0 and i = j. It follows that uEh con-
vergel pointwise to uo and Proposition (4.1) is proved..

In order to check the equiboundedness-hypothesis of the previous propo-
sition, we recall the following result, which is a straightforward generaliz-
ation of a theorem by Gurtin and Matano (see [GM] and [LM]).

PROPOSITION 4.2. - Suppose W E C 1 (R + ),

(see the introduction). Denote W’ i ( t. i) aW (t) and suppose that for an index
i E ~ l, ..., k ~ the following properties hold:

(1) W~ (0)  W~ (i)~ E R + ,
(ii) lim Wi (i) = + oo .

-> + o0

Then the family of minima ~ is bounded in L°° (S2).

APPENDIX: PROOF OF LEMMA 3.1

For the moment, we ignore part (iii) of the Lemma. Let us recall the
following result by T. Quentin de Gromard [QG]:

THEOREM A . 1. - Let S2 c RN be a bounded and open set, and let E c RN
be a set such that lE E BV (Q). Then there exists a sequence En of sets with
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bounded perimeter such that:
(i) + oo .

(ii) Q ~ aEh is contained in a finite union of C1-hypersurfaces, for every
hEN.

(iii) AE) (’~ Q --~ 0, Eh c E + B (o,1 /h), c + B (o,1 /h).
(iv) If E contains a ball B (x, r), then there exists ro > 0 such that E~

contains B (x, ro) for every h E N. The same holds for 
[(iv) follows from the proof given by T. Quentin de Gromard, even if it

is not explicitly stated.] 
~ 

-

The idea of the proof of Lemma 3 . .1 is as follows: we approximate the
partition S 1, ..., Sk with sets as in Theorem A .1, and then we approximate
these sets with polygonal domains.
More precisely, we begin with the proof of the following result:

PROPOSITION A. 2. - Let S 1, ..., Sk be a partition as in Lemma 3 . 1.

Then there exists a sequence of partitions ( S(, ..., Sk } hEN such that:
(i) Sn is a closed set, and is contained in a finite union of Cl-

hypersurfaces.
(ii) ls~ --~ lsi in BV (Q) with the strong topology as h -~ + oo .
(iii) If Si contains B (x, r), then there exists ro > 0 such that Si contains

B (x, ro) for every h E N.

Proof. - For any fixed i =1, ... , k we pick a sequence Sh as in Theorem
A .1, and we define:

This sequence of partitions verifies (i) and (ii) by virtue of the following
propositon, while (iii) is trivial to prove..

PROPOSITION A. 3. - Let A, B be disjoint sets with bounded perimeter in
Q, and be sequences such that lBk -~ 1B and lAk  lA in

BV (Q) with the strong topology. Then we have:
(i) 
(ii) 1Bh Ah 

- 1B in BV (Q).
To prove this proposition, we need another lemma. We recall the

definition of the (N - I )-dimensional Gross measure. If S, B are borel sets,
we define:

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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where is the Lebesgue measure on the plane IIa = ~ ~ x, a ~ = 0 }
and 1ta denotes the orthogonal projection on Furthermore, define

has density 1 at x ~ and B * _ ~ x E Q : has density zero

at x ~ .

Proof. - This proof has been communicated to me by L. Ambrosio.
The set a* A n Bh* is rectificable and then, by Theorem 3 . 2 . 26 of Federer
[F], we have:

Define:

where freq. means for infinitely many h. Assume that 8(S)=0. Then
(S) = 0 and

the inequality comes from the fact that A (~ B = 0 and a * A c B* U a * B
up to a set of null Gross-measure.

We now prove that 8(S)=0. This is obvious if N =1 because the sets
with bounded perimeter in R are finite unions of pairwise disjoint intervals,
and then the strong convergence in BV(Q) entails that the endpoints of
the intervals definitively coincide. If N > 1 we choose a E SN - 1 and we
write 

By the Vol’pert’s decomposition of sets with bounded perimeter (see
[Vo], th. 1. 6) we obtain that, for almost every x E ITa, the set

is definitively empty. Thus:

As this relation holds for every a E SN-1, we conclude that 8 (S) = o..
The following result is well known (see, for example, Giusti [Gi]).
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PROPOSITION A. 5. - Let A, B sets with bounded perimeter. Then we
have:

Proof of Proposition A. 3. - (i) We first prove that B~ 
- in

BV(Q). It suffices to prove that P~ (Ah n B~) -~ 0. Let G be a borel set;
by using Lemma 2 of [QG] we obtain the following formula (see also
[Vo]):

Then:

_ _ 

_ _" 
.. _ 

-.,

By using again Lemma 2 of [QG], we obtain:

hence

Observing that

we infer by Lemma A. 4 that

and analogously:

Finally, we have by Proposition A. 5
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and also

because of

(ii) It follows from

We have now to construct an approximation of a C1 partition (C1-
regular up to a set with null measure) by polygonal domains. We
have a partition of Q, say Si, ... , Sk, made by sets with boundaries

contained in a finite union of C1-hypersurfaces, and we look for a

sequence {S1, ... , Sk ~h E N of partitions such that the are polygonal
domains and such that the property (iv) of Lemma 3.1 holds. By the
Fleming-Rishel formula, this will be proved if we verify the following
property:

The first step consists in eliminating the singularities of the boundaries of
the S;’s by including them in a family of cubes with little volume and

perimeter, and by adding all these cubes to the set S 1.
Let B be the singular set of the given partition. It is possible to construct,

for every h E N, a finite family of cubes ( Q(, ..., Q~ ch~ ~ such that:

For the sequence of partitions given by the sets 

S2BU Q~; ... ; SkBU QJ, (A. 2) holds. The boundaries of these sets are
piecewise-C1 hypersurfaces, whose singular sets are transverse intersections
of regular surfaces with cubes. We now approximate the portions of the
interfaces not belonging to the cubes by polygons, in such a way that
(A. 2) holds. Let E be one of these hypersurfaces, closed in the open set
Q’ = QBU Qf L is an oriented hypersurface transverse to each one of the

Q;’s. Putting

Vol. 7, n° 2-1990.



88 S. BALDO

we have that, if p is small enough, E gives a partition of SZP in two parts,
each of them belonging to one of the sets Let E be one of these

portions: E is an open set with C 1 boundary in S~p.

LEMMA A. 7. - There exists a sequence Eh, with aE~ a piecewise-linear
hypersurface, such that:

Proof. - Let us call f an extension of to an open neighborhood

such that ~ D~ = 0. This extension is possible because

~03A9’03C1/2~~03A9’ is lipschitz continuous. Lct f~ be a sequence converging to f in
L1(03A9) such that lim 

+ 
! = 1E|= (L). It is not restric-

tive to assume that f~~1E on a neighborhood of in and

that 0~~~ 1 for every x G fi. 
There exists a sequence of piecewise linear function fi - R such that:

and such that gh --_ lE on a neighborhood of 
It follows that:

Let and put: We remark that Eth is a

polygonal domain for almost all t E [o,1 ]. We have:
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Thus:

and so lEth - IE in L~ (Qp/2). By the coarea formula:

By the lower semicontinuity of the total variation:

By the Fatou’s Lemma and (A. 6) we have:

Then, by using (A. 5), we have that for almost all t E [0, 1] ] the following
formula holds:

By using that (aS2’)  + oo, we have that, for almost all t E [o,1],
1 (~Eht ~ aSZ’) = o. Thus, by choosing the appropriate t and passing

to a subsequence in (A. 7), we conclude the proof..
It remains to fulfil the condition (iii) of Lemma 3.1. By repeating the

argument used by Modica [Ml], and by remarking that the property of .

having non-empty interior is preserved by our construction of approximat-
ing partitions, we have only to indicate how to modify the original
partition in such a way that each non-empty set S~ of the partition has
non-empty interior. Take a point S2: the density of
both S 1 and S2 at x is exactly 1/2, and then, if we have that

( for every h E N. Then, for each h E N, there
exists pn such that |B03C1h (x)|=|B03C1h (x)BS 1 ( . We can now divide the ball

(x) into (k -1 ) sectors Bhl with area ( B03C1h ~ Sl I, l~ 1. Since obviously
ph, where the constant K depends only on N, .it follows

that the perimeter of the (nonempty) sets Bh~ tends to zero. For the

following sequence of partitions:
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one has ( Sm ~ _ ~ for each m = 1, ..., k, and for each J c ~ 1, ..., k },

Moreover the sets S~ and S~ have nonempty interior. Repeating the same
construction for the other elements of the partition, the proof is

complete..
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