Isotropic singularities of solutions of nonlinear elliptic inequalities

by

Yves RICHARD and Laurent VERON

Département de Mathematiques, Faculté des Sciences, Parc de Grandmont 37200 Tours

ABSTRACT. $-$ If g is nondecreasing function satisfying the weak singularities existence condition then all the positive solutions of $\Delta u \leq g(u) + f$ in $B_1(0) \setminus \{0\}$ where f is radial and integrable in $B_1(0)$ are isotropic in measure near 0. We apply this result to solutions of $\Delta u \pm g(u) = 0$ in particular when $g(r) \sim r |r|^{q-1}$, $g(r) \sim e^{\beta r}$, or $g(r) = r (L_n^+ r)^{\alpha}$.

Key words : Elliptic equations, fundamental solutions, singularities, convergence in measure.

RÉSUMÉ. - Si g est une fonction croissante sur R vérifiant la condition d'existence de singularités faibles et f une fonction intégrable radiale dans $B_1(0)$, alors toutes les solutions positives de $\Delta u \leq g(u) + f$ dans $B_1(0) \setminus \{0\}$ sont isotropes en mesure pres de 0. Nous appliquons ce resultat aux solutions de $\Delta u \pm g(u) = 0$, en particulier quand $g(r) \sim r |r|^{q-1}$, $g(r) \sim e^{\beta r}$ ou $g(r) = r(L_n^+ r)^{\alpha}$.

Classification A.M.S. : 35 J 60.

Annales de l'Institut Henri Poincaré - Analyse non linéaire - 0294-1449 Vol. 6/89/01/37/36/\$5,60/

^{© 198 9} L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

0. INTRODUCTION

Let Ω be an open subset of \mathbb{R}^N containing 0 and $\Omega' = \Omega \setminus \{0\}$. In the past few years many results about the behaviour near 0 of a positive function $u \in C^2(\Omega)$ satisfying

$$
(0.1) \qquad \Delta u = u^q
$$

or

$$
(0.2) \qquad \Delta u = -u^q
$$

 $(q > 1)$ in Ω' have been published ([1], [2], [7], [8], [11], [23]). Although those equations are very different (existence or nonexistence of a compari son principle between their solutions), there exists a great similarity between them in the case $N \ge 3$ and $1 < q < N/(N-2)$ in the sense that there always exist solutions satisfying

(0.3)
$$
\lim_{x \to 0} |x|^{N-2} u(x) = \gamma
$$

with $\gamma > 0$, which implies that

$$
\Delta u = u^q - C(N) \gamma \delta_0
$$

or

$$
\Delta u = -u^q - C(N) \gamma \delta_0
$$

holds in $\mathbf{D}'(\Omega)$ ([23], [11]) where δ_0 is the Dirac measure at 0 and $C(N) = (N-2) |S^{N-1}|$ if $N \ge 3$, $C(2) = 2\pi$, but the two proofs of this phenomenon run very differently. In fact the main point to notice is that for a u satisfying (0.3) u^q is integrable near 0 and this leads us to a new type of isotropy which is the key-stone for the study of isolated singularities of positive solutions of nonlinear elliptic inequalities of the following type

$$
(0.6) \qquad \Delta u \leq g(u) + f.
$$

Assume $N \geq 3$, g is a continuous nondecreasing function defined on $[0, +\infty)$ satisfying the weak singularities existence condition

(0.7)
$$
\int_0^1 g(r^{2-N}) r^{N-1} dr < +\infty,
$$

 $f \in L^1_{loc}(\Omega)$ is radial near 0 and $u \in C^2(\Omega)$ is a positive solution of (0.6) in Ω' . Then

(i) either there exists $\gamma \in [0, +\infty)$ such that $r^{N-2} u(r,.)$ converges in measure on S^{N-1} to γ as r tends to 0,

(ii) or $\lim_{x \to 0} |x|^{N-2} u(x) = +\infty$.

In the case $N = 2$ it is necessary to introduce the exponential order of growth of g [20]

(0.8)
$$
a_g^+ = \inf \{ a > 0 : \int_0^{+\infty} e^{-ar} g(r) dr < +\infty \},
$$

and we prove that under the same conditions on f and u satisfying (0.6) in Ω' ; then

- if $a_g^+ = 0$ we have either (i) or (ii) with $|x|^{2-N}$ replaced by $\text{Ln}(1/|x|)$
- if $a_g^+ > 0$ we have

(iii) either there exists $\gamma \in [0, 2/a_q^+)$ such that $u(r,.)/Ln(1/r)$ converges in measure to γ on S^1 as r tends to 0,

(iv) or $\lim_{x \to 0} u(x)/\ln(1/|x|) \geq 2/a_g^+$.

Those results play an important role for the description of isolated singularities of nonnegative solutions of

$$
(0.9) \qquad \Delta u = g(u).
$$

For example, when $N \geq 3$ we prove that if g is nondecreasing and satisfies the weak singularities existence condition, then any $u \in C^2(\Omega)$ nonnegative and satisfying (0.9) in Ω' is such that $|x|^{N-2}u(x)$ converges to some $\gamma \in \mathbb{R}^+ \cup \{ +\infty \}$ as x tends to 0. This result extends to the case N = 2 with some minor modifications. An other important tool for proving this type of result is Serrin and Ni's symmetry theorem [12].

When g has nonpositive values we prove that when $N \geq 3$ any nonnegative solution $u \in C^2(\Omega)$ of (0.9) is such that $r^{N-2}u(r,.)$ converges in $L^1(S^{N-1})$ to some $\gamma \in [0, +\infty)$ as r tends to 0. Under a moderate growth assumption on g we prove that $\lim |x|^{N-2} u(x) = \gamma$. When N = 2 the situation is quite more complicated. Using a result due to John and Nirenberg we prove that when g has nonpositive values and is of exponential or subexponential type any nonnegative solution u of (0.9) in Ω' satisfies

(0. 10)
$$
\lim_{x \to 0} u(x)/\ln(1/|x|) = \gamma \in [0, 2/a_g^+).
$$

The last section is devoted to the study of the behavior near 0 of positive solutions of

$$
(0.11) \qquad \Delta u = u \left(\mathbf{L} n^+ u \right)^{\alpha}
$$

Vol. 6, n° 1-1989.

in $\Omega'(\alpha > 0)$. This equation reduces to a Hamilton-Jacobi equation in setting $v = Ln^{+} u$ and v satisfies

$$
\Delta v + |\mathbf{D}v|^2 = v^\alpha
$$

on $\{x \in \Omega : u(x) \ge 1\}$. If we set $g(r) = r(Ln^+ r)^{\alpha}$, it is clear that (0.7) is always satisfied, hence for any $\gamma \ge 0$ there always exist solutions satisfying (0.3); however Vazquez a priori estimate condition

$$
(0.13) \qquad \qquad \int_{r_0}^{+\infty} \frac{ds}{\sqrt{sg(s)}} < +\infty
$$

for some $r_0 > 0$ is satisfied if and only if $\alpha > 2$ and we prove the following:

Assume $N \geq 3$ and $u \in C^2(\Omega')$ is a nonnegative solution of (0.11) in Ω' ; $then$ $\qquad \qquad$ $\qquad \qquad$

- $-$ if $0 < \alpha \leq 2$
- (i) either u can be extended to Ω as a \mathbb{C}^2 solution of (0.11) in Ω
- (ii) or there exists $\gamma > 0$ such that $\lim_{x \to 0} |x|^{N-2} u(x) = \gamma$.
- $-$ if $\alpha > 2$
- (iii) either u behaves as in (i) or (ii)

(iv) or
$$
u(x) = \gamma(\alpha, N)
$$
 $e^{\gamma(\alpha) |x|^{2/(2-\alpha)}} (1+O(|x|^{2/(\alpha-2)})$ near 0 with
\n
$$
\gamma(\alpha) = \left(\frac{2}{\alpha-2}\right)^{2/(\alpha-2)}
$$
 and $\gamma(\alpha, N) = e^{(\alpha-(N-1)(\alpha-2))/2 \alpha}$. This result extends in

dimension 2.

The contents of this article is the following:

- 1. Isotropic solutions of elliptic inequalities
- 2. Singular solutions of $\Delta u = +g(u)$
- 3. Singularities of $\Delta u = u (Ln^{+} u)^{\alpha}$.

1. ISOTROPIC SOLUTIONS OF ELLIPTIC INEQUALITIES

Throughout this section Ω is an open subset of \mathbb{R}^N , $N \ge 2$ containing 0, $\Omega' = \Omega \setminus \{0\}$ and g is a nondecreasing function. For the sake of simplicity we shall assume that g is continuous. If $N \ge 3$ it is wellknown that the following condition

(1.1)
$$
\int_0^1 g(r^{2-N}) r^{N-1} dr < +\infty,
$$

is a necessary and sufficient condition for the existence for any $\gamma \ge 0$ of a solution ψ belonging to some appropriate Marcinkiewicz space of

(1.2)
$$
-\Delta \psi + g(\psi) = C(N) \gamma \delta_0
$$

in $\mathbf{D}'(\Omega)$ [3], or equivalently of a solution of

$$
(1.3) \qquad \qquad -\Delta\psi + g\left(\psi\right) = 0
$$

in Ω' with a weak singularity at 0, that is such that

(1.4)
$$
\lim_{x \to 0} |x|^{N-2} u(x) = \gamma,
$$

[22]. Moreover $g(\psi) \in L^1_{loc}(\Omega)$.

If $N = 2$ the situation is more complicated and we define the exponential order of growth of g

(1.5)
$$
a_g^+ = \inf \left\{ a > 0 : \int_0^{+\infty} e^{-ar} g(r) dr < +\infty \right\}
$$

[20], and the condition $\gamma \in [0, 2/a_{a}^{+}]$ is a necessary and sufficient condition for the existence of a function $\psi \in C^2(\Omega)$ satisfying (1.3) in Ω' and

(1.6)
$$
\lim_{x \to 0} \psi(x)/L n(1/|x|) = \gamma.
$$

Moreover for such a ψ , $g(\psi) \in L_{loc}^{1}(\Omega)$ and (1.2) holds in $\mathbf{D}'(\Omega')$ [21]. Our first result is the following

PROPOSITION 1.1. - Assume $\bar{B}_R = \{ x \in \mathbb{R}^N : |x| \le R \} \subset \Omega$, $g(0) = 0$, $f \in L^1_{loc}(\Omega)$ is nonnegative and $u \in C^2(\Omega')$ is a nonnegative solution of

$$
(1.7) \qquad \Delta u \leq g(u) + f
$$

in Ω' . If $v \in C^2(\overline{B}_R \setminus \{0\})$ is a radial nonnegative solution of

$$
(1.8)\qquad \qquad \Delta v = g\left(v\right)
$$

in $B_R \setminus \{0\}$ such that $g(v + \overline{\delta}) \in L^1(B_R)$ for some $\overline{\delta} > 0$, then there exists $\alpha \geq 0$ such that for any $q \in [1, \infty)$

(1.9)
$$
\lim_{x \to 0} |x|^{1-N} \int_{|y|=|x|} |\alpha - \omega(y)| \mu(y)|^q dS = 0
$$

where $\omega = \inf (u, v), \mu(x) = |x|^{2-N}$ if $N \ge 3$ and $\mu(x) = \ln(1/|x|)$ if $N = 2$.

The main ingredient for proving this result is the following theorem due to Brezis and Lions [5].

LEMMA 1.1. - Assume $N \geq 2$, $\omega \in L^1_{loc}(\Omega')$ satisfies

 $\Delta \omega \in L^1_{loc}(\Omega')$ in the sense of distributions in Ω' ,

Vol. 6, n' 1-1989.

42 Y. RICHARD AND L. VERON

$$
\Delta\omega \leq a\omega + F \ a.\ e.\ in \ \Omega',
$$

where a is some nonnegative constant and $F \in L^1_{loc}(\Omega)$. Then $\omega \in L^1_{loc}(\Omega)$ and there exist $\alpha \geq 0$ and $\Phi \in L^1_{loc}(\Omega)$ such that

$$
(1.11) \qquad \qquad -\Delta\omega = \Phi + \alpha C(N) \, \delta_0
$$

in $\mathbf{D}'(\Omega)$.

LEMMA 1.2. - Assume $N \geq 2$, $h \in L^1(B_p)$ is radial and φ is a nonnegative radial solution of

$$
(1.12) \t -\Delta \varphi = h
$$

in $\mathbf{D}'(\mathbf{B}_R \setminus \{0\})$ [resp. in $\mathbf{D}'(\mathbf{B}_R)$]. Then there exists $v \in [0, +\infty)$ such that $\lim_{x \to 0} \varphi (x)/\mu (x) = v[resp. \lim_{x \to 0} \varphi (x)/\mu (x) = 0].$

Proof. - From Lemma 1.1 there exists $v \ge 0$ such that

$$
(1.13) \qquad \qquad -\Delta\varphi = h + v C(N) \, \delta_0
$$

in $\mathbf{D}'(\mathbf{B}_R)$ and $\tilde{\varphi} = \varphi - \nu\mu$ satisfies (1.12) in $\mathbf{D}'(\mathbf{B}_R)$. Without any loss of generality we can assume that h is nonnegative in $B(0, R)$, hence $r \mapsto r^{N-1} \tilde{\varphi}_r(r)$ is nonincreasing and then keeps a constant sign near 0.

Case 1. $-r^{N-1} \tilde{\varphi}_r(r) > 0$ on $(0, \varepsilon]$. For *n* large enough define

(1.14)
$$
\eta_n(r) = \frac{1}{2} \left(1 + \cos \left(n \pi \left(r - \frac{1}{n} \right) \right) \right) \quad \text{if} \quad \frac{1}{n} \le r \le \frac{2}{n},
$$

0 if $\frac{2}{n} \le r \le \epsilon$.

 $0 \le \eta_n \le 1$ on [0, ε] and $\int_0^{\infty} \eta_{nr}(r) dr = -1$. From (1.12) we get

$$
\left|\int_0^{\varepsilon} \widetilde{\varphi}_r(r) \, \eta_{nr}(r) \, r^{N-1} \, dr \right| = \int_0^{\varepsilon} h(r) \, \eta_n(r) \, r^{N-1} \, dr.
$$

Using the monotonicity of r^{N-1} $\varphi_r(r)$ we deduce (1.15)

$$
0 \leq \left(\frac{2}{n}\right)^{N-1} \widetilde{\varphi}_r\left(\frac{2}{n}\right) \leq \left|\int_{1/n}^{2/n} \widetilde{\varphi}_r(r) \eta_{rr}(r) r^{N-1} dr \right| \leq \int_0^{2/n} h(r) r^{N-1} dr
$$

 $\left(\frac{2}{2}\right)^{N-1}$ $\tilde{\varphi}$ $\left(\frac{2}{2}\right)^{N}$ which implies $\lim_{n \to +\infty} \left(\frac{2}{n}\right)^{n-1} \tilde{\varphi}_r\left(\frac{2}{n}\right) = 0$ and $\lim_{r \to 0} r^{N-1} \tilde{\varphi}_r(r) = 0.$ (1.16)

Case 2. - $r^{N-1} \tilde{\varphi}_r(r) \leq 0$ on $(0, \varepsilon]$. Using the same method as above we get

$$
(1.17) \t 0 \leq -\left(\frac{1}{n}\right)^{N-1} \tilde{\varphi}_r\left(\frac{1}{n}\right) \leq \int_0^{2/n} h(r) r^{N-1} dr
$$

which again implies (1.16) .

From (1.16) it is clear that $\lim_{x\to 0} \tilde{\varphi}(x)/\mu(x) = 0$.

Proof of Proposition 1.1. - Let p be the $C^{1,1}$ even convex function defined on $\mathbb R$ by

$$
p(t) = \begin{cases} |t| - \delta/2 & \text{for} \quad |t| \ge \delta > 0 \\ t^2/2 & \text{for} \quad |t| \le \delta \end{cases}
$$

and let ω_{δ} be $\frac{1}{2}(u+v-p(u-v))$. Then

$$
(1.18)\quad \Delta\omega_{\delta} = \frac{1}{2}\Delta(u+v) - \frac{1}{2}p'(u-v)\Delta(u-v) - \frac{1}{2}p''(u-v)\sqrt{|\nabla(u-v)|^2}
$$

It is clear that $\Delta \omega_{\delta} \in L^{1}_{loc}(B_{R} \setminus \{0\})$ and $0 \le \omega \le \omega_{\delta} \le \omega + \delta/4$. Moreover

(1.19)
$$
\Delta \omega_{\delta} \leq \frac{1}{2} \Delta (u+v) - \frac{1}{2} p'(u-v) \Delta (u-v) = F.
$$

We now set $B_R \setminus \{0\} = G_1 \cup G_2 \cup G_3$ with

(1.20)
$$
G_1 = \{x \in B_R \setminus \{0\} : (u-v)(x) > \delta\}
$$

$$
G_2 = \{x \in B_R \setminus \{0\} : (u-v)(x) < -\delta\}
$$

$$
G_3 = \{x \in B_R \setminus \{0\} : |(u-v)(x)| \le \delta\}.
$$

On G₁, $p'(u-v)=1$ and $F = \Delta v = g(v) = g\left(\omega_{\delta} - \frac{\delta}{4}\right)$. On G₂, $p'(u-v) = -1$ and

$$
F = \Delta u \leq g(u) + f = g\left(\omega_{\delta} - \frac{\delta}{4}\right) + f \leq g(v) + f.
$$

VoL 6, n° 1-1989.

On G₃, $p'(u-v) = (u-v)/\delta$, hence

$$
(1.21) \quad \mathbf{F} = \frac{1}{2} \left(1 - \frac{u - v}{\delta} \right) \Delta u + \frac{1}{2} \left(1 + \frac{u - v}{\delta} \right) \Delta v
$$

$$
\leq \frac{1}{2} \left(1 - \frac{u - v}{\delta} \right) g \left(u \right) + \frac{1}{2} \left(1 + \frac{u - v}{\delta} \right) g \left(v \right) + f
$$

and by the continuity of g there exists $\theta = \theta(x) \in [0, 1]$ such that $F \leq g (\theta u + (1 - \theta)v) + f$. If we assume for example that $v \leq u \leq v + \delta$, then $F \leq g(u) + f$ and $0 \leq u - \omega_{\delta} \leq \frac{3}{4} \delta$ which implies that

$$
F \leq g \left(\omega_{\delta} + \frac{3}{4} \delta \right) + f \leq g \left(v + \delta \right) + f.
$$

We do the same if $u \le v \le u + \delta$ and finally

(1.22)
$$
\Delta \omega_{\delta} \leq g \left(\omega_{\delta} + \frac{3}{4} \delta \right) + f \leq g \left(v + \delta \right) + f
$$

holds in $B_R \setminus \{0\}$. We take now $\delta \leq \overline{\delta}$, so the right-hand side of (1.22) is integrable in B_R and there exists $\alpha \ge 0$ such that

$$
(1.23) \t -\Delta\omega_{\delta} = \Phi + \alpha C(N) \delta_0
$$

in $\mathbf{D}'(\mathbf{B}_{\mathbf{R}})$ with $\Phi \in L^1_{loc}(\mathbf{B}_{\mathbf{R}})$.

From Lemma 1.2. $\omega_{\delta}(x)/\mu(x)$ remains bounded near 0 and it is the same with $\varphi_{\delta} = \omega_{\delta} - \alpha \mu$. Moreover φ_{δ} satisfies

$$
(1.24) \t -\Delta \varphi_{\delta} = \Phi
$$

in \mathbf{D}' ($\mathbf{B}_{\mathbf{R}}$). Let

$$
\bar{\varphi}_{\delta}(r) = \frac{1}{|S^{N-1}|} \int_{S^{N-1}} \varphi_{\delta}(r, \sigma) d\sigma
$$

and

$$
\bar{\Phi}(r) = \frac{1}{|S^{N-1}|} \int_{S^{N-1}} \Phi(r, \sigma) d\sigma
$$

be the spherical averages of φ_{δ} and Φ respectively, (r, σ) being the spherical coordinates in $\mathbb{R}^N \setminus \{0\}$, then

$$
(1.25) \t-\Delta\bar{\varphi}_{\delta} = \bar{\Phi} \leq |\bar{\Phi}|.
$$

Applying Lemma 1.2 we deduce that $\lim_{\phi} \overline{\phi}(r)/\mu(r) = 0$. As a consequence

$$
\lim_{r \to 0} \int_{S^{N-1}} \left| \omega_{\delta}(r,.)/\mu(r) - \alpha \right| d\sigma = 0,
$$

which implies (with the uniform boundedness)

$$
(1.26) \qquad \lim_{r \to 0} \int_{S^{N-1}} |\omega_{\delta}(r,.)/\mu(r) - \alpha|^q d\sigma = 0
$$

for any $q \in [1, +\infty)$. As $0 \le \omega \le \omega_s \le \omega + \delta/4$ we deduce

(1.27)
$$
\lim_{r \to 0} \int_{S^{N-1}} |\omega(r,.)/\mu(r) - \alpha|^q d\sigma = 0,
$$

which is (1.9) .

Remark 1.1. - As $\{\Delta \omega_{\delta}\} = \Phi$ is integrable in B_R and $\Phi = \Delta \omega_{\delta} = F - \frac{1}{2} p''(u-v) |\nabla (u-v)|^2$ we get

(1.28)
$$
\frac{1}{2}p''(u-v)|\nabla(u-v)|^2 \leq \Phi + g(v+\delta) + f
$$

and then $p''(u-v) |\nabla (u-v)|^2 \in L^1(B_R)$.

DEFINITION 1.1. - Assume (E, Σ, μ) is an abstract measure space where Σ is a σ -algebra of subsets of E and μ a positive σ -additive and complete measure such that $\mu(E) < +\infty$, and $\{\psi_r\}_{r \in (0, R)}$ a subset of measurable functions (for the measure μ) with value in R. We say that { ψ_r } converges in measure to some measurable function ψ as r tends to 0 if for any $\varepsilon > 0$ we have

(1.29)
$$
\lim_{r \to 0} \mu({x \in E : |\psi_r(x) - \psi(x)| > \epsilon}) = 0.
$$

It is equivalent to say that from any sequence $\{r_n\}$ converging to 0 we can extract a subsequence $\{r_{n_k}\}$ such that $\{\psi_{r_{n_k}}\}$ converges to $\Psi \mu - a$. e. on E as n_k goes to $+\infty$.

The generic isotropy result is the following

THEOREM 1.1. - Assume $N \ge 3$, g satisfies (1.1), $f \in L^1_{loc}(\Omega')$ is radial near 0 and $u \in C^2(\Omega')$ is nonnegative and satisfies

$$
(1.30) \qquad \Delta u \leq g(u) + f
$$

in Ω' . Then we have the following

Vol. 6, n' 1-1989.

(i) either $r^{N-2}u(r,.)$ converges in measure on S^{N-1} to some nonnegative real number γ as r tends to 0,

(ii) or

(1.31)
$$
\lim_{x \to 0} |x|^{N-2} u(x) = +\infty.
$$

Proof. – We recall that $(r, \sigma) \in (0, +\infty) \times S^{N-1}$ are the spherical coordinates in $\mathbb{R}^N \setminus \{0\}$. For $\lambda > 0$ let v_{λ} be the solution of

(1.32)
$$
\Delta v_{\lambda} = g(v_{\lambda}) + |f| \quad \text{in} \quad B_{R} \setminus \{0\} \subset \Omega'
$$

$$
v_{\lambda} = 0 \quad \text{on} \quad \partial B_{R}
$$

$$
\lim_{x \to 0} |x|^{N-2} v_{\lambda}(x) = \lambda.
$$

Such a v_1 exists, is radial and positive near 0. As |f| is radial it does not affect the behaviour of v_{λ} near 0 (see Lemma 1.2).

From Proposition 1.1 there exists $v(\lambda) \ge 0$ such that

(1.33)
$$
\lim_{r \to 0} r^{N-2} \inf (u(r, .), v_\lambda(r)) = v(\lambda)
$$

in $L^q(S^{N-1}), 1 \leq q < +\infty$, and $v(\lambda) \leq \lambda$ from convexity. Moreover the function $\lambda \mapsto v(\lambda)$ is nondecreasing.

Case 1. - Assume $\lim_{\lambda \to \gamma} y(\lambda) = \gamma < +\infty$. For $\lambda > \gamma$ we have (1.33). $\lambda \rightarrow +\infty$

Assume ${r_n}$ is some sequence converging to 0, then there exists a subsequence $\{r_{n_k}\}\$ such that

$$
(1.34) \qquad \lim_{n_k \to +\infty} r_{n_k}^{N-2} \inf (u(r_{n_k}, \sigma), v_\lambda(r_{n_k})) = v(\lambda) \quad a. e. \text{ on } S^{N-1}.
$$

As $v(\lambda) < \gamma$ and $\lim_{n_k \to +\infty} r_{n_k}^{N-2} v_{\lambda}(r_{n_k}) = \gamma$ we deduce that

$$
\inf (u (r_{n_k}, \sigma), v_\lambda (r_{n_k})) = u (r_{n_k}, \sigma) \quad a. e. \text{ on } \mathbb{S}^{N-1}
$$

for n_k large enough and

(1.35)
$$
\lim_{n_k \to +\infty} r_{n_k}^{N-2} u(r_{n_k}, \sigma) = v(\lambda) \quad a. e. \text{ on } S^{N-1}.
$$

For $\lambda' > \lambda$ we repeat this operation with ${r_n}$ replaced by ${r_{n_k}}$ and there exists a subsequence $\{r_{n_k}\}\)$ such that

(1.36)
$$
\lim_{n_{k_i} \to +\infty} r_{n_{k_i}}^{N-2} u(r_{n_{k_i}}, \sigma) = v(\lambda') \quad a. e. \text{ on } S^{N-1}.
$$

From (1.35) and (1.36) we deduce that $v(\lambda') = v(\lambda) = \gamma$ for $\lambda > \gamma$ which implies (i).

Case 2. - Assume lim $v(\lambda) = +\infty$. For $\delta > 0$ we call p the function ~, ~ + o0 introduced in the proof of Proposition 1.1 and for $\lambda > 0$, $\tilde{\omega}_s = \frac{1}{2}(u + v_\lambda - p(u - v_\lambda)) + \frac{3}{4}\delta$. From (1.22) we have $\Delta \tilde{\omega}_s \leq g(\tilde{\omega}_s) + |f|.$ (1.37)

Moreover $r^{n-2} \omega_{\delta}(r,.)$ converges to $v(\lambda)$ in $L^{q}(S^{n-1})$ $(1 \leq q < +\infty)$ as r tends to 0. We consider now $w = v_{v}(x)$ the solution of (1.32) and we set

$$
s = \frac{r^{N-2}}{N-2},
$$

$$
w'(s) = r^{N-2} w(r), \ \widetilde{\omega}_{\delta}(s, \ \sigma) = r^{N-2} \widetilde{\omega}_{\delta}(r, \sigma), \ \varphi(s) = f(r).
$$

Then (1.32) and (1.37) become

$$
(1.38) \quad s^2(\omega'_\delta)_{ss} + \frac{1}{(N-2)^2} \Delta_{s^{N-1}} \widetilde{\omega}_\delta \leq k s^{N/(N-2)} \bigg(g\bigg(\frac{\widetilde{\omega}'_\delta}{s(N-2)}\bigg) + \varphi \bigg),
$$

$$
s^2 w'_{ss} = k s^{N/(N-2)} \bigg(g\bigg(\frac{w'}{s(N-2)}\bigg) + |\varphi|\bigg),
$$

where $k = k (N) = (N-2)^{(4-N)/(N-2)}$ and $\Delta_{S^{N-1}}$ is the Laplace-Beltrami operator on S^{N-1} . Consider a C^{∞} function ρ such that $\rho \in L^{\infty}(\mathbb{R})$, $\rho \equiv 0$ on $(-\infty, 0)$, $p' > 0$ on $(0, +\infty)$ and $j(r) = \int_{0}^{r} \rho(\tau) d\tau$. From convexity and monotonicity we have

(1.39)
$$
s^{2} \frac{d^{2}}{ds^{2}} \int_{s^{N-1}} j(w'-\omega_{s}') d\sigma \geq 0.
$$

As $\int_{S^{N-1}} f(w'-\omega'_\delta) d\sigma \leq C \int_{S^{N-1}} |w'-\omega'_\delta| d\sigma$ and as w'(s) and $\tilde{\omega}'_\delta(s,.)$ converges to $v(\lambda)$ in $L^{1}(S^{N-1})$ as s tends to 0 we deduce that $j(w'-\omega'_\delta) d\sigma = 0$ on $(0, R^{N-2}/(N-2)]$ and $w' \le \tilde{\omega}'_\delta$ or $\int_{S^{N-1}} j(w'-\omega'_\delta) d\sigma = 0$ on $(0, R^{N-2}/(N-2)]$ and $w' \leq \omega'_\delta$
 (v_1, α) $v_{\nu(\lambda)}(r) \leq \omega_\delta(r, \sigma) \leq \omega(r, \sigma) + \delta/4$

which implies

$$
(1.41) \t v(\lambda) \le \lim_{x \to 0} |x|^{N-2} \omega(x) \le \lim_{x \to 0} |x|^{N-2} u(x)
$$

and we get (1.31).

Remark 1.2. – If u satisfies (i) then $v_r(x) \le u(x)$ in $B_R \setminus \{0\}$.

VoL 6, n° 1-1989.

Remark 1.3. - If u is a radial solution of (1.29), $u \ge 0$, in $B_R \setminus \{0\}$, then a simple adaptation of the proof of Theorem 1.1 shows that $|x|^{N-2} u(x)$ admits a limit in [0, $+\infty$] as x tends to 0.

The 2-dimensional version of Theorem 1. 1 is the following

THEOREM 1.2. - Assume N = 2, $f \in L^1(\Omega)$ is radial near 0 and $u \in C^2(\Omega)$ is a nonnegative solution of (1.29) in Ω' . Then

- If $a_g^+ = 0$ the alternative of Theorem 1.1 holds with $|x|^{2-N}$ replaced by Ln(1/|x|).

- If a_g^+ > 0, we have the following alternative

(i) either there exists a nonnegative real number $\gamma \in [0, 2/a_{\alpha}^{+})$ such that $u(r,.)/\text{Ln}(1/r)$ converges in measure on S^1 to γ as r tends to 0, (ii) or

(1.43)
$$
\lim_{x \to 0} u(x)/\ln(1/|x|) \geq 2/a_g^+.
$$

Proof. - Case 1. - Assume $a_a^+ = 0$. We define $v(\lambda)$ as

(1.44)
$$
\lim_{r \to 0} (\text{Ln}(1/r))^{-1} \inf (u(r,.), v_\lambda(r)) = v(\lambda).
$$

As $v(\lambda)$ is nondecreasing and v_{λ} exists for every $\lambda > 0$ we can proceed as in the proof of Theorem 1.1 if $\lim_{x \to 0} v(\lambda) = \gamma < +\infty$. If $\lambda \rightarrow +\infty$

 $\lim_{\lambda \to +\infty} v(\lambda) = +\infty$ we introduce $\tilde{\omega}_{\delta}$ and $v_{v(\lambda)} = w$ as in Theorem 1.1 and

make the following change of variable

(1.45)
\n
$$
t = \text{Ln}(1/r)
$$
\n
$$
w'(t) = w(r), \qquad \tilde{\omega}'_{\delta}(t, \sigma) = \tilde{\omega}_{\delta}(r, \sigma), \qquad f'(t) = f(r).
$$

Hence w' and $\tilde{\omega}_\delta'$ satisfies

(1.46)
$$
(\widetilde{\omega}_\delta)_n + (\widetilde{\omega}_\delta)_0 \le e^{-2t} (g(\omega'_\delta) + f')
$$

$$
w'_n = e^{-2t} (g(w') + |f|)
$$

on $(T, +\infty) \times S^1$ and with the same function j as before

$$
(1.47) \qquad \qquad \frac{d^2}{dt^2}\int_{S^1} j(w'-\omega'_\delta)\,d\theta \ge 0.
$$

As $t^{-1}(w'-\omega'_\delta)$ converges to 0 in $L^1(S^1)$ we deduce that $j(w'-\omega'_\delta)=0$ and we get finally

(1.48)
$$
\lim_{x \to 0} u(x)/\ln(1/|x|) = +\infty.
$$

Case 2. - Assume $a_g^+>0$ and set $\gamma = \lim_{h \to 0} v(\lambda)$. Clearly $\gamma \leq 2/a_g^+$. If $\gamma < 2/a_g^+$ we can proceed as in Theorem 1.1. If $\gamma = 2/a_g^+$ we get as in Case 1 $\inf (u(x), v_{\lambda}(x)) \geq v_{\lambda(\lambda)}(x) - \frac{\delta}{4}$ (1.49)

for any $\lambda \leq \frac{2}{\lambda+1}$ and $x \in B_R \setminus \{0\}$. We can take in particular $\lambda = \frac{2}{\lambda+1} = v(\lambda)$ \mathfrak{a}_g and \mathfrak{a}_g and we get (ii).

2. SINGULAR SOLUTIONS OF $\Delta u = \pm g(u)$

The first application of Theorem 1.1 is the following

THEOREM 2.1. - Assume $N \geq 3$, g is a nondecreasing locally Lipschitz continuous function satisfying (1.1) and $u \in C^2(\Omega)$ is a nonnegative solution of

$$
(2.1) \qquad \Delta u = g(u)
$$

in Ω' . Then $|x|^{N-2} u(x)$ admits a limit in $[0, +\infty]$ as x tends to 0.

Proof. – From Theorem 1.1 we can assume that there exist $\gamma \in [0, +\infty)$ and a sequence ${r_n}$ converging to 0 such that

(2.2)
$$
\lim_{n \to +\infty} r_n^{N-2} u(r_n, .) = \gamma \quad a.e. \text{ in } S^{N-1}.
$$

Case 1. - Assume $\gamma > 0$. For $\epsilon > 0$ set w_e the solution of

(2.3)
$$
\Delta w_{\epsilon} = g(w_{\epsilon}) \quad \text{in} \quad \Gamma_{\epsilon, R} = \{ x \in \mathbb{R}^{N} : \epsilon < |x| < R \}
$$

$$
w_{\epsilon} = u \quad \text{on} \quad \partial B_{\epsilon}
$$

$$
w_{\epsilon} = \max_{x \in \partial B_{R}} u(x) \quad \text{on} \quad \partial B_{R}
$$

(we may assume that $\bar{B}_R \subset \Omega$). From maximum principle $u \leq w_{\epsilon}$ in $\Gamma_{\epsilon, R}$. Let $u^s = u + w_{\epsilon}(\mathbf{R})$, then

$$
(2.4) \t-\Delta u^s + g(u^s) \geq 0
$$

and finally $u \leq w_{\varepsilon} \leq u^s$ in $\Gamma_{\varepsilon, R}$ and there exists a sequence $\{\varepsilon_n\}$ converging to 0 and a function $w \in C^2(\overline{B}_R \setminus \{0\})$ satisfying $-\Delta w + g(w) = 0$ in $B_{\mathbf{R}} \setminus \{0\}$ such that $\{w_{\epsilon_{\mathbf{R}}}\}\)$ converges to w in the C^1_{loc} -topology of $\overline{B}_{\mathbf{R}} \setminus \{0\}$.

Vol. 6, n^{c} 1-1989.

Moreover

(2.5)
$$
u \leqq w \leqq u^1 = u + \max_{\partial B_R} u(x)
$$

From Remark 1.2 $\lim_{x\to 0} |x|^{N-2} w(x) = \gamma$, hence we deduce from Serrin and

Ni's results $[12]$ that w is radial and from (2.2) and (2.5)

(2.6)
$$
\lim_{n \to +\infty} r_n^{N-2} w(r_n) = \gamma.
$$

If $w'(s) = w'(r^{N-2}/(N-2)) = r^{N-2} w(r)$, then

(2.7)
$$
s^2 w'_{ss} = k \text{ (N) } s^{N/(N-2)} g \left(w'/s \text{ (N-2)} \right)
$$

we deduce that $s \to w'(s) - k(N)(N-2)^2/(2N) s^{N(N-2)} g(0)$ is convex and

(2.8)
$$
\lim_{r \to 0} r^{N-2} w(r) = \gamma = \lim_{x \to 0} |x|^{N-2} u(x).
$$

Case 2. - Assume $\gamma = 0$. For $\varepsilon > 0$ and $v > 0$ set $w_{\varepsilon, v}$ the solution of

(2.9)
$$
\Delta w_{\varepsilon, v} = g(w_{\varepsilon, v}) \text{ in } \Gamma_{\varepsilon, R}
$$

$$
w_{\varepsilon, v} = u + v \varepsilon^{2-N} \text{ on } \partial B_{\varepsilon}
$$

$$
w_{\varepsilon, v} = \max_{x \in \partial B_R} (u(x) + v |x|^{2-N}) \text{ on } \partial B_R.
$$

As in case 1 we have

$$
(2.10) \t u(x) \leq w_{\varepsilon, \nu}(x) \leq u(x) + \nu |x|^{2-N} + w_{\varepsilon, \nu}(R)
$$

in $\Gamma_{\epsilon, R}$. For $0 < v' < v$ let $v_{v'}$ be the radial solution of $-\Delta v_{v'}+g(v_{v'})=C(N)v'\delta_0$ in $D'(B_R)$ such that $v_{v'}=0$ on ∂B_R . As $\lim_{x \to 0} |x|^{N-2} v_{v}(x) = v'$ we deduce that for ε small enough $v_{v'} < w_{\varepsilon, v}$ on ∂B_{ε}

and finally

$$
(2.11) \t\t\t w_{\varepsilon,\nu} \geq v_{\nu'}
$$

in $\Gamma_{\epsilon, R}$ and as in Case 1 there exists a subsequence $\{\epsilon_n\}$ such that $\lim_{n \to \infty} \epsilon_n = 0$ **and a** function w^v satisfying $-\Delta w^v + g(w^v) = 0$ in B_R such that $w_{\varepsilon, v}$ conver**ges to** w^v in the C_{loc} topology of $\bar{B}_R \setminus \{0\}$ and we have

(2.12)
$$
\max(u, v_{v'}) \leq w^{v} \leq u + v |x|^{2-N} + \max_{\partial B_R} u(x).
$$

Applying again [12] we deduce that w^v is radial and as in Case 1 we get that

(2.13)
$$
\lim_{x \to 0} |x|^{N-2} u(x) \le \lim_{x \to 0} |x|^{N-2} w^{v}(x) = v.
$$

As v is arbitrary $\lim_{x\to 0} |x|^{N-2} u(x) = 0$ and u can be extended to Ω as a C² solution of (2.1) in Ω .

In the same way we can prove the two dimensional case

THEOREM 2.2. - Assume $N = 2$ and g is a nondecreasing locally Lipschitz continuous function defined on \mathbb{R}^+ . If $u \in C^2(\Omega')$ is a nonnegative solution of (2.1) in Ω' , we have the following:

- if $a_g^+ = 0$ u(x)/L n(1/|x|) admits a limit in [0, + ∞] as x tends to 0; $-$ if $a_a^+>0$ and g satisfies

(2.14) for any
$$
a \ge 0
$$
 $\lim_{r \to +\infty} e^{-ar} g(r)$ exists in $[0, +\infty]$,

 $u(x)/\text{Ln}(1/|x|)$ admits a limit in [0, $2/a_a^+$] as x tends to 0.

Proof. – If $a_g^+ = 0$ we proceed as in Theorem 2.1. If $a_g^+ = +\infty$ and g satisfies (2. 14), u can be extended to Ω as a C^2 solution of (2. 1) in Ω [21]. If $0 < a_a^+ < +\infty$ we have two cases

(i) either there exists $\gamma \in [0, 2/a_{\alpha}^{+})$ and a sequence $\{r_{n}\}$ converging to 0 such that

(2.15)
$$
\lim_{n \to +\infty} u(r_n,.)/Ln(1/r_n) = \gamma \quad a. e. \text{ in } S^1
$$

(ii) or
$$
\lim_{x \to 0} u(x)/Ln(1/|x|) \ge 2/a_g^+
$$
.

In case (i) we have $\lim_{x\to 0} u(x)/\ln(1/|x|) = \gamma$ as in Theorem 2.1. In case (ii) we have an a priori estimate thanks to (2.14) [21]:

(2.16)
$$
u(x) \leq \left(\frac{2}{a_g^+} + \varepsilon\right) \ln(1/|x|) + B(\varepsilon)
$$

near 0 for any $\varepsilon > 0$. This clearly implies

(2.17)
$$
\lim_{x \to 0} u(x)/\ln(1/|x|) = 2/a_g^+.
$$

THEOREM 2.3. - Assume $N \ge 3$, g is a continuous function defined on $[0, +\infty)$ such that $\lim g(r)/r = K$ for some $K > -\infty$ and $u \in C^2(\Omega')$ is a $r \rightarrow +\infty$ nonnegative solution of

$$
(2.18) \qquad \qquad -\Delta u = g(u)
$$

in Ω' . Then there exists $\gamma \in [0, +\infty)$ such that

Vol. 6, n² 1-1989.

(2.19)
$$
\lim_{x \to 0} |x|^{1-N} \int_{|y| = |x|} |\gamma - |x|^{N-2} u(y)| dS = 0,
$$

 $g(u) \in L^1_{loc}(\Omega)$ and u solves

$$
(2.20) \t -\Delta u = g(u) + C(N) \gamma \delta_0
$$

in $\mathbf{D}'(\Omega)$. If we assume moreover that

(2.21)
$$
\int_0^1 \inf (g (\alpha r^{2-N}), g (\beta r^{2-N})) r^{N-1} dr = +\infty
$$

for any α , $\beta > 0$, then $\gamma = 0$.

Proof. – The fact that $g(u) \in L^1_{loc}(\Omega)$ and u satisfies (2.20) for some $\gamma \ge 0$ is proved in [5]. If $\bar{u}(r)$ [res. $\bar{g}(u)(r)$] is the spherical average of u [resp. $g(u)$] then

$$
\Delta \bar{u} = \bar{g}\left(u\right)
$$

in $B_R \setminus \{0\} \subset \Omega'$ and we deduce from Lemma 1.2 that

(2.23)
$$
\lim_{x \to 0} |x|^{1-N} \int_{|y|=|x|} |\gamma'-|x|^{N-2} u(y)| dS = 0
$$

for some $\gamma' \ge 0$ and \overline{u} solves

(2.24)
$$
-\Delta \overline{u} = \overline{g(u)} + C(N) \gamma' \delta_0
$$

in $\mathbf{D}'(\mathbf{B_R})$. Whence $\gamma = \gamma'$. Let us assume now that $\gamma > 0$ and g satisfies (2.21) for any α , $\beta > 0$. As $r^{N-2}u(r,.)$ converges to γ in $L^1(S^{N-1})$ it converges in measure and for any $\eta \in (0, |S^{N-1}|)$ there exists $r_0 \in (0, R)$ such that for any $r \in (0, r_0)$ there exists a measurable subset $\omega(r) \subset S^{N-1}$ such that $|\omega(r)| \ge \eta$ and $|r^{N-2} u(r, \sigma) - \gamma| < \gamma/2$ for $\sigma \in \omega(r)$. As $g(r) \geq K'r - L$ and $u \in L^1_{loc}(B_R)$ there is no loss of generality to assume that $g(r) \ge 0$ on $(0, +\infty)$, hence

$$
(2.25)
$$

$$
\int_{B_{r_0}} g(u) dx = \int_0^{r_0} \int_{S^{N-1}} g(u) r^{N-1} d\sigma dr \ge \int_0^{r_0} \int_{\omega(r)} g(u) r^{N-1} d\sigma dr.
$$

For $\rho \in (0, r_0]$ and $\sigma \in \omega(\rho), \frac{1}{2} \rho^{2-N} \leq u(\rho, \sigma) < 2 \gamma \rho^{2-N}$ and as g is continuous, $g(u(p, \sigma)) \ge \inf \left(g\left(\frac{\gamma}{2} p^{2-N}\right), g(2\gamma p^{2-N}) \right)$. As g satisfies (2.21) we

get

$$
(2.26)\quad \int_{B_{r_0}} g(u) \, dx \ge \eta \int_0^{r_0} \inf \left(g\left(\frac{\gamma}{2} r^{2-N}\right), g\left(2 \gamma r^{2-N}\right) \right) r^{N-1} \, dr = +\infty,
$$

contradiction. Hence $\gamma = 0$.

Under an assumption of monotonicity on g we get a much more accurate result:

PROPOSITION 2.1. - Assume $N \geq 3$, g is a nondecreasing locally Lipschitz continuous function defined on $[0, +\infty)$ and $u \in C^2(\Omega)$ is a nonnegative solution of (2.18) in Ω' . Assume also that $\bar{B}_R \subset \Omega$ and that there exists a radial continuous function Φ defined in $\bar{B}_R \setminus \{0\}$ and satisfying

(2.27)
$$
-\Delta \Phi \geq g(\Phi) \text{ in } \mathbf{D}'(\mathbf{B}_{\mathbf{R}} \setminus \{0\}),
$$

$$
\Phi \geq u \text{ in } \mathbf{\bar{B}}_{\mathbf{R}} \setminus \{0\}.
$$

Then $|x|^{N-2}u(x)$ converges to some nonnegative real number γ when x tends to 0.

Proof. – From Remark 1.3 $|x|^{N-2} \Phi(x)$ converges to some $\gamma' \ge 0$ as x tends to 0. If $\gamma' = 0$ then $\lim_{x \to 0} |x|^{n-2} u(x) = 0$. Let us assume that $\gamma' > 0$.

From Brezis and Lions' result

$$
-\Delta\Phi = -\{\Delta\Phi\} + C(N)\gamma'\delta_c
$$

with $-\{\Delta\Phi\}\in L^1_{loc}(B_R)$ which implies that $g(\Phi)\in L^1(B_R)$ and g satisfies (1.1). From Theorem 2.3 there exists $\gamma \in [0, \gamma']$ such that $r^{N-2} u(r,.)$ converges to γ in $L^1(S^{N-1})$ as r tends to 0. We consider now the sequence of functions $\{u^N\}$ defined by $u^0 = \Phi$ and for $N \ge 1$

(2.28)
$$
-\Delta u^N = g(u^{N-1}) + C(N) \gamma \delta_0 \text{ in } \mathbf{D}'(\mathbf{B}_R)
$$

$$
u^N = \Phi \text{ on } \partial \mathbf{B}_R.
$$

Then u^N is radial and $u \leq u^N \leq u^{N-1} < \Phi$. It is clear that $\{u^N\}$ converges in $C^1_{loc}(\bar{B}_R\setminus\{0\})$ to a radial function \bar{u} which satisfies

(2.29)
$$
-\Delta \overline{u} = g(\overline{u}) + C(N) \gamma \delta_0 \text{ in } \mathbf{D}'(\mathbf{B}_R)
$$

and $\overline{u} \ge u$. As a consequence of Lemma 1.2 $\lim_{x \to 0} |x|^{N-2} \overline{u}(x) = \gamma$. From Remark 1.2 $\lim_{x\to 0} |x|^{N-2} u(x) = \gamma$ which ends the proof.

Remark 2.1. - The hypothesis of radiality of Φ which is rather restrictive can be withdrown if we know that $\lim u(x) = +\infty$ and

Vol. 6, n° 1-1989.

 $\Phi \ge \sup_{|x|=R} u(x)$. In that case we can consider the following iterative scheme with $\Phi^0 = \Phi$ and

(2.30)
$$
-\Delta \Phi^{N} = g(\Phi^{N-1}) + C(N) \gamma' \delta_0 \text{ in } \mathbf{D}'(\mathbf{B_R})
$$

$$
\Phi^{N} = \sup_{\substack{x \in \mathbf{R} \\ |\mathbf{x}| = \mathbf{R}}} u(x) \text{ on } \partial \mathbf{B_R}.
$$

Then $u \leq \Phi^N \leq \Phi^{N-1} \leq \Phi$ and $\{\Phi^N\}$ converges in $C^1_{loc}(\bar{B}_R \setminus \{0\})$ to some Φ^- satisfying

(2.31)
$$
-\Delta \Phi^{-} = g(\Phi^{-}) + C(N) \gamma' \delta_0 \text{ in } D'(B_R)
$$

$$
\Phi^{-} = \sup_{\substack{x \to R}} u(x) \text{ on } \partial B_R
$$

and $\Phi^-\geq u$. As $\lim_{x\to 0} \Phi^-(x) = +\infty$ we deduce from Serrin and Ni' results

[12] that Φ^- is radial and we can apply Lemma 1.2.

PROPOSITION 2.2. - Assume $N \geq 3$, g is a nondecreasing locally Lipschitz continuous function defined on [0, $+\infty$) satisfying for some $q > N/2$.

$$
(2.32) \t\t sup(g'(\phi), g'(\psi)) \in L^q_{loc}(\Omega)
$$

for any φ and ψ continuous and nonnegative in Ω' such that $g(\varphi)$ and $g(\psi) \in L^1_{loc}(\Omega)$. If $u \in C^2(\Omega')$ is a nonnegative solution of (2.18) in Ω' , then $x|^{N-2}u(x)$ converges to some nonnegative real number γ as x tends to 0.

Proof. – From Theorem 2.3 we have (2.20) for some $\gamma \ge 0$ and $g(u) \in L^1_{loc}(\Omega)$.

Case 1. - $\gamma = 0$. Without any restriction we can assume that $u > \varepsilon$ in $\bar{\mathbf{B}}_{\mathbf{R}} \setminus \{0\} \subset \Omega'$ and we write (2.20) as

in $B_R \setminus \{0\}$ where $d(x) = (g(u) - g(0))/u$. As $g(u) \in L^1(B_R)$ (2.32) implies that $d \in L^q(B_R)$ and we deduce from [18] that either u has a removable singularity at 0 or

$$
(2.34) \t 0 < \lim_{x \to 0} |x|^{N-2} u(x) < \lim_{x \to 0} |x|^{N-2} u(x) < +\infty,
$$

which is impossible as $\gamma=0$.

Case 2. $-\gamma > 0$. Let v_{γ} be the solution of

(2.35)
$$
-\Delta v_{\gamma} = g(v_{\gamma}) + C(N) \gamma \delta_0 \text{ in } \mathbf{D}'(\mathbf{B_R}),
$$

$$
v_{\gamma} = 0 \text{ on } \partial \mathbf{B_R},
$$

 v_r is constructed using an increasing sequence of approximate solutions as in [11], $0 \le v_r \le u$ in $B_R \setminus \{0\}$ and v_r is radial. Let w be $u - v_r$, then

$$
(2.36) \qquad \Delta w + dw = 0
$$

in $B_R \setminus \{0\}$ with $d = (g(u) - g(v_v))/(u - v_v) \in L^q(B_R)$. Then we deduce from [18] that either w has a removable singularity at 0 or

$$
(2.37) \t 0 < \lim_{x \to 0} |x|^{N-2} w(x) \leqq \lim_{x \to 0} |x|^{N-2} w(x)
$$

which is impossible as

(2.38)
$$
\gamma = \lim_{x \to 0} |x|^{N-2} v_{\gamma}(x) = \lim_{x \to 0} |x|^{N-2} u(x).
$$

Remark $2.2.$ - Under the hypotheses of Proposition 2.2 two nonnegative solutions u_i (i = 1, 2) of

$$
(2.39) \qquad \qquad -\Delta u = g(u) + C(N)\gamma \delta_0
$$

in $\mathbf{D}'(\Omega)$ are such that $u_1 - u_2 \in L^{\infty}_{loc}(\Omega)$. As for the solvability of (2.39) we have

PROPOSITION 2.3. - Assume $N \ge 3$, Ω is bounded with a C¹ boundary $\partial\Omega$ and g is a nondecreasing function defined on $[0, +\infty)$, satisfying (1.1) and $g(r) = o(r)$ near 0. Then there exists $\gamma^* \in (0, +\infty]$ with the following properties:

(i) for any $\gamma \in [0, \gamma^*)$ there exists at least one nonnegative function $u \in C^1(\overline{\Omega} \setminus \{0\})$ vanishing on $\partial \Omega$ solution of (2.39) in $\mathbf{D}'(\Omega)$,

(ii) for $\gamma > \gamma^*$ no such u exists.

Proof. – Step 1. Assume $\Omega = B_R$. – A function u vanishing on ∂B_R is a radial solution of (2.40) in $\mathbf{D}'(\mathbf{B}_p)$ if and only if the function $v(t) = u(r)$, with $t = r^{2-N}$, satisfies

$$
(2.40) \t\t\t v_{tt} + \frac{1}{(N-2)^2} t^{-2(N-1)/(N-2)} g(v) = 0 \t\t on (R^{2-N}, +\infty),
$$

$$
v (R^{2-N}) = 0,
$$

$$
\lim_{t \to +\infty} v(t)/t = \gamma.
$$

As v is concave the last condition is equivalent to

$$
\lim_{t \to +\infty} v_t(t) = \gamma.
$$

Vol. 6, n' 1-1989.

For $\alpha > 0$, let v^{α} be the solution of the initial value problem defined on a maximal interval $[R^{2-N}, T^*)$

$$
(2.42) \t v_{tt}^{\alpha} + \frac{1}{(N-2)^2} t^{-2(N-1)/(N-2)} g(v^{\alpha}) = 0 \text{ on } (R^{2-N}, T^*),
$$

$$
v_{\tau}^{\alpha}(R^{2-N}) = 0,
$$

$$
v_{\tau}^{\alpha}(R^{2-N}) = \alpha.
$$

If $T^* < +\infty$ then lim $v^{\alpha}(t) = 0$ as a consequence of concavity and there t \uparrow T* exists $T \in (R^{2-N}, T^*)$ such that $v_t(T) = 0$. If $T^* = +\infty$ and lim $v_t(t) = 0$ $t \rightarrow +\infty$ then the same relation holds with $T = +\infty$. As a consequence if no solution v^{α} of (2.42) satisfies (2.41) with $\gamma > 0$ we have

(2.43)
$$
(N-2)^2 \alpha = \int_{R^2 - N}^{T} t^{-2 (N-1)/(N-2)} g(v^{\alpha}(t)) dt
$$

and the right-hand side of (2.43) is majorized by
 $\int_{R^{2-N}}^{+\infty} t^{-2(N-1)/(N-2)} g(\alpha(t-R^{2-N})) dt$, which implies (2.44) $(N-2)^2 \alpha R^{-N} < \int_0^{+\infty} (t+1)^{-2(N-1)/(N-2)} g(\alpha R^{2-N} t) dt$ or

$$
(2.45) \qquad (N-2)^2 R^{-2} < \int_0^{+\infty} t (t+1)^{-2(N-1)/(N-2)} \frac{g(\alpha R^{2-N} t)}{\alpha R^{2-N} t} dt.
$$

For $\epsilon > 0$ there exists $\eta > 0$ such that $\alpha R^{2-N} t < \eta$ implies $g(\alpha R^{2-N}t) < \epsilon \alpha R^{2-N}t$. Hence the right-hand side of (2.45) is majorized by

$$
\frac{R^{N-2}}{\alpha} \int_{R^{N-2} \eta/\alpha}^{+\infty} (t+1)^{-2(N-1)/(N-2)} g(\alpha R^{2-N} t) dt + \varepsilon \int_{0}^{R^{N-2} \eta/\alpha} t (t+1)^{-2(N-1)/(N-2)} dt
$$

or

$$
\alpha^{2(N-1)/(N-2)} \int_{\eta}^{+\infty} (R^{N-2} s + \alpha)^{-2(N-1)/(N-2)} g(s) ds + \epsilon \int_{0}^{+\infty} t (t+1)^{-2(N-1)/(N-2)} dt.
$$

Consequently

$$
(2.46) \qquad \lim_{\alpha \to 0} \int_0^{+\infty} t (t+1)^{-2(N-1)/(N-2)} \frac{g(\alpha R^{2-N} t)}{\alpha R^{2-N} t} dt = 0
$$

contradicting (2.45). As a consequence there exists $\alpha^* > 0$ such that for any $\alpha \in (0, \alpha^*)$ the solution v^{α} of (2.42) is defined on $[\mathbb{R}^{2-N}, +\infty)$ and satisfies (2.41) for some $\gamma > 0$.

Step 2. The general case. $-$ There exists $R > 0$ such that $\Omega \subset B_R$. If $\tilde{\gamma} > 0$ is such that there exists a solution v to (2.40), then for any $\gamma \in [0, \gamma]$ the sequence $\{u_n\}$ defined by $u_0 = 0$ and for $n \ge 1$

(2.47)
$$
-\Delta u^{n} = g (u^{n-1}) + C (N) \gamma \delta_0 \text{ in } \mathbf{D}'(\Omega),
$$

$$
u^{n} = 0 \text{ on } \partial \Omega,
$$

increases, is majorized by v in Ω and converges to some u which vanishes on $\partial \Omega$ and satisfies (2.39) in $\mathbf{D}'(\Omega)$. For the same reasons, the set of $\gamma > 0$ such that there exists a nonnegative solution of (2.39) vanishing on $\partial\Omega$ is an interval.

Remark 2.3. - If
$$
\lim_{r \to +\infty} g(r)/r > 0
$$
 it is proved in [11] that $\gamma^* < +\infty$. If
we no longer assume that $\lim_{r \to 0} g(r)/r = 0$ it can be proved that for any

 $v_0 > 0$ there exists $R_0 > 0$ such that for any $\Omega \subset B_{R_0}$ and any $\gamma \in [0, v_0)$ there exists a solution u of (2.39) in $\mathbf{D}'(\Omega)$.

The two-dimensional version of Theorem 2. 3 is the following

THEOREM 2.4. - Assume $N=2$, g is a continuous function defined on $[0, +\infty)$ such that $\lim g(r)/r > -\infty$ and $u \in C^2(\Omega')$ is a nonnegative $r \rightarrow +\infty$

solution of (2.18) in Ω' . Then there exists $\gamma \in [0, +\infty)$ such that

(2.48)
$$
\lim_{x \to 0} |x|^{-1} \int_{|y| = |x|} |\gamma - u(y)| Ln(1/|x|) | dS = 0,
$$

 $g(u) \in L^1_{loc}(\Omega)$ and u solves

$$
(2.49) \qquad \qquad -\Delta u = g(u) + 2\,\pi\gamma\delta_0
$$

in $\mathbf{D}'(\Omega)$. If we assume moreover that

(2.50)
$$
\int_0^1 \inf (g (\alpha \ln(1/r)), g (\beta \ln(1/r)) r dr = +\infty
$$

for any α , β > 0, then γ = 0.

Vol. 6, n° 1-1989.

Remark 2.4. - When $a_g^+=0$, Proposition 2.2 which holds in the case $N = 2$ with $|x|^{2-N}$ replaced by $Ln(1/|x|)$ provides an interesting criterion for proving that

$$
\lim_{x \to 0} u(x)/\text{Ln}(1/|x|) = \gamma
$$

for some $\gamma \ge 0$. Proposition 2.1 is also valid in the case N = 2 (with the same modifications).

We introduce now a class new of g's defined on $[0, +\infty)$ which are those satisfying

(2.52)
$$
\forall \sigma > 0
$$
, $\lim_{r \to +\infty} e^{-\sigma r} g(r) = l(\sigma)$ exists in $[0, +\infty]$,

and we have [20]

(2.53)
$$
a_g^+ = \sup \{ \sigma > 0 : l(\sigma) = +\infty \} = \inf \{ \sigma > 0 : l(\sigma) = 0 \}.
$$

THEOREM 2.5. - Assume $N=2$, g is a continuous function defined on $[0, +\infty)$ satisfying $\lim g(r)/r > -\infty$ and (2.52) with $a_q^+ < +\infty$ and $r \rightarrow +\infty$

 $u \in C^2(\Omega)$ is a nonnegative solution of (2.18) in Ω' and assume also (i) either $a_a^+=0$,

(ii) or
$$
a_g^+ > 0
$$
 and $\int_0^1 g\left(\frac{2}{a_g^+} \text{Ln}(1/r)\right) r dr = +\infty$.
Then there exists $\propto \begin{bmatrix} 0 & 2 \\ 0 & -\end{bmatrix}$ such that $u - \gamma \begin{bmatrix} 1 \\ n-1 \end{bmatrix}$ is locally by

Then there exists $\gamma \in \left[0, \frac{2}{a_q^+}\right)$ such that $u - \gamma \operatorname{Ln} \frac{1}{r}$ is locally bounded in Ω .

Proof. $-$ The main ingredient for proving this is a theorem due to John and Nirenberg $([9], Th. 7.21)$ that we recall

«Let $u \in W^{1,1}(G)$ where $G \subset \Omega$ is convex and suppose that there exists a constant K such that

(2.54)
$$
\int_{G \cap B_r} |\nabla u| dx \leq K r \text{ for any ball } B_r,
$$

then there exist positive constant μ_0 and C such that

(2.55)
$$
\int_{G} \exp\left(\frac{\mu}{K} |u - u_{G}|\right) dx \leq C (\text{diam}(G))^{2}
$$

where $\mu = \mu_0 |G|$ (diam (G))⁻² and $u_G = \frac{1}{|G|} \int_G u \, dx$.

From Theorem 2.4 there exists $\gamma \ge 0$ such that $u(r,.)/Ln(1/r)$ converges to γ in $L^1(S^1)$ as r tends to 0 and $g(u) \in L^1_{loc}(\Omega)$. Set $w = u - \gamma Ln(1/|x|)$,

then

$$
(2.56) \qquad \qquad -\Delta w = g(u)
$$

in $D'(\Omega)$. It is now classical that $\nabla w \in M^2_{loc}(\Omega)$ where $M^2(G)$ is the usual Marcinkiewicz space over G. If we take $G = \overline{B}_R \subset \Omega$ then ∇w satisfies (2.54) for some K > 0 , which implies

$$
\int_{B_{\rho}} e^{\alpha w} dx \leq C(\rho)
$$

for some $\alpha > 0$ and $0 < \rho \leq R$.

Case 1. - Assume $a_a^+ = 0$. Then for any $\varepsilon > 0$ we have

$$
(2.58) \t\t |g(r)| \leq K_{\varepsilon} e^{\varepsilon r}
$$

for some $K_{\epsilon} > 0$ and any $r \ge 0$. From (2.57) we have

(2.59)
$$
\int_{B_{\rho}} e^{\alpha u} |x|^{\alpha \gamma} dx \leq C(\rho).
$$

If $\gamma > 0$ we have for p, $\sigma > 1$ and $\lambda > 0$

$$
(2.60) \qquad \int_{B_{\rho}} e^{p \epsilon u} dx \leqq \left(\int_{B_{\rho}} e^{\sigma p \epsilon u} |x|^{\sigma \lambda} dx \right)^{1/\sigma} \left(\int_{B_{\rho}} |x|^{-\sigma' \lambda} dx \right)^{1/\sigma'}
$$

 $(\sigma' = \sigma/(\sigma - 1))$. We set $\sigma p \varepsilon = \alpha$, $\sigma \lambda = \alpha \gamma$, hence $\lambda = \gamma p \varepsilon$, $\sigma = \frac{\alpha}{p \varepsilon}$

$$
\sigma'\lambda = \alpha\gamma p \,\varepsilon/(\alpha-p \,\varepsilon).
$$

Hence for any $p > 1$ we can take ε small enough so that $\sigma \lambda < 2$ and $\sigma > 1$. As a consequence $g(u) \in L^p(B_0)$ and $w \in L^{\infty}(B_0)$. If $\gamma = 0$, (2.59) implies that $g(u) \in L^p(B_\rho)$ for any $p \in [1, \infty)$ and $u \in L^\infty(B_\rho)$.

Case 2. – Assume
$$
a_g^+ > 0
$$
 and $\int_0^1 g\left(\frac{2}{a_g^+}\text{Ln}(1/r)\right) r dr = +\infty$.

Step 1. $-0 \le \gamma < \frac{2}{a_a^+}$. Assume the contrary that is $\gamma \ge \frac{2}{a_a^+}$. As $a_g^+ > 0$ we have $\lim g(r) = +\infty$ and from Remark 1.2 $r \rightarrow +\infty$

$$
(2.61) \t\t u(x) > v\gamma(x),
$$

where v_y satisfies

$$
(2.62) \qquad \qquad -\Delta v_{\gamma} + g(v_{\gamma}) = 2\,\pi\gamma\delta_0
$$

Vol. 6, n° 1-1989.

in $\mathbf{D}'(\mathbf{B_R})$, $v_r = 0$ on $\partial \mathbf{B_R}$. As a consequence [21] lim $u(x) = +\infty$ and for $|x| < R'$ small enough (2.63) $-\Delta u \geq 2 \pi \gamma \delta_0$ in $\mathbf{D}'(\mathbf{B}_{\mathbf{R}'})$. As a consequence $u(x) \ge \gamma \ln\left(\frac{1}{|x|}\right) - l$, which implies

 $g(u) dx = +\infty$, contradiction.

Step 2. – We claim that for any $\alpha > 0$ there exist $\rho \in (0, R]$ such that (2.57) holds. We fix $0 < R' < R$ and write $w = w_1 + w_2$ where w_1 is harmonic in B_R, and take the value w on $\partial B_{R'}$ and w₂ satisfies

$$
(2.64) \qquad \qquad -\Delta w_2 = g(u)
$$

in B_R, and $w_2 = 0$ on $\partial B_{R'}$. As $\nabla w_1 \in L^2(B_{R'})$ we deduce

$$
\| \nabla w_1 \|_{\mathbf{M}^2(\mathbf{B}_\rho)} \to 0
$$

and for w_2 we have

$$
(2.66) \t\t\t |\t\nabla w_2||_{\mathbf{M}^2(\mathbf{B}_{\mathbf{R}'})} \leq C ||g(u)||_{\mathbf{L}^1(\mathbf{B}_{\mathbf{R}'})}
$$

where C is independent of \mathbb{R}' . As a consequence we get

(2.67)
$$
\lim_{\rho \to 0} || \nabla w ||_{\mathbf{M}^2(\mathbf{B}_\rho)} = 0
$$

and the constant K in (2.55) can be taken as small as we want provided $G = B_p$ and u is replaced by w. This implies that for any $\alpha > 0$ we can find $p \in (0, R)$ such that (2.57) holds.

Step 3: End of the proof. - From the definition of a_a^+ , for any $\varepsilon > 0$ there exists $K_{\epsilon} > 0$ such that

$$
(2.68) \t\t |g(r)| \leq K_{\varepsilon} e^{(a_{g}^{+} + \varepsilon)t}
$$

for $r \ge 0$, and we have from (2.59)

$$
(2.69)
$$

$$
\int_{B_{\rho}} e^{p (a_{g}^{+} + \varepsilon) u} dx \leqq \left(\int_{B_{\rho}} e^{\sigma p (a_{g}^{+} + \varepsilon) u} |x|^{\sigma \lambda} dx \right)^{1/\sigma} \left(\int_{B_{\rho}} |x|^{-\sigma' \lambda} dx \right)^{1/\sigma'}.
$$

We take $\sigma p(a_a^+ + \varepsilon) = \alpha$, $\sigma \lambda = \alpha \gamma$ [we assume $\gamma > 0$ other-while $g(u) \in L^p_{loc}(\Omega)$ for any $p > 1$ and $w \in L^{\infty}_{loc}(\Omega)$ and $\lambda = \gamma p(a_g^+ + \varepsilon)$, $\sigma = \alpha/p(a_g^+ + \varepsilon)$ and $\lambda \sigma' = \alpha \gamma p (a_g^+ + \varepsilon) / (\alpha - p (a_g^+ + \varepsilon))$. As $\gamma a_g^+ < 2$ there exist $p > 1$, $\varepsilon > 0$, $\alpha > 0$ such that $\sigma' \lambda < 2$ which implies $g(u) \in L^p_{loc}(\Omega)$ and we end the proof as in Case 1.

Remark 2.5. - If $a_n^+ = +\infty$ then $\gamma = 0$ from Theorem 2.4. In that case it is unlikely that Theorem 2. 5 still holds. However we conjecture that $\lim_{x \to 0} u(x)/\ln(1/|x|) = 0.$

Concerning the existence of solutions of (2. 49) the following result can be proved as in Proposition 2. 3.

PROPOSITION 2.4. - Assume N = 2, Ω is bounded with a C¹ boundary $\partial\Omega$ and g is a nondecreasing function defined on $[0, +\infty)$ such that $a_{a}^{+} \in (0, +\infty]$ and $g(r) = o(r)$ near 0. Then there exists $\gamma^* \in (0, 2/a_{a}^{+}]$ with the following properties:

(i) for any $\gamma \in [0, \gamma^*)$ there exists at least one nonnegative function $u \in C^1(\overline{\Omega} \setminus \{0\})$ vanishing on $\partial \Omega$ solution of (2.49) in $\mathbf{D}'(\Omega)$,

(ii) for $\gamma > \gamma^*$ no such u exists.

Remark 2.6. – If $g(r) = e^{ar}$ it is easy to see that γ^* exists only if diam. (Ω) is small enough. Moreover in that case $\gamma^* < \frac{2}{a_g^+} = \frac{2}{a}$.

3. SINGULARITIES OF $\Delta u = u (Ln^{+} u)^{\alpha}$

Our first result deals with the one-dimensional case

THEOREM 3.1. - Assume $u \in C^2(0, R)$ is a nonnegative solution of

 $u_{rr} = u (Ln^{+} u)^{\alpha}$ in (0, R). (3.1)

Then:

 $-$ if $0 < \alpha < 2$, u (r) admits a finite limit as r tends to 0;
- if $\alpha > 2$, (i) either $u(r)$ admits a finite limit as r tends to 0, (ii) or

$$
(3.2) \qquad \begin{cases} u(r) = \sqrt{e} e^{\gamma (\alpha) r^{2/(2-\alpha)}} (1+O(r^{2/(\alpha-2)})), \\ u_r(r) = -\sqrt{e} (\gamma (\alpha))^{\alpha/2} r^{\alpha/(2-\alpha)} e^{\gamma (\alpha) r^{2/(2-\alpha)}} (1+O(r^{2/(\alpha-2)})), \end{cases}
$$

near 0 where

(3.3)
$$
\gamma(\alpha) = \left(\frac{2}{\alpha - 2}\right)^{2/(\alpha - 2)}.
$$

Vol. 6, n° 1-1989.

From (3.1) u is convex and $u(r)$ admits a limit in $\mathbb{R}^+ \cup \{ +\infty \}$ as r tends to 0. If this limit is larger than $1, (3.1)$ is equivalent to

$$
(3.4) \t\t vr + vr2 = v α
$$

on some interval $(0, R')$ with the transformation $u=e^{v}$. Theorem 3.1 is an immediate consequence of the following result

LEMMA 3.1. - Assume $v \in C^2(0, R')$ is a nonnegative solution of (3.4) in $(0, R')$. Then

- $-$ if $0 < \alpha \leq 2$, v remains bounded near 0;
- if $\alpha > 2$
-
- (i) either v remains bounded near 0,
- (ii) or

(3.5)
$$
\begin{cases} r^{2/(\alpha-2)} v(r) = \gamma(\alpha) + \frac{1}{2} r^{2/(\alpha-2)} + O(r^{4/(\alpha-2)}) \\ r^{\alpha/(\alpha-2)} v_r(r) = -(\gamma(\alpha))^{\alpha/2} + O(r^{4/(\alpha-2)}). \end{cases}
$$

Proof. $-$ Assuming that u is unbounded near 0, then lim $u(r) = +\infty = \lim_{r \to 0} v(r)$ and v is decreasing near 0. So we can define

(3.6)
$$
\begin{cases} \rho = v \in [\sigma, +\infty), \\ h(\rho) = v_r^2, \end{cases}
$$

and (3.5) become

(3.7)
$$
\frac{1}{2}h_{\rho} + h = \rho^{\alpha} \quad \text{in} \quad [\sigma, +\infty).
$$

Hence $h(\rho) = h(\sigma) e^{2 (\sigma - \rho)} + 2 e^{-2 \rho} \int_{-\infty}^{\infty} s^{\alpha} e^{2 s} ds$. a

As

$$
\int_{\sigma}^{\rho} s^{\alpha} e^{2 s} ds = \frac{1}{2} [s^{\alpha} e^{2 s}]_{\sigma}^{\rho} - \frac{\alpha}{4} [s^{\alpha-1} e^{2 s}]_{\sigma}^{\rho} + \frac{\alpha (\alpha - 1)}{4} \int_{\sigma}^{\rho} s^{\alpha - 2} e^{2 s} ds
$$

and

$$
\frac{e^{-2\,\rho}}{\rho^{\alpha}}\int_{\sigma}^{\rho} s^{\alpha-2} e^{2\,s}\,ds = O\left(\frac{1}{\rho^2} + \frac{1}{\rho^{\alpha}}\right)
$$

we get

(3.8)
$$
\frac{h(\rho)}{\rho^{\alpha}} = 1 - \frac{\alpha}{2 \rho} + O\left(\frac{1}{\rho^2} + \frac{1}{\rho^{\alpha}}\right)
$$

as ρ goes to $+\infty$, which implies

(3.9)
$$
\lim_{r \to 0} \frac{v_r(r)}{v^{\alpha/2}(r)} = -1
$$

Integrating (3.9) implies that $v^{(2 - \alpha)/2}$ (r) (if $0 < \alpha < 2$) or Ln $v(r)$ (if $\alpha = 2$) remains bounded near 0 which is a contradiction. So we are left with the case $\alpha > 2$, lim $v(r) = +\infty$. From (3.8) we have $r \rightarrow 0$

(3.10)
$$
\frac{v_r}{v^{\alpha/2}} = -1 + \frac{\alpha}{4v} + O\left(\frac{1}{v^2}\right),
$$

near 0, which implies $\lim_{r \to 0} r^{2/(\alpha-2)}v(r)=\left(\frac{2}{a-2}\right)^{2/(\alpha-2)} =\gamma(a)$. As a conse-

quence $\frac{1}{\sqrt{2}} = \frac{1+O(1)}{O(1)} r^{2/(\alpha-2)}$ and (3.10) becomes $u(r)$ $r(\alpha)$

(3.11)
$$
\frac{v_r}{v^{\alpha/2}} = -1 + \frac{1 + o(1)}{\gamma(\alpha)} \frac{\alpha}{4} r^{2/(\alpha - 2)}
$$

Integrating (3.11) on $(0, r)$ for r small yields

(3.12)
$$
v(r) = \gamma(\alpha) r^{2/(2-\alpha)} \left(1 + \frac{1 + o(1)}{2\gamma(\alpha)} r^{2/(\alpha-2)} \right),
$$

which implies, with (3.10),

(3.13)
$$
\frac{v_r}{v^{\alpha/2}} = -1 + \frac{\alpha}{4\gamma(\alpha)} r^{2/(\alpha-2)} + O(r^{4/(\alpha-2)}).
$$

Reasoning as before we get

(3.14)
$$
v(r) = \gamma(\alpha) r^{2/(2-\alpha)} + \frac{1}{2} + O(r^{2/(\alpha-2)})
$$

near 0 and

(3.15)
$$
r^{\alpha/(\alpha-2)}v_r(r) = -(\gamma(\alpha))^{\alpha/2} + O(r^{4/(\alpha-2)}).
$$

We assume now that Ω is an open subset of \mathbb{R}^N , $N \ge 2$, containing 0, $\Omega' = \Omega \setminus \{0\}$ and we consider the following equation in Ω'

$$
(3.16) \qquad \Delta u = u \left(\mathbf{L} n^+ u \right)^{\alpha}
$$

where $u \in C^2(\Omega)$ is nonnegative.

LEMMA 3.2. - If $\alpha > 2$ and $\bar{B}_R \subset \Omega$; then there exists a constant $C = C(\alpha, N, R, dist(\partial B_R, \partial \Omega))$ such that

Vol. 6, n' 1-1989.

64 Y. RICHARD AND L. VERON

$$
(3.17) \t u(x) \leq e^{C |x|^{2/(2-\alpha)}} \t in \t \bar{B}_R \setminus \{0\}.
$$

Proof. – We define $\beta(t) = t \left(\ln^{-1} t \right)^{\alpha}$, $j(t) = \int_{0}^{t} \beta(s) ds$ and $\tau(t) = \int_{t}^{+\infty} \frac{dt}{\sqrt{j(s)}}$. As $\tau(2) < +\infty$ we deduce from Vazquez's result that the equation (3.16) satisfies the a priori interior estimate property [19]: if $x_0 \in \Omega'$ and if the cube $Q_\rho(x_0) = \left\{ x \in \mathbb{R}^N : \sup_{1 \le i \le N} |x^i - x_0^i| < \rho \right\}$ is included in Ω' , then for any $a \in (0, 1)$ there exists a constant $\mu = \mu(a) > 0$ such that

$$
(3.18) \t u(x_0) \leq \frac{N}{a} \tau^{-1}(\mu \rho).
$$

So the main point is to get a precise estimate on τ^{-1} . If $s_0 > e^{\alpha/2}$ and $C(s_0) = \frac{1}{2} - \frac{\alpha}{4 \ln s_0}$ it is easy to check that

 $j(t) > C(s_0) t^2 (L n t)^{\alpha}$ for $t > s_0$.

If
$$
C_0 = \frac{2}{(\alpha - 2)\sqrt{C(s_0)}}
$$
, then $\tau(s) < C_0 (L n s)^{(2 - \alpha)/2}$ for $s > s_0$ and
(3.19) $\tau^{-1}(y) \leq e^{C_0^2/(\alpha - 2) y^{2/(2 - \alpha)}}$.

for
$$
0 < y < \tau(s_0)
$$
. For $|x| < \frac{\sqrt{N}}{2}R$, $Q_{\frac{2|x|}{\sqrt{N}}}(x) \subset B_R$. We set\n
$$
R_0 = \min\left(\frac{1}{2}R, \frac{1}{2}\frac{\tau(s_0)}{\mu}\right)
$$

and for $|x| \le R_0$ we can apply (3.18), (3.19) which gives

$$
(3.20) \t u(x) \leq \frac{N}{a} e^{((C_0 \sqrt{N})/2)^{2/(\alpha-2)} |x|^{2/(2-\alpha)}}.
$$

The estimate in $B_R \setminus B_{R_0}$ is obtained from (3.18) with a simple compactness argument and we get (3.17).

LEMMA 3.3. - Assume $N \ge 2$, $\alpha > 0$ and $v \in C^2$ ($\bar{B}_R \setminus \{0\}$) is a nonnegative solution of

(3.21)
$$
v_{rr} + \frac{N-1}{r}v_r + v_r^2 = v^{\alpha} \quad in \ (0, R)
$$

such that $\lim v(r) = +\infty$. Then for any $\varepsilon > 0$ there exists $r(\varepsilon) \in (0, R)$ such $r \rightarrow 0$ that

$$
(3.22) \qquad -\frac{N-1}{rv^{\alpha/2}}-1 < \frac{v_r}{v^{\alpha/2}} \leq -1+\varepsilon \quad \text{in} \ \ (0,r(\varepsilon)).
$$

Proof. – From (3.21) it is clear that $v_r < 0$ on some $(0, r_0) \subset (0, R)$ and we get

(3.23)
$$
v_{rr} + v_r^2 \ge v^{\alpha} \quad \text{in} \quad (0, r_0).
$$

Taking $v = \rho$ as a new variable and $h(\rho) = v_r^2$ as a new unknow we get as in Lemma 3.1

$$
\frac{1}{2}h_{\rho} + h \geq \rho^{\alpha} \quad \text{for} \quad \rho \geq \rho_0,
$$

which implies $(e^{2\rho}h)_{\rho} \ge 2e^{2\rho} \rho^{\alpha}$ and by integration we get $\frac{P(\rho)}{\rho^{\alpha}} \ge 1 - \varepsilon$ for any $\epsilon > 0$ and $\rho > \rho(\epsilon)$, that is

(3.24)
$$
\frac{v_r}{v^{\alpha/2}} \leq -1 + \varepsilon \quad \text{in} \ (0, r(\varepsilon)),
$$

where $r(\varepsilon)$ is small enough. As a consequence $\lim v_r(r) = -\infty$. If we set $r \rightarrow 0$ $\omega = v$, we get from (3.21)

$$
(3.25) \qquad \qquad \omega_{rr} + \frac{N-1}{r} \omega_r + 2 \omega \omega_r - \frac{N-1}{r^2} \omega = \alpha \omega v^{\alpha-1}.
$$

As $\omega < 0$ on $(0, r_0)$, (3.25) implies

Hence if $\omega_r(r_1) \leq 0$ for some $r_1 \in (0, r_0)$ we would have $\omega_r(r) < 0$ for $r \in (0, r_1)$ contradicting $\lim_{m \to \infty} \omega(r) = -\infty$. As a consequence $\omega_r > 0$ and $r \rightarrow 0$

(3.27)
$$
v_r^2 + \frac{N-1}{r}v_r - v^* \leq 0 \quad \text{in } (0, r_0).
$$

A simple algebraic computation implies

$$
(3.28) \t -\frac{N-1}{2r} - \sqrt{\left(\frac{N-1}{2r}\right)^2 + v^{\alpha}} \leq v_r \leq 0
$$

Vol. 6, n° 1-1989.

and

(3.29)
$$
\frac{v_r}{v^{\alpha/2}} \geq -\frac{N-1}{rv^{\alpha/2}} - 1,
$$

which ends the proof.

LEMMA 3.4. - Assume $N \ge 2$, $\alpha > 1$ and $u \in C^2(\overline{B}_R \setminus \{0\})$ is a nonnegative solution of

(3.30)
$$
u_{rr} + \frac{N-1}{r} u_r = u (L n^+ u)^{\alpha} \quad \text{in} \ (0, R).
$$

Then $\lim_{r \to 0} u(r)/\mu(r) = +\infty$ if and only if $\lim_{r \to 0} r^{2/\alpha} \ln u(r) = +\infty$.

Proof. - Case 1: $N \ge 3$. - We consider the following change of variable $s = r^{2-N}$, $\tilde{u}(s) = u(r)$; (3.31)

 \tilde{u} satisfies

$$
(3.32) \qquad \tilde{u}_{ss} = \frac{1}{(N-2)^2} s^{-2 ((N-1)/(N-2))} \tilde{u} (L n^+ \tilde{u})^{\alpha} \quad \text{in } (S, +\infty),
$$

with $S = R^{2-N}$, and if $\lim_{r \to 0} r^{N-2} u(r) = +\infty$ we have

(3.33)
$$
\lim_{r \to +\infty} \widetilde{u}(s)/s = \lim_{s \to +\infty} \widetilde{u}_s(s) = +\infty.
$$

From convexity $\tilde{u}(s) \leq s \tilde{u}_s(s)$ (1+o(1)) and

$$
(\operatorname{Ln} \widetilde{u})^{\alpha} < (\operatorname{Ln} s + \operatorname{Ln} \widetilde{u}_s + O(1))^{\alpha} \leq (\operatorname{N} - 2)^2 (\operatorname{Ln} s)^{\alpha} (\operatorname{Ln} \widetilde{u}_s)^{\alpha}
$$

for s large enough; so (3.32) becomes

$$
(3.34) \t\t\t\t\t\tilde{u}_{ss} \leq s^{-N/(N-2)} \tilde{u}_s (Ln \tilde{u}_s)^{\alpha} (Ln s)^{\alpha}.
$$

As $\alpha > 1$

$$
\int_{\sigma}^{+\infty} \frac{\widetilde{u}_{ss}}{\widetilde{u}_{s}(L n \widetilde{u}_{s})^{\alpha}} ds = \frac{1}{\alpha - 1} (L n \widetilde{u}_{s}(\sigma))^{1 - \alpha}
$$

and

$$
\int_{\sigma}^{+\infty} s^{-N/(N-2)} (\text{Ln } s)^{\alpha} ds < A \sigma^{-2/(N-2)} (\text{Ln } \sigma)^{\alpha}
$$

for some constant A and σ large enough. As a consequence $\sigma^{2/(N-2)(\alpha-1)}(Ln \sigma)^{\alpha/(1-\alpha)}$. A straightforward computation implies that for

any $\varepsilon > 0$ and for s large enough

 $\widetilde{u}(s) \geq e^{s^{(\epsilon + 2/(1-\alpha))/(N-2)}},$

which means

for r small enough and $\lim_{r \to 0} r^{2/\alpha} \ln u(r) = +\infty$. Conversely $\lim_{r \to 0} r^{2/\alpha} \ln u(r) = +\infty \text{ implies } \lim_{r \to 0} u(r)/\mu(r) = +\infty \text{ (N} \ge 2).$

Case 2: $N = 2$. – We make the following change of variable

and we get (with $T = Ln(1/R)$)

$$
(3.37) \t\t\t\t \widetilde{u}_n=e^{-2t}\widetilde{u}(Ln\widetilde{u})^{\alpha} \t\t\t in (T, +\infty).
$$

If we assume $\lim_{r \to \infty} u(r)/\ln(1/r) = +\infty$ then $r \rightarrow 0$

$$
\lim_{t \to +\infty} \widetilde{u}(t)/t = \lim_{t \to +\infty} \widetilde{u}_t(t) = +\infty
$$

(by convexity) and we get

$$
\frac{\widetilde{u}_t}{\widetilde{u}_t(L n \widetilde{u}_t)} \leq e^{-2 t} t (L n t)^{\alpha} (1 + o(1)) \quad \text{for} \quad t \gg T
$$

and

for some $B > 0$ and t large enough, which implies

$$
(3.39) \t\t\t\t\t\tilde{u}(t) \geq e^{(2/(\alpha-1)-\epsilon)t},
$$

for any $\epsilon > 0$ and t large. From (3.39) we get the result.

With lemmas 3.2-3.4 we can describe the behaviour of nonnegative radial solutions of (3.16) with a strong singularity at 0, when $\alpha > 2$.

LEMMA 3.5. - Assume $N \ge 2$, $\alpha > 2$ and $u \in C^2(\overline{B}_R \setminus \{0\})$ is a nonnegative solution of (3.30) in (0, R) such that $\lim_{r\to 0} u(r)/\mu(r) = +\infty$. Then the following

holds near 0

$$
(3.40) \quad r^{2/(\alpha-2)} \operatorname{Ln} u(r) = \gamma(\alpha) + \frac{\alpha - (N-1)(\alpha-2)}{2\alpha} r^{2/(\alpha-2)} + O(r^{4/(\alpha-2)}),
$$

$$
r^{a/(\alpha-2)} (\operatorname{Ln} u(r))_r = -(\gamma(\alpha))^{a/2} + O(r^{4/(\alpha-2)}).
$$

VoL 6, n° 1-1989.

Proof. - From the preceeding lemmas $\lim_{r \to 0} v_r(r)/v^{\alpha/2}(r) = -1$ where $v = Ln u$. As a consequence

$$
\lim_{r \to 0} r^{2/(\alpha - 2)} v(r) = \gamma(\alpha)
$$

\n
$$
\lim_{r \to 0} r^{\alpha/(\alpha - 2)} v_r(r) = -(\gamma(\alpha))^{\alpha/2}
$$

\n
$$
v \to 0
$$

and $\frac{N-1}{r}v_r(r)=(-1+o(1))\frac{(N-1)(\alpha-2)}{2}v^{\alpha-1}(r)$ near 0. Pluging this

estimate into equation (3.21) yields

(3.42)
$$
v_{\mathbf{r}} + v_{\mathbf{r}}^2 = v^{\alpha} + C(1 + o(1)) v^{\alpha - 1}
$$

with $C = (N-1)(\alpha - 2)/2$. Taking again $\rho = v$ as the variable and $h(\rho) = v_r^2$. as the unknow implies

$$
\frac{1}{2}(e^{2 \rho} h(\rho))_{\rho} = \rho^{\alpha} e^{2 \rho} + C(1 + o(1)) \rho^{\alpha - 1} e^{2 \rho}
$$

and

(3.43)
$$
\frac{h(\rho)}{\rho^{\alpha}} = 1 + (1 + o(1)) \left(C - \frac{\alpha}{2} \right) \frac{1}{\rho} \text{ as } \rho \to +\infty.
$$

If we set $A = \frac{\alpha}{4} - \frac{C}{2} = \frac{\alpha - (N-1)(\alpha-2)}{4}$ we have $\frac{v_r}{v^{\alpha/2}} = -1 + \frac{1 + o(1)}{v}A$, which implies $v(r) = \gamma(\alpha) (1 + o(1)) r^{2/(2-\alpha)}$ and finally

(3.44)
$$
\frac{v_r}{v^{\alpha/2}} = -1 + \frac{1 + o(1)}{\gamma(\alpha)} \mathbf{A} r^{2/(\alpha - 2)}
$$

Integrating (3.44) on $(0, r]$ for some small r implies

$$
v(r) - \gamma(\alpha) r^{2/(2-\alpha)} = (1 + o(1)) (2A/\alpha)
$$

As
$$
v_r = -v^{\alpha/2} \left(1 + O\left(\frac{1}{v}\right) \right)
$$
, we have $\frac{N-1}{r}v_r = -C v^{\alpha-1} \left(1 + O\left(\frac{1}{v}\right) \right)$ and v satisfies

satisfies

(3.45)
$$
v_{rr} + v_r^2 = v^{\alpha} + C v^{\alpha-1} + O(v^{\alpha-2});
$$

using ρ and $h(\rho)$ yields

(3.46)
$$
\frac{h(\rho)}{\rho^{\alpha}} = 1 + \frac{2C - \alpha}{2} \frac{1}{\rho} + O\left(\frac{1}{\rho^2}\right).
$$

(3.47)
$$
\frac{v_r}{v^{\alpha/2}} = -1 + \frac{A}{v} + O\left(\frac{1}{v^2}\right),
$$

and, as $v = \gamma r^{2/(2-\alpha)} (1 + O (r^{2/(\alpha-2)})),$

(3.48)
$$
\frac{v_r}{v^{\alpha/2}} = -1 + \frac{A}{\gamma(\alpha)} r^{2/(\alpha-2)} + O(r^{4/(\alpha-2)}).
$$

Integrating (3.48) gives $v(r) = \gamma (\alpha) r^{2/(2-\alpha)} + \frac{2A}{\alpha} + O(r^{2/(\alpha-2)})$ which implies (3.40).

Remark 3.1. – If $N \ge 3$ and $\alpha = 2\frac{N-1}{N-2}$, $\psi(r) = \gamma(\alpha) r^{2/(2-\alpha)}$ is a solution

of (3.30) in $(0, +\infty)$.

We are now able to prove the main theorem of this section

THEOREM 3.2. - Assume $N \ge 2$, $\alpha > 0$ and $u \in C^2(\Omega)$ is a nonnegative solution of (3.16) in Ω' . Then

if $0<\alpha \leq 2$:

(i) either u can be extended to Ω as a \mathbb{C}^2 solution of (3.16) in Ω ,

(ii) or there exists $\gamma > 0$ such that $\lim u(x)/\mu(x) = \gamma$ and u satisfies $x \rightarrow 0$

(3.49)
$$
\Delta u = u (Ln^+ u)^{\alpha} - C(N) \gamma \delta_0
$$

in $\mathbf{D}'(\Omega)$;

if α > 2:

(iii) either u behaves as in (i) or (ii) above

(iv) or $u(x) = \gamma(\alpha, N) e^{\gamma(\alpha) |x|^{2/(2-\alpha)}}(1+O(|x|^{2/(\alpha-2)}))$ near 0 with $\gamma(\alpha) = \left(\frac{2}{\alpha-2}\right)^{2/(\alpha-2)}$ and $\gamma(\alpha, N) = e^{(\alpha-(N-1)(\alpha-2))/2}$.

Proof. – From Theorems 1.1, 1.2 we know that $u(x)/\mu(x)$ admits a limit in $(0, +\infty)$ as x tends to 0. If the limit is finite we get (i) or (ii) [(iii) if $\alpha > 2$] and (3.49) from Theorems 1.1, 1.2 and Remark 1.1 (if the limit is 0 then u is regular as in Proposition 2.5). So let us assume that

$$
\lim_{x \to 0} u(x)/\mu(x) = +\infty.
$$

For any $c > 0$ let φ_c be the solution of

(3.51)
$$
(\varphi_c)_r + \frac{N-1}{r} (\varphi_c)_r = \varphi_c (Ln^+ \varphi_c)^{\alpha} \text{ in } (0, R),
$$

$$
\lim_{r \to 0} \varphi_c (r) / \mu (r) = c, \qquad \varphi_c (R) = \min_{\substack{|x| = R}} u(x),
$$

Vol. 6, n² 1-1989.

(we assume $B_R \subset \Omega$). It is clear that $0 \le \varphi_c \le u$ for $0 < |x| < R$, $c \mapsto \varphi_c$ is increasing and $\lim_{\phi_c \to \phi} \varphi_c$ where φ satisfies

(3.52)
$$
\varphi_{rr} + \frac{N-1}{r} \varphi_r = \varphi (Ln^+ \varphi)^{\alpha} \text{ in } (0, R),
$$

$$
\lim_{r \to 0} \varphi (r) / \mu (r) = + \infty, \qquad \varphi (R) = \min_{\substack{x \to 0 \\ |x| = R}} u(x).
$$

Moreover $0 \leq \varphi \leq u$ in $B_R \setminus \{0\}.$

If $0 < \alpha \leq 2$ we can take R small enough such that $\varphi(R) > e$ and we construct in the same way as φ a function $\tilde{\varphi}$ such that $0 \leq \tilde{\varphi} \leq \varphi$ and

(3.53)
$$
\widetilde{\varphi}_{rr} + \frac{N-1}{r} \widetilde{\varphi}_r = \widetilde{\varphi} (Ln^+ \widetilde{\varphi})^2 \text{ in } (0, R),
$$

$$
\lim_{r \to 0} \widetilde{\varphi}(r) / \mu(r) = +\infty, \qquad \widetilde{\varphi}(R) = \varphi(R).
$$

From Lemma 3.4 lim $r^{2/\alpha}$ Ln $\tilde{\varphi}(r) = +\infty$. If we set $\zeta = \text{Ln } \tilde{\varphi}$, then Lemma $r \rightarrow 0$

3. 3 implies that $\lim_{r\to 0} \frac{dr}{\zeta}(r) = -1$ which implies by integration that ζ remains

bounded near 0 and so does $\tilde{\varphi}$, a contradiction.

We assume now $\alpha > 2$. We define ψ_n as the solution of

(3.54)

$$
(\psi_n)_{rr} + \frac{N-1}{r} (\psi_n)_r = \psi_n (Ln^+ \psi_n)^{\alpha} \quad \text{in } \left(\frac{1}{n}, R \right),
$$

$$
\psi_n \left(\frac{1}{n} \right) = \max_{\substack{\vert x \vert = 1/n}} u(x), \qquad \psi_n(R) = \max_{\substack{\vert x \vert = R}} u(x).
$$

Using Lemma 3.2 and the same device as in the proof of Proposition 2.5 we deduce that for some subsequence $\{\psi_{n_k}\}\$ we have $\lim_{n_k \to \infty} \psi_{n_k} = \psi$ in

the C¹ ((0, R])-topology and ψ satisfies

(3.55)
$$
\psi_{rr} + \frac{N-1}{r} \psi_r = \psi (Ln^+ \psi)^{\alpha} \text{ in } (0, R)
$$

Moreover $0 \le u \le \psi$ in $B_R \setminus \{0\}$. Applying Lemma 3.5 to φ and ψ we get (iv).

Remark 3.2. – It is interesting to notice that if u is a positive solution of (3.16) with a strong singularity at 0, then $v = \text{Ln } u$ behaves like the explicit radial singular solution of the following first order equation in $\mathbb{R}^N \setminus \{0\}$ ($\alpha > 2$)

$$
(3.56) \t |DU|^2 = U^{\alpha}
$$

that is $U(x) = \gamma(\alpha) |x|^{2/(2-\alpha)}$.

Remark 3.3. $-$ There is an alternative way to prove Theorem 3.2 in the case $\alpha > 2$, it is to obtain Harnack type inequalities as in [23] and to use Lemmas 3.3-3.5 (see [16] for details). Unfortunately such inequalities are out of reach in the case $0 < \alpha \leq 2$ as Lemma 3.2 no longer holds.

REFERENCES

- [1] P. AVILES, On Isolated Singularities in Some Nonlinear Partial Differential Equations, Indiana Univ. Math. J., Vol. 32, 1983, pp. 773-791.
- [2] P. AVILES, Local Behaviour of Solutions of Some Elliptic Equations, Comm. Math. Phys., Vol. 108, 1987, pp. 177-192.
- [3] Ph. BENILAN and H. BREZIS, Nonlinear Problems Related to the Thomas-Fermi Equation (in preparation). See also H. BREZIS, Some Variational Problems of the Thomas-Fermi Type, in Variational Inequalities and Complementary Conditions, R. W. COTTLE, F. GIANESSI and J. L. LIONS Eds., Wiley-Interscience, 1980, pp. 53-73.
- [4] H. BREZIS and E. T. LIEB, Long Range Atomic Potentials in Thomas-Fermi Theory, Comm. Math. Phys., Vol. 65, 1980, pp. 231-246.
- [5] H. BREZIS and P. L. LIONS, A Note on Isolated Singularities for Linear Elliptic Equations, Mathematical Analysis and Applications, Vol. 7A, 1981, pp. 263-266.
- [6] H. BREZIS and L. OSWALD, Singular Solutions for Some Semilinear Elliptic Equations, Arch. Rat. Mech. Anal. (to appear).
- [7] R. H. FOWLER, Further Studies in Emden's and Similar Differential Equations, Quart. J. Math., Vol. 2, 1931, pp. 259-288.
- [8] B. GIDAS and J. SPRUCK, Global and Local Behaviour of Positive Solutions of Nonlinear Elliptic Equations, Comm. Pure Appl. Math., Vol. 34, 1980, pp. 525-598.
- [9] D. GILBARG and N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983.
- [10] M. GUEDDA and L. VERON, Local and Global Properties of Solutions of Quasilinear Elliptic Equations, J. Diff. Equ., Vol. 75, 1988.
- [11] P. L. LIONS, Isolated Singularities in Semilinear Problems, J. Diff. Equ. Vol. 38, 1980, pp. 441-550.
- [12] W. M. NI and J. SERRIN, Nonexistence Theorems for Singular Solutions of Quasilinear Partial Differential Equations, Comm. Pure Applied Math., Vol. 39, 1986, pp. 379-399.
- [13] J. NITSCHE, Über die isoliertien Singularitäten der Lösungen von $\Delta u = e^u$, Math. Z. Bd., Vol. 69, 1957, pp. 316-324.
- [14] R. Osserman, On the Inequality $\Delta u \ge f(u)$, Pacific J. Math., Vol. 7, 1957, pp. 1641-1647.
- [15] Y. RICHARD, Solutions Singulières d'Équations Elliptiques Semi-Linéaires, Ph. D. Thesis, Univ. Tours, 1987.
- [16] Y. RICHARD and L. VERON, Un résultat d'isotropie pour des singularités d'inéquations elliptiques non linéaires, C.R. Acad. Sci. Paris, 304, série I, 1987, pp. 423-426.
- [17] J. SERRIN, Local Behaviour of Solutions of Quasilinear Equations, Acta Math., Vol. 111, 1964, pp. 247-302.
- [18] J. SERRIN, Isolated Singularities of Solutions of Quasilinear Equations, Acta Math., Vol. 113, 1965, pp. 219-240.
- [19] J. L. VAZQUEZ, An a priori Interior Estimate for the Solutions of a Nonlinear Problem Representing Weak Diffusion, Nonlinear Anal., Vol. 5, 1981, pp. 95-103.
- [20] J. L. VAZQUEZ, On a Semilinear Equation in R2 Involving Bounded Measures, Proc. Roy. Soc. Edinburgh, Vol. 95A, 1983, pp. 181-202.
- [21] J. L. VAZQUEZ and L. VERON, Singularities of Elliptic Equations with an Exponential Nonlinearity, Math. Ann., Vol. 269, 1984, pp. 119-135.
- [22] J. L. VAZQUEZ and L. VERON, Isolated Singularities of Some Semilinear Elliptic Equations, *J. Diff. Equ.*, Vol. **60**, 1985, pp. 301-321.
- [23] L. VERON, Singular Solutions of Some Nonlinear Elliptic Equations, Nonlinear Anal., Vol. 5, 1981, pp. 225-242.
- [24] L. VERON, Weak and Strong Singularities of Nonlinear Elliptic Equations, Proc. Symp. Pure Math., Vol. 45, (2), 1986, pp. 477-495.

(Manuscrit reçu le 20 novembre 1987.)