
Periodic bounce trajectories with a low number
of bounce points (*)

V. BENCI

F. GIANNONI

Istituto di Matematiche Applicate,
Universita, 56100 Hsa, Italy

Dipartimento di Matematica,
Università di Tor Vergata, 00173 Roma, Italy

Ann. Inst. Henri Poincaré,

Vol. 6, n° 1, 1989, p. 73-93. Analyse non lineaire

ABSTRACT. - In this paper we study the existence of a periodic trajectory
with prescribed period, which bounces against the boundary of an open
subset of in presence of a potential field. We prove the existence of
periodic solutions with at most N + 1 bounce points.
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RESUME. - Dans ce papier on etudie l’existence d’une trajectoire perio-
dique a periode fixée, qui rejaillit sur le bord d’un sous ensemble ouvert
de R~ dans un champ de potentiel. On demontre qu’il existe des solutions
periodiques avec N + 1 points de rejaillissement au plus.
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74 V. BENCI AND F. GIANNONI

1. INTRODUCTION

Let Q c be an open bounded set with boundary an of class C2.
A bounce trajectory in Q is a piecewise linear path with corners at 

for which the usual low of reflection is satisfied, namely the segments
make equal angles with the tangent plane. A bounce point is a corner
point for our path.
The main result of this paper is the following:

(1.1) THEOREM. - Let Q be as above. Then there exists at least one
periodic nonconstant trajectory in SZ with at most N + 1 bounce points.

(1.2) Remark. - The conclusion of Theorem (1.1) is optimal in the
sense that it is possible to construct a set Q for wich there are not

trajectories with only N bounce points. For N =1 this is obvious. For
N = 2 we refer to [6], [13] for such a controexample.

(1.3) Remark. - The result of Theorem (1.1) is somewhat surprising.
In fact analougous problems exibit a more complicated fenomenology.

For example the Cauchy problem has a solution (in general non unique)
provided that the concept of solution is generalized to include trajectories
which spend some time lying on the boundary (see [7] to [10], [15] and
Remark (2. 14)).
The illumination problem (i. e. existence of bounce trajectories with

prescribed extreme points) may not have any solution even in a generalized
sense (see [16, 18] for controexamples and [11], [14] for some recent results).
We refer also to [12], [14] where the existence of periodic trajectories of

special type has been proved in some particular cases.

Theorem (1.1) can be obtained as a consequence of a more general
result. Perhaps now it is convenient to give a rigorous definition.

Let VEC1(n,IR), VV (x) the gradient of V at x and v (x) the exterior
unit normal to Q in x E 

(1.4) DEFINITION. - A loop y from S 1 to S2 is called a periodic bounce
trajectory with respect to the potential V if 

’

(i) YEC2(Sl) except for at most a finite number of instants tl, ... , tr for
wich y (t~) E aS2;

(ii) every t 1, ... , t j;

(iii) for every t~{t1,...,tl} there exist the limits lim y t (s): = y t (t) and
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75PERIODIC BOUNCE TRAJECTORIES

(iv) the set {t1, ..., is not empty.

The instants tl, ... , tj for wich ( 1. S) and ( 1. 6) hold are called bounce
instants, while the points y (t~) are called bounce points.

Notice that an does not implies that Y (tj) is a bounce point
according to our definition. In fact it may happen that

~ Y + (t)~ ~ (y (t)) ~ = - ~ (t)~ v (y (t)) ~ = o.

Using the above definition we can enunciate the following

( 1. 7) THEOREM. - Let SZ c (~N be an open bounded set with boundary
of class C2 and R). Then there exists (depending of S2 and
~ such that for every T E (o, there exists a T-periodic nonconstant
bounce trajectory (with respect to the potential V~ having at most N + 1
bounce instants.

In particular if V = 0 then To = + oo.

( 1. 8) COROLLARY. - Under the assumptions of Theorem ( 1. 7), for every
T > 0 there exist infinitely many bounce trajectories yl, ..., yk, ... having
at most N + 1 bounce points. Moreover if every yx is not contained in the

set ~ x E ~ : VV (x) = 0 ~, they are all geometrically distinct, i. e.

Im ( Yr) ~ Im ( YS) for every r ~ s.

( 1. 9) Remark. - If the set {x~03A9: VV (x)=0} includes a bounce trajec-
tory y, it may happen that all the have the following form:

i. e. they are not geometrically distinct.
The proof of Theorem ( 1. 7) is based on an approximation scheme

which uses the penalization method. The approximating problem can be
solved as in [2]. A bounce trajectory is obtained as limit of regular solutions
of a Lagrangian system constrained in a potential well. The approximating
problem is studied with variational methods and the number of the bounce
points is related to the Morse index of an approximating trajectory.
However for technical reason it is convenient to use a generalization of
the Conley index (see [3]) and a theorem related to it (see [4] or [5]).

Vol. 6, n’ 1-1989.
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2. THE APPROXIMATION SCHEME

In this section we show how the existence of a bounce trajectory (in a
generalized sense) can be obtained as limit of regular solutions of a

Lagrangian system.
Let n c IRN be an open bounded set with boundary ~03A9 of class C2 and

v the exterior unit normal to Q. Let h E C2 (Q) be a function such that:

(i) h (x) = dist (x, ~03A9) if dist (x,  do;
~ ~ (ii) h (x) > do if 
(2 .1) (iii) h (x) _ 1 for every x e Q;

(iv) I V h(x)  1 for every XEQ, h (x) =1 far from an;

where do is a costant small enough to assure the regularity of dist (x, 
Notice that the function h verifies the following properties:

Let IR+) be defined as follows:

(the term -1 has been added so that U (x) = 0 for any x far from aQ:
this will semplify the notation) and let 
The following proposition shows that a bounce solution can be obtained

by a suitable approximation scheme. The proposition is somewhat more
general of what we need. It uses a "concept" of generalized solution used
in [7] to [ 11 ], and [15] which allows solutions which may spend some time
lying on an.

(2.3) PROPOSITION. - Let T > 0 and £ > o. Let T-

periodic solution of the Lagrangian system:

such that:

( 1) Notice that is a constant of the motion, i. e. the energy of yE.

de l’Institut Henri Poincaré - Analyse non linéaire



77PERIODIC BOUNCE TRAJECTORIES

where K is a real constant independent of E.
Then ~y£ has a subsequence convergent in H 1 SZ) ( 2) to a curve

y E H ! ( S 1, SZ) satisfying the following properties:

(2.6) y is Lipschitz continuous;

there is a positive finite real Borel measure ~, on [o, T] with

such that in

the distributions sense, i. e.

for every v E ( [0, ’T], (l~N) such that v ( 0) = v ( T~ :
y has left and right derivative in every t E [0, T] and

for every tl, t2 E (0, T;

for every t E C ( y); 1

for every t E C (’y).

Proof. - By (2. 4) we have

for every 
Let vE = - V h (y~. By (2. 5) y~ is bounded in L°° because we have

supposed V (x) >_ 0 for every XEn. Moreover by (2.1) (vi)
vE = - h" (y~ y~ is bounded in L°°. Since also  ~V (y~, v£ ~ is bounded in

L °°, by ( 2 . 11) we get that

is bounded independently of E. By (2. 1) (v) >__ 1/2 in a neighbour-
hood of therefore there exists Mo independent of E such that

e) q (U) = q (’I7 ~.

Vol. 6, nC 1-1989.
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Then bounded in LB > hence, > by (2.4), ’Y£ " is
h (’Y~

bounded in L 1.
Since for every 1 p  +00 H 1 ° 1 ( [o, T]; is compactly embedded in

LP, up to a subsequence, there exists such that YE -~ ~y in

H 1 (and uniformly). Obviously y(t)eQ, dt E [o, T], and y is

Lipchitz continuous.

By (2.12), the sequence of positive real functions 2~ converges (up) q g (P

to a subsequence) in Since [L1 (Sl; ~)]* c [C° (Sl; ~)]* (where
[ ]* denotes the dual space) we get that

By well known theorems, ~. is a positive finite Borel measure. Moreover
if t ~ C (y) we have that -~ 0 uniformly in a neighbourhood of t,
therefore supt J.1 c C (y).

Since (2.1) (v) holds, when E tends to 0 by ( 2 .11 ) we get (2.7).
By (2. 7) y’ E BV {3) and (2. 9) holds.
To prove (2.8) we shall need the following property:

(2 . 13) lim E U (YE (t)) = 0 a. e. in [0, T],

up to a subsequence.
Since y~ --~ y’ in L2, up to a subsequence, y~ -+ y’ a. e. in [0, T]. Since

VxeQ, the real number E(yJ defined at (2 . 5) is bounded

indepently of E, therefore there exists w E L °° { [o, T]; IRN) such that

We claim that w (t) = 0 a. e. Indeed

and

(3) Then y has left and right derivative in every teS1 which are left continuous and right
continuous respectively.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Therefore if w (t) ~ 0 on a set E c [0, T] having positive Lebesgue
measure, we have E V U (yE (t)) f -~ + oo, V t e E, hence, by Fatou Lemma,

in contradiction with the boundness of in L1.

By (2.13) and (2. 5)

for almost every tl, t2 E [0, T]. Since the left derivative of y is left continuous
and the right derivative is right continuous we get (2. 8).
By (2 . 8) with tl = t2 we get I y + (t) ~ _ ~ y’ (t) I , ‘d t E [0, T]. Then, since

(2. 9) holds, it must be

for If  y’+ (t), v (y (t)) ~ ~ o it must be

because V t. Then ( 2 . 10) is proved..
(2 . 14) Remark. - For every couple (yo,po) x f~N the Cauchy prob-

lem has at least one solution, i. e. there exists a curve y with initial

conditions

which satisfies (2. 7)-(2. 10).
Proof - It is easy to check that the equation (2 . 4) has always a unique

solution y~ satisfying (2 . 15) for every te R and its energy is

For any T > 0 by (2 . 4) we have

Vol. 6, DC 1-1989.
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for every v E H1 ( [ - T, T]; IRN). Therefore

for every v E H 1 ( [ - T, T]; IRN).
At this point, since y~ is bounded in L°° independently of E, as in the

proof of Proposition (2. 3) we get the conclusion..

3. THE EXISTENCE OF A SOLUTION

OF THE APPROXIMATING PROBLEM

To enunciate the abstract theorem which we use to study the approxim-
ating problem we recall the Palais-Smale condition and the definition of
Morse index.

Let X be a real Hilbert space with norm i I ~ ~ and scalar product ( , )
and let A be an open set in X. If J ~C1 (A, R), J’ will denote its Frechet
derivative which can be identified, by virtue of ( , ) with a function from
A to X.

(3.1) DEFINITION. - We say that J satisfies the Palais-Smale condition
(P.S.) on A if every sequence Yn such that J {Y,~ is bounded and J’ (y,~ -~ 0
has a subsequence which converges to y E A.

(3 . 2) DEFINITION. - Let and YEA such that J’ (y) =0. We
call Morse index of 03B3 the dimension of the space spanned by the eigenvectors
of J" (y) corresponding to the strictly negative eigenvalues.
We denote by m (y) the morse index of y.

( 3 . 3) LEMMA. - Let A be an open subset of the real Hilbert space X.
Let J E C2 (A, R), 0 E A, J (0) _ 0. Assume that:

(J~) if Yn -+ Yo E aA then J -+ - oo;

(J2) J satisfies (P.S.) on A;
(J3) there exists an N-dimensional space EN (N >_ 1) such that:

(ii) there exists p > 0, a > 0 such that c A and
inf J where (~ E~ and E~ _ ~ v E X : ~ v, w ~ = 0 d 
s

Annales d’p l’Institut Henri Poincaré - Analyse non linéaire
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(iii) there exists e E 0 ~ such that the set

is bounded.

Then if (3  + oo is such that

J has a critical point Y (4) such that:

and

The existence of a critical point y such that a  J (y)  [i can be obtained
by a slight variant of the linking theorems (see e. g. [1, 17] and its proof
can be carried out in a similar way.

Indeed if we put J (y) _ - oo because of (J1), (J 3) (i) and (J~)
(iii), there exists R > 0 such that

Moreover S and aQ link (see Proposition (2.2) of [1]), so using (J 1)
and (J2) we are able to prove the existence of a critical point ye A such
that a  J ( y)  (3.
To get the estimate on the Morse index of the critical point y, we use a

generalization of the Morse-Conley index (see [3]). In fact Lemma (3. 3)
can be obtained as a variant of Corollary (3. 19) of [4] (see also [5]).
We refer to the appendix where an idea of the proof is given.
Now we are able to prove the existence of a solution for the approximat-

ing problem using a technique introduced in [2]. Actually here the situation
is simpler because J satisfies (P.S.) on A and J(03B3n) tends to -~ when 03B3n

approaches 9A. By Lemma (3.3) we get also an estimate of the Morse
index of the approximating solution. This estimate will be used to give
the estimate of the bounce points of the solution.

(3. 4) PROPOSITION. - Let Q c IRN be an open bounded set with boundary
an o f class C2, and the function defined
at (2 . 2).

(~) i. e. J’ (Y) = 0.

VoL 6, n~ 1-1989.
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Then there exist To > 0, depending of Q and V, such that for every
T E (0, and E > 0 there exists 03B3~~C2(R, 03A9), T-periodic solution of the
Lagrangian system (2. 4), verifying the following properties:

where E-, E+ 0 ~ do not depend one and the energy E (yj is defined
at (2. 5);

where E (~+B~ 0 ~ do not depend on s, JE E C~ (A, is the functional

and

In order to prove Proposition (3.4) applying Lemma ( 3 . 3), we need
some preliminary notations and results. Let

with inner product

where ( , ~ is the standard inner product in IRN.
Let A be as in the statement of Proposition (3.4), that is

It is easy to check that

for every YEA, for every v E X .
If y&#x26; is a critical point for J (that is d u E X) then y~ is the

restriction to the interval [0, T] of aT-periodic solution of (2. 4).

( 3 . 6) LEMMA. - Let c A be a sequence converging to y weakly in
Hl. Assume that Then

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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proof - Since yeaA, there exists such that 

Obviously we can suppose to = 0. We have

Since (2 . 1) (iv) holds and for some C>O, we have

Since y~ converges to y weakly in H1, y~ converges to y also in L°°. In
particular ~y~ (0) --~ y (0) E Then h (0)) --> 0. Let bn = h (y~ (0)). We have

Then

hence

Since b,~ -~ 0 we get the thesis..

( 3 . 7) LEMMA. - Let c A be a sequence such that JE is bounded

from above and J£ (y~j -~ 0.
Then there exists a subsequence Y Ilk -+ ~y EA. In particular J£ satisfies (P.S.)

on A.

Proof. - Since for every xo E ~S2

and Q is bounded for every b > 0 there exists such that

for every x E Q.

Since J’ ( Y~ --~ 0 we have

VoL 6, n° 1-1989.
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for every veX, where all -~ 0.
Because of (2.1) (vi) then by (3.8), (3.9), ( 2 .1 ) (vi) and

( 2 . ~ ) (iv) we get

Then there exists Mi independent of n such that

Since J (~y,~ is bounded from above there exists M2 independent of n
such that 

’

Then if 4 ho S = 1/2 we have

where M is a constant independent of n.
T

Now J(03B3n) is bounded from above, therefore by (3 . 10) |03B3’n|2 dt is

bounded. Then, up to a subsequence, yn is weakly convergent in H1 (and
strongly in L°°) to 03B3~X such that for every 
By ( 3 .10) and Lemma ( 3 . 6) y (t) E SZ, d t E [0, T].
At this point by standard argument we can easily prove that the

subsequence y~ is strongly convergent in H~ to y E A. 1
Proof of Proposition (3 . 4). - By Lemma ( 3 . 6) and Lemma ( 3 . 7) J£

satisfies (Ji) and (J~).
Obviously we can suppose O e Q. Let us pose

is constant},

Annales de l’Institut Henri Poincare - Analyse non linéaire
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and

where p > o.
Since DEn we can suppose that there exists Po>O such that the function

h defined at (2. 1) is equal to 1 for every x such that x ~ _ po. Then we
have

Moreover, since V (x) >_ 0 for every 

Now we choose

If y E E~ we have

for every t E [0, T], therefore

and

Let p =1 and S=Si. Since by (3.11) and (3.12) we have

Then for every y E S

Since T  T ° - _ 
1 4 (sup V (x))

, we have 1 - 2 T sup V > 1, 4 hence

VoL 6, n" 1-1989.
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so we get

Let e e RN with I e I =1 and

If 03B3~QA

where y Therefore

Then Q~ is bounded in X and

for every 
Then by Lemma ( 3 . 3) JE has a critical point y~ ( 5) such that

and

Since V(x»O, U (x) > 0, by (3.16) we have

hence by ( 3 .14), (iii) of Proposition (3.4) follows.

(s) Which is the restriction to [0, Tj of a T-periodic solution of class C2 of (2. 4).

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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It remains to prove the estimate for E(yJ. Since E(yJ is a constant of
the motion

Since and U (x) _>_ 0 by (3.16) and (3.18) we get

Moreover, as in the proof of Lemma (3. 7) we get that e U(03B3~) dt is
bounded from above by a constant M independent of s. Then Proposition

(3.4) holds with and E+ + - ~ ( ) 
T T T

4. PROOF OF THE MAIN RESULT

Now we want to find a bounce trajectory with at most N + 1 bounce
points (where N is the dimension of the space), using the approximation
scheme introduced in section 2 and Lemma (3. 3).
To prove Theorem (1.7) obviously we can suppose V (x) >_ 0 Vxefl
For every e>0 let y~ be the curve found in Proposition (3 . 4). By

Proposition ( 2 . 3), up to a subsequence, y~ is convergent in to a

curve y: [0, T] ~ D which verifies (2. 6), (2. 7), (2. 8), (2. 9) and (2.10) and
which is the restriction to [0, T] of a T-periodic curve.
By (ii) of Proposition (3.4) y is not constant (because V and U are

positive on Q).
To prove that y has at most N + 1 bounce points it is useful to introduce

the following notions of "nonregular point for y".

(4.1) DEFINITION. - Let y as above. We say that t E [0, TJ is a "nonregu-
[ar instant for y" if there exists 6 > 0 such that for every 6 E (0, b) the weak
equation

VoL 6, n° 1-1989.
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is not verified.
We call "nonregular points for y" the points y (t) E on such that t is a

nonregular instants for y.

(4.3) Remark. - Notice that if we prove that y has at most N + 1

nonregular instants, by Proposition (2.3) we get that they are bounce
instants i. e. y verifies (i), (ii) and (iii) of Definition ( 1. 4), with 11 _ N + 1.
To prove Theorem (1.7) we need also the following Lemmas.

(4. 4) LEMMA. - Let t be a nonregular instant for y and Is = [t - b, t + b]
Then

Proof - Since y~ satisfies ( 2 . 4) and U (x) is defined by ( 2 . 2) we have

f or every 

If, up to a subsequence, lim o E going to the limit in s

we get

for every 1~ e H~ ~), which contradicts the hypothesis..

(4.5) LEMMA. 2014 Let B = { x e Q: dist (x, ~03A9)  r0} where r0 is such that

’ ) . implies V~(x)~~ (~).

--j J/’ y e ~03A9 then there exist ~0 > 0 and 60 > 0 such that:

Proof. - Let Eo be such that

dist (Y~ ( to), Y ~to)) ~ V E  Eo.

(~) Notice that ro exists because of (2. 1) (iv).

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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By (i) of Proposition ( 3 . 4) 1 y’ 2 _ E +, then it suffices

to choose 03B40=(r0 4 E+).
Proof of Theorem (1.7). - Assume, by contradiction, that there exists

N+2 bounce instants for y, tl  t2  ...  tN+2 E [o, T].
For every j let S~ be as in Lemma (4. 5) and such that (4.2) is not

verified for every 5  S~ with t = t~..
Let ... , ~N + 2 ~ such that we have t~ + 1- t J > 2 b

for every j=1, ... , N + 1, and T+t1-tN+2>203B4.

Let Ij=[tj-03B4, tj+03B4] and I’.= t-- S, t-+ S with 03B4~(0, b

Moreover for every j let ~j be as in Lemma (4.5),
..., EN + 2 ~ and 

For every j=1, ..., N + 2 let ([0, ’T], [o,1]) such that

Let We have

Since | y£ I2 dt is bounded from above by a constant independent of

~, by (2 . 1) (vi) also |v’~j|2 dt is. Under our hypotheses 

therefore Jo  V" (y~ v£~, v£~ ~ dt is bounded independently of E. By (2 . 1)

(vi) and ( 2 . 12 ) also 2 s T ~ h" bounded by a constant
o ~ (Ye)

independent of 8. Moreover we have

Vol. 6, nv 1-1989.
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Now by Lemma (3.6) and Holder inequality

therefore, is a nonregular point for y, by Lemma (4 . 4)

Let E be such for every and for every

j= l, ..., N+2.
Since the curves v~; have mutually disjoint supports the bilinear form

~ J£’ (yj v, v ~ is negative in the linear subspace of X generated by them,
which has dimension at least N + 2. Consequently has at least N + 2

strictly negative eigenvalues, hence

and this contradicts (iv) of Proposition (3. 4). Then y has at most N+ 1
nonregular points.

Because of Remark (4.3) it remains to prove that y has at least a

bounce point. By contradiction if y has not bounce points, y E C2 (S~, S~)
and

Then ( y" + V V (y), y ~ = 0, V t E [0, T] and since y is T-periodic

and this constradicts (iii) of Proposition (3.4).
= Theorem ( 1. 7) is so completely proved..
- 

-- Proof of Corollary (1. 8). - Let T > o. By Theorem ( 1. 7) there exists
_ ~ 1 > 0 such that there exists a T/m 1-periodic nonconstant bounce trajectory

_ ~r~ with at most N + 1 bounce instants. Obviously yl is T-periodic and has
at most N + 1 bounce points. Let >__ m 1) its minimal period.

- Always by Theorem (1.7) there exists such that there exists a
. T/m2-periodic nonconstant bounce trajectory y2 with at most N + 1 bounce

Annales de l’Irtstitut Henri Poincaré - Analyse non linéaire
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instants. Let T/k2 its minimal period. Since we have

i. e. the minimal periods of yl and y2 are different.
In such a way we can found a sequence of nonconstant T-periodic

bounce trajectories with at most N + 1 bounce points having different
minimal periods.

In order to prove the last statement notice that if for instance y~ and y~
are not geometrically different there exist ki, such that

Then for every t different from the bounce instants we
have

therefore does not includes linear paths Y1 and y~
must be geometrically different..

~ 

APPENDIX

Sketch of the proof of Lemma (3. 3)

To give an idea of the proof of Lemma (3. 3) we can suppose, as in [5],
Th. 7. 1, that a and [i are not critical level for J. We put

and

Essentially we must prove that

i (J~) _ ~ dim H (J~, I~) t" = tN + 1 + other possibly therms,~ 

( see [3, 4, 5]).
Then it suffices to prove that HN + 1 (J~, I~) ~ 0.
Now we put

Since XBA c int (0°‘), by the excision property we have

Vol. 6, n’ 1-1989.
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Let

where R is so large that

It is known (see e. g. [4] or [5]) that (~) ~ 0 and is a

generator, hence the map

is different from 0.

Since the diagram

is commutative, [aQ] is a generator in HN R).
Let us consider the exact sequence

Now aQ is homotopic to a point in Q and therefore also in 0~. Then we
have

Since it must be (~~, ~°‘, 0~) ~ 0. N
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