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ABSTRACT. - If g is nondecreasing function satisfying the weak singulari-
ties existence condition then all the positive solutions of 
B 1 { o) B~ 0 ~ where f is radial and integrable in are isotropic in

measure near 0. We apply this result to solutions of Au+g(u)=0 in

particular when g (r) ~ g (r) or g (r) = r (L: r)°".
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RESUME. - Si g est une fonction croissante sur ll~ verifiant la condition
d’existence de singularites faibles et f une fonction integrable radiale dans
B (0), alors toutes les solutions positives de du  g (u) + f dans B 1 (o)B~ 0 ~
sont isotropes en mesure pres de 0. Nous appliquons ce resultat aux
solutions de en particulier quand 
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38 Y. RICHARD AND L. VERON

0. INTRODUCTION

Let n be an open subset of IRN containing 0 and S2’=S2Bf 0}. In the
past few years many results about the behaviour near 0 of a positive
function satisfying

or

( q > l. ) in Q’ have been published ([1], [2], [7], [8], [11], [23]). Although
those equations are very different (existence or nonexistence of a compari-
son principle between their solutions), there exists a great similarity
between them in the case N> 3 and 1  q  N/(N - 2) in the sense that
there always exist solutions satisfying

with y > 0, which implies that

or

holds in D’(Q) ([23], [11]) where So is the Dirac measure at 0 and

C (N) _ (N - 2) if N >- 3, C (2) = 2 ~, but the two proofs of this
phenomenon run very differently. In fact the main point to notice is that
for a u satisfying (0.3) uq is integrable near 0 and this leads us to a new
type of isotropy which is the key-stone for the study of isolated singularities
of positive solutions of nonlinear elliptic inequalities of the following type

Assume N ? 3, g is a continuous nondecreasing function defined on

[0, + ~) satisfying the weak singularities existence condition

fe L1loc (S2) is radial near 0 and u e C2 (Q’) is a positive solution of (0 . 6) in
n’. T’he n

(i) either there exists y E [0, + oo ) such that rN - 2 u (r, . ) converges in

measure on SN - ~ to ~y as r tends to 0,
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39NONLINEAR ELLIPTIC INEQUALITIES

In the case N = 2 it is necessary to introduce the exponential order of

growth of g [20]

and we prove that under the same conditions on f and u satisfying (0 . 6) in
Q’; then
- = 0 we have either (i) or (ii) with x 2 - N replaced by x ~)
- if a; > 0 we have
(iii) either there exists y E [0, 2/a9 ) such that u (r,. )/Ln { 1/r) converges in

measure to Y on S 1 as r tends to 0,
(iv) or lim u (x)/Ln ( 1 /) x,) >_ 2/a9 .

Those results play an important role for the description of isolated
singularities of nonnegative solutions of

For example, when N > 3 we prove that if g is nondecreasing and satisfies
the weak singularities existence condition, then any u E C2 (Q’) nonnegative
and satisfying (0 . 9) in Q’ is such that converges to some

as x tends to 0. This result extends to the case N = 2

with some minor modifications. An other important tool for proving this
type of result is Serrin and Ni’s symmetry theorem [12].

When g has non positive values we prove that when N ? 3 any nonnegative
solution u ~ C2 (Q’) of (0 . 9) is such that rN - 2 u (r, . ) converges in L1 ( SN -1)
to some Y E [0, + oo) as r tends to 0. Under a moderate growth assumption
on g we prove that 1im When N = 2 the situation is quite

x - o

more complicated. Using a result due to John and Nirenberg we prove
that when g has non positive values and is of exponential or subexponential
type any nonnegative solution u of (0 . 9) in Q’ satisfies

The last section is devoted to the study of the behavior near 0 of positive
solutions of

Vol. 6, n° 1-1989.
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in SZ’ (a > o). This equation reduces to a Hamilton-Jacobi equation in
setting v = Ln + u and v satisfies

on { x E S2’ : u (x) >_ 1 ~. If we set g (r) = r (Ln+ r)°‘, it is clear that (0 . 7) is

always satisfied, hence for any y ? 0 there always exist solutions satisfying
(0.3); however Vazquez a priori estimate condition

for some ro > 0 is satisfied if and only if a > 2 and we prove the following:
Assume N >_ 3 and is a nonnegative solution of (0. 11) in Q’;

then 
’

(i) either u can be extended to S2 as a C2 solution of (0 . 11 ) in Q
(ii) or there exists y>O such that lim 
- if a>2
(iii) either u behaves as in (i) or (ii)
(iv) or u (x) = y (a, N) e03B3(03B1)|x|2/(2-03B1)(1+O(|x|2/(03B1-2)) near 0 with

03B3 (03B1) = 
(2 03B1-2 )2/(03B1-2) and y (a, N) = e(a - (N -1 ) (a - 2))/2 a. This result extends in

dimension 2.

The contents of this article is the following:
1. Isotropic solutions of elliptic inequalities
2. Singular solutions of Au = ± g (u)
3. Singularities of Au = u (Ln + u)a.

1. ISOTROPIC SOLUTIONS OF ELLIPTIC INEQUALITIES

Throughout this section Q is an open subset of N >_ 2 containing 0,
0 ~ and g is a nondecreasing function. For the sake of simplicity

we shall assume that g is continuous. If N >_ 3 it is wellknown that the

following condition

Annales de l’Institut Henri Poincaré - Analyse non linéaire



41NONLINEAR ELLIPTIC INEQUALITIES

is a necessary and sufficient condition for the existence for any of a

solution ~ belonging to some appropriate Marcinkiewicz space of

in D’ (Q) [3], or equivalently of a solution of

in Q’ with a weak singularity at 0, that is such that

[22]. 
If N = 2 the situation is more complicated and we define the exponential

order of growth of g

[20], and the condition y E [0,2/a9 is a necessary and sufficient condition
for the existence of a function ~ E C2 (SZ’) satisfying ( 1. 3) in ~2’ and

Moreover for such a and ( 1. 2) holds in D’ (S~’) [21]. Our
first result is the following

PROPOSITION 1. 1. - Assume g ( o) = o,
f E (Q) is nonnegative and u E C2 (S~’) is a nonnegative solution of

in Q’. If v E C2 (BRB~ 0 ~) is a radial nonnegative solution of

in 0} such that g (v + b) ~ L1 (BR) for some b > 0, then there exists

a >_ 0 such that for any q E [ 1, oo )

where 03C9=inf (u, (x) = I x (2 -N if N > 3 and p (x) = Ln (1/| x () if N = 2.
The main ingredient for proving this result is the following theorem due

to Brezis and Lions [5].

LEMMA 1. 1. - Assume N >_ 2, 03C9 E L1loc (Q’) satisfies
039403C9 E (Q’) in the sense of distributions in Q’,

Vol. 6, n’ 1-1989.
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where a is some nonnegative constant and F E L1loc (SZ). Then 03C9 E (SZ) and
there exist a >_ 0 such that

in D’ (SZ).

LEMMA 1. 2. - Assume N > 2, h E L1 (BJ is radial and ~p is a nonnegative
radial solution of

in D’(BRB{0}) [resp. in D’(BJ]. Then there exists v E [o, + oo) such that
lim lim cp (x)/~, (x) = o].
xo xo

Proof - From Lemma 1. 1 there exists v >_ 0 such that

in D’ (Ba and satisfies ( 1.12) in D’ Without any loss of

generality we can assume that h is nonnegative in B(0, R), hence

is nonincreasing and then keeps a constant sign near 0.

Case 1. - rN -1 on (0, £]. For n large enough define

0 _ ~,~  1 on [o, E] and (r) dr = -1. From ( 1.12) we get
0

Using the monotonicity of rl’1-1 we deduce

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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/~BN-1~ 2
which implies lim { - )==() and

~ -. + ~ B~/ BM/

Case 2. - on (0, E]. Using the same method as above we

get

which again implies ( 1. 16).
From ( 1. 16) it is clear that lim cp (x)/~ (x) = o.

Proof of Proposition 1. 1. - Let p be the even convex function

defined on R by .

and let ~ s be 1 ~ u + v - h ~ u - Then
2

It is clear that and Moreover

We now set 0 ~ = G1 U G3 with

and

VoL 6, n° 1-1989.
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On G3, hence

and by the continuity of g there exists 8 = 8 (x) E [o, 1] such that

F _ g ( e u + ( 1- ®) v) +_ f. If we assume for example that v _ u _ v + ~, then
3

F _ g (u) + f and which implies that
4

We do the same and finally

holds in BRB~ 0 ~ . We take now ~ _ ~, so the right-hand side of (1.22) is
integrable in BR and there exists such that

From Lemma 1. 2. ~s (x) remains bounded near 0 and it is the
same with cps = Moreover cps satisfies

in D’ ( B~ . Let

and

be the spherical averages of cps and 03A6 respectively, (r, a) being the spherical
coordinates in f~N~~ 0 ~, then

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Applying Lemma 1. 2 we deduce that lim As a consequence

which implies (with the uniform boundedness)

for any +00). As we deduce

which is ( 1. 9).

Remark 1. 1. - As { ~~s ~ _ ~ is integrable in BR and

DEFINITION 1. 1. - Assume (E, L, ~,) is an abstract measure space where
E is a a-algebra of subsets of E and  a positive a-additive and complete
measure such a subset of measurable

functions (for the measure u) with value in We say that converges
in measure to some measurable function ~r as r tends to 0 if for any E > 0
we have

It is equivalent to say that from any sequence {rn} converging to 0 we
can extract a subsequence { such that { converges to B)/ ~ 2014 a. e.
on E as nk goes to +00.

The generic isotropy result is the following

THEOREM 1. 1. - Assume N >_ 3, g satisfies ( 1. 1 ), f E L1loc (S?’) is radial

near 0 and u E C2 (Q’) is nonnegative and satisfies

in S~’. Then we have the following

Vol. 6, n’ 1-1989.
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(i) either rN - 2 u (r, . ) converges in measure on SN -1 to some nonnegative
real number y as r tends to 0,

(ii) or

Proof - We recall that (r, ?) E ( o, + oo ) x are the spherical coordi-
nates in 0 ~. For ~, > 0 let v~ be the solution of

Such a v~ exists, is radial and positive near 0. As If is radial it does not
affect the behaviour near 0 (see Lemma 1. 2).
From Proposition 1. 1 there exists v (~,) >__ 0 such that

in 1  q  + oo, and v (~,)  ~, from convexity. Moreover the
function ~, H v (~,) is nondecreasing.

Case 1. - Assume lim v (~.) = y  + o~o. For we have ( 1. 33).
3L -~ + o0

Assume ~ r~ ~ is some sequence converging to 0, then there exists a sub-
sequence { such that

As v ( ~,)  y and = y we deduce that
n~ -~ +00

for nk large enough and

For ~,’ > ~, we repeat this operation with ~ r,~ ~ replaced by ~ r"~ ~ and there
exists a subsequence { such that

From (1.35) and (1.36) we deduce that v (~,’) = v (~,) _ ~y for ~, > ~ which
implies ( i) .

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Case 2. - Assume lim v (~,) _ + oo. For b > 0 we call p the function
~, ~ + o0

introduced in the proof of Proposition 1. 1 and for ~, > o,

~ s = 1 2~ u + v ~. P( u - v + 3 ~. From ( 1. 22) we have

Moreover converges to v ( ~,) in ( 1 _ q  + oo) as r
tends to 0. We consider now w = v" ~~~ the solution of ( 1. 32) and we set

y~’~ (s) = r"N 2 (r), ~s ( 5~ ~) _ ~ 2 ~s ( r, ~P (S) =.f ~r)-
Then (1.32) and (1.37) become

where k = k (N) _ (N - 2) ~4 -N»~N - 2~ and ASN- is the Laplace-Beltrami ope-
rator on SN -1. Consider a C °° function p such that p E L °° ( f~), p=0 on

-r

( - ~, 0), p’ > 0 on (0, + oo) and j (r) = From convexity and

monotonicity we have

As j d a  C d a and as w’ (s) and 03C9’03B4(s,.)

converges to in as s tends to 0 we deduce that

j (w’ - da = 0 on (0, RN- 2/(N - 2)] and w’ - or

SN - 1 
on (O,RN-2j(N-2)] and w’iõ~ or

which implies

and we get (1.31).
Remark 1. 2. - If u satisfies (i) then v~, (x)  u (x) in 0 ~.

VoL 6, n° 1-1989.
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Remark 1. 3. - If u is a radial solution of ( 1. 29), u > 0, in B~B~ 0 ~,
then a simple adaptation of the proof of Theorem 1.1 shows that

u (x) admits a limit in [0, -~- oo ] as x tends to 4.
The 2-dimensional version of Theorem 1. 1 is the following

THEOREM 1. 2. - Assume N = 2, f~L1 (Q) is radial near 0 and 
is a nonnegative solution of (1 . 29) in Q’. Then
- If ag = 0 the alternative of Theorem 1. 1 holds with x ~ replaced

by Ln x ~).
- If a9 > 0, we have the following alternative
(i) either there exists a nonnegative real number ~y E [o, 2,~a9 ) such that

u (r,. )/Ln ( 1 /r) converges in measure on S 1 to y as r tends to 0,
(it) or

Proof - Case 1. - Assume a+g = 0. We define 03BD(03BB) as

As v(À) is nondecreasing and VÀ exists for every ~, > o we can

proceed as in the proof of Theorem 1. 1 if lim v (~,) _ ~y  +00. If
~. --~ + o~

lim 03BD(03BB) = +00 we introduce 03C903B4 and v,, (03BB) = w as in Theorem 1. 1 and
~. -~ +00

make the following change of variable

Hence w’ and 03C9’03B4 satisfies

on (T, + oo) x S~ and with the same function j as before

As t -1 (w’ - ~s) converges to 0 in Ll(Sl) we deduce 
and we get finally

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Case 2. - Assume a+g >0 and set y = lim 03BD(03BB). Clearly y  2/a9 . If

y  2/a9 we can proceed as in Theorem 1. 1. If y = 2/aJ~ we get as in Case 1

for any ~,  2 and x E 0 ). We can take in particular ~, = 2 = v (~,)
a9 a9

and we get (ii).

2. SINGULAR SOLUTIONS OF Au = + g (u)

The first application of Theorem 1.1 is the following

THEOREM 2 . 1. - Assume N > 3, g is a nondecreasing locally Lipschitz
continuous function satisfying ( 1. 1 ) and u E C2 (Q’) is a nonnegative solution
of

in Q’. Then x tl (x) admits a limit in [0, + oo] as x tends to 0.

Proof - From Theorem 1. 1 we can assume that there exist y E [0, + oo)
and a sequence ~ r" ~ converging to 0 such that

Case 1. - Assume y > o. For E > 0 set wE the solution of

(we may assume that BR c Q). From maximum principle u _ w£ in T’~, R.
Let us = u + wE { R), then

and finally in r E. R and there exists a sequence converging
to 0 and a function satisfying -0394w+g(w)=0 in

0 ~ such that { w~~ ~ converges to w in the CI-topology of 0 ~.

Vol. 6. nC 1-1989.
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Moreover

From Remark 1. 2 lim ! x IN-2 w (x) = y, hence we deduce from Serrin and

Ni’s results [12] that w is radial and from (2 . 2) and (2. 5)

If w’ (s~ = w’ (rN - 2/(N - 2)) = rN - 2 w (r), then

we deduce is convex and

Case 2. - Assume y = 0. For E > 0 and v > 0 set the solution of

A s in case 1 we have

in hE, R. For 0  v’  v let v", be the radial solution of

- w,,, +g (v~,) = C (1~ v’ ~o in such that v,,. = 0 on aBR. As

lim we deduce that for s small enough on aB~

~nd finally

and as in Case 1 there exists a subsequence { such that lim 

function w" in BR such that w£, ,, conver-
to w" in the C1loc topology of 0} and we have

Applying again [12] we deduce that w" is radial and as in Case 1 we get
that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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As v is arbitrary lim I x IN - 2 u (x) = 0 and u can be extended to Q as a C2
x - o

solution of (2. 1) in Q.
In the same way we can prove the two dimensional case

THEOREM 2. 2. - Assume N = 2 and g is a nondecreasing locally Lipschitz
continuous function defined on l~+. If u E C2 (Q’) is a nonnegative solution

of (2 . 1 ) in Q’, we have the following:
- if a9 =0 u (x)/L n (1/I x I ) admits a limit in [0, + oo] as x tends to 0;
- if a9 > 0 and g satisfies

u (x)/Ln ( 1/I x I) admits a limit in [o, 2/a9 ~ as x tends to 0.

Proof - If a9 = 0 we proceed as in Theorem 2 . 1. If a9 = + oo and g
satisfies (2. 14), u can be extended to Q as a C2 solution of (2. 1) in Q [21].
If 0  a9  + oo we have two cases

(i) either there exists y E [o, 2/a9 ) and a sequence ~ r,~ ~ converging to 0
such that

(it) or lim u (x)/Ln (1/I x () > 2/a9 .

In case (i) we have lim u (x)/Ln ( 1 /I x I) = y as in Theorem 2 . 1. In case (it)
x - o

we have an a priori estimate thanks to (2. 14) [21] :

near 0 for any E > o. This clearly implies

THEOREM 2. 3. - Assume N >_ 3, g is a continuous function defined on

[0, + oo ) such that lim g (r)/r = K for some K > - oo and u E C2 (Q’) is a

r - + o~

nonnegative solution of

in Q’. Then there exists y E [0, + ao) such that

1’0l. 6, n~ 1-1989.
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g (u) E L1loc (Q) and u solves

in D’ (Q). If we assume moreover that

for any oc, [i > 0, then y = 0.

Proof. - The fact that and u satisfies (2 . 20) for some
y > 0 is proved in [5]. If u (r) [res. g (u) (r)] is the spherical average of u

[resp. g (u)] then

in 0 ~ c Q’ and we deduce from Lemma 1. 2 that

for some and u solves

in D’(BR). Whence y=y’. Let us assume now that y>0 and g satisfies
(2.21) for any a, ~3 > o. As rN - 2 u (r, . ) converges to y in L1(SN-l) it

converges in measure and for there exists 
such that for any r E (o, ro) there exists a measurable subset o(r) c SN -1
such that and ( rN - 2 u (r, a) - y I  y/2 for As

g (r) >_ K’r - L and u E there is no loss of generality to assume that
on (0, + oo), hence 

’

For p E (o, ro] and a ~03C9 ( p), y p2 -N _ u (p, 6)  2 y p2 -N and as g is conti-
2

nuous, g (u (p, ~)) ? inf g y p2 -N , g (2 -N) As g satisfies (2 . 21) we2 2 ~ 
Annales de l’Institut Henri Poincaré - Analyse non linéaire



53NONLINEAR ELLIPTIC INEQUALITIES

get

contradiction. Hence Y = o.
Under an assumption of monotonicity on g we get a much more accurate

result:

PROPOSITION 2 . 1. - Assume N >_ 3, g is a nondecreasing locally Lipschitz
continuous function defined on [0, + oo) and u E C2 (Q’) is a nonnegative
solution of (2. 18) in S~2’. Assume also that BR c S~ and that there exists a
radial continuous function ~ defined in 0 ~ and satisfying

T’hen x ~N-2 u (x) converges to some nonnegative real number y when x
tends to 0.

Proof - From Remark 1. 3 ~ x ~N - 2 ~ (x) converges to some y’ > 0 as x
tends to 0. If y’ = 0 then lim u (x) = o. Let us assume that y’ > o.

x - o

From Brezis and Lions’ result

which implies that and g satisfies
( 1. 1 ) . From Theorem 2. 3 there exists such that rN - 2 u (r, . )
converges to y in as r tends to 0. We consider now the sequence
of functions defined by and for N > 1

Then u~ is radial and It is clear converges
in (BRB~ 0 ~) to a radial function u which satisfies

and u >_ u. As a consequence of Lemma 1. 2 lim From
x - o

Remark 1. 2 lim x IN - 2 u (x) = y which ends the proof.
x1 0

Remark 2.1. - The hypothesis of radiality of 03A6 which is rather

restrictive can be withdrown if we know that lim u(x)= + ~ and

Vol. 6, n° 1-1989.
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~ ~ sup u (x). In that case we can consider the following iterative scheme

with C~ = C and

Then u _ c~N  ~N - ~  ~ converges in C o~ ( BR~{ U ~ ) to some
~ - satisfying

>_ u. As (x) = + oo we deduce from Serrin and Ni’ results

[12] that 03A6- is radial and we can apply Lemma 1. 2.

PROPOSITION 2. 2. - Assume N >_ 3, g is a nondecreasing locally Lipschitz
continuous function defined on [0, + oo) satisfying for some q > N/2.

for any cp and 03C8 continuous and nonnegative in S2’ such that g( cp) and
g E (SZ). If u E C’.2 (S2’) is a nonnegative solution of (2 . 18) in S2’, then

converges to some nonnegative real number y as x tends to 0.

Proof - From Theorem 2 . 3 we have (2 . 20) for some y >_ 0 and
g (u) E ( S2) -

Case 1. - Y = 0. Without any restriction we can assume that U>E in

0 ~ c SZ’ and we write ( 2 . 20) as

in 0 ~ where d (x) _ (g (u) - g {o))/u. A s g (u) ( 2 . 32) implies
that and we deduce from [18] that either u has a removable
singularity at 0 or

which is impossible as y=0.

Case 2. - y > o. Let Vy be the solution of

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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v~, is constructed using an increasing sequence of approximate solutions as
in [ 11 J, in 0 ~ and vr is radial. Let w be u - vr then

in with Then we deduce from

[18] that either w has a removable singularity at 0 or

which is impossible as

Remark 2. 2. - Under the hypotheses of Proposition 2. 2 two nonnega-
tive solutions ui (i =1, 2) of

in D’ (SZ) are such that ul - u2 E (Q). As for the solvability of (2. 39)
we have

PROPOSITION 2. 3. - Assume N >_ 3, SZ is bounded with a C1 boundary
a~ and g is a nondecreasing function defined on [0, + oo ), satisfying ( 1. 1 )
and g (r) = o (r) near 0. Then there exists y* E (0, + oo] with the following
properties:

(i) for any Y E [0, y*) there exists at least one nonnegative function
u~C1 (03A9B{ 0}) vanishing on aS2 solution of (2 . 39) in D’ (Q),

(it) for y > y* no such u exists.

Proof - Step 1. Assume Q = BR. - A function u vanishing on aBR is a
radial solution of (2. 40) in D’ (B~ if and only if the function v (t) = u (r),
with t = r2 - N, satisfies

As v is concave the last condition is equivalent to

Vol. 6, n’ 1-1989.
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For a > o, let va be the solution of the initial value problem defined on a
maximal interval ~R 2 - N, T*)

If T*  + oo then lim v°‘ (t) = 0 as a consequence of concavity and there
t i T*

exists TE(R2-N,T*) such that vt ( T) = o. If T*=+oo and lim vt (t) = 0
t -. +00

then the same relation holds with T = + oo . A s a consequence if no solution

VCI of (2 . 42) satisfies (2. 41) with y > 0 we have

and the right-hand side of ( 2 . 43) is maj orized by

or

For E > 0 there exists r~ > 0 such that aR 2 - N t  ~ implies
Hence the right-hand side of ( 2 . 45) is majorized

by

or

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Consequently

contradicting (2. 45). As a consequence there exists a* > 0 such that for
any oc E (o, a*) the solution u°‘ of (2. 42) is defined on [R2 -N, + oo) and
satisfies (2 . 41) for some y > o.

Step 2. The general case. - There exists R > 0 such that Q c BR. If

y > 0 is such that there exists a solution v to (2. 40), then for any Y E [o, Y]
the sequence { defined by uo = 0 and for n > 1

increases, is majorized by v in Q and converges to some u which vanishes
on an and satisfies (2. 39) in D’ (Q). For the same reasons, the set of y > 0
such that there exists a nonnegative solution of (2. 39) vanishing on an is
an interval.

Remark 2. 3. - If lim g (r)/r > 0 it is proved in [11] that y*  +00. If
r -~ + o0

we no longer assume that lim g(r)/r=O it can be proved that for any
r-+O

Vo > 0 there exists Ro > 0 such that for any Q c BRo and any 
there exists a solution u of (2. 39) in D’ (Q).
The two-dimensional version of Theorem 2. 3 is the following

THEOREM 2. 4. - Assume N = 2, g is a continuous function defined on
[o, + oo) such that lim and a nonnegative

r -. + oo

solution of (2. 18) in SZ’. Then there exists ~y E [0, + oo) such that

g (u) E and u solves

in D’ (Q). If we assume moreover that

for any a, ~ > 0, then y = 0.
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Remark 2. 4. - When a9 = 0, Proposition 2. 2 which holds in the case
N = 2 with x ~ 2 - N replaced by provides an interesting criterion
for proving that

for some Proposition 2 . 1 is also valid in the case N = 2 (with the
same modifications).
We introduce now a class new of g’s defined on [0, + oo) which are

those satisfying

and we have [20]

THEOREM 2. 5. - Assume N = 2, g is a continuous function defined on
[0, + ao) satisfying lim g (r)/r > - oo and (2. 52) with a9  + oo and

r -. + 00

is a nonnegative solution of (2 . 18) in Q’ and assume also
(i) either a9 = 0,

Then there exists ’Y E 0, a 2 9 + such that u - ’Y Ln 1 r is locall .Y bounded in 03A9.

Proof. - The main ingredient for proving this is a theorem due to John
and Nirenberg ( [9], Th. 7 . 21 ) that we recall

«Let u E W 1 ~ 1 (G) where G c S2 is convex and suppose that there exists
a constant K such that

then there exist positive constant ~,o and C such that

where ~. _ ~.o G and u G 1 
From Theorem 2 . 4 there exists such that u (r, . )/Ln ( 1 /r) converges

to y in L i ( S 1 ) as r tends to 0 and Set 
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then

in D’(Q). It is now classical that where M2 (G) is the usual
Marcinkiewicz space over G. If we take G = BR then V w satisfies

( 2 . 54) for some K>O, which implies

for some ex>O and 0p_R.

Case 1. - Assume a9 = o. Then for any E > 0 we have

for some K£ > 0 and any From (2. 57) we have

If y > 0 we have for p, a > 1 and 7~ > 0

( ~’ _ ~/( ~ -1 ) ) . We set a p E = a, hence 
pE

= ay p E/( a -p E) .
Hence for any p > 1 we can take E small enough so that ~’7~  2 and

As a consequence g(u)ELP(Bp) and If y=0, ( 2 . 59)
implies that g (u) E LP for any p E [1, oo) and u E L°° 

Step 1. - 0   2 . A ssume the contrary that is >_ 2014. > 0

we have lim g (r) _ + oo and from Remark 1. 2
r --~ + ao

where vY satisfies
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in D’ (B~, v~, = 0 on As a consequence [21] lim u (x) _ +00 and for

~ x I  R’ small enough

in D~(B~). As a consequence 2014. )2014~ which implies
B ~!/

(n) dx = +00, contradiction.

Step 2. 2014 We claim that for any a>0 there exist pe(0,R] such that
(2.57) holds. We fix 0  R/  R and write w = w~ + w~ where Wi is harmonic
in B~, and take the value w on and w~ satisfies

in BR, and w2 = 0 on As V wl E L2 (BR,) we deduce

and for w2 we have

where C is independent of R’. As a consequence we get

and the constant K in (2. 55) can be taken as small as we want provided
G = Bp and u is replaced by w. This implies that for any ex>O we can find
pe(0, R) such that (2. 57) holds.

Step 3: End of the proof - From the definition of a~ , for any E>0
there exists K£ > 0 such that

for and we have from (2. 59)

We take [we assume y > 0 other-while 
for any p > 1 and and + E), + E) and

= xyp (a9 + E)). As yag  2 there exist p > 1, E > o, a > 0
such that  2 which implies g (u) E (Q) and we end the proof as in
Case 1.
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Remark 2. 5. - If a9 = + oo then y = 0 from Theorem 2. 4. In that case
it is unlikely that Theorem 2. 5 still holds. However we conjecture that
lim u (x)/Ln (1/I x I ) = O.

Concerning the existence of solutions of (2. 49) the following result can
be proved as in Proposition 2. 3.

PROPOSITION 2. 4. - Assume N = 2, S2 is bounded with a C 1 boundary
aSZ and g is a nondecreasing function defined on [0, + oo) such that

ag E (0, + oo] ] and g (r) = o (r) near 0. Then there exists y* E (O, 2/a9 ] with
the following properties:

(i) for any y E [O, y*) there exists at least one nonnegative function
u~C1 (03A9B{ 0}) vanishing on ~03A9 solution of (2 . 49) in D’ (Q),

(it) for y > y* no such u exists.
Remark 2. 6. - If it is easy to see that y* exists only if

diam. SZ is small enough. Moreover in that case *  2 - 2 .
a9 a

3. SINGULARITIES OF u)°‘

Our first result deals with the one-dimensional case

THEOREM 3. 1. - Assume u E C2 (0, R) is a nonnegative solution of

Then:
- ifOex2,
u (r) admits a finite limit as r tends to 0;
- if a>2,
(i) either u (r) admits a finite limit as r tends to 0,

(ii) or

near 0 where
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From (3.1) u is convex and u (r) admits a limit in R+ U { + ~} as r
tends to 0. If this limit is larger than 1, (3. 1) is equivalent to

on some interval (0, R’) with the transformation u=ef}. Theorem 3 .1 is

an immediate consequence of the following result

LEMMA 3 . 1. - Assume v E C2 (0, R’) is a nonnegative solution of (3 . 4)
in (0, R’). Then
- if 0  a _ 2, v remains bounded near 0;
- if a>2
(i) either v remains bounded near 0,
(it) or

Proof. - Assuming that u is unbounded near 0, then

lim u (r) = + oo = lim v (r) and v is decreasing near 0. So we can define

and ( 3 . 5) become

Hence h (P) - ~ ~ e2 ~ P~ -~- 2 e 2 P dS.
a

As

and

we get
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as p goes to + oo, which implies

Integrating (3.9) implies that v~2 - a)/2 (r) (if 0  a  2) or Ln v (r) (if a = 2)
remains bounded near 0 which is a contradiction. So we are left with the

case a > 2, lim v (r) = + oo . From ( 3 . 8) we have
r -~ 0

near 0, which implies lim r2/(03B1-2)v(r)=(20142014 ) =03B3(a). As a conse-
quence 20142014 = 201420142014L~~/(a-2) and (3.10) becomes

u(r) y(cx)

Integrating (3. 11) on (0, r) for r small yields

which implies, with (3.10),

Reasoning as before we get

near 0 and

We assume now that Q is an open subset of N > 2, containing 0,
Q’ = S2B{ 0 ~ and we consider the following equation in Q’

where u E C2 (Q’) is nonnegative.

LEMMA 3. 2. - If 03B1>2 and BR c SZ; then there exists a constant

C = C ( x, N, R, dist ( aBR, ~03A9) such that
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/*f

Proo f - We define t)°‘, and

As T(2) + ~ we deduce from Vazquez’s result that

the equation ( 3 . 16) satisfies the a priori interior estimate property [19]: if

xo E Q’ and if the cube Qp (xo) = { x E ~N : sup x~  p } is included in

Q’, then for any a E (o, 1) there exists a constant such that

So the main point is to get a precise estimate on i - ~ . If so > e°‘~2 and

C (so) = 1 - 
a 

it is easy to check that° 
2 4 Ln so 

.

j (t) > C (so) t2 (L n t)°‘ for t > so.

If C ° 
( 03B1-2) 2 C ( s o) , then i ( ) s  C for s>s 0 and

for For R, c BR. We set

Ro = min (1 2 R, 1 2 03C4(s0) )
and for we can apply (3 . 18), (3. 19) which gives

The estimate in is obtained from ( 3 . 18) with a simple
compactness argument and we get (3.17).

LEMMA 3. 3. - Assume N >_ 2, a > 0 and v E C2 (BRB{ 0 ~) is a nonnegative
solution of 

’
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such that lim v (r) = + oo. Then for any E > 0 there exists r (E) E (0, R) such
T -. o

that

Proof - From (3 . 21) it is clear that vT  0 on some (0, ro) c (0, R) and
we get

Taking v = p as a new variable and h (p) = vT as a new unknow we get as
in Lemma 3.1

which implies (~ ~)> 2 p°" and by integration we get 2014"’ ~ 1 2014 e for
P"

any s>0 and p>p(s), that is

where r (c) is small enough. As a consequence lim vr (r) _ - oo. If we set
r -~ 0

we get from (3.21)

As 03C90 on (0, ro), (3 . 25) implies

Hence if for some rl E (o, ro) we would have for r E (o, rl)
contradicting lim c~ (r) _ - oo . As a consequence and

r -~ 0

A simple algebraic computation implies
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and

which ends the proof.

LEMMA 3. 4. - Assume N ? 2, a > 1 and u E C2 (BR~~ ~ ~) is a nonnegative
solution of

Then lim u (r)/~. (r) = + oo if and only if lim Ln u (r) = + oo .

Proof. - Case 1 : N >_ 3. - We consider the following change of variable

u satisfies

with S = R 2 - N, and if lim rN - 2 u (r) _ +00 we have
r --> 0

From convexity u(s)s (1 + o ( 1)) and

for s large enough; so (3.32) becomes

A s oc > 1

and

for some constant A and a large enough. As a consequence 
62/(N - 2) (a - ~ > ( Ln 6)«~E ~ - x~~ A straightforward computation implies that for
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any ~>0 and f or s large enough

which means

for r small enough and Conversely

lim +00 implies lim u (r)/~, (r) _ + oo (N >_ 2).
rO 

_

Case 2 : N = 2. - We make the following change of variable

and we get (with T = Ln (1/R))

If we assume lim u (r)/Ln (1/r) = + oo then
r-~ o

(by convexity) and we get

and

f or some B > 0 and t large enough, which implies

for any E > 0 and t large. From (3. 39) we get the result.
With lemmas 3.2-3.4 we can describe the behaviour of nonnegative

radial solutions of (3.16) with a strong singularity at 0, when a > 2.

LEMMA 3. 5. - Assume N > 2, a > 2 and u E C2 (BR~{ 0 ~) is a nonnegative
solution of (3 . 30) in (0, R) such that lim u(r)/ (r) = + ~. Then the following

r-+O

holds near 0
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Proof. - From the proceeding lemmas lim vr (r)/v03B1/2 (r) _ -1 where

v = Ln u. As a consequence

and N-1vr(r)=(-1+o(1)) (N-1(03B1-2)v03B1-1 (r) near 0. Pluging this
r 2

estimate into equation (3.21) yields

with C = (N -1) (a - 2)/2. Taking again p = v as the variable and h (p) = v;
as the unknow implies

and

If we set A = - - - - a 2014 2014 a-(N-1) (a-2) we have vr v03B1/2 == -1 + 1 +o (1) A ,4 2 4 ~~ v

which implies v (r) = y (a) ( 1 + o ( 1)) r2»2 -°‘> and finally

Integrating (3.44) on (0, r] f or some small r implies

satisfies

using p and h (p) yields
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and, as v = ~y r2~t2 - «~ ( 1 + O (r2~t« - 2~~~~

Integrating (3.48) gives v ( r) = y (a) r2~~2 -«y. 2 A + O ( r2~~«- 2~ ) which
a

implies (3.40).

Remark 3 . 1. - If N>3 and a = 2 N 1, 
of ( 3 . 3 0) in (0, + oo ) .
We are now able to prove the main theorem of this section

THEOREM 3. 2. - Assume N >_ 2, a > 0 and u E C2 (Q’) is a nonnegative
solution of (3.16) in Q’. Then

if 0a_~:
(i) either u can be extended to Q as a C2 solution of (3. 16) in S~,

(ii) or there exists y > 0 such that lim u (x)/~. (x) = y and u satisfies
x - o

in D’ (S2);
if a>2:
(iii) either u behaves as in (i) or (ii) above

(iv) e03B3(03B1)|x|2/(2-03B1)(1+O(|x|2/(03B1-2)))
near 0 with y (a) = a-2 

2/(a-2) 
and y (a, N) = e (a_(N- 1) (a-2))/2 a .

Proof - From Theorems 1. 1, 1. 2 we know that u(x)/ (x) admits a
limit in (0, + oo] as x tends to 0. If the limit is finite we get (i) or (ii) [(iii)
if a > 2] and (3 . 49) from Theorems 1. 1, 1. 2 and Remark 1. 1 (if the limit
is 0 then u is regular as in Proposition 2. 5). So let us assume that

For any c > 0 let (p~ be the solution of
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(we assume BR It is clear that for 0  ~ x (  R, is

increasing and lim c~~ = cp where cp satisfies
c -. + 00

Moreover 0  cp __ u in 0 }.
If 0  a __ 2 we can take R small enough such that and we

construct in the same way as cp a function cp such that 0 _ cp _ cp and

From Lemma 3 . 4 lim + oo. If we set § = Ln cp, then Lemma
r - o

3. 3 implies that lim ~~ r = -1 which implies by integration that ç remainsp 
r~0 ~ 

()

bounded near 0 and so does cp, a contradiction.
We assume now a > 2. We define 03C8n as the solution of

Using Lemma 3.2 and the same device as in the proof of Proposition
2 . 5 we deduce that for some subsequence {03C8nk} we have lim 

the C1 ((0, R])-topology and B)/ satisfies

Moreover 0  u  ~r in 0 ~. Applying Lemma 3. 5 to cp and ~r we get
(iv).

Remark 3. 2. - It is interesting to notice that if u is a positive solution
of ( 3 . 16) with a strong singularity at 0, then v = Ln u behaves like the
explicit radial singular solution of the following f rst order equation in

0 ~ ( a > 2)
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