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ABsTRACT. — If g is nondecreasing function satisfying the weak singulari-
ties existence condition then all the positive solutions of Au<g(u)+f in
B, (0)\{0} where f is radial and integrable in B,;(0) are isotropic in
measure near 0. We apply this result to solutions of Autg(u)=0 in
particular when g (r)~r|r|2™", g(r~e€P”, or g(r)=r (L}
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ResuME. — Si g est une fonction croissante sur R vérifiant la condition
d’existence de singularités faibles et f une fonction intégrable radiale dans
B, (0), alors toutes les solutions positives de Au<g (4)+ fdans B, (0)\ {0}
sont isotropes en mesure prés de 0. Nous appliquons ce résultat aux
solutions de Autg(u)=0, en particulier quand g(r)~r|r|*" !, g(r)~eP’
oug(®=r(L}nr~
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38 Y. RICHARD AND L. VERON

0. INTRODUCTION

Let Q be an open subset of RN containing 0 and Q' =Q\{0}. In the
past few years many results about the behaviour near 0 of a positive
function ue C?(Q) satisfying

0.1) Au=ut
or
(0.2 Au= —u?

(g>1) in Q" have been published ([1], [2], [7], [8], [11], [23]). Although
those equations are very different (existence or nonexistence of a compari-
son principle between their solutions), there exists a great similarity
between them in the case N=>3 and 1<g<N/(N—2) in the sense that
there always exist solutions satisfying

(0.3) lim [x N 2u(x)=7y

x—~ 0

with y> 0, which implies that

0.9 Au=u?—C(N)yd,
or
(0.5) Au=—u'—C(N)y3,

holds in D'(Q) ([23], [11]) where 3, is the Dirac measure at 0 and
C(N)=(N-2) [S""!| if N=3, C(2)=2n, but the two proofs of this
phenomenon run very differently. In fact the main point to notice is that
for a u satisfying (0. 3) u? is integrable near O and this leads us to a new
type of isotropy which is the key-stone for the study of isolated singularities
of positive solutions of nonlinear elliptic inequalities of the following type

(0.6) Auzg(u)+f.

Assume N =3, g is a continuous nondecreasing function defined on
[0, + 00) satisfying the weak singularities existence condition

1
©.7 ,[ g NN tdr<+ oo,
0
feLi,. (Q) is radial near 0 and ue C?* () is a positive solution of (0.6) in
Q'. Then
(i) either there exists ye[0, +00) such that ™ 2u(r,.) converges in
measure on S¥~1 to y as r tends to 0,
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(i) or lim |x|¥"2u(x)=+ co.

x—=0
In the case N=2 it is necessary to introduce the exponential order of
growth of g [20]
+
(0.8) a;=inf{a>0:j e Tg(ndr<+ow},
0
and we prove that under the same conditions on f and u satisfying (0.6) in
Q': then
— if aj =0 we have either (i) or (ii) with ]xlz‘N replaced by Ln(l/]x l)
— ifa; >0 we have
(iii) either there exists Ye[0,2/a;) such that u(r,.)/Ln(1/r) converges in
measure to ¥ on S* as r tends to 0,
(iv) or lim u(x)/Ln(1/|x])=2/a;.
i=0

Those results play an important role for the description of isolated
singularities of nonnegative solutions of

(0.9) Au=g (u).

For example, when N 23 we prove that if g is nondecreasing and satisfies
the weak singularities existence condition, then any ue C? () nonnegative
and satisfying (0.9) in Q' is such that |x [N'z u(x) converges to some
yeRY U{ 4} as x tends to 0. This result extends to the case N=2
with some minor modifications. An other important tool for proving this
type of result is Serrin and Ni’s symmetry theorem [12].

When g has nonpositive values we prove that when N =3 any nonnegative
solution ue C2(Q") of (0.9) is such that ¥~ 2u(r,.) converges in L (SN™1)
to some y€[0, + o0) as r tends to 0. Under a moderate growth assumption
on g we prove that lim |x [N~ 2u(x)=y. When N=2 the situation is quite

x =0
more complicated. Using a resuit due to John and Nirenberg we prove
that when g has nonpositive values and is of exponential or subexponential
type any nonnegative solution u of (0.9) in Q' satisfies

(0.10) lim u(x)/Ln(1/|x=7e[0,2/a}).

x =0

The last section is devoted to the study of the behavior near 0 of positive
solutions of

(0.11) Au=u(Ln"* u)*
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40 Y. RICHARD AND L. VERON

in Q' (a>0). This equation reduces to a Hamilton-Jacobi equation in
setting v=Ln" u and v satisfies

(0.12) Av+|Dy|* ="

on {xeQ:u(x)=1}. If we set g(r)=r(Ln*r)%, it is clear that (0.7) is
always satisfied, hence for any y=0 there always exist solutions satisfying
(0. 3); however Vazquez a priori estimate condition

+ o
(0.13) J B too

o /S8()

for some r, >0 is satisfied if and only if «>2 and we prove the following:
Assume N23 and ueC2?(Q’) is a nonnegative solution of (0.11) in Q;
then .
— if0<ax2
(i) either u can be extended to Q as a C? solution of (0.11) in Q

(i) or there exists y>0 such that lim |x[N"2u(x)=Yy.
x->0

— ifa>2
(iii) either u behaves as in (i) or (ii)
(iv) or u(x)=y(@N) @21 40 (|x[*"?) near 0 with

2 \2a-2) . .
y(x)= ( o ) and y (o, N) =@~ N~-D@=2)2= This result extends in

dimension 2.
The contents of this article is the following:
1. Isotropic solutions of elliptic inequalities
2. Singular solutions of Au= +g (u)
3. Singularities of Au=u(Ln* u)*

1. ISOTROPIC SOLUTIONS OF ELLIPTIC INEQUALITIES

Throughout this section Q is an open subset of RN, N2 containing 0,
Q'=0O\{0} and g is a nondecreasing function. For the sake of simplicity
we shall assume that g is continuous. If N>3 it is wellknown that the
following condition

1
(1.1) J g(r* MM tdr< +oo0,

(o}
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NONLINEAR ELLIPTIC INEQUALITIES 41

is a necessary and sufficient condition for the existence for any y=0 of a
solution { belonging to some appropriate Marcinkiewicz space of

(1.2) — Ay +g () =C(N) vd,
in D’ (Q) [3], or equivalently of a solution of

(1.3) —Ay+g()=0

in Q° with a weak singularity at 0, that is such that

(1.4) lim [x [N 2u(x)=y,

x—0

[22]. Moreover g(¥)e L. ().

If N =2 the situation is more complicated and we define the exponential
order of growth of g

+ o
(1.5) a;‘:inf{a>0:j e“"g(r)dr<+oo}
o]

[20], and the condition 76[0,2/0; ] is a necessary and sufficient condition
for the existence of a function ¢ e C2(Q") satisfying (1.3) in ' and

(1.6) lim ¥ (x)/Ln(1/|x])=".

x>0

Moreover for such a {, g(¥) eLL_(Q) and (1.2) holds in D’ (@) [21]. Our
first result is the following

ProPoSITION 1.1. — Assume Bp={xeR":|x|<R}<=Q, g(0)=0,
feLi.(Q) is nonnegative and ue C* (') is a nonnegative solution of
(1.7 Au<g (u)+f
in Q. If ve C*(Bg\{0}) is a radial nonnegative solution of
(1.8) Av=g(v)

in Be\{0} such that g(v+38)e L' (Bg) for some 8>0, then there exists
o 20 such that for any q€[l, o0)

1.9) lim |xll_Nf o= () () [1dS =0
x>0 fyi=lx|
where o =inf (4, v), p(x)=|x|> "N if N=3 and p(x)=Ln(1/|x|) if N=2.
The main ingredient for proving this result is the following theorem due
to Brezis and Lions [5].

LemMa 1.1, — Assume N22, we L. (Q') satisfies

loc

Awe Ll (Q)in the sense of distributions in &,

Vol. 6, n° 1-1989.



42 Y. RICHARD AND L. VERON

(1.10) 020 ae inQ,
Ao=aw+F a.e. in Q,

where a is some nonnegative constant and Fe Ll _(Q). Then oe L] (Q) and
there exist 120 and ®e Ll (Q) such that

(1.11) —Ao=®+aC(N)3,
in D' (Q).

LEMMA 1.2. — Assume N2=2, he L' (By) is radial and ¢ is a nonnegative
radial solution of

(1.12) —Ap=h

in D' (Bg\{0}) [resp. in D’ (Bg)]. Then there exists ve[0, + o) such that
lim ¢ (x)/p(x)=Vv(resp. lim @ (x)/p(x)=0}.

x—=0 x>0
Proof. — From Lemma 1.1 there exists v=0 such that
(1.13) —Ap=h+vC(N) 3,

in D’(Bg) and ¢ =¢— vy satisfies (1. 12) in D’ (Bg). Without any loss of
generality we can assume that h is nonnegative in B(O,R), hence
r—>rN"! g, (r) is nonincreasing and then keeps a constant sign near 0.

Case 1. — "1 @ (r)>0 on (0, &]. For n large enough define

1 if 0§r§l,
n
2
(1.14) n,(r)= 1(l+cos(n1|:(r—l>) if lérg—,
2 n n n
0 if z§r§zz.
n

0=n,=<1 on [0,¢] and J N, (Ndr=—1. From (1.12) we get

0

[somora -[romor-e
[}

o
Using the monotonicity of ™ ~* @, (r) we deduce

(1.15)

(25 (0)

2/n
J @, (NN, ()~ dr

1/n

2/n
é,[ h(yrN~tadr

0
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NONLINEAR ELLIPTIC INEQUALITIES 43

2\N-1_ (2
which implies lim <—) (p,<—>=0and
n

n>+wo \ N

(1.16) lim N1, (r)=0.

r—=0

Case 2. — ™~ 1@,(r)<0 on (0, ¢]. Using the same method as above we
get

(1.17) og~<1)N—1a,(1>§j2/"h(r)rb‘-ldr
n n o

which again implies (1. 16).
From (1.16) it is clear that lim @ (x)/p(x)=0.

x—-0
Proof of Proposition 1.1. — Let p be the C!'! even convex function
defined on R by

_{]t]-82  for [t|z8>0
p(t)_{ 225  for |t|<8

1
and let ®; be > (u+v—p(u—v)). Then

1 1 1
(1.18) Aws= 5A(u+v)— —2-p’ u—v)Au—v)— Ep” (u—v)IV(u—v)]2
It is clear that Ao;e LL_(Bx\{0}) and 020w, <0+ 5/4. Moreover
(1.19) Amag%A(u+v)——%p’(u—v)A(u—v)=F.

We now set B\ {0}=G, UG, UG, with

G1={XEBR\{O}5(““‘U)(")>5}
(1.20) G,={xeB\{0}:(u—0v)(x)< -8}
G3={XEBR\{O}:|(“—U)(x)|§6}'

8 ’
On G,, p'(u—v)=1 and F=Av=g(v)=g<ma—2>. On G,, p'(u—v)=—1

and

F=Au§g(u)+f=g(m8—§>+f§g(v)+f-

Vol. 6, n° 1-1989.



44 Y. RICHARD AND L. VERON

On G, p’(u—v)=(u~)/, hence

(1.21) F=1<1—“_”)Au+l 1+ 22 ) Av
2 8 2 8

1 u—v°v 1 u—v
§5<1— 5 )g(u)+ 5<1+T>g(v)+f

and by the continuity of g there exists 0=0(x)€[0,1] such that
F<g@u+(1—0)v)+f If we assume for example that v<u<v+3§, then

F<gw+fand 0Zu—w;=< % & which implies that

F§g(m5+ %8)+f§g(v+8)+f.
We do the same if u<v=<u+ 3 and finally
(1.22) Acoség(co5+‘—?;6>+f§g(v+8)+f
holds in B\ {0}. We take now 8§ <3, so the right-hand side of (1.22) is
integrable in By and there exists a >0 such that

(1.23) —Aw;=0+aC(N)§,

in D" (Bg) with @ e Ll (Bp).
From Lemma 1.2. wz(x)/p(x) remains bounded near 0 and it is the
same with @;=wm; —ap. Moreover @, satisfies

(1.24) —Apy=®
in D’ (Bg). Let
"

o5 (r)= ISN——liusN‘

@5(r, o)do
1

and

- 1 r
D(r)= *I 5| SN—1(D(r’ o)do

be the spherical averages of ¢; and ® respectively, (r, 5) being the spherical
coordinates in R¥\ {0}, then

(1.25) —AG=B<|D].
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Applying Lemma 1.2 we deduce that lim e (M/u(r)=0. As a consequence

r—0

limf ]wa(r,.)/p(r)—ozldcr:O,
sN—l

r—- 0

which implies (with the uniform boundedness)

(1.26) limf lma(r,.)/p(r)——oz["do'zo
r—0JgN—1

for any g€[1, + ). As 00 =0;<®+35/4 we deduce

(1.27) limf lo(r,.)/n(r)—al?do=0,
r-0JsN—1

which is (1.9).
Remark 1.1. — As {Awz;}=® 1is integrable in By and

1
O=Aw;=F— Ep”(u—v)[V(u—v)]2 we get

(1.28) %p”(u—v)lV(u—v)]2§<D+g(v+8)+f

and then p”’ (u—v)|V (u—v)[*e L' (By).

DermNiTiON 1.1, — Assume (E, X, p) is an abstract measure space where
¥ is a o-algebra of subsets of E and p a positive o-additive and complete
measure such that p(E)< +oo0, and {V{,},. 0 r @ subset of measurable
functions (for the measure p) with value in R. We say that { s, } converges
in measure to some measurable function ¥ as r tends to 0 if for any £>0
we have
(1.29) lim p({er:[\|J,(x)—¢l(x)]>e})=0.

r—0
It is equivalent to say that from any sequence {r,} converging to 0 we
can extract a subsequence {r,, } such that { \|!,nk} converges to y u—a.e.
on E as n, goes to + co.

The generic isotropy result is the following

THEOREM 1.1. — Assume N=3, g satisfies (1.1), fe Ly () is radial
near 0 and ue C? (') is nonnegative and satisfies

(1.30) Auzg()+f
in Q. Then we have the following

Vol. 6, 0" 1-1989.



46 Y. RICHARD AND L. VERON

(i) either ™"~2u(r,.) converges in measure on SN to some nonnegative
real number v as r tends to 0,

(i) or
1.31) lim | x N2 u(x)= + co.

x—>0

Proof. — We recall that (r, 5) €(0, + o0) x SN~ ! are the spherical coordi-
nates in R¥\\{0}. For A>0 let v, be the solution of

Avx=g(l’1)+|f‘ in Bp\{0} =&

v, =0 on 0B
(1.32) lim |x|N"2p, (x)=A.
x—0

Such a v, exists, is radial and positive near 0. As } f | is radial it does not
affect the behaviour of v, near 0 (see Lemma 1.2).

From Proposition 1.1 there exists v(A) =0 such that
(1.33) lim PN~ 2inf (u(r,.), v, (MN)=v ()

r—0

in L9(SN™1), 1€g< +00, and v(A) <A from convexity. Moreover the
function A+ v(A) is nondecreasing. _

Case 1. — Assume lim v(A)=y<+o0. For A>y we have (1.33).

A=+
Assume {r,} is some sequence converging to 0, then there exists a sub-
sequence {r,, } such that

(1.34) l'mi e Jinf(u(r,, o), 0,(r,))=v(x) a.e on SN7'
ng — @©

Asv(M)<yand lim 7, %y, (r, )=y we deduce that
ng, — + o

inf (u (r,,, ©), v, (r,))=u(r,.c) a.e on SN7!

for n, large enough and

(1.39) lirr: m lu(r,,0)=v(A) ae on SNTL
n—~ +o

For A'> ) we repeat this operation with {r,} replaced by {r, } and there
exists a subsequence {r,, } such that

(1.36) lim Y %u(r, ,c)=v(X) a.e. on SN°1

""i nki?

A, = +to©

From (1.35) and (1.36) we deduce that v(A)=v(A)=y for A>vy which
implies (1).
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Case 2. — Assume lim v(A)=+o0o. For >0 we call p the function

L= +o

introduced in the proof of Proposition 1.1 and for A>0,

5= %(u+vl—p(u—vl))+ %8. From (1.22) we have

(1.37) Aws < g () +|f]-

Moreover rN~2m;(r,.) converges to v(A) in LI(SN"1!) (1Sg< +o0) as r
tends to 0. We consider now w=v, ,, the solution of (1.32) and we set

rN—Z
TN-2’
w ()=r""2w(r), 5(s, 0)=r""2@4(r, ), () =f(").
Then (1.32) and (1. 37) become

1 - @
5 (] “+—An-lm'5ks~/<~—z>< <__>+ ,
(Ot (G A %= A Y AR

5 w;s=ksN/‘N-2><g(s(NL'_2)>+l<ol>,

where k=k (N) =(N—2)“~"N/®N=2 gnd AN-1 is the Laplace-Beltrami ope-
rator on SN, Consider a C*® function p such that pe L*(R), p=0 on

N

(1.38)

(—00,0), p>0 on (0, + o) and j(r)=f p(t)dt. From convexity and
0

monotonicity we have

2
(1.39) sziz—f Jjw —w5) do 20.
ds* JeN-1

do and as w'(s) and ®;(s,.)

As f j(w’—mé)doéCf | w — o
SN—I

SN—I

converges to v(A) in L1(SN"!) as s tends to O we deduce that
f jw —0})do=0 on (0, RN"2/(N—2)] and w'<®j or
SN"‘I
(1.40) v,y (N=0;(r,0)<0(r,0)+5/4
which implies
(1.41) v(M) < lim [ x|V 2@ (x) < lim [ x[N72u(x)

x>0 x =0

and we get (1.31).
Remark 1.2. — If u satisfies (i) then v, (x)<u(x) in B\ {0}.

Vol. 6, n° 1-1989.



48 Y. RICHARD AND L. VERON

Remark 1.3. — If u is a radial solution of (1.29), u>0, in B\{0},
then a simple adaptation of the proof of Theorem 1.1 shows that
| x|N~2 u(x) admits a limit in [0, + o] as x tends to O.

The 2-dimensional version of Theorem 1.1 is the following

THeOREM 1.2. — Assume N=2, feL'(Q) is radial near 0 and ueC?*(Q)
is a nonnegative solution of (1.29) in Q. Then

— If a; =0 the alternative of Theorem 1.1 holds with |x]|>~N replaced
by Ln(1/| x ).

— If a; >0, we have the following alternative

(1) either there exists a nonnegative real number ye|0, 2/a)) such that
u(r,.)/Ln(1/r) converges in measure on S* to v as r tends to 0,

(ii) or

(1.43) lim u(x)/Ln(1/|x])22/a}.
x>0

Proof. — Case 1. — Assume a; =0. We define v(1) as

(1.44) lim (Ln(1/r)) " tinf (u(r,.), v, (D) =v (D).

r—=0

As v(M) is nondecreasing and v, exists for every A>0 we can
proceed as in the proof of Theorem 1.1 if lim v(A)=y<+o. If

A=+t

lim v(A)= + o we introduce ®; and v, gy=w as in Theorem 1.1 and
A=+

make the following change of variable
t=Ln(1/r)
w=w(), ©;¢c)=a5r0), fEO=f().
Hence w’ and o} satisfies
(1.46) (ag)n'*‘(g)g)_e;?e_zz(g(")g)‘*‘f)
we=e" 2 (gwW)+|f])

on (T, + ) xS! and with the same function j as before

(1.45)

2

1.47 —
(1.47) i)

As t71 (W' —o}) converges to 0 in L!(S') we deduce that j(w’ —a})=0
and we get finally

(1.48) lim u(x)/Ln(l/lx|)= + co.
x—0

Annales de I'Institut Henri Poincaré - Analyse non linéaire
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Case 2. — Assume a, >0 and set y= lim v(}). Clearly y<2/a;. If

At 2/a;

y<2/a; we can proceed as in Theorem 1. 1. If y=2/a; we get as in Case 1

. 6
(1.49) inf (4 (x), v, (x)) 20, o) (x) — 2
2 . . 2
for any A< — and xeBg\{0}. We can take in particular A= —=v(})
ay ay
and we get (ii).
2. SINGULAR SOLUTIONS OF Au= 1g(u)
The first application of Theorem 1.1 is the following
THEOREM 2.1. — Assume N2=3, g is a nondecreasing locally Lipschitz

continuous function satisfying (1.1) and ue C? (') is a nonnegative solution
of

2.1 Au=g(u)

in Q. Then | x|N"? u(x) admits a limit in [0, + 00] as x tends to 0.

Proof- — From Theorem 1.1 we can assume that there exist ye[0, + c0)
and a sequence {r,} converging to 0 such that

2.2 lim N"2u(,.)=y ae in SN°L
n— t+w
Case 1. — Assume y>0. For €0 set w, the solution of

Aw,=g(w) in T, z={xeR:e<|x|<R}
w,=u on 0B,
w,= max u(x) on 0By
x € 0BR

(2.3)

(we may assume that By = Q). From maximum principle u<w, in T, 4.
Let v*=u+w,(R), then

(2.4 —Ar+g)=0

and finally u<w,<u* in I', ; and there exists a sequence { €, } converging
to 0 and a function weC?(Bg\{0}) satisfying —Aw-+g(w)=0 in
Bx\{0} such that {w, } converges to w in the Cj-topology of By\{0}.

Vol. 6, n° 1-1989.



50 Y. RICHARD AND L. VERON

Moreover

(2.5 u

A

w=<u'=u+maxu(x)
dBRr

From Remark 1.2 lim |x[N~2w(x)=1, hence we deduce from Serrin and
=0

Ni’s results [12] that w is radial and from (2.2) and (2. 5)

2.6) lim N 72w(r)=y.
If w (s) =w’ (N~ 2/(N—2)) =" w(r), then
(2.7 s w=k (N) sV "2 g (w'/s (N—2))
we deduce that s - w’ (s) — k (N) (N —2)2/(2N) sV ~2 g(0) is convex and
(2.8) lim N7 2w @)=y=lim |x N2 u(x).
r—+o0 x=0

Case 2. — Assume y=0. For £>0 and v>0 set w, , the solution of

Aw, ,=g(w,_ ) in T

(2.9) W, =utvel ™ on B,
) W, ,= max (u (x)+le|2—N) on 6BR.
x € OBR

As in case 1 we have

(2.10) u(x)=w, , () =Sux)+v|x]2 N+w, (R)

= g, v

in T,z For O<v <v let v, be the radial solution of
—Av, +g(@,)=C(N)v' 8, in D'(By) such that v,=0 on JB; As
lim |xN"2p, (x)=V we deduce that for ¢ small enough v, <w, , on 3B,

x—>0

and finally
2.11) w, 20,

ta I, ; and as in Case 1 there exists a subsequence { ¢, } such that lim €,=0
and a function w" satisfying —Aw"+g (w") =0 in By such that w,_ , conver-
ges to w" in the C;._ topology of Bg\{0} and we have

(2.12) max(y, v,) Sw'<u+v|x|? N+ max u(x).
0BR

Applying again [12] we deduce that w” is radial and as in Case 1 we get
that

(2.13) lim |x [N 2u(x)< lim | x[N"2w" (x)=v.
x—=+0

x—=0
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As v is arbitrary lim |x|[N"?u(x)=0 and u can be extended to Q as a C?

x—=+0
solution of (2.1) in Q.
In the same way we can prove the two dimensional case

THEOREM 2.2. — Assume N=2 and g is a nondecreasing locally Lipschitz
continuous function defined on R*. If ue C*(Q’) is a nonnegative solution
of (2.1) in ', we have the following:

— ifa} =0 u(x)/Ln(1/|x|) admits a limit in [0, + o] as x tends to O;

— if a; >0 and g satisfies
(2.14) forany a=0 lim e “ g (r) exists in [0, + 0],

r—= +ow
u(x)/Ln(1/| x|) admits a limit in [0, 2/a] as x tends to 0.

Proof. — If a =0 we proceed as in Theorem 2.1. If ¢ = + o0 and g
satisfies (2. 14), u can be extended to © as a C? solution of (2.1) in Q [21].
If 0<a, <+ co we have two cases

(i) either there exists ye[0,2/a;) and a sequence {r,} converging to 0
such that
(2.15) lim u(, .)/Ln(l/r)=y a.e in§!?

n— +o©

(ii) or lim u(x)/Ln(1/|x|)2=2/a;.
50

In case (i) we have lim u(x)/Ln(1/|x|)=y as in Theorem 2. 1. In case (ii)

x—0

we have an a priori estimate thanks to (2. 14) [21]:

2
(2.16) u(x)§(—++£>Ln(1/[x|)+B(£)

ag
near O for any €> 0. This clearly implies
(2.17) lim u (x)/Ln(1/|x|)=2/a}.

x—=0
THEOREM 2.3. — Assume N2=3, g is a continuous function defined on
[0, + o0) such that lim g(r)/r=K for some K> —o0 and ueC*(Q) is a
r—=+ +w

nonnegative solution of
(2.18) —Au=g(u)

in Q. Then there exists ye€[0, + c0) such that
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(2.19) ﬁmlx]“”j lr—]x~2u ()| dS =0,
Iyl=lx]

x—>0
gweLl (Q) and u solves
(2.20) —Au=gu)+C(N) yd,
in D' (Q). If we assume moreover that

2.21) jlinf(g(arz_N),g(Brz’N))rN‘ldr=+oo

0
for any a, B>0, then y=0.
Proof. — The fact that g(u)eLL (Q) and u satisfies (2.20) for some

y20 is proved in [S}. If u(r) [res. g (1) (r)] is the spherical average of u
{resp. g (w)] then

(2.22) Au=g ()

in B\ {0} < Q and we deduce from Lemma 1.2 that

x— 0

2.23) lim [xll‘Nj v —|x[*2u ()] dS =0
Iyi=Ix]

for some vy’ =0 and u solves
(2.24) —Au=gw)+C(N)y' 3,

in D’ (Bg). Whence y=v’". Let us assume now that y>0 and g satisfies
(2.21) for any o, B>0. As ™ 2u(r,.) converges to y in L1(S¥7Y) it
converges in measure and for any ne(0,|SN"!]) there exists roe(0,R)
such that for any re(0,r,) there exists a measurable subset ®(r) < S¥~!
such that |e()|2n and [N 2u(,0)—y|<y/2 for cew(). As
g(r)ZK’r—L and ue L} (Byg) there is no loss of generality to assume that
g(r)=0 on (0, + o), hence )

(2.25)
J,

For pe(0,r,] and cew(p), %p*“§u(p,o)<2¥ p2 % and as g is conti-

g(u)dx=Jr0J g(u)rN_ldcdr;J‘rOJ gwyrN Ydodr.
0o JsN-1t 0 Jeor

[¢]

nuous, g (u(p, o)) ginf<g (% p? “N), gRyp? _N)>. As g satisfies (2.21) we
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get

To
(2.26) J. gwdxz=n J inf(g(zrz'l"'),g(27r2"“))r”“l dr= + oo,
o 2
contradiction. Hence y=0.

Under an assumption of monotonicity on g we get a much more accurate
result:

ProrosITION 2. 1. — Assume N =3, g is a nondecreasing locally Lipschitz
continuous function defined on [0, + 00) and ueC?*(Q') is a nonnegative
solution of (2.18) in Q. Assume also that By = Q and that there exists a
radial continuous function ® defined in Bg\ {0} and satisfying

—AD2g(®) in D'(B\ {0}),
®>u in Bg\{0}.

Then |x|N~2u (x) converges to some nonnegative real number y when x
tends to 0.

2.27)

Proof. — From Remark 1.3 |x|¥7?®(x) converges to some y’ =0 as x
tends to 0. If y'=0 then lim |x|¥~? u(x)=0. Let us assume that y'>0.

x>0

From Brezis and Lions’ result
—ADP=—{ADP}+C(N) Y 3,
with —{A®}eLl (Bg) which implies that g(®)eL*(Bg) and g satisfies

Toc
(1.1). From Theorem 2.3 there exists y€{0,y] such that ™~ 2u(r,.)
converges to y in L! (S¥ 1) as r tends to 0. We consider now the sequence

of functions { u"} defined by u®=® and for N>1
—AuN=g@" ") +C(N)¥3, in D'(By)

(2.28)
uN=® on IBg.

Then u® is radial and u<uN<uN"1<®. It is clear that {4~} converges
in CL.(Bg\{0}) to a radial function u which satisfies

loc

(2.29) —Au=g(@)+C(N)y8, in D'(By)

and u=u. As a consequence of Lemma 1.2 lim |x|¥"2u(x)=y. From

x=>0

Remark 1.2 lim |x[¥~2u(x)=1v which ends the proof.
x—+ 0

Remark 2.1. — The hypothesis of radiality of ® which is rather
restrictive can be withdrown if we know that lim u(x)=+ oo and

x =0
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® = sup u(x). In that case we can consider the following iterative scheme
| x|[=R

with ®°=® and

—AD=g (O¥ ")+ C(N) '8, in D'(By)
(2.30) ®N= sup u(x) on OBg.

) | x|{=R

Then u<®N<ON"'<® and {®V} converges in CL (Bg\{0}) to some
@~ satisfying

—AD =g (® )+ C(N)y' 8, in D'(Bp)
(2.31) ® = sup u(x) on 0By

I x]=R

and ®~ 2u. As lim ®~ (x)= + oo we deduce from Serrin and Ni’ results

x =

[12] that ®~ is radial and we can apply Lemma 1.2.

PrOPOSITION 2.2, — Assume N2 3, g is a nondecreasing locally Lipschitz
continuous function defined on [0, + o0) satisfying for some q>N/2.

(2.32) sup(g’(9),8" (V) e LE..(Q)

for any © and \ continuous and nonnegative in Q' such that g(¢) and
g eLl (Q). If ueC*(Q) is a nonnegative solution of (2.18) in ', then

Toc
[x ]N_z u (x) converges to some nonnegative real number y as x tends to 0.
Proof. — From Theorem 2.3 we have (2.20) for some y=0 and
gwell (Q).

loc

Case 1. — y=0. Without any restriction we can assume that u>¢ in
B\J{0} c Q and we write (2. 20) as
(2.33) Au+du+g(0)=0

in Be\{0} where d(x)=(g (w)—g(0))/u. As g(u)eL*(Bg) (2.32) implies
that de L?(Bg) and we deduce from [18] that either u has a removable
singularity at O or

(2.34) O<lim |x[N 2u(x)< fim [ x| 2u(x)< + oo,
x =0 x =0

which is impossible as y=0.
Case 2. — y>0. Let v, be the solution of

—Av,=g(v,)+C(N)v5, in D'(By),

(2.39) ;
v,=0 on 0By,
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v, is constructed using an increasing sequence of approximate solutions as
in [11}, 0<v,<u in B\ {0} and v, is radial. Let w be u—v,, then

(2.36) Aw+dw=0
in B\ {0} with d=(g (u)—g (v,))/(u—v,) €L?(Bg). Then we deduce from

[18] that either w has a removable singularity at O or

(2.37) 0< lim [x N 2w(x)< lim |x[N"2w(x)
ITO

x =0

which is impossible as

(2.38) y= lim ]x}N_Zvy(x)= liLnO]x]N‘zu(x).

x—>0

Remark 2.2. — Under the hypotheses of Proposition 2.2 two nonnega-
tive solutions u;(i=1, 2) of

(2.39) —Au=gw)+C(N)v3§,

in D’'(Q) are such that u, —u,eLZ (Q). As for the solvability of (2.39)
we have

PrOPOSITION 2.3. — Assume N=3, Q is bounded with a C! boundary
0Q and g is a nondecreasing function defined on [0, + o), satisfying (1.1)
and g(r)=o0(r) near 0. Then there exists y*e(0, + o] with the following
properties:

(i) for any ve€[0,v*) there exists at least one nonnegative function
ue CH(ON\J{0}) vanishing on 8Q solution of (2.39) in D’ (Q),

(ii) for y>v* no such u exists.

Proof. — Step 1. Assume Q=B,. — A function u vanishing on dBy is a
radial solution of (2.40) in D’ (Bg) if and only if the function v (f)=u(r),
with t=r>"N, satisfies

1

04— T2N-DN-D o) =0 on (R2°N, + 0),
o g (
(2.40) v(R*7) =0,
lim o(t)/t=Y.
t—> +o

As v is concave the last condition is equivalent to

(2.41) lim o, (t)=y.

t—=+ +c
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For a>0, let v* be the solution of the initial value problem defined on a
maximal interval [R2N, T#*)

v+ !
(2.42) (N-2)?

t"2N-DN-D o (%) 0 on (R2™N, T*),

P (RZ - N) — 0,

PR N =0

If T*< + oo then lim v*(t)=0 as a consequence of concavity and there
t1 T

exists Te(R2™N, T*) such that v,(T)=0. If T*=+00 and lm v, (8)=0

t—=+ t+w
then the same relation holds with T= + 0. As a consequence if no solution
v® of (2. 42) satisfies (2.41) with v>0 we have

(2.43) (N—2)2q=fT 72N DIN=2) g (17 (1)) dt

R2 ~N
and the right-hand side of (2.43) is majorized by
+ 0
f t72N-DIN-2) g (4 (t —R27N)) dt, which implies
R2-N

+ a0
(2.44) (N—z)zqR—N<j (t+1)"2N-DION-2 g (y R2-Np) gy,
0

or

+o 2-N
(2.45) (N—z)ZR-2<f (et )2 om-ng ORTTY )
0 aR2"N¢

For €>0 there exists n>0 such that aR2Nt<n implies
2(@R?2 "N <eaR?"Nt. Hence the right-hand side of (2.45) is majorized
by

RN—-Z +
J (t+1)_2(N_1)/(N_2)g(GR2_Nt)dt

o JrN-2,,

RN‘2n/a
+sf t(t+1)"2N-DIN-2 gy
0

or

+ 0

QZ(N—I)/(N"Z)J‘ (RN—ZS+a)—2(N“1)/(N—2)g(S)dS
n

+
+8J t(t+1)"2®-N=D gp,
o
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Consequently

+ o RZ—Nt
(2.46) lim f t(+1)-2 - -8 ) 4t =0
0

a—>0 [0 4 R2 -N t
contradicting (2.45). As a consequence there exists a*>0 such that for
any ae(0,x*) the solution v* of (2.42) is defined on [R2™N, + c0) and
satisfies (2. 41) for some y>0.

Step 2. The general case. — There exists R >0 such that Q < Bg. If
¥>0 is such that there exists a solution v to (2.40), then for any y<[0, ]
the sequence {u, } defined by u,=0 and for n>1

—Auw'=g(W"" N +C(N)yd, in D'(Q),

(2.47)
u"=0 on 9Q,

increases, is majorized by v in Q and converges to some u which vanishes
on dQ and satisfies (2.39) in D’ (QQ). For the same reasons, the set of y>0
such that there exists a nonnegative solution of (2. 39) vanishing on JQ is
an interval.

Remark 2.3. — If lim g(r)/r>0 it is proved in [11] that y* < + 0. If
r— +cw

we no longer assume that lim g (r)/r=0 it can be proved that for any

r—+0
Vo >0 there exists R,>0 such that for any Q < By, and any ye[0, vo)
there exists a solution u of (2.39) in D’ (Q).
The two-dimensional version of Theorem 2.3 is the following

THEOREM 2.4. — Assume N=2, g is a continuous function defined on
[0, + ) such that lim g(r)/r>—oco and ueC?*(Q) is a nonnegative
r— +o

solution of (2.18) in Q’. Then there exists y€[0, + c0) such that

2.48) lim lxl“f ly—uG)/Ln(1/] x| dS=0,
Iyl=l=xi

x>0

g(well. (Q) and u solves
(2.49) —Au=g(u)+2mnyd,
in D’ (Q). If we assume moreover that

(2.50) flinf(g(aLn(l/r)),g(BLn(l/r))rdr=-+-oo

0

for any a, B>0, then y=0.
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Remark 2.4. — When a; =0, Proposition 2.2 which holds in the case
N=2 with | x|>"N replaced by Ln(1/|x|) provides an interesting criterion
for proving that

(2.51) lim u(x)/Ln(l/lxD='y

x— 0

for some y=0. Proposition 2.1 is also valid in the case N=2 (with the
same modifications).

We introduce now a class new of g’s defined on [0, + c0) which are
those satisfying

(2.52) VYo>0, lim e °g(r)=I(o) exists in [0, + o0],

r—- +tw

and we have [20]

(2.53) a; =sup{c>0:1(c)=+c0 }=inf{c>0:1(c)=0}.

THEOREM 2.5. — Assume N =2, g is a continuous function defined on
[0, + o) satisfying lim g(r)/r>—co and (2.52) with a <+ and
r— +ow

ue C*(Q) is a nonnegative solution of (2.18) in Q' and assume also
(i) either a; =0,

! 2
(ii) or a; >0 and j- g<—+Ln(1/r))rdr= + 0.
0 ag

2 1
Then there exists ye[O,—+> such that u—+yLn— is locally bounded in Q.
a, r

Proof. — The main ingredient for proving this is a theorem due to John
and Nirenberg ([9], Th. 7.21) that we recall

«Let ue W1 (G) where G — Q is convex and suppose that there exists
a constant K such that

(2.54) j quldx§Kr for any ball B,
Gn B,

then there exist positive constant p, and C such that
(2.55) J exp(%lu——uG |> dx <C (diam (G))?
G

where p=,| G| (diam(G)) 2 and ug= l%lj‘ udx».
G

From Theorem 2.4 there exists y=0 such that u(r,.)/Ln(1/r) converges
to y in L'(S?) as r tends to 0 and g(u)eLj, (Q). Set w=u—yLn(1/|x|),

loc
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then
(2.56) —Aw=g (u)

in D’(Q). It is now classical that Vwe M2 _(Q) where M?(G) is the usual
Marcinkiewicz space over G. If we take G=B; = Q then Vw satisfies
(2.54) for some K >0, which implies

(2.57) J e™dx=C(p)
By
for some >0 and O0<p=R.
Case 1. — Assume a,; =0. Then for any £>0 we have
(2.58) lg(M|=K, e~

for some K, >0 and any r=0. From (2. 57) we have

(2.59) j e™| x|*"dx < C(p).

p

If y>0 we have for p, 6>1 and A>0

lje /o’
(2.60) Jemdxg(j e"”“lx[“dx) (f {xl—“dx)
B B Bp

o o
a

(c’=0/(c—1)). We set cpe=a, cA=ay, hence A=ype, 6=—and
pe

o’'A=aype/(a—pe).

Hence for any p>1 we can take £ small enough so that c’A <2 and
o>1. As a consequence g(u)eL?(B,) and weL*(B). If v=0, (2.59)
implies that g (u)e L?(B,) for any pe([l, «0) and ue L*(B,).

1
Case 2. — Assume a;>0 andf g(%Ln(l/r))rdrz-koo.
(4] ag

2
—
a,

2 .
Step 1. — 0<y< —-. Assume the contrary that is y= As af >0

g
we have lim g(r)= + oo and from Remark 1.2

r—+ +o
(2.61) u(x)>v, (x),
where v, satisfies

(2.62) —Av,+g(v,)=2nYd,
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in D’ (Bg), v,=0 on ¢Bg. As a consequence [21] lim u(x)= + co and for

x—=0
| x| <R’ small enough
(2.63) —Auz2my3d,
in D'(Bg). As a consequence u(x)=yLn (ﬁ ) —1I,  which implies
x

J g (W)dx= + oo, contradiction.
By

Step 2. — We claim that for any a>0 there exist pe(0, R] such that
(2.57) holds. We fix 0<R’<R and write w=w, +w, where w; is harmonic
in Bg, and take the value w on 0By, and w, satisfies

(2.64) —Aw, =g (1)
in Bg. and w,=0 on éBg. As Vw, e L?(Bg.) we deduce
(2.65) [V w:lwe @ > 0

p— 0

and for w, we have

(2.66) 1V w,|lwe @y =C [E{O1I% (Br?
where C is independent of R’. As a consequence we get
(2.67) Hm [|Vwly2@,=0

p—0

and the constant K in (2. 55) can be taken as small as we want provided
G=B, and u is replaced by w. This implies that for any o >0 we can find
p<(0, R) such that (2.57) holds.

Step 3: End of the proof. — From the definition of a;, for any €¢>0
there exists K, >0 such that

(2.68) |8 (r)|<K, e o7
for r=0, and we have from (2. 59)
(2.69)

l/o 1/c’
J~ e”“‘;*e)“dxé(j e°”("a++e"‘|x|°ldx) (J ]xl‘“dx) .
B, B, By

We take op(a, +&) =a, oA=ay [we assume y>0 other-while gwell (Q
for any p>1 and welZ (Q)] and A=vyp(a, +e), oc=a/p(a, +¢) and
Ao’ =ayp(a; +e)/(x—p(a, +¢)). As ya; <2 there exist p>1, £>0, a>0
such that 6’ A <2 which implies g(u) e LZ, () and we end the proof as in
Case 1.
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Remark 2.5. — If a; = + co then y=0 from Theorem 2.4. In that case
it is unlikely that Theorem 2.5 still holds. However we conjecture that
lim u(x)/Ln (1/] x|) =0.

x—=0

Concerning the existence of solutions of (2.49) the following result can
be proved as in Proposition 2. 3.

PROPOSITION 2.4. — Assume N=2, Q is bounded with a C' boundary
0Q and g is a nondecreasing function defined on [0, + c0) such that
a' €(0, +oo] and g(r)=0(r) near 0. Then there exists y*€(0,2/a,] with
the following properties:

(i) for any yel[0,y*) there exists at least one nonnegative function
ue CH(ON\{0}) vanishing on 9Q solution of (2.49) in D’ (Q),

(i) for y>v* no such u exists.

Remark 2.6. — If g(r)=e* it is easy to see that y* exists only if
. . 2 2
diam. (Q) 1s small enough. Moreover in that case y* < — =—.
a, a
3. SINGULARITIES OF Au=u(Ln" u)*
Our first result deals with the one-dimensional case
THEOREM 3. 1. — Assume ueC?(0, R) is a nonnegative solution of
(3.1) u,=u(Ln® w* in (0O,R).
Then:
— if0<a<?2,
u (r) admits a finite limit as r tends to 0;
— ifa>2,
(i) either u(r) admits a finite limit as r tends to 0,
(i) or

3.2 u@)= /e @10 (),
o2 {u,(r)=—\/E(v(a»““r“/“"“)em"””‘“’(l+0(r2““*2>)),

near 0 where

9 \2/a-2)
(3.3 Y(Ot)=(;—_—2> .
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From (3.1) u is convex and u(r) admits a limit in R* U {+w} asr
tends to 0. If this limit is larger than 1, (3.1) is equivalent to
(3.9 v, +vi=1"

on some interval (0,R’) with the transformation u=e". Theorem 3.1 is
an immediate consequence of the following result

LemMMA 3.1. — Assume veC2(0,R’) is a nonnegative solution of (3.4)
in (O, R’"). Then

— if0<a =2, v remains bounded near 0;

— ifa>2

(1) either v remains bounded near 0,

(i) or

re= Dy =y(@+ %r”‘“'” +0 (r*e-2)

3.5
( ) ru/(u— 2) v, (r) - _ (,Y ((l))“/z +0 (r4/(u— 2)).

Proof. — Assuming that u is unbounded near 0, then
lim u (r)= + co = lim v (r) and v is decreasing near 0. So we can define

r—+0 r—+0

(.6) {p=ve[0',+oo),
h(p)=v},

and (3.5) become

1 .
3.7 5h,+h=p“ in [o, + ).

p
Hence h(p)=h(o)e> (°"”)+2e'2"f s*e?*ds.

o

As
4 — P
jsrersds=l[sueZS]:;_E[sa—lezs]z_‘_Cl((l 1)'[ 2225 g
o 2 4 4 -
and
—2p fp
¢ - J' s"ze“ds=0(iz+i>
p* Jo Pt P
we get
h 1
(3.8) @=1_i+o(—1§+—a>
p 2p pr P
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as p goes to + oo, which implies

v, (r)
r—-o o2 (9]
Integrating (3.9) implies that v =2 (r) (if 0<a<2) or Ln v(r) (if a=2)
remains bounded near 0 which is a contradiction. So we are left with the
case a.>2, lim v (r)= + oo. From (3.8) we have

r—=0

v o 1
3.10 r =1+ —+40( =)
( ) vY/2 4v (vz)

(3.9) 1

near 0, which implies lim r?®~ 2y (r) =(

r—=0

2/(a—2)
) =v(a). As a conse-
a—2
1 1
quence —— = 1g(—)rz"""z) and (3. 10) becomes

v ()

(3.11) "’2=_1+1_+0_(1_)3,2/(a—2)
v” y(w) 4

Integrating (3. 11) on (0, r) for r small yields

1
(3.12) v(r)='Y(ot)r2/‘2‘°"(1+ L+o@® )rz/‘“_2’>,
27y (o)
which implies, with (3. 10),
v o
3.13 T = 14— p¥e Dy g (M),
(3.13) . per r*/e2)
Reasoning as before we get
1
(3.14) v(r)='y(oz)r2/(2_")+§+0(r2""_2))
near 0 and
(3.135) re=2y (1) = —(y (@)¥*+0 ¥ ).

We assume now that Q is an open subset of RY, N>2, containing 0,
Q' =0\{0} and we consider the following equation in €’

(3.16) Au=u(Ln* u)*
where ue C?(Q’) is nonnegative.

LEMMA 3.2. — If a>2 and By =€ then there exists a constant
C=C(o, N, R, dist (dBg, 0Q) such that
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(3.17) u(x)<eC1 =27 in BN\JOL
t
Proof. — We define B@®)=t(Ln"1)?* ) =j B(s)ds and
0

+ o
t(t)=J i As 1(2) < + 0 we deduce from Vazquez's result that
e JO

the equation (3. 16) satisfies the a priori interior estimate property [19]: if

Xo€Q and if the cube Q,(xo) ={xeRN: sup |x'—x}|<p} is included in
1 <i=N

€Y, then for any ae(0, 1) there exists a constant p=p (a) >0 such that

N _
(3.18) u(xo) = T 1 (up)-
So the main point is to get a precise estimate on t 1. If s,>e*? and
1 ., -
C(sg)==— it is easy to check that
2 4Lns, ’

J(@O)>C(sg) >(Lne)e for t>s,.

If C, then 1 (s)<C,(Lns)® =72 for s>s, and

2
 (@—2) /C(so)’

(3 19) ,r—l (y)§eca/(a—2) y2/(2—¢)'

\/ﬁ
for 0<y<1(s,). For |x|< ~2-R, Q21xl (x) < Bg. We set
N

R0=min<l ,E—T(s°)>
2 2 u

and for |x|<R, we can apply (3.18), (3.19) which gives

(3 ) 20) u (x) § E e((co JN)/Z)Z/(“_Z) | x |2/(2—ﬂ).
a

The estimate in By \ Bg, is obtained from (3.18) with a simple
compactness argument and we get (3.17).

LemMMA 3.3. — Assume N2 2, a>0 and ve C? (Bg\{0}) is a nonnegative
solution of '

(3.21) ot

v,+v*=v" in (O,R)
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such that lim v (r)= + co. Then for any £>0 there exists r(e)e(0,R) such

r—0

that

N-1 v,
—1<

(3.22) - i

=—l4e in (0,r(e).

Proof. — From (3.21) it is clear that v,<0 on some (0, r,) = (0, R) and
we get
(3.23) v, +0220v* in (0,r,).

Taking v=p as a new variable and h(p)=v? as a new unknow we get as
in Lemma 3.1

1
Eh,+h;p“ for pz=p,,

which implies (e °h),=2e*°p* and by integration we get m =1—¢ for
p¢

any £>0 and p>p(g), that is

vr
va/ 2

3.29 <—14¢ in (0,r(e)),

where r(¢) is small enough. As a consequence lim v, (r)= —co. If we set

r—+0

o=y, we get from (3.21)

—1 —
(3.25) ®,+ N ®,+2 0o, — o=anr* !

r r

As <0 on (0, ry), (3.25) implies

(3.26) w,,+<N_1 +2co)w,<0 in (0, 7).

r
Hence if o, (r;) <0 for some r, (0, r,) we would have @, (r)<0forre(0,r,)
contradicting lim o (r)= — oo. As a consequence ®,>0 and

r—-0
N-—
r

(3.27) 2+ 1v,——v°‘§0 in (0, r,).

A simple algebraic computation implies

_ 1\2
(3.28) —N 1— (N ) +1°<y9,<0
2r 2r
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and

N-1
(3.29) U5 —

2= o2

which ends the proof.

LemMMA 3.4. — Assume N2, a>1 and ue C*(Bg\{0}) is a nonnegative
solution of

(3.30) u,+ N_lu,=u(Ln+ w® in (0,R).

Then lim u (r)/p(r) = + o if and only if lim r**Lnu(r)= + co.
r—+ 0 r—>0
Proof. — Case 1: N=3. — We consider the following change of variable
(3.31) s=r27 N, u(s)=u(r);

u satisfies

~ 1 ~ ~
3.3)  ga=—— s 2D T pt 3 in (S, + o0),
( ) N_2)? ( )
with S=R2?7N and if lim P 2u(r)= + oo we have
r—+0
(3.33) lim #(s)fs= lim #,(s)=+ co.
r— t+wo s= +w

From convexity u(s)<s u,(s) (1+0(1)) and
(Lnu#)*<(Lns+Lnu,+0 (1))*<(N—2)?(Ln s)*(Lnuy)®

for s large enough; so (3.32) becomes

(3.34) u, <s NNy (Lnu)* (Lns)

As a>1

+ a'ss 1 - -
= —ds= (Lnu,(o))"~*
s U (Lnu) a—1

and

+ oo
J~ sTNN=2 (I ns)ds<A o~ 2N-2(Lno)®

c

for some constant A and o large enough. As a consequence Lnu,(c)>B
gD~ L(Lp )1 ~= A straightforward computation implies that for
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any £>0 and for s large enough
~ +2/(1— _a
u (s) > ev(‘ /(1 —a)/(N )’

which means

(3.35) Lnu(r)=rt2t-o

for r small enough and limr**Lau(r)=+ . Conversely
r—-0

lim 7> Lnu(r)= + oo implies lim u (r)/pn ()= + oo (N=2).

r—0 r—-0

Case 2:N=2. — We make the following change of variable
(3.36) r=e”', u@®)=u(),
and we get (with T=Ln (1/R))
(3.37) u,=e 2*u(Lnu)* in (T, + ).

If we assume lim u (r)/Ln(1/r)= + oo then

r—-0

lim u(t)/t= lim @,()=+oo

t— +w T— +o

(by convexity) and we get

e Le *t(Lnt*(14+0(1)) for t»T
u,(Lnu,)

and

(3.38) Lnu, () 2Bt~ (Lng)¥0 - =240~

for some B>0 and ¢ large enough, which implies
(3.39 () zeem o,

for any £>0 and ¢ large. From (3. 39) we get the result.
With lemmas 3.2-3.4 we can describe the behaviour of nonnegative
radial solutions of (3. 16) with a strong singularity at 0, when o> 2.

LEMMA 3.5. — Assume N22, a>2 and ue C2(Bg\{0}) is a nonnegative
solution of (3.30) in (0, R) such that lim u (r)/u(r)= + co. Then the following

r—+0

holds near O

(3 . 40) r2/(a—2) Lnu (r) =Y (d.) -+ a—(N;i) (a—z) rz/(a-2)+ o (r4/(¢-2)),

PIeD (Lnu (), = — (1 (@)72 +0 (412,
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Proof. — From the preceeding lemmas lim v, (r)/v*? (r)=—1 where

r—+0

v=Lnu. As a consequence

lim r¥= 2y (r)=y ()
(3 . 41) r—+0
lim r«= v, (F)= —(y (@)
r—+0
(N-D(@-2)
2
estimate into equation (3.21) yields

(3.42) v, +02=v"+C(l+o0(1))r*?

with C=(N—1) (x—2)/2. Taking again p=v as the variable and h(p)=v?
as the unknow implies

and N1y () =(—1+0(1) “~1(r) near 0. Pluging this
r

P hE),=p" e+ Cll+o (D) p* 7

and
(3.43) h—'(§’2=1+(1+o(1))(c—3)1 as p— + 0.
p 2/p
If we set A=g_9 = a_(N_l)(a_z) wE havei=—l+ 1+0(1)A’
4 2 4 o2 v
which implies v () =7y (o) (1 +0(1)) r?2~® and finally
(3.44) s =_1+wArzm—z>.
v/ ¥ ()

Integrating (3.44) on (0, r] for some small r implies

v(N—y(@r??2=1+0(1))(2A/x).

As vy, = —-v“/z(l +O(l)), we have N-1 v,= _cvﬂ"l(l_{_o(l)) and v
v r v

satisfies
(3.45) 0, +02=0"+Cv* "1 4+0 (v*"2);
using p and h(p) yields

h —al 1
(3.4@ (S)=1+2C a_+o(_2),

p 2 p p

v, A 1

(3.47) v"’2=_1+;+0(§)’

Annales de Ulnstitut Henri Poincaré - Analyse non linéaire



NONLINEAR ELLIPTIC INEQUALITIES 69

and, as v=v r?@~9 (140 (r3/@-2)),

Yr =—1+ ir2/(¢—2)+ o (r4/(a—2))‘
v ¥ (o)

(3.48)

Integrating (3.48) gives v(r)=y(x)r¥? =4 24 +0(@*¥@2)  which
o

implies (3. 40).

N —
Remark 3.1. — If N=3 and a=2N—;, Y () =7 () r?>~?is a solution

of (3.30) in (0, + o0).
We are now able to prove the main theorem of this section

THEOREM 3.2. — Assume N22, a>0 and ueC?*(Q) is a nonnegative
solution of (3.16) in Q’. Then
if0<a<2:

(i) either u can be extended to Q as a C? solution of (3.16) in Q,
(ii) or there exists y>0 such that Him u(x)/p(x)=1v and u satisfies

x>0
(3.49) Au=u(Ln* u)*—C(N)y8,
in D’ (Q);
ifa>2:

(iii) either u behaves as in (i) or (ii) above
(i) or u()=7(@N) & @ *FE7 (140 (|x "))
2/(a=2)
near 0 with vy (o) = (———2 2) and y (e, N) =@ N-D@=-2)/2a
a._

Proof. — From Theorems 1.1, 1.2 we know that u(x)/pn(x) admits a
limit in (0, + o] as x tends to 0. If the limit is finite we get (i) or (ii) [(iii)
if @>2] and (3.49) from Theorems 1.1, 1.2 and Remark 1.1 (if the limit
is 0 then u is regular as in Proposition 2.5). So let us assume that
(3.50) lim u (x)/p(x)= + co.

x>0

For any ¢>0 let @, be the solution of

(@t = (0,=@.(Ln" )" in (O.R),
lim @ (r)/u(r)=¢c, ©.(R)= min u(x),

r—0 {x|=R

(3.51)

Vol. 6, n° 1-1989.



70 Y. RICHARD AND L. VERON

(we assume By = Q). It is clear that 0<¢.<u for 0<|x|<R, cr> @, is
increasing and lim ¢,=¢ where ¢ satisfies

¢~ t+o

N-1 .
@+ ——9,=¢(Ln* ¢)* in (O,R),
(3.52) r )
lim @ (r)/u(r)= + oo, @ (R)= min u(x).
r—-0 [x]=R
Moreover 0<@<u in B\ {0}.
If 0<a<2 we can take R small enough such that ¢(R)>e and we
construct in the same way as ¢ a function ¢ such that 0< @ <¢ and

~ N-1~ ~ ~ ;
?, + ‘__(prz(P(Ln+ (p)z n (0’ R)’

,
lim ¢(r)/p )=+, @R)=¢(R).

r—=-0

(3.53)

From Lemma 3.4 lim r¥*Lno (r)= + co. If we set {=Ln @, then Lemma

r—=0

&

3.3 implies that lim ()= — 1 which implies by integration that { remains

r—>0
bounded near 0 and so does @, a contradiction.
We assume now a.>2. We define V, as the solution of

W+ (W), =¥, (Ln* ¥ in (5, R),
(3.54) r n
v, ( 1 ) = max u(x), V¥, (R) = max u(x).
n

[x|=1/n |x|=R

Using Lemma 3.2 and the same device as in the proof of Proposition
2.5 we deduce that for some subsequence {,, } we have lim ¥, =V in

ng —> o

the C*((0, R])-topology and \ satisfies
—1 .

(3.59) Vot Ly, =y (Ln* W in OR)
r

Moreover 0<u <V in Bx\{0}. Applying Lemma 3.5 to ¢ and { we get
(iv).

Remark 3.2. — It is interesting to notice that if u is a positive solution
of (3.16) with a strong singularity at 0, then v=Lnu behaves like the
explicit radial singular solution of the following first order equation in

R™ {0} (¢>2)
(3. 56) DU =U"
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that is U (x)=7v (o) | x | ~%.

Remark 3.3. — There is an alternative way to prove Theorem 3.2 in
the case a>2, it is to obtain Harnack type inequalities as in [23] and to
use Lemmas 3. 3-3.5 (see [16] for details). Unfortunately such inequalities
are out of reach in the case 0 <a =<2 as Lemma 3.2 no longer holds.
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