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ABSTRACT. — In this paper, we are interested in American option prices in the Black—Scholes
model. For a large class of payoffs, we show that in the region where the European price in
creases with the time to maturity, this price is equal to the American price of another claim.
We give examples in which we explicit the corresponding claims. The characterization of the
American claims obtained in this way remains an open question.
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RESUME. — Ce travail met en évidence un lien entre prix d’options européennes et prix
d’options américaines dans le modeéle de Black—Scholes. Nous montrons que pour une larg
classe de fonctions de payaff, dans la zone ou il augmente avec la maturité, le prix de
I'option européenne est égal au prix américain correspondant a une fonction de payoff modifié
@. Nous donnons des exemples ou il est possible d’expligiteMais la caractérisation de
'image dey — ¢ reste un probléme ouvert.
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Introduction

Consider the classical Black—Scholes model:

dX*=pX'dt+0X dB,
Xp=x>0,

peR, o >0,
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where B is a standard Brownian motiom, the instantaneous interest rate andhe
volatility of X and denote by

ox?

Afx) = Tf"(X) + pxf'(x) — pf (x) (0.1)

the Black—Scholes infinitesimal generator. Given a continuous fungtioR’ — R,
satisfying some growth assumptions, the price of the so-called American option with
payoff ¢, maturitys > 0 and spot is given by the expression

vy (t,x) = sup E[e "y (X7)], (0.2)
€7 (0,1)

where T runs across the set of stopping times of the Brownian filtration such that
T < t almost surely. Except for some very particular class of pay¢ffee.g. payoffs
satisfyingvx > 0, Ay (x) > 0 or Vx > 0, Ay (x) < 0), in general, there is no closed-
form expressions fovf;”’(t,x). The computation oi);’”(t,x) usually relies either on
finite-difference type methods or Markov-chain approximation methods to solve the
corresponding optimal stopping problem in a discrete time-space framework. There i
also a huge literature on special approximation methods designed for some particule
payoffs, among which the case of the Put option, giverilty) = (K — x)™ whereK

is some positive constant (the strike of the option) has received much attention.

The purpose of this paper is to exhibit a new class of paygff§or which a
closed-form expression far" (¢, x) is available. The idea originates from the analytic
properties of the functiony™: this function is greater thag by (0.2) and typically
the spacg0, oo[ x R splits into two regions, the so-called Exercise region where by
definition vy = ¥ and its complement the Continuation region whefg¢ > v. It is
known thatv" solves the evolution equation associated wit1)0

a[ vfzm = AUfLm

in the Continuation region (at least in the distribution sense). Moreover, as fr@n (0
t vf;,’”(t,x) is non-decreasinga,vf;,’” > 0 holds. In fact, since)f;,m is a continuous
function, it may be remarked that the knowledgeugf in the Continuation region is
enough to gety” everywhere.

This leads to the natural idea to build American prices (i.e. functigfidor somey)
by picking up the classical solutian,(, x) of the evolution equation:

Vi, x >0, 3,v,(t, x) = Av,(t, x),
Vx > Os v(p(os x) = go(x)s

in the region where it increases with time. From a financial point of views, x)

is the Black—Scholes price of the European option with payofind maturityz i.e.

v, (t, x) = E[e"”9(X;})]. This embedding idea has been worked out in [2] in case
o = 0. A similar approach has also been developped in the different context of the free
boundary arising in a two-phases problem (see [1]). Trying to generalize things to the
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casep # 0, we ran across a probabilistic proof which allows a very compact statement
of the embedding result.

The first section of the paper is devoted to some basic properties of Europear
and American prices within the Black—Scholes model. Next we state and prove oul
embedding theorem (Section 2). Then we give some examples (Section 3). Lastly, w
discuss some properties of the map which takes a paytfithe payoffy the American
price of which is embedded in its European price (Section 4). The characterization o
the payoffsp obtained in this way remains an open question.

1. European and American prices in the Black—Scholes model

In this section we recall the very few properties of European and American Black—
Scholes prices we shall need in the next section.

Let o = 2p/0? . The invariant functions of the semigroup associated with (0.1) are
easily seen to be the vector space generated dnyd x . We shall consider payoffg
such that

x e R = ¢(x) e Ry is continuous and supgj_(l < 00 (HO)
x>0X x ¢

The growth assumption is only there to grant the existence of the various expectation
involved. It seems that the continuity assumption could be removed, but the connectiol
with American options would be more intricate, so we keep this hypothesis.

PropPosITION 1 ([3]). — Under (HO) the price of the European option with maturity
t > 0 and payoffy is given by
vy (1, x) =E[e " p(X])].

In particular v, (0, x) = ¢(x).

The functiory, is continuous fronf0, oo x R* into R, and for anyr > 0, the process
(e P"v,(t — u, X}}))o<us: IS @ continuous square-integrable martingale.

Last, for¢(y) = ¢(e")/(e" + &%),

v, (2, %) —xE((ﬁ(cht T (p+ %Z)r)) —x“"E((ﬁ(cht - (p+ %Z)r))

converges t® ast — +oo locally uniformly inx > 0.

Proof. —We only prove the last assertion which is quite unusual. By definitiaf, of

2
Vy (, X) =E(e‘ﬁtxf¢(ln(x) +oB, + <,0 — %)t))

2
—i—E(e‘p’(X;‘)_"(p(ln(x) +oB;+ (,0 — %)t))

. 0'2 72_p
Since e”' X* =xe&”B~ 7' and e/ (X*) * =x g ° '

deduce that

_2? )
2’ by Girsanov theorem, we
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2
VU, (1, X) =xE(¢ (In(x) +oB; + (,0 + %)t))

+X“E<¢(In(x) +oB, — (,O—i- %Z)t))
‘E(qﬁ(ln(x) +0oB, + <p+ %2>t)> —E(q&(oBt + <p+ %2>t>)‘
_ 1 § — Q-In@/(o/in® y2

Now,

Z _ In(v)/(mﬂ)z ¥
g (p( ) /‘ y— e_\z dy
Z>0 Z+z"
In2(x) z
g(e%zr B )S 0 (0()

>02+z27¢

converges to 0 as— +oo locally uniformly forx > 0.
We deal withE(¢ (In(x) + o B, — (p + 02/2)t)) in the same way to conclude..o

Let us now turn to American options:
ProrPosITION 2 ([3]). — If ¢ satisfies(HO), the price of the American option with
maturityz > 0 and payoffy is given by

vyt x) = sup E[e "y (X)),
€7 (0,1)

wheret runs across the set of stopping times of the Brownian filtration suchrtkat
almost surely. In partlculalv "0, x) =Y (x).

The functiorwy™ is contlnuous fron0, oo[ x R¥ into R, and for anyx e R* the map
g (1, x) is non-decreasing.

2. Embedding American prices in European prices

Our main result relates the prieg(z, x) of the European option with payoff to the
price v%’” (t, x) of the American option with payoff(x) = inf,>o v, (, x):

THEOREM 3. — Under(HO) let
P(x) = )QEUW(” x).

Then

Y(t,x) € [0, +00) x R* sup E[e”@(XT)] <w,(t,x), (2.1)
€7 (0,1)

where the supremum is taken over all the stopping timesf the filtration of the
Brownian motion smaller than
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Moreover, if there exists a continuous functE)tR*+ — [0, +o00] such that

Vx > 0, tigl;v(p(t,x) = v, (1(x), x)

(Wherev, (oo, x) is defined adiminf,_, ., v, (¢, x)) then the converse inequality holds
fort >1(x) and

V(t,x) €[0,+00) x R*,  sup E[e " 9(X))] =v,(t Vix),x). (2.2)
€7 (0,1)

If, lastly, eitherz(xo) < +oo for somexg > 0, or
AC>0, Vx,y>0, [p&x)—e)|<C(lx —yl+x~*—y™*)

or the function-24L_ admits limits both forxr — 0 andx — +o0, then the functiorp

X+x

satisfiegHO) and

Y(t, x) € [0, +00) x R, i (1, x) = v, (t vi(x),x). (2.3)

Proof. —Let (¢, x) e Ry x R%. According to Proposition 1, the proce@s v, (t —
u, X;))uero,, 1S @ martingale. Ifr <t is a stopping time, by Doob optional sampling
theorem

v (t, x) =E[e" v, (t — 1, X7)] ZE[e 7" g(X7)].
Sincer is arbitrary, we deduce that (2.1) holds.
To prove (2.2), we suppose the existence ‘@* — [0, +o00] continuous such that
Vx>0, @x)=uv,(t(x),x)

and we make a distinction between the two following situations:
e Caser(x) = +oo: sinces — sup.. 7, Ele *"@(X7)] is increasing, fou > ¢

P(x) < sup Ele”"@g(X7)] < sup Ele”@(X))] <v,(u,x) by (2.1)
t€7(0,1) €7 (0,u)

Lettingu — +o0, we deduce that

Vi>0, sup E[e " a(X)] =@(x) =v,(00,x) =v,(t VI(x),x).
€7 (0,1)
e Case(x) < +oo:letr >1(x) andro = inf{u: t —u —1(X¥) < 0}. Sincer (X7¥) > 0,
the stopping timerp is smaller than:. By continuity of u — t — u — 1(X?),
t — o =1(X}). Hence
vy (t, x) =E[e7 v, (1 — 0, Xfo)] =E[e™"™v, (?(X)rco)’ X%)]

=E[e"™¢(X;)] < sup E[e"g(X))].
€7 (0,1)
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The converse inequality (2.1) is already proved. Helee> 7(x), SUR c7(0.1)
Ele " @(X)] = v,(t, x) andtg is an optimal stopping time. Since— v%’"(t, X)
is increasing, for <7(x),

P(x)< sup E[e”p(XH] < sup E[e” g(X)] =g(x),
€7 (0,1) €7 (0,1(x))

which concludes the proof of (2.2).

If we check thatg is continuous under the various assumptions made in the last
assertion of the theorem then (2.3) follows immediately sif&(z, x) = sup.cr .
E[e " g(X)]. -

o If #(xg) < 400 for somexg > 0 then forx in a neighbourhood afy, 7(x) < 400
and since — sup..r ., Ele"?"@(X;)] is increasing, by (2.2),(z, x) has a limit
for t - 400. By the last assertion of Proposition 1, we deduce thawforn =
p€)/(€ +e ), E(p(oB + (0 +0?/2)1) andE(¢p (o B, — (0 +0?/2)1)) admit
limits ast — +o00. We denote the limits by: and b. Proposition 1 then yields
that v, (7, x) converges to the invariant functianx 4 bx=* ast — +oo locally
uniformly for x > 0. The continuity ofp follows easily.

o If (x)/(x +x~%) admits limits forx — 0 andx — 400 then¢ (y) admits limits
for y - —oo and y — +o00. We deduce thai(¢ (o B; + (p + 02/2)t)) and
E(¢(oB; — (p + 0?/2)t)) admit limits ast — 400 and we conclude like in the
previous case.

o IfVx,y >0 lp(x) -9 <C(x —y|+[x™*—y™*]), thenvs > 0,

v (2, x) — v, (2, y)| SE[e" o(X)) — o(X})]]
<C(lx—yE[e” XY + |x -y *[E[e " (X} ™))
SC(lx—yl+[x™ = y™).

Hence the functions — v, (¢, x) indexed byr > 0 are equicontinuous, which ensures
the continuity ofx — inf,>ov, (¢, x) =@(x). O

Remark 4. — The continuity of the argument of the infimum is granted in the following
uniqueness situation: suppose that > 0, 37(x) < T (x), ¢(x) = v,(7(x), x) where
T: R — R, is continuous. Then by the continuity df and v, it is easy to
see thatp(x) = inf,c0.rx) v, (7, x) is continuous. Moreover, sincgx) = inf{r >
0: ¢(x) = v,(t,x)} (respectivelyz(x) = suplr < T(x): @(x) = v,(, x)}), 1 is lower
semi-continuous (respectively upper semi-continuous)7i.is. continuous and (2.3)
holds.

In the above theorem it may happen that the funcgias nil: in case lim_. xﬁ(;‘,)a =
lim,_, ;o 24 = 0, we easily check that

Vx > 0, IETOO v, (1, x) =0.

In such a situation, the following localized version of our main result is far more
interesting than Theorem 3. It is proved by the same arguments, after noticing that th
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continuity of (¢, x) € [0, +00) x R% — v, (¢, x) implies the continuity ofc — ol (x) =
info<r<7 v, (t, x) whereT > 0.

THEOREM 5. — LetT > 0. The functiorp” (x) = infoc, <7 v, (7, x) satisfiegH0) and

V(t,x) €[0, T] x RY, v%’#(t, x) <vy(t, x).

Moreover, if there exists a continuous funct@nﬁj — [0, T'] such that

Vx > 0, 0<IEILT Uy (1, x) = v, (1(x), x),

then
V(t,x) €[0, T] x RY, v%’%’(t, x) = v,(t VI(x), x).

Remark 6. — The only feature of the Black—Scholes model which is required in the
above results is time-homogeneity. In fact, Propositions 1 and 2 and Theorems 3 and
can be adapted to the so-called generalized Black—Scholes model:

(72
X; =xexp<aB, + (,0 —8— ?>t>,

v(t, x) =E[e”p(X;)] and
vyt x) = sup E[e "y (X)),
€7 (0,1)

or to the more general time-homogeneous model:
Xy=x, dX;=X(c(X})dB;+ (p(X])—8(X}))dt)
v,(t,x)=E {e‘ Jo p(ch)ds(p(X;‘)} and

v x) = sup Ele oty (x|
€7 (0,1)

and also to the multidimensional versions of these models.

Of course it would be of great interest to give conditions gormvhich ensure the
existence of a continuous curve in the argument of the infimum. One way is to perform
explicit computations, since the Black—Scholes semigroup is explicit. Nevertheless thi:
is not very illuminating. We ran across the following statement, for the local embedding
result, which is maybe the simplest in this direction:

PROPOSITION 7. —Letgp be aC* function which satisfiegH0) and such that for some
x. € RY,
(i) A¢(x.) =0and eithervx >0, (x — x.)Ap(x) >0
orvx >0, (x — x.)Ap(x) <O0.
(i) A%p(x.) > 0andd,A¢p(x.) #0.
Then there exists a constafit> 0 such that the assumptions of Theorgare satisfied.
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Proof. —Since ¢ is C*, the functionv, (z, x) belongs toC**([R; x R*) (C?in 1,
C*in x) and satisfies the Black—Scholes partial differential equaljop = Av, for
t > 0 and not onlyr > 0. Consider the equatiofv,(¢,x) = 0 in a neighbourhood
of (0,x.) in {(¢,x),r > 0}. By derivation of the Black—Scholes evolution equation,
3t2xv¢ (0, x.) = 3, Ap(x.) # 0. Hence, by the implicit functions theorem, there is for some
¢ > 0 acurvex:

x:[0,e] = R

continuous orj0, ], with x(0) = x., such tha®,v, (¢, x(¢)) =0, andC?! on]0, e[ with
350, (1, X(1)) + 82 v, (1, X(1))X' (1) = 0.

Moreover by taking: small enough we can assume thgt) does not vanish and keeps

the same sign ag'(0") = _ﬁ%- We deduce that there exists a continuous function
t:[x., x(e)] — [0, £] such thate(7(x)) = x.

Assumex’(0%) > 0. Then the functiom is increasing. Moreove#, A¢(x) < 0 which
ensuresrx < x., Ap(x) > 0 andvx > x., Ap(x) < 0. We setl’ = ¢ and extend to R
by settingr(x) = T for x > x. + ¢ andz(x) = 0 for x < x.. The obtained function is
continuous and the whole point is to show that for everyhe infimum oft — v, (¢, x)
on [0, T] is reached at(x). This amounts to show thatv, (1, x) = Av,(t, x) is non-
positive for (z, x) abovex (i.e. fort < T andx > x(r)) and non-negative below. If
(P;):>0 denotes the semigroup associated with (0.1),

Av, (1, x) = AP,¢p(x) = P, Ap(x).

Let (z,x) belong to the above (respectively below) region. By the optimal stop-
ping theorem,Av, (¢, x) is equal to the expectation of the value of the martingale
(e P_, Ap(X))o<u<: Stopped at the border of the above (respectively below) re-
gion {(u,x(u)),u € [0,e]} U {(0,x),x > x.} (respectively{(u,x(u)),u € [0, ]} U
{(0,x),x < x.}) which is non-positive (respectively non-negative) sintrec 10, ¢],

P, Ap(x(u)) = 9,0, (u, x(u)) =0and % > x., Ap(x) < 0 (respectivelyrx > x., Ap(x)

> 0).

The case’(07) < 0 is handled in the same wayd

Example 8. — As an application, consider the family of payoffs

Pap(X) = x4 x —x",
where 1> a > b > —a. Then forx > 1, x¢ > x?, for x <1, x™® > x” so thatg, ; is
non-negative. Moreover

. »(x
lim £ ® _ 1,
x—>0x +x¢% Xx—>+00 x 4+ x 7%

andg, , satisfies(HO). Let A(y) = ("—;y +p)(y —1). Then

Agap(x) = A(a)x® — 1(b)x?,
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which gives, sincé.(a) < 0 andA(b) < 0, Ag, »(x) <0 for x > x. and Ag, ,(x) > 0
for x < x. with A(a)x? = A(b)x". Moreover

A%0, () = M(@)x® — A(b)*x? = (M(a) — 1(b))A(b)x?

and.A%¢p, ,(x.) > 0 as soon a&(b) > A(a). Lastly,

3c Ay p(x.) = Ma)ax®t — A(b)bx"1 = (i — £>x(a)x;’ #£0.
X

c c

Of course, in this example, sineg(, x) = x~* + x*&*@ — xbe*®) everything can
be computed explicitely and it is even possible to check the hypotheses of the globa
embedding result:

xVvx\“T
( c) _ g0k @)
Xe
and

Ma)(a—b Ab)(a=b

Ma)(a—b) AMb)(a=b)
=R B xV xc r(b)—A(a) b xV xc r(b)—A(a)
as() =~ a0 ()T ()T

¢ Xe

Similarly the hypothesis of Proposition 7 are satisfied by the payaffx’ — x* where
1>a>b>—a«aincaser(a) > r(b).

In the global case, we could not find any simple conditiop@ansuring the existence
of a continuous curve in the argument of ,igfv, (¢, x). Nevertheless, it is worth
mentioning the following interesting class of European payoffg i a non-negative
function equal to an invariant functianx + bx =% with a,b > 0,a + b > 0, less a non-
negative functionp satisfying lim_.o £ =lim,_ ., 2% =0, then

xX+x—¢

Vx>0, Vi 20, wv,(t,x)<ax+bx™* and

t—Iir—Ti-]oo Uy (t, x) =ax + bx™*,

which implies thatg(x) = inf,>ov,(t,x) is not trivial and thatvx € R, 3 (x) <
+00, §(x) = v,(7(x),x). The only assumption missing to apply Theorem 3 is the
continuity ofz.

The next section is dedicated to a family of payaffsncluded in the above class.
In these examples, we explicit some American prices with a non-trivial Exercise region
thanks to Theorem 3. We also check that the above mentioned continuitys ofot
always satisfied.

3. Case studya > —1 and ¢ (x) = x (Lx<k,) + Lix>k,))

To be able to compare the invariant functionandx~—*, we need to compare« and
1. We choose the case> —1 which is the more interesting from a financial point of
view sincep > 0 < o > 0. The payoffy is equal to the invariant functiom less the
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function¢ (x) = x 1k, <x<k,)- Since

Vx>0, Vt>0 O<uv,(t,x)<x and lim v,(t,x)=x
t—+00

the functionr — v, (¢, x) is likely to be increasing foK; < x < K, and decreasing then
increasing otherwise. This remark together with the easiness of computations motivat
the choice of this example. The functignsatisfies the growth assumption in (HO) but

is not continuous. Therefore, even if we make the computationg,fare shall after all
apply our results to a suitable regularizationyof

3.1. The caseK; =0

To simplify notations, we replac&, by K and writegp(x) = x1;,.x;. This payoff
corresponds to the sum of one Call aRdDigit options with common strikeK . Its
simplicity allows to compute explicitelg andz.

PROPOSITION 9. —Letg(x) = x1(,.k;. Then

V,(t,x) = xN(dl(t, x)),

where
2
N+ (p+ St
At x) = (%) + e+ %)
ot
\'2 y . . . . . .
and N(d) = ffoo e—T‘l—gﬂ is the cumulative distribution function of the normal law.
Moreover,
N 2 o? X N
ga(x):xl{x>K}N ; <p+?> |H<E) :vw(t(x),x)
and
~ In(x/K)1y,
o = D Ko,
p+=

andVx > 0, t — v,(t, x) is strictly decreasing om0, 7(x)] and strictly increasing on
[7(x), 400).

Proof. —Using Girsanov theorem, we get

62
v, (1, %) :E{xe"B’*T’l

{xeszprrrz/Z)t)K}}
.2
=xP(x& BT > K) = xN(dyi(t, x)).

By the chain ruleg, v, (¢, x) = xN'(d1(t, x))9,d1(t, x). SinceVx, t > 0, xN'(d1(t, x)) >
0 and

(p+ %) —In($)

atdl(tsx) = 20'[3/2 9
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we obtain that

vt €10, 7(x)[, 3,v,(t,x) <O,

x>0, {w > 7(x), 9, (t, x) > 0.

Hence infoqv, (¢, x) = v(p(tA(x), x) and the explicit expression of this function is easily
computed. O

Let us now regularize things in order to apply our theorem..Let0. The function
x — v,(u, x) is continuous. Le{(P;),>o denote the semigroup associated with (0.1).
By the semigroup property, the price of the European option with paygff, x) is
P,(P,p) = Pipyp. If we setg, = inf,>o P,(P,p), then by the previous proposition,
Gu(x) = vy (u vV 1(x), x) = Py, ey (Pup)(x). Sincer is a continuous function with
values in[0, +00), so ist,(x) = 0V (7(x) — u). Applying Theorem 3, we obtain the
price of the American option with payo,:

COROLLARY 10. —Letu > 0. The price of the American option with pay@ff(x) =
vy (u vV 1(x), x) is

V8" (1, x) = v, ((t +u) V1 (x), x)

2 o? X
=x (N o[ |2+ 5 I % ) | erusinesx) /o2

IN(E) + (o + )t +u)
+ N om 1{t+u>ln(x/l<)/(p+<72/2)}

and the Exercise region is given b, x): t +u <In(x/K)/(p + 0?/2)}.

Remark11. — Although the payoffp, has no financial meaning, this example
provides a very interesting benchmark for numerical procedures devoted to Americal
options since the price and the Exercise boundary are explicit. Let us also notice that thi
is a two-parameterK andu) family of closed-formula. The payoff is of course obtained
by settingr to zero inv%’” (t, x).

3.2. The caseK; >0

The main purpose of this subsection is to design an example where there is
no continuous curve in the argument of the infimum (Proposition 13). By a slight
modification of the computations made in the proof of Proposition 9, we get

Vy(t, x) = x(N(—=da(t, x)) + N (da(t, x))),
() + (o + %)t
oAt ’

It is not possible to comput@ explicitely but using the implicit functions theorem, we
can study the sign af, v, (7, x) to obtain:

where fori = 1,2 d;(t,x) =

LEMMA 12.-There exist two differentiable functionse RY — &1(r) < &(1)
satisfying
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(1) lim;Lo& () =K; (i=1,2),

(2 Vt > 0, &(t) > 0 and 3(B,T), 0 < B < T < (L+InyK,/K1)/(2p +02),
vVt < B, &) >0andvr > T, &(t) <O,

(3) vVt >0,

(T2 (T2 (72
E(t) > K69t and  &(1) < K1€PT 2 A /K1 Koe 0Tt

and such that
Vi >0, Vx €l&1(t), &),  dv,(2,x) >0 and
Vx ¢ [£1(0), &(1)],  dv,(t,x) <O.

Proof. —An easy computation yields thatv, (z, x) is equal to the product of a strictly
positive function withf (z, In x) where

ft,y)=(y — a4 (a, — y)&2 T2 where fori = 1, 2,

o2 In K;
ai<r>=ln1<i+<p+—)t, bi(t) = "0,
2 o2t

(t)—<p+1>|nK In* X,
= o2 2 Y 202t

Sinceay < ap, f(t,ay) = (ax—a1)€1%*+1 > 0. Hence the functiom — £ (¢, y) vanishes
at the same points as

— glbz—byy+(co—cp) _ ¥~ N

y—g(t,y) .
y—az

As a; < a; andby < by, the functiony — g(z, y) is strictly increasing from-1 to +oo
on] —oo,ay[ and from—oo to 400 on Jaz, +o0[, SO it vanishes exactly twice. Let
Y1 < az < y, denote the corresponding points. Singeg 1+~ > 0 and:=1 < 1,
we obtain respectively; < a; and (b, — b1)y1 < ¢1 — ¢2. We combine these upper-
bounds to get

() < ar(t) A <In VK1K; - <p + G—Z)t). (3.1)

2

We deduce that — d,v,(7, x) vanishes exactly twice, at the poirgg(s) = 1 and
&>(1) = €2 which satisfy statement (3). A(z, az) > 0, d,v,(z, x) is strictly positive
for x € (£1(1), &(t)). Moreover ash, < by, f(t,y) <O for |y| large andd,v,(t, x) is
strictly negative for O< x < &,(¢) and forx > &(z).

Let us study more precisely the functions(z) and y,(¢). SinceVt > 0,Vy #
ax(t), d,g(t, y) > 0, by the implicit function theorem, far=1, 2, y; (¢) is continuously
differentiable andy/(r) has the same sign aso, g(z, y; (¢)). Expliciting the dependence
of g on the time variable, we get

2
g(t, y)_exp(l(i#()ﬂr <p+ %)t —1In \/K1K2)> -1
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In(K1/K>)
y =In(K2) = (p+ )t
In(K1/K>)

2
0,8(t,y)= 71‘( —Invy KlKZ) exp(ln(KZ/Kl) ( + (10 + 6_>t

2
_In\/m>)+ (p+%)|n(Kl/K2)
v —InK2—(p+Z)IN?

Sincey,(t) > ax(t) > In/K1K>, 9,8(t, y2(¢)) is strictly negative andtz > 0, y5(z) > 0.
Moreover, wherr — 0 the first term ing(z, y»(¢)) has a limit equal tot-oco and the
equationg(z, y2(¢)) = 0 implies that the second term goes alsooto which gives
lim,_oy2(¢) =InKo.

By (3.1), y1(t) < a1(t) = InK1 + (p + 02/2)t. Hence whenr — 0 the first
term in g(¢, y1(r)) has a limit equal to 0. By considering the other terms we
deduce that lim.gy:(t) = In K. Hence the first term i, g(z, y1(z)) goes to 0 and
lim,_00,g(t, y1(t)) < 0. Thereforedg > 0, vVt €10, B[, y;(¢) > 0.

Using the equalityg(z, y1(r)) = O to replace the exponential i g(z, y1(r)) and
multiplying by (y1(1) — IN K> — (p + 62/2)1)?/In(K»/ K1), we obtain thab, g (z, y1(r))
has the same sign as

-1 5
ﬂ(yl(t) —In/K1K>) (yl(t) —InkK; — (p + 6_>t>

2

0’2 0’2
X (yl(t)—anz— (p+?)t) - (p+7).

As by (3.1), v1(t) < In/K1K> — (p + 0?/2)t, we conclude that for som& <
L+ InyKy/K1)/(2p +02),V¥t > T, 3,g(t, y1(t)) >0and §(r) <0. O

So the situation looks like in Fig. 1.

K2 - _

x (spot)

K1 //\ -

t (time to maturity)

Fig. 1.
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Letu > 0. The payoffv, (u, x) satisfies (HO). Let
Pu(x) = tlggv(p(t +u, x).

Since (¢, x) — v,(t 4+ u, x) is continuous and — v,(z, x) is increasing forr > 7 (x)
where 7 (x) is locally bounded (see Lemma 12), the functign(x) is continuous.
According to Lemma 12, there exist08 < T < +oo such thatt — &(¢) is strictly
increasing on0, 8] and strictly decreasing off’, +00). Concerning the existence of
a continuous function, such thatg, (x) = vq,(?u(x) + u, x) the situation depends on
whetheru < goru>T.

PROPOSITION 13. —
o Ifu>T,theng,(x) = vg,(?u (x) + u, x) for the continuous function

1) = Ly (610 — ) + Ly (6 1 (6) — ),

whereg; ! denotes the inverse of the restrictiongefto [T, +00) and the price of
the American option with payof, is

Ve (t, x) = v, ((t V 1,(x)) +u, x)

=0, (¢ +10) V E7 (00, %) Lix<tya) + Vot + 14, 3) Ly ) < <o)
+ 0, (7 +u) vV E 1), X) L0y

e If u < B, there is no continuous function such thatg, (x) = v, (7, (x) + u, x).
Moreover,

Vi >0, Vx € |&1(r +u), &t +u)|,  v,(r +u,x) > v(%’"(t,x).

Proof. —We first suppose that > T. According to Lemma 12¢ € [0, +00) —
&1(t +u) (respectivelyr € [0, +00) — &x(¢ +u)) is decreasing (respectively increasing),
andVx €10, & *(u)[ (respectively¥x € 1&; (u), +00[) t — v,(t + u, x) is decreasing
on [0, &1 (x) — u] (respectively{0, &5 (x) — u]) and increasing ofé; *(x) — u, +oo[
(respectively[&;, 1(x) — u, +oo[). MoreoverVx € [£1(u), &2(u)], t — v, (t + u, x) is
increasing. Hence, (x) = v(p(tAu(x) + u, x) for the continuous function

1,(0) = Ly (610 — ) + Ly (62 1 (6) — ),

and we deduce the price of the American option with pagpfby Theorem 3.

We turn to the case < 8. Let F = {(t,x): v,(t + u,x) = ¢,(x)}. According to
Lemma 12 — £.(¢) is increasing o0, ]. We deduce tha¥r € lu, B[, v, (¢, £1(2)) >
v, (u, &1(1)) and(r —u, £1(¢)) ¢ F. Hence

FCFUF, whereF;={(t—u,&(@)),r>8} and
F2 = {(t - u’$2(t))s t> I/l} U {(O,x),x € [51(’4), SZ(M)]}
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Let 7, be such tha¥x > 0, @, (x) = v,(%,(x) + u, x) i.e. (#,(x),x) € F. Forx small
enough(7,(x), x) € F, and forx big enough(z,(x), x) € F». Since F; and F, are not
connected, the functiory is discontinuous.

Letr > 0 andx € (&1(r + u), &(t + u)). The positive continuous function

o2 52
weW—o(w)= mf e pA( o(t +u—s, x& P71 g (xetfwﬁ(p*T)s))’

s€[0,
whereW = {w € C([0, ], R), w(0) = 0}, is not constantly equal to 0. Indeed, when
<0va+u—ﬁ) au+u—n<x€%““fk
X FOTT < (),
andVs < ¢, xe"wﬁ(”*%)s <&@t +u—y),

(72 -
thenVs € [0, 1], (t — s, x&Ws+(P=7)5) ¢ F and® (w) > 0. As the support of the Wiener
measure i3V, E[® ((B,)s<:)] > 0. Let  be a stopping time smaller thanThen

Vp(t +u,x) =E[e v, (t +u—1,X7})]
>E[e " g, (XY)] +E[@((B)s<i)]-
Sincer is arbitrary, we conclude tha, (r +u, x) — v‘”"(t x) 2 E[®((By)s<)]>0. O

Remark14. —

(1) For anyx > 0,t — v,(t + u, x) is continuous and increasing forbig enough.
Hencer, (x) = supit: v, (7 +u, x) = @, (x)} is finite. Whenu < g, vVt <1,(x),
0u(x) < v%:l"(t,x) (t (x), x) < vy (1, (x) +u, x),

Ie Ug\m(ta-x)zalt(-x)’
butEIT(x) such thatfor > T'(x), x €1&1(¢ +u), &(¢t +u)[ and we cannot deduce
(t x) from the price of the European option with payeff
2 Let u < B and x* = suplx: (¢t,x) € FL N F} where F, F; are defined in the
previous proof. Sincé; and F are closed and lim, ,,, &1(¢) =0,3t* > B —u
such thait*, x*) € F1NF i.e.v,(t* 4+ u, x*) = ¢, (x*). Sincex* = sup(x: (t, x) €
FiNF},Vx €x*, &(u)], v, (u, x) = @, (x) and by continuityp,, (u, x*) = @, (x*).

Hencefr > 0, v, (t +u, x*) = @, (x*)} contains at least two elements which is not
surprising with regard to Remark 4.

4. Analyticity and some consequences

In this section we give some properties of the map- ¢ which are consequences of
the following analyticity ofv, in the pair(z, x):

PrROPOSITION 15. —The functionw, (¢, x) is analytic in]0, co[ x R*..

This is a consequence of the same property for the solution of the standard hee
equation (which does not seem to be universally known in fact but can be shown by
a direct estimation of the derivatives of the solution).
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4.1. One-to-one property

Let us study now the injectivity op — @. Obviously if ¢, is an invariant function
(e.g. the nil function), therp; = ¢, and there are plenty of other functiogssuch
that ¢ = ¢, for instancep = ¢; + ¢ where¢ is a non-negative continuous function
satisfying lim_,o 2% =lim,_ ., 2% = 0. The same phenomenon occurs(if) =

x+x~¢
oo everywhere. Therefore the following one-to-one statement is optimal:

PROPOSITION 16. — Letg; and ¢, satisfy the assumptions of Theor8rand assume
that ¢, is not an invariant function and that there is a valug such thatr; (xg) < co.
Then

P1= P2 = Q1= 2.

Proof. —For anyfy > f1(xo) there is ans > 0 small enough such that the badl
centered ai(ry, xo) with radiuse lies in the Continuation region af,. In particular
(t X) = vy, (t,x) on B and (¢, x) — v (t x) is analytic onB. Now v (t x) =

(t x), thereforev (t, x) is analytic onB If (xg) = +oo then by takmgs small
enough we can assunwé’”(t x) = @2(x) on B. Therefored, v, (t, x) =0 on B and by
the analyticity ofv,,, a,v;(t,x) = 0 everywhere, which gives that; is an invariant
function. Since this case is ruled out by assumptietyg) < oo. Now on the right

of 71(xo) V 72(x0), v, andv,, match on some small enough ball, therefore everywhere,
which givesp; = ¢, by the continuity oft — v, (¢, x) atr =0. O

4.2. Onthe range ofp — ¢

PROPOSITION 17. —Let ¢ satisfy the assumptions of Theor@mand assume thap
is not an invariant function and tha < 7(xg) < oo for some pointrg. Then there is an
open dense subsetof (R ) on whichz, and thereforep, is analytic.

Proof. —First note that by compositiofi(x) = v, (7(x), x) is analytic as soon asis.
Pick up some point; such that O< 7(x;) < co. Sincewv, is analytic, by the implicit
function theorem the equatiofv, (¢, x) = 0 on a small enough neighborhodd of
(7(x1), x1) defines an analytic curver a(x) as soon ag3v, (7(x1), x1) # 0. Now by
the continuity off, d,v,(7(x),x) =0in V sothata =7 on a neighborhood of;.

Unfortunately it is not granted that there exis{ssuch thalB 50, (7(x1), x1) # 0.

Let us first remark that there is some poitin t—l(R ) such thatr = v, (7, x2)
is not constant: otherwisgv, (¢, x) = 0 would hold on some non-empty open set and
therefore everywhere, thyswould be an invariant function. Moreover the set of such
points is dense in*(R*). Letg = inf{n > 0, 3/v,(7(x2), x2) # 0}. Theng is finite. If
g = 2 we are over. Otherwise notice first that the equaﬁtbrfvw(t, x) =0 on a small
enough neighborhood of (7(x2), x,) defines an analytic curve — b(x). Consider
then the quantity; (x) = inf{n > 0, 8v,(7(x), x) # O} on a neighborhood of,. By
the analyticity ofv,, g (x) < q(xz) on a sufficiently small neighborhodd of x,. Either
q(x) = g(x2), in which caseat,, 1v¢(t(x) x) =0 on W, thereforer = b is analytic on
W, otherwise there is some poimt in W such that O< 7(x3) < oo andg(x3) < g(x»).
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By induction we thus either stop and get an analytic curve or reach thedevel at
some point. The proof is completed

This proposition gives a first characterization statement about the fungtions

COROLLARY 18. —Let ¢ satisfy the assumptions of Theor8nirheng is either A-
superharmonidi.e. . Ap > 0in a weak sengeor 4-subharmoniqi.e. Ay < 0in a weak
sensg or analytic on a non-empty open subsefRdf. In particular ¢ — ¢ is not onto
on the space of functions satisfyifig0).

Proof. —The first case corresponds #e= 0 everywhere, the second one to the case
t = 400 everywhere §(x) = liminf,_, ; v, (¢, x) is then anA-subharmonic function
by Fatou’s lemma) and the last one to the previous propositian.

5. Conclusion

In this paper, for a fairly general class of payoffswe deduce from the European
price v, (t, x) the American price of the claim with payoff(x) = inf,>qv,(z, x). We
give examples of explicit computations. The characterization of the payaftsained
in this way remains an open question. A work devoted to design new approximations o
the American Put price relying on our approach is in progress.
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