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ABSTRACT. — We study the long-time behavior of solutions of semilinear parabolic equations
of the following type (PEp,u — V. A(x, t,u, Vu) + f(x,u) =0 wheref (x, u) ~ b(x)|ul? tu,
b being a nonnegative bounded and measurable functiop amdal number such thatQq < 1.
We give criteria which imply that any solution of the above equations vanishes in finite time and
these criteria are associated to semi-classical limits of some Schrddinger operators. We also gi
a series of sufficient conditions @rix) which imply that any supersolution with positive initial
data does not to vanish identically for any positive
© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME. — Nous étudions le comportement en temps grand de solutions d’équations
paraboliques du type (PB)u — V. A(x,t,u, Vu) + f(x,u) =0, o0 f(x, u) ~ b(x)|u|?1u,
b étant une fonction positive, bornée et mesurable; en nombre réel tel que € ¢ < 1.
Nous donnons des criteres qui impliquent que toute solution des équations ci-dessus devie
identiguement nulle en temps fini et ces critéres sont associés a des problémes de limite sen
classique d'opérateurs de Schrodinger. Nous donnons aussi une série de conditions suffisan
surb(x) qui impliquent que toute sur-solution avec des données initiales positives ne devien
jamais identiquement égale a zéro.
© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction
Let 2 be a bounded domain R, b(x)a nonnegative function i, non-identically
zero and (< g < 1. Consider the following equation semilinear equation
du— Au—+b@)|ulftu=0 in 2 x (0, 00),
du=0 on 942, (1.1)
u(x,0) =ug(x) in 2.
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veronl@univ-tours.fr (L. Véron).
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This type of equation is a simple model to understand some phenomenologica
properties of nonlinear heat conduction with a non-constant strong absorption tern
b(x)u?, depending both on the media and the temperaturg is well-known that if
b(x) > B > 0 the comparison principle with the solutions of the ordinary differential
equation

o +vylpl" to=0 in(0,c0),
(1.2)

@(0) = lluoll o>,

implies thatu vanishes for > T = ||uo||i;?/y(l— q). The property that any solution of
Eq. (1.1) becomes eventually zero fdarge enough is called the Time-Compact Support
property (shortly th& CS-property). On the opposite, if we assume th@at) = 0 for any

x belonging to some connected open sulasef $2, the restriction tav of any solution

u of (1.1) satisfies the linear equation

du—Au=0 inw x (0, 00). (1.3)

Let 1, denote the first eigenvalue 6fA in Wol’z(a)) and ¢, the corresponding
eigenfunction normalised by maw,, = 1. If we assume that is a nonnegative solution
of (1.1) with essinfuo = o > 0, thenu(x, t) is bounded from below bye "¢, (x)
onw x (0, 00).

Between those two extreme situations there exists a wide class of situations whicl
were first explored by Kondratiev and Véron [10]xliis an integer, they introduce the
fundamental state of an associated Schrédinger operator

Un = inf{/(|v¢|2 +2'b(x)P?) dx: ¥ € WH3(R2), /1//2dx = 1}, (1.4)
2 2
and they proved that if
> () < 0o (1.5)

n=0

holds, then (1.1) possesses th€S-property. For example, ib(x) > 8 > 0, then
w, = 2" and the above series is convergent. On the contrarg(xij = 0 for any
X € o C §2 for some open subdomain, thenu,, < 11, and the series is divergent.

In this article we study th& CS-property for a much more general class of quasilinear
equations which need not satisfy any comparison principle between solutions, namel
we consider weak solutions of equations of the following type

ou—V.Ax,t,u,Vu) + f(x,u) =0 in 2 x (0, 00),
d,u =0 ona x (0, 00), (1.6)

u(x,0) =ug(x) in 2.
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Besides the standard Caratheodory assumptiongt and f, it is assumed only a
minimal linear growth estimate in the gradient for

|[A(x,t,r, p)| < Clpl,
.7
A(x, 1,7, p).p = 1pl?

’

for some positive constardt. As for the functionf, we shall assume that there exists a
nonnegative, bounded and measurable fundiiand a real numbey € [0, 1) such that,

fx,rr =bx)|r)et, (1.8)

in 2 x R. Defining the functionu on (0, o) by
o) = inf{/(lvwlz—i—a‘flb(x)wz) d: v e WH2(£2), /wzdx = 1}, (1.9
Q Q

we first prove the following result.

THEOREM 2.2. —Suppose thad < ¢ < 1, that » is a nonnegative, bounded and
measurable function defined 2 and that there exists a decreasing sequefigg of
positive numbers such that

o0

>

7 o)

<In(u(ozn)) + In( o ) + l) < 00, (1.10)

Opt1

then Eq.(1.7) satisfies th@ CS-property.

Under this form, this result is not easy to apply, but a simpler form of the above
criterion is derived from the fact that the existence of a decreasing seqyepnce
satisfying (1.10) is a consequence of the following relation

1

/In(u(t)) dr
— <0
() ¢

(1.11)

Since the functione in (1.9) is monotone anfty,,} decreases, condition (1.10) implies
that lim,_, o, u(a,) = oo and lim,_, o a0, = 0. It is derived from (1.9) that the analysis of
the functionu near 0 is linked to the analysis of the fundamental state of the Neumann
realization of the Schrodinger operatly -z, in L2(£2) defined by

¢ > Hy-2y0 = —Agp +h™?b(x)g, (1.12)

in which 7 is a positive parameter tending to 0. Because we will need only a rather weak
information, this analysis of the behaviour @fcan be performed by using techniques
of the so-called semi-classical analysis. Using a formula due to Lieb and Thirring, we
obtain an estimate on meas. 1 ~2b(x) < p} from which we derive a simple integral
criterion which implies thd CS-property in a bounded domain.
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THEOREM 3.1. —Suppose thatv > 1, and thatb is a bounded, measurable and
almost everywhere nonnegative function which is essentially positive i@arlf
In(1/b) € L7 (£2) for somep > N /2, then estimatél.11)holds.

A similar result holds if the Neumann boundary conditions in (1.6) are replaced by
homogeneous Dirichlet condition, without the assumption thigtessentially positive
neard$2. For example ifb > 0 is continuous and nonnegative &, analytic in$2 and
positive ond$2 the above integrability condition is satisfied. We give other examples in
which the seb—1(0) has a much less regular structure.

On the opposite, the global non-vanishing property asserts that a solution of som
inequation with positive initial data will not vanish for any positiveOur method is
a local one, settled upon the study of some mean value types inequalities, therefore w
consider semilinear differential inequalities in divergence form in some dofpairRN
(not necessarily bounded)

0pu — Oy, (@ (x) 0y, u) + b(x)u? >0 in 2 x (0, 00),
>0 in 2 x (0, 00), (1.14)

u(x,0) =ug(x) in 2.

The matrix A(x) = (a;;(x)) is symmetric, locally bounded and defines a locally
uniformly elliptic operator ing2, ¢ is some real number with & ¢ < 1, andb €
Li/%79(22) a nonnegative function. i C £2 is any smooth subdomain apds L> ()

is nonnegative, we denote by

U;‘w = inf{/.((lij(x)aleﬁaxilﬁ + p(x)wz) dx: Ve Wg"z(a)), /wzdx = l}

(1.15)

If ¥, is a corresponding positive eigenfunction andgfe L .(£2), uo > 0, we define

( U;\,a)(-[w Wp,w“()dx)liq )

1
Troluo) = J=In| 1+ (f, Y=y, , dr)*™

X

(1.16)
Our general criterion for a global nonnegative weak solution not to vanish is as follows.
THEOREM 4.1. —Let
u € C([0,00); L (£2)) N L ([0, 00); Wiga (£2))
be a weak solution dfL.14) If

supT, , (ug) = o0, (2.17)
p,w

then, for anyr € [0, o0), x — u(x, t) is never identically zero.
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Clearly the above criterion is uneasy to check since the initial vaju@and the
potentialb appear only in a very intricate way in (1.16). Therefore we shall give a series
of expressions where infessg > 0, which emphasizes the local behaviomafiear its
minimal value 0, and will imply that (1.17) holds fa, , (1o). For example

THEOREM 4.3. —Let us assume that the matrit(x) is uniformly elliptic and
bounded. Fowy € £2 let us introduceR, = supr > 0: B.(y) C £2}. Then, ifinfess, ug >
0,

1
2
Sup sup r In( ):oo:>su T, ., (ug) = o0o. 1.18
}'EQpO<r<FI)€y Jiyyp DY) dx p’wp p,0 (U0 ( )

Condition (1.18) is strongly linked to the behaviourigfr) near the seb—1(0). As
another application, we prove thatpif> 0 satisfies

sup r2In< 11/(17@ ):oo, (1.19)
0<r<RXO f|X—X0|<Vb dx

for somexg € £2 andu is a solution of (1.1) with a continuous initial data nonnegative
in £2 and positive akg, thenu(xq, 1) > 0 for any ¢ >0.

In the model case of Eq. (1.1) with(x) = e"*—*I™" for somexo € £2, the border
case betweemCS-property and its negation occurs for= 2.

Our paper is organized as follows:

(1) Introduction.

(2) The time compact support property.

(3) The semi-classical analysis.

(4) The non-vanishing property.

(5) References.

2. The time compact support property

In this sections? is a bounded domain &®N (N > 1) with a Lipschitz-continuous
boundary,A: (x,t,r, p) = A(x,t,r,p) and f . (x,t,r, p) — f(x,t,r) are measurable
functions from2 x R, x R x RN with value respectively ilRN andR. We assume that
A and f are continuous in the variablés p) € R x RN and satisfies

() |A(x,t,r, p)| <Clp| N
(V(x,t,r,p) € 2 xRy x Rx RY),

(i) ACx. 1.7, p).p > a|pl®
(2.1)
Fet,r)r =b@)|r|™  (V(x,t,r) € 2 xRy xR), (2.2)
for some positive constants and «. In the sequeb is a bounded, nonnegative and

measurable functior, is a parameter if0, 1) andC denotes a generic positive constant,
whose value usually only depending €n and sometimes oA, b andg.
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DEFINITION 2.1.—A function u belonging to C([0, co); L?(2)) N L2 ([0, 00);
WL2(2)) and such thaif (., ., u) € L2.((£2 x (0, 00)) is a weak solution of the problem

ou —V.A(x,t,u,Vu) + f(x,t,u) =0 in £ x (0, 00),
du=0 onas2 x (0, o), (2.3)
u(x,0) =ug(x) in 2,

whereug € L%(£2), if for any ¢ € L2 ([0, 00); W2(£2)) N Wt2([0, o0); L2(£2)) and
¢t > 0, there holds

/ /(_u;, At u, Vu).VE + f(x.tu)¢) dedr
0 Q

= /{(x,O)uo(x)dx — /g'(x,t)u(x,t)dx. (2.4)
2 2

Remark2.1. — Assumptions 2.1 and 2.2 are the natural ones for giving meaning to
the notion of weak solutions and to use energy estimates in the $pat@?2). The use
of energy estimates is fundamental for deriving uniform bounds of the solutions via the
Nash—Moser iterative scheme afd-time exponential decay. Moreover, by changing
the functionsA andb it is always possible to assume that 1, which will be done in
the sequel.

The scheme for proving that weak solutions of (2.3) may vanish identically when
becomes large enough is first to start by an exponenfialecay estimate at time,
and this is done by using the energy estimate. Then, thanks to the regularizing effect
associated to this type of equation, to transform fidsestimate into an exponential
L*>-decay estimate at time, + 7;. Finally using the fact that the exponegtis less
than 1, to derive an improved exponentizd decay at timerg + 71 + 2. The TCS-
property will follow by iterating this procedure and optimizing over the different time
shift t; i =0,1,...,00). The following a priori estimates are classical in the theory
of monotone second order parabolic equations, but for the sake of completeness and
point out the role of our assumptions, we shall give a sketch of their proofs.

THEOREM A. — Suppose thak > 0 a.e. in$2 and thatu is a weak solution of2.3).

() f upe LP(2) (2< p < o0), thenu € L>®([0, 00); L7 (£2)) andt — |lu(., 1)L
is decreasing offi0, co).

(ii) If uge L?%(R2), thenu(., 1) e L*®(£2) for anyt > 0 and there holds

(D) < CA+ 7YY o]l 2, (2.5)

whereC = C(£2).

Proof. —The proof of (i) is straightforward, by taking as test functions the trun-
cated functiort;, ,(u) = min(m”~1, [u|?~1)sign(u) for m > 0O (at this point the assump-
tions (2.1)—(2.2) are needed), and then by letting m go to infinity. The proof of (ii) is
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an adaptation from Evans [4] of the celebrated Nash—Moser iterative scheme [17,16]
It relies on takingT,, ,, («) as test functions, for some sequengg},en = {2k"},en-
Herek > 1 depends only oV via the Gagliardo—Nirenberg inequality (this is for this
point that we need the Lipschitz regularity &f2). Using the definition of a solution
betweery,_, andz, wherer, = (1 — 27")¢, instead of 0 and and applying the previous
imbedding inequalities yields an estimate of the type

Cp, ity — ta—n) || Min(lu(., ,)], m)||2*
< (14 (0 = tp-) [ min(luC, 8], m) [ 75,22, (2.6)

valid for anym > 0 andn € N. This series of inequalities implies (2.5).
O

We define a decreasing functignon (0, co) by
we) = inf{/(|w|2 + ot h()y?) de: e WH(R), /wzdx = 1}. (2.7
2 2

The following L*> exponential decay estimate is fundamental in the sequel.

LEMMA 2.1. —Supposeé > 0Oa.e. inf2,0< ¢ < 1landu is a bounded weak solution
of (2.3) such that|ug|| 1~ < « for somex > 0. Then

(. 0)]| e < Min(L, C (@))€ @) fugll e (V1 >0). (2.8)

whereC = C(£2) > 0.
Proof. —We take: = u in (2.4) and use (2.2), then

t
//(—uut—|—|Vu|2+b(x)|u|q+1)dxdtg/uz(x,s)dx—/uz(x,t)dx
s 22 2 2
for 0<s < t. Since|u|?~ > = by Theorem A(i), we get

1d
o u?dx + / (IVul? 4+ ba?'u?) dx < 0. (2.9)
2 2
Combining this with Hdlder’s inequality yields
[uC, 9] 2 < € luoll 2 < (2126 Jlug|| 1 (2.10)

for s > 0. From (2.5)

1 \ V4
Jut 0l < (1457 ) 12126l (2.11)

If we taker — s = 1/u () (this is actually almost the optimal choice fowhenu («)
is large), we derive the following inequality from which (2.8) follows immediately

N/4 _
Peo2e @, o

N/4
C (1 + ) 12172671 = C(1+ p(@))

r—s
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THEOREM 2.2. —Let us assume thg®.1)—(2.2)holds and thaf{«, } is a decreasing
sequence of positive numbers such that

0]

oy
nZ:l o) (In(u(an)) +1In (am) - 1) < 00. (2.12)

Then any weak solution ¢2.3) satisfies th& CS-property.

Proof. —Since any weak solution of (2.3) is bounded for positiveve shall assume
that uo is bounded. By changing into Ax and b into A1~?b, which does not affect
the property (2.12), we can also assufmé., 0)|| .~ = 1. Settingeg = 1 and applying
Lemma 2.1 yields

(.. Ol < min(1, C (D))" e @), (2.13)

Clearly if t > to = In(C((1)M*) /1 (), then|ju(., )|z~ < C(u()N* x e D7 We
definer; > 1o by

o = C(,u(l))NMe*tl“(l) &

N/4
1 |n<c(“(1)) ):rl (2.14)

(1) o1

(it is always possible to assumg < 1). Sincelu(., 1)L~ < a1, we apply Lemma 2.1
with O replaced by;, and obtain

(., )| o< MIN(L, C () e (-1 o (2.15)
in 2 x (t1, 00). We definer, by
oz = min(1, C(M(al))N/4ef(’27t1)“(°‘1))011

=C (M(al))N/4e*(12*11)ﬂ(a1)a1
& (2.16)

N/adL
p(ery) n (C (1 () 062) '

Iterating this process, we construct an increasing sequeraich thafju(., 1) |~ <
o, 1 fort>1,_1and

Ip—11 =

o, = mln(l, C (I’L (an—l)) N/4ef(tn*[nfl)ﬂ(anfl))an_l
N/& _(t —
=C (M(an—l)) / e (tn tll—l)ﬂ(all—l)an_l
& (2.17)

In(C(M(anl))N/4 u)

n

t, — 1=
" " :u(anfl)

Consequentlyju(., )|z~ < o, for t > 1, and accordingly

(., )] o < MIN(L, C ())& 1@ (., 1)) - (2.18)
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From (2.17)
n-t 1 O
fy —fo= Z T In (Cu(ak)a—>
>

k+1
O
=InC | In[—— ) ). 2.19
" Zu(ak) kou(aw(”(“(a"))“( )) (2.19)

Ok+1
By assumption the right-hand side is bounded. Thereforg_ligv, = T and (2.18)
yields

n—1

(., )], < min(L, C(u(an))NMe =Dt g, (2.20)

for+ > T. Because of (2.12), lip, o, u(e,) = oo and IlmHOQ(M(ozn))l\’/4 x @ @) —Q
for any§ > 0. Lettingn go to infinity in (2.20) implies|u(., )|, =0t >T). O

Actually the following result gives a simpler form for the assumption (2.12).

THEOREM 2.3. —The existence of a decreasing sequence satisfying con(2ibg)
in Theoren?.3 is implied by

1
/'n("(t))g < co. (2.21)
wu() 1
Moreover it implies
1
/ B (2.22)
/ tu(t)

Proof. —Suppose that (2.12) holds for some decreasing seqyenteonverging to
zero and such thatQ o, < 1. Then{u(w,)} increases{1/u(«,)} decreases for large
enough £ > 1 without any loss of generality) and ljm, u(«,) = co. Therefore

Apn

1 n - de 1 "
-2 < / < N (2.23)
M(an-‘rl) Uyt . tl’L(t) ,LL(Oln) Uyt
Oyt
and
ay
dr > 1 .

/ <> In -2 < 0. (2.24)
0 l‘,LL(l) n=1 M(an) Ont1

Conversely suppose that (2.21) holds and considgy = {27"}. Then In«, /a,11) =
In2,

97}
In In Inw(r) de
,LL(O(,H_]_) In an+l M(an-‘rl) In < / ,LL( )_
Api1

, (2.25)
,LL(O[,H_]_) Apy2 M(an-‘rl) ,LL(Z‘) t

Up+1

and
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1 In &t _ 1 oy < |nu(t)g

M(an-‘rl) On42 ,l,L(O[,H_]_) an+l |nM(0ln+1) M(t) t’
<1 / In (o dr. (2.26)

Inw(2) w(t) t
Op+1
Consequently
Z (In (@) +In< >+1) c/ np@d _ 2.27)
— Opt1 u(t) t

forsomeC > 0. O

Remark2.2. — In problem (2.3), we can replace the Neumann boundary condition on
952 by a Dirichlet boundary condition. In that cagéx) has to be replaced hyo(«),
which is defined in the same way, except that the test funcijoirsthe definition (2.7)
are taken irW(}’Z(Q). Lemma 2.1 still holds without any regularity requirementoap.
Consequently, if there exists a decreasing subsequgntsuch that

oo

1
n; 1o(Bn)

(In(uo(ﬂn )+In< b ) +1) < 0, (2.28)

,BnJrl

then any solution of (2.3) with Dirichlet boundary conditions satisfieSTtB&-property.

Remark2.3. —If b(x) > B > 0, then u(a) > Ba?~! and the convergence of the
integral in (2.13) follows. More generally as soon as there exists an estimate of one
of the following types

@) > Ka™ (Ya e (0,00)) (2.29)
for somes > 0, or
(@) > K(In@™)”  (Yae(0,1)) (2.30)

for somep > 1, then the condition (2.12) is fulfilled. Therefore the key problem is to
look for a condition on the functio® which implies estimates as above. Clearly, if
b =0 in some subdomain C £2, (2.12) does not hold.

Remark2.4. — Estimate (2.8) in Lemma 2.1 has the disadvantage that it contains the
term C (o) V/4e~""@ which might be very large whenis close to 0, (or equivalently
the exponential decay will not be effective unlesss large enough, depending on
w(w)). If we suppose tha#(x,t,r, p) = p, and f(x, u) = b(x)|u|? " u (2.3) reduces
to a semilinear heat equation. The Riesz—Thorin interpolation theorem applied to the
linear problem

du — Au+a? tb(x)u=0 in 2 x (0, c0),
du=0 ondR x (0, 00), (2.31)
u(x,0) =ug(x) in 2,
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whose solutions are natural supersolutions for (2.3), implies the following decay estimate
HM( s I)HLI’ < e_ZIM(a)/pHMOHLP (232)

forr > 0 and 2< p < oo, while Lemma 2.2 means an exponential decay estimatédin
of orderC (u(a))N/4e~"@ 1t would be interesting to know for what type of nonnegative
and bounded functions(x) the following estimate holds:

., )| e < CEHOPug| o0 (2.33)

for ¢ > 0, with constant€”, § > 0 independent ofi(«). This estimate wittd = 1/2 was
supposed to be always true in [10], which we do not know; therefore in Theorem 4.3
(respectively 4.7) of this paper, inequallfyg’ 1, < oo (respectivelyd g° ;Y2 < 00)

has to be replaced By y° In /i, < oo (respectivelyd 5° Inu, /. /it, < 00). However

if any solution of (2.31) satisfies an estimate of the type

[, )| oo < CE* P lug| v, (2.34)

for anyt > 0, with constantg”, § > 0 independent ok, then inf ess. b(x) > §. This
follows by takingug = @, wheredg, is a first eigenfunction of the Neumann realization
of —A +a?71b(.) in L?(£2) and by applying Lemma 3.2 in Section 3.

The TCS-property admits a local version if we assume that the operatmduces
to a N x N bounded and measurable matix) = (a;;(x)) andr — f(x,r) is
nondecreasing. b C §2 is some subdomain, we denote

100 (@) = inf{/(|w|2 + ot )y ?) de ¥ € Wi(w), /de _ 1}, (2.35)

w

and we consider the following problem

ou —V.(Ax)Vu)+ f(x,u)=0 in 2 x (0, c0),
du=0 ond 2 x (0, 00), (2.36)
u(x,0) =ug(x) in 2.

THEOREM 2.4. —Letw C £2 be some smooth subdomain. Assumerthat f (x, r) is
nondecreasing for any € £2, satisfieq2.2)with0< g <landb e L*(£2),b >0a.e.
in £2. We assume also thatis essentially bounded from below by a positive constant in
a neighbourhood odw and that there exists a decreasing sequence of positive numbers
{v.} such that

o0

>

n=1

<|n(,m,w(yn)) + |n< Y ) + 1) <00, (2.37)

10,0(Vn) Vit

If u is a solution of(2.36) then for any compact subsét C « there existsT > 0
depending orK, ug and{y,} such thatu(x, r) = 0for any(x,7) € K x [T, 00).
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Proof. —From (2.2) and the Caratheodory assumptian, 0) = 0 andf (x, ) has the
sign of r for anyx € §2. Consequently, ifig is nonnegative, the same holds forFrom
Theorem A(ii) we can assume thatis bounded and therefore continuousvis (0, c0),
from the standard regularity theory for parabolic equations. Finally, forrany there
holds

u < Uz + Ur2 (238)

ono x [t, 00) where theu, ; are solutions of
dur; — V. (AX)Vu,,) + b(x)uz’i =0 inw x (0,00), (2.39)

fori =1, 2, with the boundary and initial conditions (remember th& continuous),

M1,1=0 ondw x (t, 00), U 1,0 =u(., 1) inw,
. (2.40)
Urp=u ONIw X (1,00), ug2(.,00=0 inw
Moreoveru, 2(x, 1) < ¢, (x) in w x [t, 00) for anyz > 0, where
—V.(AX)Ver) +b(x)pl =0 inw,
(2.41)

¢ (x) =supu(x,t) ondw.
>t

By the assumption oh, there existw’ C @' C w andé > 0 such that inf esg, b = 6.
Consequently foe > 0 small enough the solutioy, of

—V.(A@)Y:) +8Pe|Yel” t=0  inw\@,
Ve(x)=¢ ondw, (2.42)
Ye(x) =0 ondw’,

is nonnegative and has compact suppoii@’ [5]. Defining

~ . in ' ~ § in /|
7. = ¥ w\w and B — w\w (2.43)
0 ino, b in,
we see that/, is the unique solution of
—V.(AX)Y,) +by?=0  inow,
- (AX)Ye) + by w (2.44)
Ye(x)=¢ onow.

Sinceu(., t) has exponential uniform decay when- oo, there existg > 0 such that
lull L (wx (r.00)) < €. From the maximum principle/, > ¢,, and consequently, has
compact support iw\o'. From Remark 2.2, there exists> t such that, ;1(x,7) =0
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inw x [T, 00). Thereforeu =0 in@’ x [T, 00). Because we can replaeéby any larger
strict subdomain ofy, it follows that if K C w is any compact subset amda solution
of (2.36), there exist® =T (a, K, ||u(.,0)||.~) > 0suchthat =0in K x[T,00). O

3. The semi-classical analysis

The semi-classical analysis deals with the description of the behaviour of the spectrun
of H,2,0 = —Ag + h=?b(.)¢ whenh > 0 goes to zero. Writingd,,—2,¢0 = —Agp +
a?71b ()@, then the first non-zero eigenvaliig = 11 (k) of this operator can be written
as

A = 11 (@) = (). (3.1)

We denote by (H,,-2;,, £2) the spectrum of the Neumann realization )y 2, in L2(£2).
Sinces? is bounded, this spectrum is discreteH,—=,, 2) ={1;: j=1,2,...}. Thisis
usually not the case i2 = RN. We also introduce the counting numberff 2, defined
for 6 > 0 by

Np, 5, 2(0)= card{x € o (Hj-2;, 2): 2 <0}. (3.2)
The following theorem is the main result of this section.

THEOREM 3.1. —Suppose thatv > 1 and thatb is a bounded, measurable and
almost everywhere nonnegative function which is essentially positive ®@arlf
In(1/b) € L7 (£2) for somep > N /2, then equatior(2.3) satisfies th& CS-property.

Since we are dealing with Neumann boundary conditions, the assumption on the
boundary lower bound ob is essential in our proof in order to extend some known
estimates concerning spectrum of Schrédinger operators defined in the whole space tc
bounded domain situation. The next lemma gives a very rough estimate on the behaviot
of A1(h) whenh goes to zero.

LEMMA 3.2. —Assume thaiV > 1 and thatb is a locally bounded and measurable
function ing2.

(i) If essing b =n >0, thenlim,_.oh?Ar1(h) = 1.

(i) If b(x) > O0for almost allx in £2, thenlim;,_,gA1(h) = oco.

Proof. —(i) It is always true that:?A1(h) > essminco b(x) = n. Lete € (0, 1), and
2, ={xe: n<bkx) <n+e} The setf2, is measurable with positive measure,
therefore almost all its points have density 1 with respect to Lebesgue measure [4] the
is

meas(B, (x) N £2;,)
r—0 meas(B,(x))

(B,(x) denoting the ball of centet and radiusr > 0). Let y be a point inf2, such
that (3.3) holds, then for any € (0,1/2), there existspp > 0 such that, for any
0 < p < po,

=1 (fora.ex e £2,) (3.3)

meas(B,(y) N £2,) > (1—5)meas(B,(y)). (3.4)
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Let us defined(e, p) by (e, p) = meas.(B(y)\$2.)/meas.(B(y)); from (3.4) we
deduce the inequality

0<b(e p) <6 (3.5)

We denote byky g, the first eigenvalue of-A in Wy?(B,(y)) and by, the
corresponding eigenfunction with the normalizayfgpqy) (pgp(},)dx =1. Leta(e, p) =

6(¢, p)Y/N. Sincegp,(y) is radially decreasing and sind®,(y) N 2. and By, ), (y)
have same measure, we obtain

2 2
/ i, I < / @i, ) A, (3-6)
Bp(}')\ga Botp(y)
and, using (3.5) and the definition @f

2 2
P, I < / P,y Ax-
By()\ Q2 Byn ()

But ¢p,(y)(x — y) = p~"2pp, ) ((x — y)/p), SO we get

(plz?p@) dx = / (01_%;1(0) dx =y (9). 8.7)
Bp(;l/N (}’) B(gl/N (y)
It is clear thaty (6) — 0 ass — 0, and we have
/ ‘/’zzep(y) dx <y (9). (3.8)
By ()\$2¢

Finally

ph) < / (IV8,00 2+ h2b(x)03, () dx

B, (y)
<A 2 [ b . dv 4+ h-2|b 2
SALB,() T (X)QUBp(y) + 6]l Lo B,y
Bp(}’)mga Botp(y)
<Avrp,on +h 2 +n0) +h72[bllL~y (), (3.9)

which implies that limsup.,,h2r1(h) < (¢ + 1) + [|bll.=y(8). Sincee and § are
arbitrary, the claim follows.

(i) Let us assume that (ii) does not hold and that there exists a positive coGstanh
thatr1(h) < C, for anyh > 0. Lety; , be the corresponding eigenfunction normalized
by [, ¢, dx = 1. Our assumption implies thak , remains bounded i *2(£2) and
subsequently we can, by compactness, extract a subseqgance such thatp, ,, —
@10 strongly in L2(2) ash, — 0. But [, (h?|Ve? | + b(x)p?,) dx = h?ry, < h2C,
therefore|,, b(x)gpZ,dx = 0, which leads to a contradiction.c
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If we seto (H,-2;, RN) = {Xj: j=12,...1}, the following moment formula due to
Lieb and Thirring will allow us to estimate the first eigenvalues wheyoes to 0.

THEOREM B. — Suppose that > 1 and thatb is a locally bounded, measurable and
nonnegative function defined RN with the property thatim ess, |, . b(x) = co. Then,
for any real numbey satisfyingy + N /2 > 1, there exists a positive constahj y such
that

So-iy <ty [ (e=he) e, (3.10)
3i<p (x: 2B <p)
foranyp > 0.

The usual conditiop < infesso (H,_;, RN) is vacuously fulfilled since the assump-
tions onb imply that ess (H, »;, RN) = ¢, and it is worth noticing that, wheN > 3
and 2 = RN, it is possible to impose’ = 0 thanks to the celebrated Cwikel-Lieb—
Rozenblyum formula ([2,12,18] and [8]), which gives an upper estimate of the counting
number:

Ny, rv(0) < Ly / (0 —h b))\ dx = Ly / dx dé,
(h=2b(x)} <6 {I&124+n—2b(x)}<0
(3.11)
for any6 > 0.

Proof of Theorem 3.1 Since Il/b) € L?(§2) for somep > N/2, b(x) > 0 for
almost allx in £2. We denote dist, £2) = 83 (x) and define essiph b by

esé%mﬂa =lim ( essmfb(x)). (3.12)

r—=>0\ 8o (x)<r

If we assume that essignb is not smaller than essisy b, then the assumption dn
implies thatb is bounded from below 2 by a positive number. Therefore tH&ES-
property holds from Section 2. Since the same conclusion holds if ess inf0, in the
sequel we shall assume that=0essinf, b < essinf, b. We defineb in whole RN by
setting

b(x) = (ess inb) (1+82(x)) (Y e RM\12). (3.13)

If X1 = A1(h), the semi-classical analysis [8] assérigh) = A1(h)(1+ o(1)) ash — O.
Applying Theorem B withp = 311 (h) yields

(M) <L,y / (3ry(h) — h=2b(x))" ™ dx. (3.14)
{x: h=2b(x)<Bra(h)}
Since O=essing b, lim;,_,oh?A1(h) = 0 by Lemma 3.2. Therefore
{x eRN: h72b(x) <3h1(h)} = {x e RN: b(x) <321 ()}
={x € 2: b(x) <3h*r1 ()}, (3.15)
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and (3.14) implies
(A(h))” < L, ymeas{x € 2: h=2b(x) < 3y (h) } (a(h)) ™2, (3.16)

or equivalently

~ N/2 ) 1 1 }
1<L r(h meas £2:1n >1In
rv(Aa() {xe b() ~ " BhZaa(h)

=~ N/2 ) 1 1
<L, n(u(a)) meas{x €f:1In ) >1n @) } (3.17)

with the notation (3.1) (notice that ligm, o7 (o) = 0). But

1 1 1 Ly
meas{x e2:In ) >In 3aq—1u(a)} < (In ;)”.Q/O” %) d

3ad ()
(3.18)
therefore we derive from (3.17), (3.18) that there exist- 0 and G, ., , > 0 such that

11(e) = Cyoypp (@ @)™ (Vo € (0, o). (3.19)

It follows from (3.19) that liRg_,ou(x) = co. In order to derive a lower estimate
on u(a) by a function ofa, we setx = o@DV y = y(x) = (u(a))N?” and
k= (2p/N)CN'?P. Thenx e [xg, 00) With xo = a(()qfl)N/Zp, lim,_ o y(x) = oo and

0 < y < x. With these notations inequality (3.19) reads

y=>kin(x/y) < x < ye'/*t, (3.20)

If we define the functionx — z(x) on [xg, oo) by the relation = z&/*, then by
monotonicityz&/* < ye'/* = z < y. But x = z&/* implies lim,_, o Inx/z = 1/k and
there exists:; > xg such thate > x; impliesz > (k/2) Inx. Consequently

y(x) > 5 Inx = pu@) > (A—q)/2)""" (Ina )" (Vo e(0,a1]) (3.21)

for somea;. Since /N > 1, [y '%()’) & < o0, and theTCS-property holds from
Section 2. O

Remark3.1. — Estimates (3.18) is actually an estimate in the Marcinkiewicz space
MP($2). However we have not been able to exploit this weaker form.

Remark 3.2. — The essential positivity assumed bnnear the boundary can be
weakened if we assume that the functiénis continuous in2 and has only
isolated zeroesas, ...,a,} on 352. In this case, we first introduce a fami{y2;} of
disjoint open neighborhoods of the;}, and in each of them we perform a local
reflection on the boundary (up to a nonlinear change of coordinates), which reduce
the boundary degeneracy problemiofnto an internal degeneracy problem S =

2\U,_,., 2,02, and if we denote b2 (h), 2(h), AL"% (h) and A{7 (h) the
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ground states of the Neumann realizationtf », in L2(£2), L?(22), L?(£2 N £2;) and
L2(£2;) respectively, then it is classical that

W2 (h) = inf 2 () 2202y, 2" () (3.22)
Slnce /\fm’(h) ~ Al’(h) in the sense that there exists > 0 such that 1C <

’(h)//\lf(h) < C foranyh € (0, hol, the extension of the previous result follows
from the general internal criterion.

In the case of Dirichlet boundary conditions we have a stronger result.

THEOREM 3.3. —Suppose thaiv > 1, and b is a bounded, measurable and almost
everywhere nonnegative function.Iif(1/b) € L?(£2) for somep > N/2, then any
solution of Eq.(2.3) subject to homogeneous Dirichlet boundary conditions instead of
Neumann satisfies tHeCS-property.

The proof goes as the one of Theorem 3.1 except that the extended pdieatiabe
taken to be identically equal to infinity RN\ £2. For such a potential the Lieb—Thirring
formula applies.

COROLLARY 3.4. —Suppose thatv > 1, and b is continuous in2 and positive in
2\F, where F = |J/_; C; and theC; are C* and d-dimensiona(0 < d < N — 1)
compact submanlfolds oP. Suppose also that there exigts> 0 and0 < o < 2(N —
d)/N such that

b(x) = Cexp(—38;°(x)) (Vx € ), (3.23)
wheredr (x) = dist(x, F), then Eq.(2.3) satisfies th& CS-property.

Proof. —If we setV, = {x € £2: b(x) < t}, we have

V,C D, ={x e 2: Cexp(—8;° (x)) <1}. (3.24)
But
C —1/o J C —1/o
D,:{xe.Q: 8e(x) < <In7) }C/L:Jl{xe.Q: 5c,(x) < (InT) }
(3.25)

wheredc, (x) = dist(x, C;), and by the co-area formula (or also Weyl's formulas),

C (d—N)/o
|D,| < C’<In 7) . (3.26)

Therefore, if we set Ifl/¢) = T, we have
TWV=D/71y,| = TN D/ meas{x € 2: In(1/b(x)) > T} < C". (3.27)

This means that k1/b) € MN=D/7(2). As (N —d)/o > N /2, the result follows from
Theorem 3.1 and Remark 2.30
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Remark 3.3. — The regularity ofF = »~1(0) in Corollary 3.4 is not really necessary,
and even the integrality of/. The only important ingredients for obtaining the
TCS-Property are the inequality (3.23) and the Lebesgue measure of the tubula
neighbourhoods of .

COROLLARY 3.5. —SupposeV > 1, b is analytic in§2, nonnegative and continuous
in £2 and positive ord 2. Then Eq(2.3) satisfies th& CS-property.

Proof. -=The setF = {x € £2: b(x) = 0} is a semi-analytic set in the sense of
Lojaciewicz and is compact if?. Therefore, by a result of de Rham [19,13], it is a
finite union of analytic manifold<”; with dimensiond; € {0,1,..., N — 1}, each of
them being the graph of a functioh; which satisfiesD®;| < M for someM > 0.
By Lojaciewicz’s inequalities [13,14] and the compactnessFofthere exist positive
constantsC andK such that

b(x) > C(8r(x))", (3.28)
wheresr (x) = dist(x, F). The remaining of the proof is a slight variant of the one of
Corollary 3.5, since/; = {x € 2: b(x) <t} C D, ={x € 2: C(6r(x))X <t} and

|D,| < C'tYX, (3.29)

for + small enough. Therefore X |V,| = tYXmeas.f € 2: 1/b(x) > 1/t} < C”
which means tha—* € M¥ (£2). We conclude with Theorem 3.1.0

4. The non-vanishing property

In this section2 is a connected, possibly unbounded, open subset@fv > 1), and
A = (a;;(x)) a symmetricN x N matrix with coefficients iC1(£2), which satisfies for
any compact subseéf C £2,

N
aij()EE = MK) D & (Vxe K, V(... &) eRY), (4.1)

for somei(K) > 0 (here we use the usual summation convention). This defines a locally
uniformly elliptic operator in2. We consider the following differential inequality

0pu — Oy, (@;j (x)0y;u) + b(x)u? >0 in 2 x (0, 00),
u>0 in 2 x (0, 00), (4.2)
u(x,0) =ug(x) in 2,

where ¢ satisfies 0< ¢ < 1 andb € Li/7(£2), b > 0. By a solution of (4.2),

we mean a weak supersolution in the sense of the following definition (weaker than
Definition 2.1).
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DEFINITION 4.1, —A function u belonging toC ([0, co); L (£2)) N LL ([0, 00);
Witl(£2)) is a weak solution of problen4.2) if u > 0 and for any¢ € C21(£2 x
[0,00)), ¢ =0,

//(—u{, + @ (x)dy,udy; ¢ +b(x)u) dx dr > /g“(x, 0)uo(x) dx. (4.3)
02 2

As we shall see it later on in the proof of Theorem 4.1, the assumptiotsanid ¢
imply thatbu? e L (22 x [0, 00)). If @ C £2 is any smooth subdomain apds L>(w)

loc
is nonnegative, we defing! , by

v, = inf{/(a,:,- ()3, Y, ¥ + p(0)Y?) dx: Y € Wo(w), /wzdx = 1}. (4.4)

Lety, , be a corresponding positive eigenfunction. Since the coefficients of the operatol
areC?, the functiony, ,, belongs toW?” (w) for any p such that X p < oo. We denote

U/?,a) (fa) w,o,wuo dx) o )

(L by, - gy (4.5)

1
Tp‘w(uo) = UT In (1 +

p.®

(valid becauseaiq € L (£2)). The basic criterion which implies that solutions with
positive initial data remain positive for all> 0 is the following.

THEOREM 4.1. —Letu be a weak solution d#.2) in the sense of Definitiod. 1. If
supT, , (ug) = o0, (4.6)
p,w

then, for anyr > 0, the functionx — u(x, r) does not vanish identically.

loc

(with « > 1, ¢t > 0), and it follows from (4.3) that

Proof. —Sinceu € C([0, 00); L (£2)), we can take = V5 W X0.0)xw @S atest function

t
//(Otaij (X)‘/’g,z)laxj'uaxl' Vp.w+ bx)u? ‘/’g,w) dx de
0 o

> /uo(x)lﬁ;"wdx— /u(x,t)w;"wdx. 4.7)

w

By the chain rule and the eigenvalue equation satisfied by,
=0y, (V5 i (), ¥p0) = (v}, — POOVUS , — (@ = DY 2ai; ()0, ¥ .00 V.o
<), —p@)VYe,.

Becauseu(., 1) € Wisa () a.e., is nonnegative arl, v, ., = a;; (x)v; X 9,1, <0
on dw, it follows by approximatingu(.,¢) by smooth nonnegative function, Green’s
formula and the above inequality that
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[aswgtogunvpode < [(h, = o), de <, [vg,de (@8

w w

Using this last inequality in (4.7), and lettirggo to 1, yields

t t
/u(.,t)l//p,wdx—I—v;‘,w//uxlfp,wdxdt—i—//b(x)uql//p,wdxdt
0 0 w

w

> / uoW o dr. 4.8)

w

Since 0< g < 1, we have by Holder’s inequality (this implies thiat? € LL (2 x

[0, 00)))
q
/ b)Yy o dr < ( / uwp,wdx> ( / bl/“—q)wp,wdx)

w

1-¢q

Setting y(t) = [, uy,,dx and K = (f, oYy, ,dx)*"7 we derive an integral
inequality

Y0+, [Y©d+K [V6ds >0, (4.9)
0 0

to which we associate an integral equation

t t

z(t) + v;‘w /z(s) ds + K /zq(s) ds = y(0), (4.10)
0 0

equivalent to a Bernoulli differential equation

SV KA =0 onl0.00) 20 =3O = [uoppud (411

w

Sincew = z — y satisfiesw (r) +v7' , [o w(s) ds+ K [g £(1)w(s)ds < 0 on[0, co) where
the functionf = (z7 — w?)/(z — w) is continuous, it follows from Gronwall’s inequality
thatw < 0.

The solution of (4.11) is explicited by introducing the unknawn? (which gives rise
to a linear equation). Combining this expression and the factytbat yields

_ K
ylfq (t)e(lfq)v:}’mt > Z17q ([)e(1*¢1)vé,mt — )’é q _ UT(e(lfq)v[}’mt N 1>. (4.12)
0w
As long as
1 z(0v4
t < ﬁ"](l_k M) =T*’
Q=g K
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the right-hand side of (4.12) remains positive. Because of the assumptia)) oi®) =

Jo ¥p.otody, and T* = (1/(1 — ¢))T, . (uo). But sup, , T, ., (uo) = oo, therefore for
anyt > 0 there existo C 2 andp € LY (w) such that(1/(1 — ¢))7T,. ., (uo) > t, which

implies [ u(x, 1)y, »(x)dx >0. O

Whenb is degenerate on the boundary it may be useful to replace the local Dirichlet
eigenvalue problem associated to a functjordefined inw by a global Neumann
eigenvalue problem. Assuming th&t is bounded, thap € L*(£2), p > 0, we denote
v by

0

VA = inf{ /'(al;, ()3, Y3 Y+ p ()Y) it ¥ € WHQ), / Y2y = 1}.
2 2

(4.13)
If ¥, a corresponding positive first eigenfunction, we deﬁpem) by
N 1 A dx )™
T,(uop) = —In <1+ vy Usg Vpitodx) — ) (4.14)
Vo (fQ bYA=y, dx) !

The proof of the result below follows the same lines as for Theorem 4.1.

THEOREM 4.2. —Assume thaf2 is bounded with a smooth boundary ants a weak
solution of(4.2). If sup, T,,(uo) = oo, the conclusion of Theorerl is still valid.

Remark4.1. — Theorem 4.1 essentially gives the non-vanishing property over a
domainw C $2 if sup, 7, ., (uo) = co. In the particular case whege= 0, then

Vo =M, = inf{/(aij(x)axjwaxig// + Y2 dr: ¢ € Woi(w), /wzdx = 1}.

(4.15)
It is clear that the condition

1 )\A A d)C 1-¢q
sup——In{ 1+ 1o Jo Poto )17 — 0 (4.16)
o Mo (f, b Dpddx)"

(herep? is a first eigenfunction associated)t@w) implies

SUpr’w(uo) = Q.
w.p

When b has only isolated zeroes, it is natural to localize the study bl using
balls centered at those zeroes instead of subdomainss2. If y € 2, we denote
R, =supr > 0: B.(y) C £2}.

THEOREM 4.3. —Assume that the matrix satisfies

O0<ai< in}‘2 SpecA(x) < supspecA(x) < A (Vx € £2), (4.17)
Xe xeR
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for some constants and A, and that

sup sup r2In< 1 > = o0. (4.18)

y€R O0<r<Ry -[BR(y) bYA= dx

If u is a weak solution of probleid.2) such thatessinf; ug > 0, u(., r) is not identically
zero for anyr > 0.

Proof. —Since essinf ug > 0, there is no loss of generality in assuming ess inf =
1. Let us first observe that (4.18) is a condition relative to a neighbourho6d¢d).
Let A1 5.,y and ¢p, () be respectively the first eigenvalue and eigenfunction-af
in W3%(B.(y)). It follows from (4.17) and Hopf boundary lemma [7] that there exist
positive constants andg such that for any € §2 and anyr € (0, R,) there holds

A

;Bi()) < -1 a d '0) \ v GQ, V7 e(o,la ) k] IlE
n y y
gOB () A’lB(V)

provided the normalization conditiopg, () (y) = gogr(y)(y) =r is imposed. Moreover
€< @p,(y)(x)/(r—|x—y|) < €7tandiq p,(y) = cr % where¢ > 0 andc > 0 only depend
on the dimensiorV. Finally

. 1—¢q . 1—¢q

)\f,w </ g0£ dx) ~ )‘l,Br(y) < / ©B,(y) dx> ~ C(N)V<N+l)<liq)72 (420)
w By (y)

(wherex~ means that the quotients of the two quantities which are involved are boundec

independently of andr), and

/bl/(l D dx ~ / YA Dy ydx < €7 / bYA= dy. (4.21)
Br(y) By (y)
Therefore (4.18) implies (4.16) witlhy > 1. O

In order to compare with the analysis made in Sections 2 and 3, it is natural to
introduce a local version gf(«), namely

,ué(a) = inf{/(aij()c)alelfaxillf —|—O(q_1b()€)1l,2) dx: 'g// S W(:)L’Z(a))’ /wzdx = 1}

(4.22)

Clearly u? (o) = U&L‘q*lb,w' We introduce the following assertions

sup sup MY/
wC2 0<a<1 ,uw(oz)

IN(L/ 16| Lo (o InAg
Sup( (W1bllz=w) 1.w> . (4.24)
wCS$2

= 00, (4.23)

A A
Al,w )“l,w
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THEOREM 4.4. —The following implications hold:

(4.24) = (4.23) = (4.6) with esg infug > 0.

Proof. —
Step 1(4.24) = (4.23).
We fix w and recall thaty,q-1, ,, is defined in (4.4) withp = «?~1b. Then

,U,é (@) / w(fq*lb,w dr = /(aij (x)axj' wa‘iflb,waxi K//aq*lb,w + aq_lb(x)wo?‘lflb,w> dx

< (4 + @ blmw) [ Vs, d (4.25)
for anya € (0, 1]. Consequently
Hip(@) S A7, + ol bl L),
and
Ina?=t Ina?=t Inpa—1t

sup .
M+ ot Y bllow  mA@) T peoy mAB)

Sincekfw/||b||m(w) is not bounded from above whe#is shrinking, we can suppose
thatw is chosen in such a way thag /|6~ > 1. Therefore the particular choice
of a?t =11, /Il L~ Yields to the following inequality which implies the claim:

(4.26)

IN(L/[1bllLo@w) | INAf In(1/B)
+ 2 <2(1—¢q) sup ) (4.27)
s W pe0.1] HA(B)

Step 2.(4.23) = (4.5) with essinf, ug=46 > 0.
Fory > 1, let us introduce

T (y) = inf{/(ai,- ()3, Y3, ¥ + ybY TP () y?) di: ¥ € WoP(w), /1/f2dx = 1}.

w

(4.28)
Thenz/'(y) = v;*bl/(l,,,)’w andz”(y) < ulA(y ||b||§/og%;)q>)1/<q—l>)_
Moreover
Iny Iny
A = /(1=q)
LT (64 LX)
In(1/6) ¢
=1-= IN(1/15] @) 4.29
1-9 ) 1, (L/18]| L w)) (4.29)
by settingd = (y [|b|175 )@Y, and
- In Iz (»))
N+t )9 ) > L - g)— o 4 (4.30)

TA(y) A A
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Since IN1/[|b]| .~ ()) is bounded from below by [i1/(|5] .~ ()), it follows from (4.26)
and (4.30) that
In(1 I
sup sup n(A /@) = 00 = SuUpsup :W = 00,
wCR2 O<a<1 Mw(a) wCRy>1T, (V)

= supsup Al )In(l—i—(rcf(y))‘fyl*q):oo. (4.31)

wcRy21T, Y
Let 1}], = V401, D€ @n eigenfunction correspondingz(y ), then

(8 Jy Yoo dr)
Sup— In l UP’ ( fa) wﬁ» ) —
r Voo (fw bl/(l_q)wp,w dx) q

1 A i 1—q

>SUpA—In 1+ Tw (J/)(‘S fwlff)’ dx>1_ .
y2175(Y) ([, bYA=y, dx)

Integrating the equation satisfied by, yields y [, bY@y, dx < t(y) [, ¥, dx;
then

(4.32)

A S i’ dx 1=q
E(Q/((l—f;gydx;lq > (z, ()18 Iyt (4.33)
o Y

Then right-hand side of (4.32) is minorized by §BPTA—](-V) IN(L+ (z2(y))181- 1y 19y,
it follows from (4.23), (4.32) that syp, 7, ., = oo. o

We end this section by a result which exhibits the pointwise character of the non-
vanishing property.

THEOREM 4.5. —Let us suppose that is a continuous and nonnegative function
defined ins2 which satisfies for some, € 2

lim r2In(1/[1b1l 25, () = 00- (4.34)

Letu be a weak solution d#.2)whereug(x) > ¢ > 0 a.e. in some neighbourhood x,
then

/ u(x,t)dx >0 (VO<r <R, Vi>D0). (4.35)
By (x0)
If we assume moreover that the matrixis constant in a neighborhood af, and that
ueC(2 x(0,00)) N L2 ((0, 00); W?(£2)), then

loc
u(xo, 1) >0 (vt > 0). (4.36)

Proof. —We first notice that4.34) = (4.24) = (4.23) = (4.5) with essinf ug > 0.
More precisely the analysis of the proof of Theorem 4.1 via Remark 4.1 shows that (4.35
holds. In order to prove the pointwise estimate (4.36) we can supposé that near
xo, and we define a radially increasing (with respectdpfunctions by

b(x) = b(1x]) = I1bll LB, (x0)- (4.37)
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We may assume thab(x) > ¢ > 0 for |x — xg| < ro, and denote by the solution of

3 — Ali+b(x)i? =0 in B, (x0) x (0, 00),
u=0 on B, (xo) x (0, 00), (4.38)
ulx,0)=¢ in B,,(xo).

Such a functions is uniquely determined because of the monotonicity of the operator.
Sinceb > b in B,,(xo), the comparison principle (which holds because of the extra
regularity assumptions om) implies thatu > u in B, (xo) x (0, 00). Moreover
x+— u(x,t) is radial with respect tayy for any ¢+ > 0. By the classical moving
planes method for parabolic equations [6], the function- u(x, r) is actually radially
decreasing. This may not appear completely clear sinee r? is not Lipschitz
continuous, but we can replace it by— (r + 8)7 — 87 if ¢ > 0 or tank(r/§) if

g =0 (8§ > 0). Let us be the solution of problem (4.35) in which the nonlinearity is
now (us + 8)? — 8. Thenx — u;(x, t) is radially decreasing with respect ig for
anyt > 0. Sinceus(., t) converges tai(.,r) whens — 0 uniformly in B,O(xo). Since
||l§||Lo<>(B,(xo) = bl =5, ), then it also holds the property

1iLnOr2 IN(1/15]| L (8, (xg)) = O©- (4.39)
It follows from (4.35) applied to (4.38) th:;ft;_,;ro(xo) u(x,r)dx > 0 forr > 0. Therefore

u(xo, t) = u(xg, )= max u(x,t)>= ]B,O(xo)]_l / u(x,t)dx >0 (4.40)

|x—xol<ro
Bro (XO)

which is (4.36). O

Remark4.2. — It is very likely that the assumption on the behaviour of the matrix
nearxp is unnecessary. It can also be noticed that the assumption on the shgim of
whole £2 is also unnecessary: only the signtoh B, (xo) is useful.

As consequence we have the following counterpart of Corollary 3.4.

COROLLARY 4.6. —Assume that2 is bounded with a smooth boundary and let
b be a continuous and nonnegative function defined2irwhich satisfies for some
x0€ 82, C>0ando > 2,

b(x) < Cexp(—|x —xo| %) (Vx € 2). (4.41)
If u is a nonnegative solution of,
ou— Au+bx)u?=0 in 2 x (0, 00),

dyu=0 ona$2 x (0, 00), (4.42)
u(x,0) =ug(x) in 2,

whereug(x) > ¢ > 0 for somee > 0, a.e. in some neighbourhood(xg) of xg, then
estimatg4.36) holds.
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Proof. —The statement follows from Theorem 4.5 and the inequality

rzln(l/llbllLoo(Br(XO)> 2}’2_0 —r2|n C. O (443)
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