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ABSTRACT. - The critical exponent for the k-th Hessian operator
(k = 2, ..., n) is determined and the solvability of the associated Dirichlet
problem with sub-critical nonhomogeneous term is discussed.
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RESUME. - On determine l’exposant critique pour les operateurs de
Hess, et l’on etudie le probleme de Dirichlet associe, avec un terme non
homogene sous-critique.

INTRODUCTION

Let Q be a bounded domain in 2. It is well-known that the

Sobolev exponent n + 2 plays a critical role concerning the solvability ofp 
n-2 

p y g y

the Dirichlet problem

in Q, u = 0 on aQ.

Namely, this problem admits no positive solutions in a star-shaped Q

when /? ~ n + 2 and it has a positive solution in any Q when n + 2 > p > 0
n-2 

p y 
n-2
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and p is not equal to one. In a previous work [6] we have studied a
corresponding problem for the Monge-Ampere operator on a convex Q:

We found that in contrast to the semilinear case this problem admits non-
zero convex solutions provided p is positive and is not equal to n. Since
the Laplace operator and the Monge-Ampere operator are respectively
the first and the last Hessian operators, we are led to the question of
determining the "critical exponents" for the remaining Hessian operators.

Let Sk (O2 u), k =1, ..., n, be the k-th Hessian operator, i. e., it is the
k-th elementary symmetric function of the Hessian matrix of u. Consider

In this note we shall establish the following result:

(i) (1) has no negative solution in C 1 (S2) n C4 (Q) when p >_ y (k); (ii) It
admits a negative solution which is radially symmetric and is in C2 (SZ) when
0  p  y (k), p is not equal to k.

The non-existence result actually holds in more general situation. See
Proposition 1 in the next section. Part (ii) of this theorem is contained in
Propositions 2 (0  p  k) and 3 (k  p  y (k)) in Section 2. When p = k
one should study an eigenvalue problem. However, we shall not consider
it here.

NOTATION. - Subscripts like those in ui, uy, F z’ ..., stand for partial
differentiations. Also, summation convention is always in effect.

SECTION 1. NON-EXISTENCE

Consider the following Dirichlet problem
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Many authors have studied the existence of negative solutions for this
problem in the case k =1. Negative solutions are sought because they are
important in many applications. However, when k is greater than one,
negative solutions will be sought not only as an analogue of the semilinear
case but mainly because they are precisely the "admissible ones". When k
is greater than one a Hessian operator is nonlinear and so its type depends
on the Hessian of u. According to Caffarelli-Nirenberg-Spruck [1] a C2-
function u is called admissible (with respect to Sk, k >__ 2) if the eigenvalues
of lie in the connected component rk of the set

~~, _ (~,1, ..., ~,n): The k-th elementary symmetric function of À is positive}
which contains the cone ~~, : ~,i > 0 for all i~. It can be shown that for an
admissible u is elliptic, i. e., 

aSk (V2 u) ~i ~~ > 0, for all ~, I ~ I > 0,
Orij 

and We claim that any solution of (2) which belongs to

C (n) n C2 (Q) is admissible if and only if it is negative. For, at a non-
negative maximum of u, Sk (V2 u) is non-positive. But since f is positive
this is impossible. Conversely, if u is negative, it attains a minimum in Q.
At this minimum the eigenvalues of the Hessian of u lie in rk. Hence by
the continuity of V2 u and the positivity of f u is also admissible.

The equation in (2) has a variational structure. To describe it we
need to express Sk in terms of the Newtonian tensor. Recall that for
k = o, ..., n -1, the k-th Newtonian tensor is given by

Here is the generalised Kronecker delta: It is equal to 1 (resp. -1 )
if ii, ..., ik, i are distinct and is an even (resp. odd) permutation;
Otherwise it is equal to zero. A fundamental property of the Newtonian
tensor is that it is of divergence free, i. e.,

Sk is related to Tk _ 1 via

and

(5) follows from Euler’s identity. For proofs of (3) and (4) see Reilly [5].
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Using (3)-(5) one readily verifies that the equation in (2) is the Euler-
Lagrange equation for the functional

where F (x, z) = f (x, t) dt.
Now, consider a general integrand f7 (x, z, Let u be a C4-

solution of the Euler-Lagrange equation for F. Then for any constant a
the following identity holds:

This identity, which can be verified directly, was first obtained in Pucci-

Serrin [3]. Applying this identity to F =-zSk(rij) + F (x, z), we have, by
A;+ 1

(3)-(5),

Next we formulate the non-existence result. Recall that a bounded
domain Q is called star-shaped if for some xo, ~ x - xo, v ~ >_ 0 on aSZ.
(Here v is the unit outer normal and ( . , . ) is the Euclidean inner

product.)

PROPOSITION l. - Let Q be a star-shaped C2-domain with xo being
the origin. Suppose that f belongs to C (SZ X ( - ~, 0]) ~ C1 (Q X ( - ~, 0)),
positive in Q X (- 0) and equal to zero on Q X ~0}. There are no negative
solutions to (2) which belong to C1 (SZ) (~ C4 (Q) f
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in Q X ( - ~, 0). The same conclusion holds under

if ( x, v ) > 0 on lQ.

Proof - Let u(x)  - E) . By a strong maximum principle
(see Lemma below) 03A9~ has C4-boundary for small s > 0. Choose

a = so that k (a + 2) + a - n = 0 in (6) and then integrate both side
k + I

of (6) over 03A9~. By divergence theorem we have

A repeated application of (3)-(5) gives

and

Consequently,

If u is a negative solution of (2), (V2 u)i J vi v~ > 0 by ellipticity. Hence
the left hand side of the above identity is non-negative. However, this
contradicts with (7). On the other hand, if ( x, v ~ >_ ~ for some positive
8 on an, by (8) and the lemma below the left hand side of the above
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identity is positive. But then this contradicts with (7)’. Proposition 1 is
thus proved.

Proof - Let x E aS2 and let B be a ball which is inscribed inside Q and
touches aS2 at x. For a non-negative radially symmetric function g with
g (I x I) ~ f (x, u (x)) let w be the solution for

w can be solved explicitly in terms of g; see (10) in the next section. By

the maximum principle w ~ M in B. Hence ~u ~v(x)~ ~w ~v(x) > 0. N

SECTION 3. EXISTENCE

Throughout this section Q denotes a ball of radius R centered at the
origin and f (x, z) in (2) is equal to g (r, z), r= x I where

We shall look for radially symmetric solutions for (2). Denote such a
solution by y (r). y satisfies

Here and Ck -1 are combinatorial constants. It is easy to see that

whenever y solves (10), u (x) = y (~ x ~) is a solution for (3).
For a negative radially symmetric u, the functional Jk (u) is equal to

where G (r, z) = t) dt, a = 03C4 k(k+1) Ck - i and T is the volume of the

unit sphere in Rn. It is more convenient to let Jk act on the whole space
rather than on negative functions. To this end we extend g to be an even
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function in z (maintaining the same notation) and consider the functional

LEMMA 1. - Let (i) For 

0  03B4  y (k), there exists a constant C = C (b, k, R, n) such that

for all y E E; (ii) For n >_ k > n , there exists a constant C = C (k, R, n) such
2

that

Proof. - Applying Holder inequality to y (r) = lr y’ (s) ds we haveR

Raising both side to their (8+l)-th power, multiplying by and then

integrading from 0 to R we obtain (i). (ii) can be proved in a similar
way..
Remark. - In fact, a sharper result holds: There exists a constant

C = C (k, n) such that

for all y in E. For a proof see Lin [2].

Vol. 7, n° 2-1990.
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Let Wk be the Banach space obtained by completing E under the norm
R 1/(k+ 1)

( R0 I y’ )1/(k
+ 

, . Using Lemma lone can easily show that the

following lemma holds:

LEMMA 2. - (i) Wk is continuously embedded in
([r, R]) : y (R) = o. ~ _ for r > o; (ii) Wk is compactly embed-

ded in (rn -1 dr) for p  y (k) when k -- ~ and in C ([o, R]) when

2

We also have

LEMMA 3. - Suppose g satisfies

for some p, 0  p  y (k). Then jk belongs to C1 (Wk; R). Moreover,

y ~ R0 G (r, y) is weakly continuous on Wk.

The proof of this lemma is parallel to the proof for the corresponding
result in the semilinear case; See Rabinowitz [4], Appendix B, for details.
Any critical point of jk will be called a generalised solution of (10). In
other words, y is a generalised solution of (10) if and only if

for all cp in Wk. The regularity of such solutions is given in

LEMMA 4. - Under (9) and ( 11 ), any generalised solution of (10) is in

C2 ([0, R]), and solves (10) in classical sense. Moreover, it is negative in

[0, R) unless it vanishes identically.

Proof. - We shall first show that any generalised solution is bounded.

When k is greater than - this follows from Lemma 1. So we assume k is

less than or equal to -.

. Let y be a generalised solution. For s >__ 1 and N ~ 1 we define a

. 

function C in C1 [1, oo ) by for z E [ 1, N] and taking it

to be linear for z ~ N. Select cp = y++11 |03A6’ (t) IH 1 dt where y + = max (y, 0)
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as a test function. Substituting cp into (12) we have

after using cp __ I d~’ (y + + 1 ) (k + 1 y + . It follows from Lemma 1, Holder

inequality and (11) that for a fixed ~3, max (p, k)  y (k),

where q = p if p > k and q = k if p _ k and C is a constant depending on
Ilyllwk’ Letting N-+oo, we see that implies the

stronger inclusion y + E LS « + l (r’~ -1 dr). Also, we have

where K = 1 T ~’ > 1. Setting s = Km, m >_ 1, an iteration yields~ -~- n 
-

Similarly one can show that the above estimate holds for y - - - min (y, 0)
in place of y + . Thus y is bounded.

RTake r ~ (t) dt where ~ is smooth as a test function in (12). After

an integration by parts, we have

Henceforth

Since g is non-negative, y is increasing (hence is negative) unless it vanishes
identically. From this the desired conclusion of Lemma 4 can be
drawn..

Now we can state the existence results.

PROPOSITION 2. - Under (9) and

uniformly on [0, R], (2) admits a negative radially symmetric solution in
C 
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This solution is obtained by minimizing j~ over W~. (1 3) ensures that j~
is bounded from below and is negative somewhere. It follows from the
direct method, which works in view of Lemma 3, that a non-zero absolute
minimum exists.

PROPOSITION 3. - In addition to (9) and (11), suppose g satisfies
lim g(r,z) 

= 0 unformly in [0, R], and,further, there exist 0 e (0, 1) and a
z - o z

positive constant M such that

Then (2) admits a negative radially symmetric solution which belongs to

C2 (n).

(14) implies that jk fulfills the Palais-Smale condition. Proposition 3
follows from the mountain pass lemma. For details see the corresponding
proof for the semilinear case in [4], Chapter 2.
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