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ABSTRACT. – In this paper, we are interested in American option prices in the Black–Scholes
model. For a large class of payoffs, we show that in the region where the European price in-
creases with the time to maturity, this price is equal to the American price of another claim.
We give examples in which we explicit the corresponding claims. The characterization of the
American claims obtained in this way remains an open question.
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RÉSUMÉ. – Ce travail met en évidence un lien entre prix d’options européennes et prix
d’options américaines dans le modèle de Black–Scholes. Nous montrons que pour une large
classe de fonctions de payoffϕ, dans la zone où il augmente avec la maturité, le prix de
l’option européenne est égal au prix américain correspondant à une fonction de payoff modifiée
ϕ̂. Nous donnons des exemples où il est possible d’expliciterϕ̂. Mais la caractérisation de
l’image deϕ→ ϕ̂ reste un problème ouvert.

Introduction

Consider the classical Black–Scholes model:

dXx
t = ρXx

t dt + σXx
t dBt ,

Xx
0 = x > 0,

ρ ∈R, σ > 0,
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whereB is a standard Brownian motion,ρ the instantaneous interest rate andσ the
volatility of X and denote by

Af (x)= σ
2x2

2
f ′′(x)+ ρxf ′(x)− ρf (x) (0.1)

the Black–Scholes infinitesimal generator. Given a continuous functionψ :R∗+ → R+
satisfying some growth assumptions, the price of the so-called American option with
payoffψ , maturityt > 0 and spotx is given by the expression

vamψ (t, x)= sup
τ∈T (0,t )

E
[
e−ρτψ

(
Xx
τ

)]
, (0.2)

where τ runs across the set of stopping times of the Brownian filtration such that
τ 6 t almost surely. Except for some very particular class of payoffsψ (e.g. payoffs
satisfying∀x > 0, Aψ(x) > 0 or ∀x > 0, Aψ(x) 6 0), in general, there is no closed-
form expressions forvamψ (t, x). The computation ofvamψ (t, x) usually relies either on
finite-difference type methods or Markov-chain approximation methods to solve the
corresponding optimal stopping problem in a discrete time-space framework. There is
also a huge literature on special approximation methods designed for some particular
payoffs, among which the case of the Put option, given byψ(x) = (K − x)+ whereK
is some positive constant (the strike of the option) has received much attention.

The purpose of this paper is to exhibit a new class of payoffsψ for which a
closed-form expression forvamψ (t, x) is available. The idea originates from the analytic
properties of the functionvamψ : this function is greater thanψ by (0.2) and typically
the space]0,∞[×R∗+ splits into two regions, the so-called Exercise region where by
definition vamψ = ψ and its complement the Continuation region wherevamψ > ψ . It is
known thatvamψ solves the evolution equation associated with (0.1)

∂tv
am
ψ =Avamψ

in the Continuation region (at least in the distribution sense). Moreover, as from (0.2)
t 7→ vamψ (t, x) is non-decreasing,∂tvamψ > 0 holds. In fact, sincevamψ is a continuous
function, it may be remarked that the knowledge ofvamψ in the Continuation region is
enough to getvamψ everywhere.

This leads to the natural idea to build American prices (i.e. functionsvamψ for someψ)
by picking up the classical solutionvϕ(t, x) of the evolution equation:{∀t, x > 0, ∂tvϕ(t, x)=Avϕ(t, x),

∀x > 0, vϕ(0, x)= ϕ(x),
in the region where it increases with time. From a financial point of view,vϕ(t, x)

is the Black–Scholes price of the European option with payoffϕ and maturityt i.e.
vϕ(t, x) = E[e−ρtϕ(Xx

t )]. This embedding idea has been worked out in [2] in case
ρ = 0. A similar approach has also been developped in the different context of the free
boundary arising in a two-phases problem (see [1]). Trying to generalize things to the
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caseρ 6= 0, we ran across a probabilistic proof which allows a very compact statement
of the embedding result.

The first section of the paper is devoted to some basic properties of European
and American prices within the Black–Scholes model. Next we state and prove our
embedding theorem (Section 2). Then we give some examples (Section 3). Lastly, we
discuss some properties of the map which takes a payoffϕ to the payoffϕ̂ the American
price of which is embedded in its European price (Section 4). The characterization of
the payoffsϕ̂ obtained in this way remains an open question.

1. European and American prices in the Black–Scholes model

In this section we recall the very few properties of European and American Black–
Scholes prices we shall need in the next section.

Let α = 2ρ/σ 2 . The invariant functions of the semigroup associated with (0.1) are
easily seen to be the vector space generated byx andx−α. We shall consider payoffsϕ
such that

x ∈ R∗+ 7→ ϕ(x) ∈R+ is continuous and sup
x>0

ϕ(x)

x + x−α <∞ (H0)

The growth assumption is only there to grant the existence of the various expectations
involved. It seems that the continuity assumption could be removed, but the connection
with American options would be more intricate, so we keep this hypothesis.

PROPOSITION 1 ([3]). – Under(H0) the price of the European option with maturity
t > 0 and payoffϕ is given by

vϕ(t, x)= E[e−ρtϕ(Xx
t )
]
.

In particular vϕ(0, x)= ϕ(x).
The functionvϕ is continuous from[0,∞[×R∗+ intoR, and for anyt > 0, the process

(e−ρuvϕ(t − u,Xx
u))06u6t is a continuous square-integrable martingale.

Last, forφ(y)= ϕ(ey)/(ey + e−αy),

vϕ(t, x)− xE
(
φ

(
σBt +

(
ρ + σ

2

2

)
t

))
− x−αE

(
φ

(
σBt −

(
ρ + σ

2

2

)
t

))
converges to0 as t→+∞ locally uniformly inx > 0.

Proof. –We only prove the last assertion which is quite unusual. By definition ofφ,

vϕ(t, x)=E
(

e−ρtXx
t φ

(
ln(x)+ σBt +

(
ρ − σ

2

2

)
t

))
+E

(
e−ρt (Xx

t )
−αφ

(
ln(x)+ σBt +

(
ρ − σ

2

2

)
t

))
.

Since e−ρtXx
t = xeσBt−

σ2
2 t and e−ρt (Xx

t )
−α = x−αe−

2ρ
σ Bt− 2ρ2

σ2 t , by Girsanov theorem, we
deduce that
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vϕ(t, x)= xE
(
φ

(
ln(x)+ σBt +

(
ρ + σ

2

2

)
t

))
+ x−αE

(
φ

(
ln(x)+ σBt −

(
ρ + σ

2

2

)
t

))
.

Now, ∣∣∣∣E(φ( ln(x)+ σBt +
(
ρ + σ

2

2

)
t

))
−E

(
φ

(
σBt +

(
ρ + σ

2

2

)
t

))∣∣∣∣
= 1√

2π

∣∣∣∣ ∫
R

φ

(
σ
√
ty +

(
ρ + σ

2

2

)
t

)(
e−

(y−ln(x)/(σ
√
t))2

2 − e−
y2

2

)
dy

∣∣∣∣
6 1√

2π
sup
z>0

ϕ(z)

z+ z−α
∫
R

∣∣∣e− (y−ln(x)/(σ
√
t))2

2 − e−
y2

2

∣∣∣dy
6
(
e

ln2(x)
2σ2t − 1

)
sup
z>0

ϕ(z)

z+ z−α
converges to 0 ast→+∞ locally uniformly forx > 0.

We deal withE(φ(ln(x)+ σBt − (ρ + σ 2/2)t)) in the same way to conclude.2
Let us now turn to American options:

PROPOSITION 2 ([3]). – If ψ satisfies(H0), the price of the American option with
maturity t > 0 and payoffψ is given by

vamψ (t, x)= sup
τ∈T (0,t )

E
[
e−ρτψ(Xx

τ )
]
,

whereτ runs across the set of stopping times of the Brownian filtration such thatτ 6 t
almost surely. In particularvamψ (0, x)=ψ(x).

The functionvamψ is continuous from[0,∞[×R∗+ intoR, and for anyx ∈R∗+ the map
t 7→ vamψ (t, x) is non-decreasing.

2. Embedding American prices in European prices

Our main result relates the pricevϕ(t, x) of the European option with payoffϕ to the
pricevam

ϕ̂
(t, x) of the American option with payoff̂ϕ(x)= inf t>0vϕ(t, x):

THEOREM 3. – Under(H0) let

ϕ̂(x)= inf
t>0
vϕ(t, x).

Then

∀(t, x) ∈ [0,+∞)×R∗+, sup
τ∈T (0,t )

E
[
e−ρτ ϕ̂(Xx

τ )
]
6 vϕ(t, x), (2.1)

where the supremum is taken over all the stopping timesτ of the filtration of the
Brownian motion smaller thant .
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Moreover, if there exists a continuous functiont̂ :R∗+ → [0,+∞] such that

∀x > 0, inf
t>0
vϕ(t, x)= vϕ( t̂ (x), x)

(wherevϕ(∞, x) is defined aslim inf t→+∞ vϕ(t, x)) then the converse inequality holds
for t > t̂ (x) and

∀(t, x) ∈ [0,+∞)×R∗+, sup
τ∈T (0,t )

E
[
e−ρτ ϕ̂(Xx

τ )
]= vϕ(t ∨ t̂ (x), x). (2.2)

If, lastly, eithert̂ (x0) <+∞ for somex0 > 0, or

∃C > 0, ∀x, y > 0,
∣∣ϕ(x)− ϕ(y)∣∣6 C(|x − y| + |x−α − y−α |)

or the function ϕ(x)

x+x−α admits limits both forx→ 0 and x→+∞, then the function̂ϕ
satisfies(H0) and

∀(t, x) ∈ [0,+∞)×R∗+, vam
ϕ̂
(t, x)= vϕ(t ∨ t̂ (x), x). (2.3)

Proof. –Let (t, x) ∈ R+ × R∗+. According to Proposition 1, the process(e−ρuvϕ(t −
u,Xx

u))u∈[0,t ] is a martingale. Ifτ 6 t is a stopping time, by Doob optional sampling
theorem

vϕ(t, x)= E[e−ρτ vϕ(t − τ,Xx
τ

)]
> E

[
e−ρτ ϕ̂(Xx

τ )
]
.

Sinceτ is arbitrary, we deduce that (2.1) holds.
To prove (2.2), we suppose the existence oft̂ :R∗+ → [0,+∞] continuous such that

∀x > 0, ϕ̂(x)= vϕ(t̂ (x), x)
and we make a distinction between the two following situations:
• Casêt(x)=+∞: sinces→ supτ∈T (0,s)E[e−ρτ ϕ̂(Xx

τ )] is increasing, foru> t

ϕ̂(x)6 sup
τ∈T (0,t )

E
[
e−ρτ ϕ̂(Xx

τ )
]
6 sup

τ∈T (0,u)
E
[
e−ρτ ϕ̂(Xx

τ )
]
6 vϕ(u, x) by (2.1).

Lettingu→+∞, we deduce that

∀t > 0, sup
τ∈T (0,t )

E
[
e−ρτ ϕ̂(Xx

τ )
]= ϕ̂(x)= vϕ(∞, x)= vϕ(t ∨ t̂ (x), x).

• Casêt(x) <+∞: let t > t̂ (x) andτ0= inf{u: t−u− t̂ (Xx
u)6 0}. Sincet̂ (Xx

t )> 0,
the stopping timeτ0 is smaller thant . By continuity of u→ t − u − t̂ (Xx

u),
t − τ0= t̂ (Xx

τ0
). Hence

vϕ(t, x)=E[e−ρτ0vϕ(t − τ0,X
x
τ0

)]= E[e−ρτ0vϕ(t̂ (Xx
τ0
),Xx

τ0

)]
=E[e−ρτ0ϕ̂(Xx

τ0
)
]
6 sup

τ∈T (0,t )
E
[
e−ρτ ϕ̂(Xx

τ )
]
.
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The converse inequality (2.1) is already proved. Hence∀t > t̂ (x), supτ∈T (0,t )
E[e−ρτ ϕ̂(Xx

τ )] = vϕ(t, x) andτ0 is an optimal stopping time. Sincet→ vam
ϕ̂
(t, x)

is increasing, fort 6 t̂ (x),

ϕ̂(x)6 sup
τ∈T (0,t )

E
[
e−ρτ ϕ̂(Xx

τ )
]
6 sup

τ∈T (0,̂t(x))
E
[
e−ρτ ϕ̂(Xx

τ )
]= ϕ̂(x),

which concludes the proof of (2.2).
If we check thatϕ̂ is continuous under the various assumptions made in the last

assertion of the theorem then (2.3) follows immediately sincevam
ϕ̂
(t, x) = supτ∈T (0,t )

E[e−ρτ ϕ̂(Xx
τ )].• If t̂ (x0) <+∞ for somex0 > 0 then forx in a neighbourhood ofx0, t̂ (x) <+∞

and sincet→ supτ∈T (0,t )E[e−ρτ ϕ̂(Xx
τ )] is increasing, by (2.2)vϕ(t, x) has a limit

for t →+∞. By the last assertion of Proposition 1, we deduce that forφ(y) =
ϕ(ey)/(ey +e−αy), E(φ(σBt + (ρ+ σ 2/2)t)) andE(φ(σBt − (ρ+ σ 2/2)t)) admit
limits as t → +∞. We denote the limits bya and b. Proposition 1 then yields
that vϕ(t, x) converges to the invariant functionax + bx−α as t →+∞ locally
uniformly for x > 0. The continuity of̂ϕ follows easily.
• If ϕ(x)/(x + x−α) admits limits forx→ 0 andx→+∞ thenφ(y) admits limits

for y → −∞ and y → +∞. We deduce thatE(φ(σBt + (ρ + σ 2/2)t)) and
E(φ(σBt − (ρ + σ 2/2)t)) admit limits ast →+∞ and we conclude like in the
previous case.
• If ∀x, y > 0, |ϕ(x)− ϕ(y)|6 C(|x − y| + |x−α − y−α |), then∀t > 0,∣∣vϕ(t, x)− vϕ(t, y)∣∣6E[e−ρt ∣∣ϕ(Xx

t )− ϕ(Xy
t )
∣∣]

6C
(|x − y|E[e−ρtX1

t

]+ ∣∣x−α − y−α∣∣E[e−ρt (X1
t )
−α])

6C
(|x − y| + ∣∣x−α − y−α∣∣).

Hence the functionsx→ vϕ(t, x) indexed byt > 0 are equicontinuous, which ensures
the continuity ofx→ inf t>0vϕ(t, x)= ϕ̂(x). 2

Remark4. – The continuity of the argument of the infimum is granted in the following
uniqueness situation: suppose that∀x > 0,∃!t̂ (x) 6 T (x), ϕ̂(x) = vϕ( t̂(x), x) where
T : R∗+ → R+ is continuous. Then by the continuity ofT and vϕ , it is easy to
see thatϕ̂(x) = inf t∈[0,T (x)] vϕ(t, x) is continuous. Moreover, sincêt(x) = inf{t >
0: ϕ̂(x) = vϕ(t, x)} (respectivelyt̂ (x) = sup{t 6 T (x): ϕ̂(x) = vϕ(t, x)}), t̂ is lower
semi-continuous (respectively upper semi-continuous) i.e.t̂ is continuous and (2.3)
holds.

In the above theorem it may happen that the functionϕ̂ is nil: in case limx→0
ϕ(x)

x+x−α =
limx→+∞ ϕ(x)

x+x−α = 0, we easily check that

∀x > 0, lim
t→+∞vϕ(t, x)= 0.

In such a situation, the following localized version of our main result is far more
interesting than Theorem 3. It is proved by the same arguments, after noticing that the
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continuity of(t, x) ∈ [0,+∞)×R∗+ → vϕ(t, x) implies the continuity ofx→ ϕ̂T (x)=
inf06t6T vϕ(t, x) whereT > 0.

THEOREM 5. – LetT > 0. The function̂ϕT (x)= inf06t6T vϕ(t, x) satisfies(H0) and

∀(t, x) ∈ [0, T ] ×R∗+, vam
ϕ̂
T (t, x)6 vϕ(t, x).

Moreover, if there exists a continuous functiont̂ :R∗+ → [0, T ] such that

∀x > 0, inf
06t6T

vϕ(t, x)= vϕ(t̂ (x), x),
then

∀(t, x) ∈ [0, T ] ×R∗+, vam
ϕ̂
T (t, x)= vϕ(t ∨ t̂ (x), x).

Remark6. – The only feature of the Black–Scholes model which is required in the
above results is time-homogeneity. In fact, Propositions 1 and 2 and Theorems 3 and 5
can be adapted to the so-called generalized Black–Scholes model:

Xx
t = x exp

(
σBt +

(
ρ − δ− σ

2

2

)
t

)
,

vϕ(t, x)= E[e−ρtϕ(Xx
t )
]

and

vamψ (t, x)= sup
τ∈T (0,t )

E
[
e−ρτψ(Xx

τ )
]
,

or to the more general time-homogeneous model:

Xx
0 = x, dXx

t =Xx
t

(
σ (Xx

t ) dBt +
(
ρ(Xx

t )− δ(Xx
t )
)
dt
)

vϕ(t, x)= E
[
e−
∫ t

0
ρ(Xxs ) dsϕ(Xx

t )
]

and

vamψ (t, x)= sup
τ∈T (0,t )

E
[
e−
∫ τ

0
ρ(Xxs ) dsψ(Xx

τ )
]

and also to the multidimensional versions of these models.

Of course it would be of great interest to give conditions onϕ which ensure the
existence of a continuous curve in the argument of the infimum. One way is to perform
explicit computations, since the Black–Scholes semigroup is explicit. Nevertheless this
is not very illuminating. We ran across the following statement, for the local embedding
result, which is maybe the simplest in this direction:

PROPOSITION 7. –Letϕ be aC4 function which satisfies(H0) and such that for some
xc ∈ R∗+,

(i) Aϕ(xc)= 0 and either∀x > 0, (x − xc)Aϕ(x)> 0
or ∀x > 0, (x − xc)Aϕ(x)6 0.

(ii) A2ϕ(xc) > 0 and∂xAϕ(xc) 6= 0.
Then there exists a constantT > 0 such that the assumptions of Theorem5 are satisfied.
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Proof. –Sinceϕ is C4, the functionvϕ(t, x) belongs toC2,4(R+ × R∗+) (C2 in t ,
C4 in x) and satisfies the Black–Scholes partial differential equation∂tvϕ = Avϕ for
t > 0 and not onlyt > 0. Consider the equation∂tvϕ(t, x) = 0 in a neighbourhood
of (0, xc) in {(t, x), t > 0}. By derivation of the Black–Scholes evolution equation,
∂2
txvϕ(0, xc)= ∂xAϕ(xc) 6= 0. Hence, by the implicit functions theorem, there is for some
ε > 0 a curvex̂:

x̂ : [0, ε]→R∗+
continuous on[0, ε], with x̂(0)= xc, such that∂tvϕ(t, x̂(t))= 0, andC1 on ]0, ε[ with

∂2
t2vϕ

(
t, x̂(t)

)+ ∂2
txvϕ

(
t, x̂(t)

)
x̂′(t)= 0.

Moreover by takingε small enough we can assume thatx̂′(t) does not vanish and keeps
the same sign aŝx′(0+)=− A2ϕ(xc)

∂xAϕ(xc) . We deduce that there exists a continuous function

t̂ : [xc, x̂(ε)]→ [0, ε] such that̂x( t̂(x))= x.
Assumex̂′(0+) > 0. Then the function̂t is increasing. Moreover,∂xAϕ(x) < 0 which

ensures∀x < xc,Aϕ(x)> 0 and∀x > xc,Aϕ(x)6 0. We setT = ε and extend̂t toR∗+
by settingt̂ (x) = T for x > xc + ε and t̂ (x) = 0 for x < xc. The obtained function is
continuous and the whole point is to show that for everyx, the infimum oft 7→ vϕ(t, x)

on [0, T ] is reached at̂t(x). This amounts to show that∂tvϕ(t, x) = Avϕ(t, x) is non-
positive for (t, x) above x̂ (i.e. for t 6 T and x > x̂(t)) and non-negative below. If
(Pt)t>0 denotes the semigroup associated with (0.1),

Avϕ(t, x)=APtϕ(x)= PtAϕ(x).
Let (t, x) belong to the above (respectively below) region. By the optimal stop-
ping theorem,Avϕ(t, x) is equal to the expectation of the value of the martingale
(e−ρuPt−uAϕ(Xx

u))06u6t stopped at the border of the above (respectively below) re-
gion {(u, x̂(u)), u ∈ [0, ε]} ∪ {(0, x), x > xc} (respectively {(u, x̂(u)), u ∈ [0, ε]} ∪
{(0, x), x 6 xc}) which is non-positive (respectively non-negative) since∀t ∈ ]0, ε],
PuAϕ(x̂(u))= ∂uvϕ(u, x̂(u))= 0 and ∀x > xc,Aϕ(x)6 0 (respectively∀x > xc,Aϕ(x)
> 0).

The casêx′(0+) < 0 is handled in the same way.2
Example8. – As an application, consider the family of payoffs

ϕa,b(x)= x−α + xa − xb,
where 1> a > b > −α. Then forx > 1, xa > xb, for x < 1, x−α > xb so thatϕa,b is
non-negative. Moreover

lim
x→0

ϕa,b(x)

x + x−α = 1, lim
x→+∞

ϕa,b(x)

x + x−α = 0

andϕa,b satisfies(H0). Let λ(y)= (σ2

2 y + ρ)(y − 1). Then

Aϕa,b(x)= λ(a)xa − λ(b)xb,
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which gives, sinceλ(a) < 0 andλ(b) < 0, Aϕa,b(x) < 0 for x > xc andAϕa,b(x) > 0
for x < xc with λ(a)xac = λ(b)xbc . Moreover

A2ϕa,b(xc)= λ(a)2xac − λ(b)2xbc =
(
λ(a)− λ(b))λ(b)xbc

andA2ϕa,b(xc) > 0 as soon asλ(b) > λ(a). Lastly,

∂xAϕa,b(xc)= λ(a)axa−1
c − λ(b)bxb−1

c =
(
a

xc
− b

xc

)
λ(a)xac 6= 0.

Of course, in this example, sincevϕ(t, x)= x−α + xaetλ(a)− xbetλ(b), everything can
be computed explicitely and it is even possible to check the hypotheses of the global
embedding result: (

x ∨ xc
xc

)a−b
= êt (x)(λ(b)−λ(a))

and

ϕ̂a,b(x)= x−α + xa
(
x ∨ xc
xc

) λ(a)(a−b)
λ(b)−λ(a) − xb

(
x ∨ xc
xc

) λ(b)(a−b)
λ(b)−λ(a)

.

Similarly the hypothesis of Proposition 7 are satisfied by the payoffx + xb − xa where
1> a > b >−α in caseλ(a) > λ(b).

In the global case, we could not find any simple condition onϕ ensuring the existence
of a continuous curve in the argument of inft>0vϕ(t, x). Nevertheless, it is worth
mentioning the following interesting class of European payoffs: ifϕ is a non-negative
function equal to an invariant functionax + bx−α with a, b > 0, a + b > 0, less a non-
negative functionφ satisfying limx→0

φ(x)

x+x−α = limx→+∞ φ(x)

x+x−α = 0, then

∀x > 0, ∀t > 0, vϕ(t, x)6 ax + bx−α and

lim
t→+∞vϕ(t, x)= ax + bx

−α,

which implies that ϕ̂(x) = inf t>0vϕ(t, x) is not trivial and that∀x ∈ R,∃t̂ (x) <
+∞, ϕ̂(x) = vϕ( t̂(x), x). The only assumption missing to apply Theorem 3 is the
continuity of t̂ .

The next section is dedicated to a family of payoffsϕ included in the above class.
In these examples, we explicit some American prices with a non-trivial Exercise region
thanks to Theorem 3. We also check that the above mentioned continuity oft̂ is not
always satisfied.

3. Case study:α >−1 andϕ(x)= x(1{x<K1} + 1{x>K2})

To be able to compare the invariant functionsx andx−α , we need to compare−α and
1. We choose the caseα > −1 which is the more interesting from a financial point of
view sinceρ > 0⇔ α > 0. The payoffϕ is equal to the invariant functionx less the
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functionφ(x)= x1{K16x6K2}. Since

∀x > 0, ∀t > 0, 0< vϕ(t, x) < x and lim
t→+∞vϕ(t, x)= x

the functiont→ vϕ(t, x) is likely to be increasing forK1< x <K2 and decreasing then
increasing otherwise. This remark together with the easiness of computations motivate
the choice of this example. The functionϕ satisfies the growth assumption in (H0) but
is not continuous. Therefore, even if we make the computations forϕ, we shall after all
apply our results to a suitable regularization ofϕ.

3.1. The caseK1= 0

To simplify notations, we replaceK2 by K and writeϕ(x) = x1{x>K}. This payoff
corresponds to the sum of one Call andK Digit options with common strikeK . Its
simplicity allows to compute explicitelŷϕ and t̂ .

PROPOSITION 9. –Letϕ(x)= x1{x>K}. Then

vϕ(t, x)= xN(d1(t, x)
)
,

where

d1(t, x)= ln( x
K
)+ (ρ + σ2

2 )t

σ
√
t

and N(d) = ∫ d−∞ e−
y2

2
dy√
2π

is the cumulative distribution function of the normal law.
Moreover,

ϕ̂(x)= x1{x>K}N
(

2

σ

√(
ρ + σ

2

2

)
ln
(
x

K

))
= vϕ(t̂ (x), x)

and

t̂ (x)= ln(x/K)1{x>K}
ρ + σ2

2

,

and ∀x > 0, t → vϕ(t, x) is strictly decreasing on[0, t̂ (x)] and strictly increasing on
[t̂ (x),+∞).

Proof. –Using Girsanov theorem, we get

vϕ(t, x)=E
[
xeσBt−

σ2
2 t1{xeσBt+(ρ−σ2/2)t>K}

]
= xP (xeσBt+(ρ+

σ2
2 )t >K

)= xN(d1(t, x)
)
.

By the chain rule,∂tvϕ(t, x)= xN ′(d1(t, x))∂td1(t, x). Since∀x, t > 0, xN ′(d1(t, x)) >

0 and

∂td1(t, x)= (ρ +
σ2

2 )t − ln( x
K
)

2σ t3/2
,
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we obtain that

∀x > 0,
{∀t ∈]0, t̂ (x)[, ∂tvϕ(t, x) < 0,
∀t > t̂(x), ∂tvϕ(t, x) > 0.

Hence inft>0vϕ(t, x)= vϕ( t̂(x), x) and the explicit expression of this function is easily
computed. 2

Let us now regularize things in order to apply our theorem. Letu > 0. The function
x → vϕ(u, x) is continuous. Let(Pt )t>0 denote the semigroup associated with (0.1).
By the semigroup property, the price of the European option with payoffvϕ(u, x) is
Pt(Puϕ) = Pt+uϕ. If we set ϕ̂u = inf t>0Pt(Puϕ), then by the previous proposition,
ϕ̂u(x) = vϕ(u ∨ t̂ (x), x) = P0∨(̂t(x)−u)(Puϕ)(x). Since t̂ is a continuous function with
values in[0,+∞), so is t̂u(x) = 0∨ ( t̂(x) − u). Applying Theorem 3, we obtain the
price of the American option with payoff̂ϕu:

COROLLARY 10. –Letu > 0. The price of the American option with payoffϕ̂u(x)=
vϕ(u∨ t̂ (x), x) is

vam
ϕ̂
u

(t, x)= vϕ((t + u)∨ t̂ (x), x)
= x

(
N

(
2

σ

√√√√(ρ + σ 2

2

)
ln
(
x

K

))
1{t+u6ln(x/K)/(ρ+σ2/2)}

+N
(

ln( x
K
)+ (ρ + σ2

2 )(t + u)
σ
√
t + u

)
1{t+u>ln(x/K)/(ρ+σ2/2)}

)
and the Exercise region is given by{(t, x): t + u6 ln(x/K)/(ρ + σ 2/2)}.

Remark11. – Although the payoffϕ̂u has no financial meaning, this example
provides a very interesting benchmark for numerical procedures devoted to American
options since the price and the Exercise boundary are explicit. Let us also notice that this
is a two-parameter (K andu) family of closed-formula. The payoff is of course obtained
by settingt to zero invam

ϕ̂
u

(t, x).

3.2. The caseK1> 0

The main purpose of this subsection is to design an example where there is
no continuous curve in the argument of the infimum (Proposition 13). By a slight
modification of the computations made in the proof of Proposition 9, we get

vϕ(t, x)= x(N(−d1(t, x)
)+N(d2

(
t, x)

))
,

where fori = 1,2 di(t, x)=
ln( x

Ki
)+ (ρ + σ2

2 )t

σ
√
t

.

It is not possible to computêϕ explicitely but using the implicit functions theorem, we
can study the sign of∂tvϕ(t, x) to obtain:

LEMMA 12. –There exist two differentiable functionst ∈ R∗+ → ξ1(t) < ξ2(t)

satisfying
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(1) limt→0 ξi(t)=Ki (i = 1,2),
(2) ∀t > 0, ξ ′2(t) > 0 and ∃(β, T ), 0 < β < T 6 (1+ ln

√
K2/K1)/(2ρ + σ 2),

∀t < β, ξ ′1(t) > 0 and∀t > T , ξ ′1(t) < 0,
(3) ∀t > 0,

ξ2(t) > K2e(ρ+
σ2
2 )t and ξ1(t) < K1e(ρ+

σ2
2 )t ∧√K1K2e−(ρ+

σ2
2 )t

and such that

∀t > 0, ∀x ∈]ξ1(t), ξ2(t)[, ∂tvϕ(t, x) > 0 and

∀x /∈ [ξ1(t), ξ2(t)
]
, ∂tvϕ(t, x) < 0.

Proof. –An easy computation yields that∂tvϕ(t, x) is equal to the product of a strictly
positive function withf (t, lnx) where

f (t, y)= (y − a1)e
b1y+c1 + (a2− y)eb2y+c2 where fori = 1,2,

ai(t)= lnKi +
(
ρ + σ

2

2

)
t, bi(t)= lnKi

σ 2t
,

ci(t)=
(
ρ

σ 2
+ 1

2

)
lnKi − ln2Ki

2σ 2t
.

Sincea1< a2, f (t, a2)= (a2−a1)eb1a2+c1 > 0. Hence the functiony→ f (t, y) vanishes
at the same points as

y→ g(t, y)= e(b2−b1)y+(c2−c1) − y − a1

y − a2
.

As a1 < a2 andb1 < b2, the functiony→ g(t, y) is strictly increasing from−1 to+∞
on ] −∞, a2[ and from−∞ to +∞ on ]a2,+∞[, so it vanishes exactly twice. Let
y1< a2< y2 denote the corresponding points. Since e(b2−b1)y1+(c2−c1) > 0 andy1−a1

y1−a2
< 1,

we obtain respectivelyy1 < a1 and (b2 − b1)y1 < c1 − c2. We combine these upper-
bounds to get

y1(t) < a1(t)∧
(

ln
√
K1K2−

(
ρ + σ

2

2

)
t

)
. (3.1)

We deduce thatx→ ∂tvϕ(t, x) vanishes exactly twice, at the pointsξ1(t) = ey1(t) and
ξ2(t)= ey2(t) which satisfy statement (3). Asf (t, a2) > 0, ∂tvϕ(t, x) is strictly positive
for x ∈ (ξ1(t), ξ2(t)). Moreover asb1 < b2, f (t, y) < 0 for |y| large and∂tvϕ(t, x) is
strictly negative for 0< x < ξ1(t) and forx > ξ2(t).

Let us study more precisely the functionsy1(t) and y2(t). Since ∀t > 0,∀y 6=
a2(t), ∂yg(t, y) > 0, by the implicit function theorem, fori = 1,2, yi(t) is continuously
differentiable andy′i (t) has the same sign as−∂tg(t, yi(t)). Expliciting the dependence
of g on the time variable, we get

g(t, y)= exp
(

ln(K2/K1)

σ 2t

(
y +

(
ρ + σ

2

2

)
t − ln

√
K1K2

))
− 1
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+ ln(K1/K2)

y − ln(K2)− (ρ + σ2

2 )t
,

∂tg(t, y)= ln(K1/K2)

σ 2t2

(
y − ln

√
K1K2

)
exp
(

ln(K2/K1)

σ 2t

(
y +

(
ρ + σ

2

2

)
t

− ln
√
K1K2

))
+ (ρ + σ2

2 ) ln(K1/K2)

(y − lnK2− (ρ + σ2

2 )t)
2
.

Sincey2(t) > a2(t) > ln
√
K1K2, ∂tg(t, y2(t)) is strictly negative and∀t > 0, y′2(t) > 0.

Moreover, whent → 0 the first term ing(t, y2(t)) has a limit equal to+∞ and the
equationg(t, y2(t)) = 0 implies that the second term goes also to∞ which gives
lim t→0y2(t)= lnK2.

By (3.1), y1(t) < a1(t) = lnK1 + (ρ + σ 2/2)t . Hence whent → 0 the first
term in g(t, y1(t)) has a limit equal to 0. By considering the other terms we
deduce that limt→0y1(t) = lnK1. Hence the first term in∂tg(t, y1(t)) goes to 0 and
lim t→0 ∂tg(t, y1(t)) < 0. Therefore∃β > 0, ∀t ∈]0, β[, y′1(t) > 0.

Using the equalityg(t, y1(t)) = 0 to replace the exponential in∂tg(t, y1(t)) and
multiplying by (y1(t)− lnK2− (ρ + σ 2/2)t)2/ ln(K2/K1), we obtain that∂tg(t, y1(t))

has the same sign as

−1

σ 2t2

(
y1(t)− ln

√
K1K2

)(
y1(t)− lnK1−

(
ρ + σ

2

2

)
t

)
×
(
y1(t)− lnK2−

(
ρ + σ

2

2

)
t

)
−
(
ρ + σ

2

2

)
.

As by (3.1), y1(t) < ln
√
K1K2 − (ρ + σ 2/2)t , we conclude that for someT 6

(1+ ln
√
K2/K1)/(2ρ + σ 2), ∀t > T , ∂tg(t, y1(t)) > 0 and y′1(t) < 0. 2

So the situation looks like in Fig. 1.

Fig. 1.
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Let u > 0. The payoffvϕ(u, x) satisfies (H0). Let

ϕ̂u(x)= inf
t>0
vϕ(t + u, x).

Since(t, x)→ vϕ(t + u, x) is continuous andt → vϕ(t, x) is increasing fort > t (x)
where t (x) is locally bounded (see Lemma 12), the functionϕ̂u(x) is continuous.
According to Lemma 12, there exist 0< β < T < +∞ such thatt → ξ1(t) is strictly
increasing on[0, β] and strictly decreasing on[T ,+∞). Concerning the existence of
a continuous function̂tu such thatϕ̂u(x) = vϕ( t̂u(x) + u, x) the situation depends on
whetheru < β or u> T .

PROPOSITION 13. –
• If u> T , thenϕ̂u(x)= vϕ( t̂u(x)+ u, x) for the continuous function

t̂u(x)= 1{x6ξ1(u)}
(
ξ−1

1 (x)− u)+ 1{x>ξ2(u)}
(
ξ−1

2 (x)− u),
whereξ−1

1 denotes the inverse of the restriction ofξ1 to [T ,+∞) and the price of
the American option with payoff̂ϕu is

vam
ϕ̂
u

(t, x)= vϕ((t ∨ t̂u(x))+ u, x)
= vϕ((t + u)∨ ξ−1

1 (x), x
)
1{x6ξ1(u)} + vϕ(t + u, x)1{ξ1(u)<x<ξ2(u)}

+ vϕ((t + u)∨ ξ−1
2 (x), x

)
1{x>ξ2(u)}.

• If u < β, there is no continuous function̂tu such thatϕ̂u(x) = vϕ( t̂u(x) + u, x).
Moreover,

∀t > 0, ∀x ∈ ]ξ1(t + u), ξ2(t + u)[, vϕ(t + u, x) > vamϕ̂
u

(t, x).

Proof. –We first suppose thatu > T . According to Lemma 12,t ∈ [0,+∞) →
ξ1(t+u) (respectivelyt ∈ [0,+∞)→ ξ2(t +u)) is decreasing (respectively increasing),
and∀x ∈]0, ξ−1

1 (u)[ (respectively∀x ∈ ]ξ−1
2 (u),+∞[) t→ vϕ(t + u, x) is decreasing

on [0, ξ−1
1 (x)− u] (respectively[0, ξ−1

2 (x)− u]) and increasing on[ξ−1
1 (x)− u,+∞[

(respectively[ξ−1
2 (x) − u,+∞[). Moreover∀x ∈ [ξ1(u), ξ2(u)], t → vϕ(t + u, x) is

increasing. Hencêϕu(x)= vϕ( t̂u(x)+ u, x) for the continuous function

t̂u(x)= 1{x6ξ1(u)}
(
ξ−1

1 (x)− u)+ 1{x>ξ2(u)}
(
ξ−1

2 (x)− u),
and we deduce the price of the American option with payoffϕ̂u by Theorem 3.

We turn to the caseu < β. Let F = {(t, x): vϕ(t + u, x) = ϕ̂u(x)}. According to
Lemma 12,t→ ξ1(t) is increasing on[0, β]. We deduce that∀t ∈]u,β[, vϕ(t, ξ1(t)) >

vϕ(u, ξ1(t)) and(t − u, ξ1(t)) /∈ F . Hence

F ⊂ F1 ∪ F2 whereF1= {(t − u, ξ1(t)
)
, t > β

}
and

F2= {(t − u, ξ2(t)
)
, t > u

}∪{(0, x), x ∈ [ξ1(u), ξ2(u)
]}
.



B. JOURDAIN, C. MARTINI / Ann. Inst. Henri Poincaré Anal. nonlinear 18 (2001) 1–17 15

Let t̂u be such that∀x > 0, ϕ̂u(x) = vϕ( t̂u(x) + u, x) i.e. ( t̂u(x), x) ∈ F . For x small
enough( t̂u(x), x) ∈ F1 and forx big enough( t̂u(x), x) ∈ F2. SinceF1 andF2 are not
connected, the function̂tu is discontinuous.

Let t > 0 andx ∈ (ξ1(t + u), ξ2(t + u)). The positive continuous function

w ∈W →Φ(w)= inf
s∈[0,t ]e

−ρs(vϕ(t + u− s, xeσws+(ρ−
σ2
2 )s
)− ϕ̂u(xeσws+(ρ−

σ2
2 )s
))
,

whereW = {w ∈C([0, t],R), w(0)= 0}, is not constantly equal to 0. Indeed, when

∀s 6 0∨ (t + u− β), ξ1(t + u− s) < xeσws+(ρ−
σ2
2 )s,

xeσwt+(ρ−
σ2
2 )t < ξ1(u),

and∀s 6 t, xeσws+(ρ−
σ2
2 )s < ξ2(t + u− s),

then∀s ∈ [0, t], (t − s, xeσws+(ρ−
σ2
2 )s) /∈ F andΦ(w) > 0. As the support of the Wiener

measure isW , E[Φ((Bs)s6t )]> 0. Let τ be a stopping time smaller thant . Then

vϕ(t + u, x)=E[e−ρτ vϕ(t + u− τ,Xx
τ

)]
>E

[
e−ρτ ϕ̂u

(
Xx
τ

)]+E[Φ((Bs)s6t)].
Sinceτ is arbitrary, we conclude thatvϕ(t+u, x)−vamϕ̂

u

(t, x)> E[Φ((Bs)s6t )]> 0. 2
Remark14. –
(1) For anyx > 0, t → vϕ(t + u, x) is continuous and increasing fort big enough.

Hencet̃u(x)= sup{t : vϕ(t + u, x)= ϕ̂u(x)} is finite. Whenu < β, ∀t 6 t̃u(x),
ϕ̂u(x)6 vamϕ̂

u

(t, x)6 vamϕ̂
u

(
t̃u(x), x

)
6 vϕ

(
t̃u(x)+ u, x),

i.e. vam
ϕ̂
u

(t, x)= ϕ̂u(x),
but∃T (x) such that fort > T (x), x ∈]ξ1(t+u), ξ2(t+u)[ and we cannot deduce
vam
ϕ̂
u

(t, x) from the price of the European option with payoffϕ.

(2) Let u < β and x∗ = sup{x: (t, x) ∈ F1 ∩ F } whereF,F1 are defined in the
previous proof. SinceF1 andF are closed and limt→+∞ ξ1(t) = 0, ∃t∗ > β − u
such that(t∗, x∗) ∈ F1∩F i.e.vϕ(t∗+u, x∗)= ϕ̂u(x∗). Sincex∗ = sup{x: (t, x) ∈
F1∩F }, ∀x ∈]x∗, ξ2(u)], vϕ(u, x)= ϕ̂u(x) and by continuity,vϕ(u, x∗)= ϕ̂u(x∗).
Hence{t > 0, vϕ(t + u, x∗)= ϕ̂u(x∗)} contains at least two elements which is not
surprising with regard to Remark 4.

4. Analyticity and some consequences

In this section we give some properties of the mapϕ→ ϕ̂ which are consequences of
the following analyticity ofvϕ in the pair(t, x):

PROPOSITION 15. –The functionvϕ(t, x) is analytic in]0,∞[×R∗+.
This is a consequence of the same property for the solution of the standard heat

equation (which does not seem to be universally known in fact but can be shown by
a direct estimation of the derivatives of the solution).



16 B. JOURDAIN, C. MARTINI / Ann. Inst. Henri Poincaré Anal. nonlinear 18 (2001) 1–17

4.1. One-to-one property

Let us study now the injectivity ofϕ→ ϕ̂. Obviously if ϕ1 is an invariant function
(e.g. the nil function), then̂ϕ1 = ϕ1 and there are plenty of other functionsϕ such
that ϕ̂ = ϕ̂1, for instanceϕ = ϕ1 + φ whereφ is a non-negative continuous function
satisfying limx→0

φ(x)

x+x−α = limx→+∞ φ(x)

x+x−α = 0. The same phenomenon occurs ift̂ (x)=
∞ everywhere. Therefore the following one-to-one statement is optimal:

PROPOSITION 16. – Letϕ1 andϕ2 satisfy the assumptions of Theorem3 and assume
that ϕ1 is not an invariant function and that there is a valuex0 such that̂t1(x0) <∞.
Then

ϕ̂1= ϕ̂2⇒ ϕ1= ϕ2.

Proof. –For any t0 > t̂1(x0) there is anε > 0 small enough such that the ballB
centered at(t0, x0) with radius ε lies in the Continuation region of̂ϕ1. In particular
vam
ϕ̂

1
(t, x) = vϕ1(t, x) on B and (t, x) 7→ vam

ϕ̂
1
(t, x) is analytic onB. Now vam

ϕ̂
1
(t, x) =

vam
ϕ̂

2
(t, x), thereforevam

ϕ̂
2
(t, x) is analytic onB. If t̂2(x0) = +∞ then by takingε small

enough we can assumevam
ϕ̂

2
(t, x) = ϕ̂2(x) onB. Therefore∂tvϕ1(t, x)= 0 onB and by

the analyticity ofvϕ1, ∂tvϕ1(t, x) = 0 everywhere, which gives thatϕ1 is an invariant
function. Since this case is ruled out by assumption,t̂2(x0) < ∞. Now on the right
of t̂1(x0) ∨ t̂2(x0), vϕ1andvϕ2 match on some small enough ball, therefore everywhere,
which givesϕ1= ϕ2 by the continuity oft 7→ vϕi (t, x) at t = 0. 2
4.2. On the range ofϕ→ ϕ̂

PROPOSITION 17. –Let ϕ satisfy the assumptions of Theorem3 and assume thatϕ
is not an invariant function and that0< t̂(x0) <∞ for some pointx0. Then there is an
open dense subset oft̂−1(R∗+) on whicht̂ , and thereforêϕ, is analytic.

Proof. –First note that by composition̂ϕ(x)= vϕ( t̂(x), x) is analytic as soon aŝt is.
Pick up some pointx1 such that 0< t̂(x1) <∞. Sincevϕ is analytic, by the implicit
function theorem the equation∂tvϕ(t, x) = 0 on a small enough neighborhoodV of
( t̂(x1), x1) defines an analytic curvex 7→ a(x) as soon as∂2

t2
vϕ( t̂(x1), x1) 6= 0. Now by

the continuity of̂t , ∂tvϕ( t̂(x), x)= 0 in V so thata ≡ t̂ on a neighborhood ofx1.

Unfortunately it is not granted that there existsx1 such that∂2
t2
vϕ( t̂(x1), x1) 6= 0.

Let us first remark that there is some pointx2 in t̂−1(R∗+) such thatt 7→ vϕ(t, x2)

is not constant: otherwise∂tvϕ(t, x) = 0 would hold on some non-empty open set and
therefore everywhere, thusϕ would be an invariant function. Moreover the set of such
points is dense in̂t−1(R∗+). Let q = inf{n > 0, ∂ntnvϕ( t̂(x2), x2) 6= 0}. Thenq is finite. If

q = 2 we are over. Otherwise notice first that the equation∂
q−1
t q−1vϕ(t, x) = 0 on a small

enough neighborhoodV of ( t̂(x2), x2) defines an analytic curvex 7→ b(x). Consider
then the quantityq(x) = inf{n > 0, ∂ntnvϕ( t̂(x), x) 6= 0} on a neighborhood ofx2. By
the analyticity ofvϕ, q(x)6 q(x2) on a sufficiently small neighborhoodW of x2. Either
q(x) ≡ q(x2), in which case∂q−1

t q−1vϕ( t̂(x), x) = 0 on W, thereforêt ≡ b is analytic on
W, otherwise there is some pointx3 in W such that 0< t̂(x3) <∞ andq(x3) < q(x2).
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By induction we thus either stop and get an analytic curve or reach the levelq = 2 at
some point. The proof is complete.2

This proposition gives a first characterization statement about the functionsϕ̂:

COROLLARY 18. –Let ϕ satisfy the assumptions of Theorem3. Thenϕ̂ is eitherA-
superharmonic(i.e.Aϕ̂ > 0 in a weak sense) or A-subharmonic(i.e.Aϕ̂ 6 0 in a weak
sense) or analytic on a non-empty open subset ofR∗+. In particular ϕ→ ϕ̂ is not onto
on the space of functions satisfying(H0).

Proof. –The first case corresponds tot̂ = 0 everywhere, the second one to the case
t̂ = +∞ everywhere (̂ϕ(x) = lim inf t→+∞ vϕ(t, x) is then anA-subharmonic function
by Fatou’s lemma) and the last one to the previous proposition.2

5. Conclusion

In this paper, for a fairly general class of payoffsϕ, we deduce from the European
price vϕ(t, x) the American price of the claim with payoff̂ϕ(x) = inf t>0vϕ(t, x). We
give examples of explicit computations. The characterization of the payoffsϕ̂ obtained
in this way remains an open question. A work devoted to design new approximations of
the American Put price relying on our approach is in progress.
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