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ABSTRACT. - In this article we consider the problem

where Q is an annulus and p > 1. We prove there is always a break of
symmetry along the branch of radial solutions if the thickness of Q is

sufficiently small.
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RESUME. - Dans cet article, nous considerons le probleme

ou Q est un anneau et p > 1. Nous montrons qu’il y a toujours une casse
de symetrie dans la branche des solutions radiales, si l’épaisseur de Q est
suffisamment petite.
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1. INTRODUCTION

In this article we consider the parameter dependent problem

where Q c (~n is an annulus and prove that along the branch of radial
solutions (ux, À) of (Px) the symmetry breaks. That is, we show there exists
a critical Ào such that every neighbourhood of (u~o, Ào) contains nonradial
solutions of 

In [1] using variational arguments Brezis and Nirenberg proved that for

/? close to - including the case n + 2 there exists both radial 1 andp 
n-2 

g p 
n - 2 

a a d

nonradial solutions for when ~, is close to zero. Further they also
posed the question whether these nonradial solutions come from a break
of symmetry along the branch of radial solutions of The main result
of this article answers this question partially, in the sense that we show
symmetry always breaks if the annulus is thin. Moreover our arguments

only ask p > 1 (p can be greater than-~2014 ), but how thin the annulus
n-2

should be depends on p. We refer the reader to [4] and to the references
quoted there for other results on symmetry breaking.

2. MAIN RESULT

Before we state and prove the main result we will specify the following.
Throughout this section we shall assume Q= {x E 1  I x ~  1 + E~ and
consider the problem (Px) as posed on this Q. Also we will use a and b in
place of 1 and 1 + E respectively. We will use Co + °‘ (Q) to denote the set
of continuously differentiable functions on Q which vanish on aS2 and
whose first order derivatives are Holder continuous with exponent a. We
will use (Q) to denote the subspace of radial functions. We shall also
use X to denote another closed subspace of Co° °‘ (Q) which we define
below.

x2, ..., ..., -x"_1, 

It is well known (see [5]) that (Px) admits an unique continuous branch
of radial solutions X) in Co~ °‘ (Q) x R and the projection on the ~, axis
is ( - oo , where À1 denotes the first eigenvalue of (-A) on the domain
Q. Moreover the solutions ux are radially nondegenerate if E is small, see
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Theorem 1.7 of [5]. Throughout what follows we shall assume our E is
such that radial nondegeneracy holds.

THEOREM. - Along the branch of radial solutions ~,) the symmetry
breaks at some point (u~o, Xo) with 0  ~,o  if E is small enough.
We break up the proof of this Theorem into several steps.

Step 1. - The Morse-Index of the solution (uo, 0) (i. e. the point on
the branch (ux, À) corresponding to ~, = o) is bigger or equal to (n + 1 ) in
the space Co+°‘ (Q).
Proof of Step 1. - Notice that by the definition of Morse Index it is

enough to produce orthogonal functions which satisfy

to conclude that the Morse Index of uo is greater or equal to (n + 1). It is
easy to see v --_ uo satisfies (1) because uo is a solution of (Po).
Now we construct with w orthogonal to uo and satis-

fying (1).
n

Define w (x) = uo (x) . wo (x) where wo (jc)=03A3 xi. Clearly w (x) E C5’ ex (Q)

and is orthogonal to uo since uo is radial. A simple computation yields

where u0x: = ~u0. Clearly (1) is satisfied by w if Xi the first eigenvalue of~ ~~

( - A) on Q is bigger than 201420142014 as can be seen by the following.

Multiply (2) by w on both sides and integrate keeping in mind Mo is
radial and are orthogonal directions, the integration of terms on right
of (2) yield
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Hence Step 1 follows.

Step 2. - In this step we draw some conclusions based on Step 1. From
Step 1 it follows that as we move along the continuous branch (ux, À) as
À varies over (0, there must be a point Ào such that (u~o, Ào) lies on
the branch and uÀo is a degenerate solution of (P~o), i. e.

has a nontrivial solution v. It is classical that we can write v in the form

where cpo is a constant and for k >-_ l, cpk is an eigenfunction of the
Laplacian on the (n -1 ) sphere corresponding to the k-th nonradial
eigenvalue. Also ak’s are solutions of the equation

where k+k(k+n-2) for k >_- 1. Also from the remark on radial nonde-
generacy made at the beginning of this section ao (r) = 0. We now make
another assertation in Step 3 keeping in mind the arguments above and
also using the same notations.

Step 3. - We claim there exists ~, E (o, which we shall still denote
by Ào (which may be different from Ào of Step 2) such that

has a nontrivial solution and this v has exactly the form

Proof of Step 3. - To prove our assertion we make a careful study of
the set of equations we have in (4). We begin by considering the weighted
eigenvalue problem

where yi (~,) is the first eigenvalue associated with the + ~,). It is
clear y 1 (A) is a continuous function of A as (ux, A) lie on a continuous
branch. Now as along the branch it is clear > 1,
since the operator on the left side of (7) is more positive than (-A).
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Hence it is clear that if we have to meet any situation as described in

Step 2 then yl (~,) must be exactly 1 for some ~,o. This is because for all
k > 1, the operator on the left hand side in (4) is more positive than when
k =1. Hence it is clear that there exists a ~,o such that (5) has a solution v
with

with a 1 (r) > 0 [since it corresponds to first eigenvalue y 1 (~,o)] . We claim
that in this situation, that is when al > 0, all the ak’s --_ 0 for k >__ 2. This
follows from (4) since ak (r) satisfy

with j~ > V k > 1, then ak’s should change sign for all k ?_ 2. But thenStrum’s comparison theorem would force al to change sign. Hence since
al > 0 all ak’s == 0 for k >_ 2 (we have given this argument only because it
is very general, however, in the situation we are in it follows in a straight
forward way since the operator in the left in (8) is more positive for any
k >_ 2 than when k =1 ). This completes the proof of Step 3.

Proof of the Theorem. - Now we restrict our consideration of problem
(Px) to the space X defined at the beginning of this section. Due to this
restriction the n-dimensional degeneracy proved in Step 3 reduces to the
case of an 1-dimensional degeneracy. From all the previous arguments it
now follows that as we move along the branch (ux, ~,) the topological
degree has to change at the point This change in degree leads to
a secondary bifurcation. By the uniqueness of radial solutions which we
have assumed, it now follows that the the new solutions arising from the
secondary bifurcation are nonradial and hence our claim of break of
symmetry.

Remark 1. - In the case when 1   n + 2 a combination of Step 1
n-2 

p

and a result due to H. Hofer [2] leads to the conclusion that the equation
(Po) (i. e. when ~, = o) has atleast one nonradial solution, since the radial
solution cannot be the Mountain Pass Solution, for such a solution must
have Morse Index 1.

Remark 2. - Using completely different arguments Li Yan-Yan has
shown in [3], that the number of solutions of (Po) tends to infinity as the
thickness of the annulus goes to zero. We believe that this increase in the
number of solutions occurs because as the thickness of the annulus goes
to zero the Morse Index of the radial solution of (Po) goes to infinity as
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was pointed out to the author by Prof. A. Bahri (To see this replace the
function wo of Step 1 by the functions cpk referred to in Step 2). We believe
this produces more and more secondary bifurcation points on our branch
(ux, ~,) and the branches due to these secondary bifurcation lead to more
and more solutions. However so far we are not able to prove this. Infact
it seems very hard to use the results of Crandall-Rabinowitz on bifurcation
from simple eigenvalues due to the difficulties involved in producing a
good transvers direction.
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