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ABSTRACT. — We consider a special case of the Jin—Xin relaxation systems
ur + vy =0, v,+A2ux:(F(u)—v)/8. (*)

We assume that the integral curves of the eigenveet@®&D F (1) are straight lines.

In this setting we prove that for every initial datav with sufficiently small total variation
the solution(u?, v®) of (%) is well defined for alk > 0, and its total variation satisfies a uniform
bound, independent af . Moreover, as tends to G, the solutions(u?, v¥) converge to a
unique limit (u(7), v(t)): u(t) is the unique entropic solution of the corresponding hyperbolic
systemu; + F(u), =0and v(¢,x)= F(u(t,x)) forallt > 0, a.ex € R.

The proofs rely on the introduction of a new functional for the solutionanfcorresponding
to the Glimm interaction potential for the approaching waves of different families.
© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

AMS classification35L65
RESUME. — Nous considérons un cas special des systémes de relaxation
ur + vy =0, v,+A2ux:(F(u)—v)/8. (*)

Nous supposons que les courbes intégrales des vecteurs proped3F (1) sont des droites.

Sous ces hypothéses, nous prouvons que pour chaques donnéesinitiaesc une variation
totale suffisamment petite la solutiqn®, v®) de (%) est bien définie pour tout > 0, et sa
variation totale satisfait une borne uniforme, indépendantedéde plus, quand tend vers 0,
les solutiongu®, v¥) convergent vers une unique limite(r), v(¢)) : u(¢) est 'unique solution
entropique du systéme hyperbolique correspondamt F (1), = 0 etv(r, x) = F(u(t, x)) pour
toutr > 0, p.p.x € R. Les preuves sont basées sur I'introduction d’'une nouvelle fonctionnelle
pour les solutions déx), correspondant au potential d’interaction de Glimm pour les vagues
approchantes des différentes familles.
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1. Introduction

Consider the following: x n hyperbolic system of conservation laws
u,+Fu),=0, (x,1)eRxR" ueR", (1.1

where F is a smooth vector valued function. In [8], S. Jin and Z. Xin proposed to
approximate (1.1) by the relaxation system

{u,+vx:O,

(1.2)
v + Auy, = (F(u) —v)/e,

whereu, v € R" and A =diag(A?, ..., A2) is an x n diagonal matrix. A tends to zero,
at least at a formal level one obtains the equations [8]

v=F(u), u, + F(u), =0.

The above problem is closely related to the convergence of the vanishing viscosity
limit
u; + F(u), —eu, =0.

In fact, for smalle, applying the Chapman—Enskog expansion in the relaxation system
(1.2), we obtain the following approximation

u+ F), =e((A = (Aw) )

where A(u) is the Jacobian matrix of the flux functiofi. This relation shows that a
necessary stability condition i$ — (A(x))? > 0. For a survey of hyperbolic relaxation
problems see [11].

In this paper we consider a simplified version of the system (1.2). More precisely we
assumed = A%I, wherel is then x n identity matrix, x is a sufficiently big constant,
and F (u) is a vector valued function such that its Jacobian matrix is strictly hyperbolic
in an open sef2 € R". Up to a rescaling of the space variablewe can assume that
A =1 and that all the eigenvalues df) lie in the interval(—1, 1), so that the above
stability condition is satisfied.

The proof of well-posedness for the system (1.2) is similar to [1,6]: the main step is
to obtain a uniform estimate on the total variation of the solutiarv), independent of
E.

Performing the rescaling— /¢, x — x/¢, the relaxation system (1.2) becomes

{ut—l-vx:O,

v, +u,=F(u)—v. (1.2)

We denote with—1 < Ay () < --- < A,(u) < 1 the eigenvalues of the matrik(u), and
calll*, ..., 1", r1,...,r, its eigenvectors normalized so that

Iri(w)| =1, (I'(u),rjw)) = 8. (1.3)
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Here (-, -) is the duality product ifR" andé;; is the Kronecker symbol. The directional
derivative of a functionp = ¢ (1) in the direction of the eigenvecter will be written as

¢ (u+hri(u) — ¢ ()
P :

ri e ¢ ) = lim

By definingz™ =u +v, z~ =u — v, we can rewrite (1.2 as

- +

Z Z
3 — 2 :_F(M)—?'i‘?,

S (1.4)
Z,++Z;—=F(M)+——?-

We now decompose the gradientsalong the eigenvectors, settingz= = 3" f/*r; ().
From (1.4) we deduce

+ == ==
2y =Zf," T +Zf" Uy or;
j j

, , k+ _ rk—
o5 - (S e,
J

J.k
) ) fk++fk—
=X i S (g e,
J jik

so that the equations satisfied by the compongfitsare

- 14w . =) . N
fim = fim = O i 2THW i e £,
(15)
o T+ n@) . 1= . |
gm0 e 22 e ) £

Observe that (1.5) consistsmobystems of Z 2 balance laws, coupled through the terms
(I',re or;) f7% £5F. As in [1], these terms can be classified as:

— transversal termsi’, ri o ;) f/E f4F, jk=1,....n, j #k;

— non transversal termg?, r; e r;) fIE fIF, j=1,...,n.

In this paper we assume thate ;, =0 for alli =1, ..., n, i.e. the integral curves of
the eigenvector, are straight lines: this implies that in (1.5) only transversal terms are
present. Since the system (1.4) is semilinear, solutions initially smooth remain smoott
for all times. Uniform BV bounds op* can thus be obtained from! estimates on the
gradient componentg’®. As in [1,6], towards these estimates the main task is to prove
that theL! norm of the coupling terms over the half plaiex) ¢ R* x R is bounded
and of quadratic order.

The main novelty of this paper is the introduction of a Glimm-type interaction
potential Q(z~, z™) for the system (1.4). As in [6], one can interpret a solution of the
2 x 2 system (1.5) as the density of random particles, whose average speed i he
potential @ then represents the expected number of future crossings between particle
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with different speeds. Following this interpretatidd provides us the counterpart of the
Glimm interaction potential measuring the sum of all approaching waves of different
characteristic families [3]. Differently form the hyperbolic case, however, in our system
each wave is approaching the others, because of the diffusive behavior’'pf§itats
strength is weighted by an exponentially decreasing function, measuring the probability
of interaction when the particles start at different places.

Our main results are as follows. We first consider the Cauchy problem for the systen
(1.2). We assume that the Jacobian mattix) = D F (u), is a smoothuniformly strictly
hyperbolicfunction with values inR"” x R”, i.e. it hasn real distinct eigenvalues;
such thatiy(uq) < -+ < A, (uy,) for all uq, ..., u, € 2. By I', r; we denote its left and
right eigenvectors normalized as in (1.3). For a BV functionR — $2 we denote with
Tot.Var.(w) the sum of the total variation of its components along the eigenvegtors

TotVar.(w) =~ TotVar. ((I, wy)), (1.6)

and we writew(—o0) = lim,_, _, w(x). Given two BV functionsw;, wo:R — 2, we
define the functional) (w1, wy) as

V(wq, wp) = Tot.Var.(wq) + Tot.Var.(w,). .7

Our first theorem is concerned with the existence of a global BV solution for (1.4).

THEOREM 1. —For every compact seK C §£2 and constantM > O there exist
constantsdo, Co, a closed domainD C L% (R;R?") and a continuous semigroup
S:D x [0, +00) — D with the following properties

(i) the domairD has the form

D=cl{(z,z") € Wid R; R?): (z~ +z7)(—00) € K,
lz7(=00)], [T (—o0) | < M, V(z7,z") + CoQ(z 7, z") <80}, (1.8)
where the closure is taken with respect to fiienornt
(i) for every initial data

(z7(0,x),z27(0,x)) = (zg (x), 2§ (x)) € D, (1.9)

there exists a unigue globally defined solution(ic4)—(1.9), corresponding to
the semigroup trajectory — (z=(¢), z7(1)) = S,(z0 > 23);

(iii) there exist constantd., L’ such that for every pair of initial datdzy, z¢),
(Zg.23) € D, and for every, ¢ > 0 one has

18:(zg 5 2¢) — Ss(Zg - 2| ;2 S L't — 51+ L| (2. 2¢) — Zg. 28)]] ;2 (1.10)

We remark that the domain (1.8) depends only on the total variation of the initial data
(zg»28), and is invariant with respect to to the hyperbolic rescaling 7, x — ¢x. The
above result thus yields an a priori bound on the total variation of soluticiis), v®(¢))
of (1.2), independent of the parameter
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Our second main result shows thatgas 0+, these solutiongu® (¢), v (r)) converge
to a unique limit(u(¢), v(r)), depending continuously on the initial daté0).

THEOREM 2. —In the same setting of Theorelnthere exist constants, L, §’ > 0,
a closed domairD’ C Ll and a continuous semigrou: D’ x [0, oo[ = D’ with the
following properties
(i) the domairD’ has the form

D' =cl{uce L%C(R; R™): u(—o00) € K, u piecewise constant
V) +C'Qu) <8}, (1.11)

for some constanC’, where V(u) and Q(u) are the total amount of waves
and the Glimm interaction potential measuring the sum of approaching waves
of different characteristic familief3];

(ii) for everyi, w e D' withi — w € L* and every, s > 0 one has

ISt — Sywll2 < L't —s|+ Ll — wllpas (1.12)

(iii) for every piecewise constant initial daiae D’, there existg > 0 such that the
following holds. For every: € 7', the trajectoryt — u(z, -) = S;i is the unique
entropic solution of the Cauchy probleth.1) in the sense d#];

(iv) for everyu € D, the trajectoryu(t, -) = S,i is the unique limit inL{ . of the
corresponding solutions:® (¢, -) of the relaxation Cauchy problenil.2), as
¢ — 04, with initial data

u(0,x)=i(x)eD, (z7(0,x),z%(0,x)) € D. (1.13)

Moreover, for every > 0, v(z, x) = F(u(t, x)) fora.e.x eR .

The proofs of the two above theorems are worked out in Sections 2—4. We shall firs
assume that the initial data are sufficiently regular. The general case then follows b
approximation.

In Section 2 we start by considering two linearx22 relaxation system. After
proving some easy lemmas, we compute the integral of the tensor product of the tw
solutions. Two components of this integral have a simple probabilistic interpretation:
they measure the expected number of times where one random particle overtakes tt
other. This computation, differently from [1,6], is carried out using complex analysis
and the calculus of residues. Finally we give a simple probabilistic interpretation of the
results.

In Section 3, we introduce the Glimm-type potential. We show that this potential
controls the growth in total variation of the solution of (1.4), (1.9). This proves the first
two statements in Theorem 1. Next, we study the linearized equations (1.4) along
solution(z~ (1), z*(¢)). As in [1,6], we show that these equations are of the same kind of
(1.5), and thus we can again evaluate the increment of.theorm of the perturbation
using the potential. This concludes the proof of Theorem 1.

In Section 4 we address the question of convergence of the solutior-a3, proving
Theorem 2. The main arguments are as in [6].
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2. Estimate of transversal terms in the linear case

Aim of this section is to prove some easy properties of the solution of 2 8ystem
of balance laws. These remarks are essentially the same as in [6]. Then we consid
two solutions of two distinct % 2 linear systems, with strictly different average speeds,
and we explicit compute the integral of their product over the half phex R. The
computation is performed using the calculus of residues [2].

Consider a % 2 system of balance laws of the form

fr—fi=—alt. ) f"+ B0 fT, 2.1)
[+ fi=at,x)f~ =B, 0)f, '

with 0 < a(z, x), B(t,x) < 1, a(t, x) + B(z, x) = 1. This system can be interpreted as
the motion of a random particle with spegd.. If the initial datum( f;", f5") is positive,
it remains positive for alt > 0. Moreover it is easy to show that

{If‘lz—If‘lxé—a(t,X)lf‘lJrﬁ(t,X)lfﬂ, 2.2)
L+ 1Tl <at, o)l f~] =B )|,
and therefore

d /. N

E/Of (t, %)+ [T, x)]) dx <O. (2.2)

R

The above relation implies that tie norm of the solution is not increasing in time, and
it will be useful in the next sections.

A particular but fundamental case is when the functi@ng are constant: in this case
(2.1) becomes

ft__fx_=_1+af_+1_af+’
2 2 /
N . 1+a . 1l-—a (2.1)
f[ +fx - 2 f - 2 f ’

wherea = o — 8, @ € (—1, 1). With the above probabilistic interpretation, we can say
thata is the time average of0, +o00) of the speed of a particle whose density at the
point (¢, x) is given by f~(z, x) + f (¢, x) (see [11]).

It is well known that the solution of (2')L.can be explicitly computed using the Fourier
transform: if we write the vectoff —, f*) for any fixedr > 0 as

[f(t,x)] L1 c . )
+ = —— [ C(r)exp{—iéx}dE, c:(t) €RY,
f (t’x) an/
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the substitution of the above formula in (9.3ives the equations for the Fourier
components(r):

1+a . l1-a
. o i 2 .
C: = 1+a _1_a+i$ C: = A(a; £)C:. (2.3)
2 2
We shall denote with
s@e.  n@o=|"@9].

I'a; ) = [I" (a; &), ' (a;6)], i=12 (2.4)
respectively theéth-eigenvalue and thi¢h right and left eigenvectors of the matii(u),
normalized so that

riotrie=1 (@ &),r@é)=lr +lr=1 (2.5)

It is easy to prove that, fof € R\ {0}, one has—1 < Re&(o) < 0 and ag(a; 0) = —1,
o2(a, 0) = 0. The non-positivity of these eigenvalues reflects the fact thaL theorm
of a solution is non-increasing.

Finally, if fo(ég) is the Fourier transform of the initial datugf(0, x), the solution to
(2.1) can be written as

fi(t’x) 1 ' 1 r .
+ = —= [ ('@ &), fo(§))r1(a; §) exp{—i&x + ou(a; &)t}

+ (12(@; §), fo(®))rala; &) exp{—ifx + oa(a; )} . (26)

It will be convenient to study as a multivalued function on the whole complex plane,
defined by the equation

deflol — A(a, &) =0’ +0 —ifa+£2=0, (2.7)
In this case the branch points are

«/1—a2+.a
L=,
2 2

§x(a) ==

and the picture in the complex plane is given in Fig. 1, with O.
The eigenvalues can be written as

1 0_4+6
ol<a;s>=—5+i¢|s—s||s—s+|exp{ Z*}

(2.8)

1 6_+40
o2(a:§) =~ —iV/IE—E TE ] exp{ : +},
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Fig. 1. The two branches of the solution of (2.7), given by (2.8).

where now the square root is considered as a function fkonto R*. Note that, by
(2.5), the eigenvectors are rational functions of the eigenvalues, and therefore they ha
the same branch points.

Consider now two systems of the form (3.With a’ # a. We want to compute the
(tensor) transversal integral

/]

where we denote withf¥)'(¢, x) € R? the solution of a second system, withieplaced
by some different value’. The tensor product in (2.9) is defined as

“;]@ (f)/]i A f(f*)’].

0] o [
£, x)] {(fﬂ’(t,x)]d”” (2.9)

oy U Uy

For the sake of definiteness in the following we assumea’ > 0, the other cases can
be handled similarly, and we will denote all quantities referring to this second system by
a prime.
If we assume that the initial dat&(0, x) = fo(x), £/(0,x) = f(x) are inL3(R; R?),
we can rewrite the integral (2.9) using the Fourier transform as theTimit +oco of
T

v

0

~(t, x)}
fr, x)

(Y (%)
(f*)/(t,x)] dedr

—/ds S 6@ 6 @6, s>/dtexp{ 0i(a; &) + 0@’ )1}

i,j=1
- expl(oi(a; &) +oi(a’; =§)T} -1
=/d i (a; Ci(a’; — ’ , (210
Hzgi;lc(a 5@~ oi(a;§) +oja’; —§) (210

where the coefficients; (a; £), €. (a’; &) are inL?(R; C?).
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Fig. 2.

Instead of computing the above integral for any initial d&af;, by the linearity of
the systems we only need to compute (2.10)fir) = v (x), f3(x) = V'8(x —xp), with
v = [v1, v2] € R?, V' = [v], v5] € R2. In this case, by the above analysis and (2.5), the
Fourier coefficientg, ¢’ are multivalued holomorphic functions on the complex plane.
However one should consider the principal value of the integral (2.10), i.e. we suppose
move the integral path afie at oo, and then we let go to zero. The choice of the sign
will depend on the sign afy: this assures the exponential decayati.e. the existence
of the integral (2.10). The path of integration in the complex plane is represented in
Fig. 2.

To pass to the limit in (2.10), we consider the regi@nc C in which Reo;(a; &) +
crjf(a’; —£)) <0,Vi, j =1, 2: it can be shown that this region is shaped as in Fig. 3,
where

> 0. (2.11)

Fig. 3.
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Since Oe £2, in order to compute the limit of (2.10) & — +o00, we need to change
the path of integration. Noting that the Fourier coefficientsfgfcan be written as
c(a’; £)€%¥, it follows

. f(@,x) (f7)(t,x)
Tle//{f+(f X)} {(f+)/(t’x)] ea
C'(d'%)@d(a/' _S) —iExg
=PV /ZJ,(a &) toi(a;—£) *

Cla; &) ®C(a’; —§) . |
V/U(a £)+o'(a; —g) ds = pV/h(Xo,S)dé‘.

v 7 (2.12)

Herey is the path in the complex plane depicted in Fig. 3, whilis the pathy repeated
on the Riemann surface made of 4 copies of the complex plane connected by the tw
cuts, as in Fig. 4.

At this point we need to consider 2 cases separately, corresponding to the sign of

Case 1. We supposeg < 0, i.e. the particle with average speeds on the right of
the particle with average speed In this case the integral (2.12) is computed as

pv/h(xo, ) de = lim /h(xo, £)dt = Regh: §)+Z/h(xo, 5de,  (2.13)

y+zs

wherey;,i =1,...,4,is one of the 4 paths winding twice a branch point (Fig. 5).
Note that in the neighborhood of any poit the variable(o + 1/2)? can be used to
perform the integral along the correspondingWith this substitution we have

/ h(xo; ) dE = /h(xo; )8 (0 +1/22)2(0 +1/2) d(o +1/2).
Yi n

wheren is a circumference centered at the origin with sufficiently small radius. A simple
analysis now shows that the functiéixg; £)(o + 1/2) is bounded in the neighborhood

of the corresponding branch point, so that the above integrals are equal to O for al
i=1,...,4. Therefore by calculus of residues (2.13) becomes

p.v. / h(xo: ) d = Regh; £)

Vo1 ( l+a n l-a >< 1+4d o 1-4d ,)
= v v v v
a—a\2+a+a * 2—a—a )\24a+a ' 2—a—-a ?

1[2-a—a)? 4—(a+a)? 2(a—d)
Z |:4_ (a +a/)2 (2+Cl +a/)2] eXp{—mXO}. (214)

Case 2. Inthis casexp > 0, so that the path of integratighis moved in the lower
half of the complex plane for large A computation similar to the one above gives
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e |
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y // @/\dj
£ / < 7
O
3 / <,

Fig. 4. The path of integration projected on the complex plane and on the Riemann surface.

+

~

+

p.V./h(xo; £)ds = Regh; 0)

! l-a)l-da) (1-a)(l+a)
= (v1+v2)(v1+vz) A+a)1l-a) A+a)d+a)

Note that in both cases the denominator contains the difference in the average spe
of the two particles: this correspond exactly to the computation made in [1].

If now we denote withP; ;i (xo) the 4x 4 tensor whose action on® V' is defined at
(2.14) and (2.15), then it is clear that for &, f; > 0 L we have

(2.15)

(//f(t x)® f(t, x)dxdt) | // Z Pijia(x = ) (o)), (f5(»)), dx dy.

B R k=12

The last part of this section is devoted to some probabilistic computations which
explain and simplify the results (2.14)—(2.15).
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N &

Following [6], we define

L (1-a)1+ad)

= (2.16)
4(a —a’) 4(a —a’)
We observe that the quantitieg¥@and 2E yield the expected number of times where
the slow particle, starting in front of the fast particle, overtakes or is overtaken by
the fast particle, respectively: in fact in each collision the difference in speed is 2, sc
that each collision contributes to the integral (2.9) by an amount/®f The relation
2E, + 1= 2E; stems from the fact that the fast particle eventually overtakes the slow
particle with probability 1.

We note that, in (2.15), the only coefficient depending of the initial data has the form
(v1 + v2) (v} + v5) and that (2.15) does not depend.enthis follows from the fact that
the fast particle, starting behind the slow particle, must collide with the slow one, no
matter which is the position and the initial speed. We can thus rewrite (2.15) as

RﬂMQZM+”WHw9bi€ﬂ' (2.18)
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To interpret (2.14), we first compute the probability distribution of the first tixhe
where a particle, starting with speed. at: = 0 and satisfying (2}, changes speed to
+1. The patrtition function is easily computed to be

0, t <0,
P(Xét):{l_exp{_l—l—Tat}’ 1>0. (2.17)

Now consider two particles, with average speedmda’, both starting with speed 1
atr =0. If X andY denotes the first time in which they change speed, the probability
densityp(-)of Z=X —Y is

1+a 14+4d 1+4d
exp — z¢, z<0,
b(2) = 2+a+a 2 2
o 1+4d 1+aexp{ 1+a } -0
24a+a 2 2 f T
so that we define
1+a 1+4d
e Rl e 2.18
p 24+a+a p- 24+a+a p ( )

as the probabilities that the first particle changes speed before the second one or vit
versa. In the case where the particles start with sgeledvith very similar computations
one finds

l—a o 1-d

pL= =1-p.. (2.19)

P+= 2—a—a

2—a—a’
Note thatp, < p_, p’ < p/,.
Using (2.18) and (2.19) and assuming= 0, we can write the right hand side of

(2.14) as

Regh; xi) = <v1+p—+v2> (p—/_v’l—i-v’z) { El] , (2.14)
P A E, .-
where we use the relation
E !/
S0 Peb (2.20)
Eq P-py

We now explain the element of the matrix corresponding to the collisions in which the
slow particle overtakes the fast. Using (2.20) we have

Eq (vl + p—+v2> (p—/_v’l + v’z)
P Py

= E0<p—v1 + Uz) (U:/L + p—fv’z)
P+ 4

= [E1p’ + Eop-Jviv] + E1v1vy + Eouav) + [Eoply + E1p4]vavs.
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124 =E
01 1/2+4E =E
01 s

s F 1/24E =E s E F
. e 0
0
s
F
P, P,

Fig. 6. Possible collisions depending on the initial speeds of the particles.

Each coefficient is the probability that one of the particles changes speed multiplied by
the expected number of collisions computed using (2.1%e various possible cases
are illustrated in Fig. 6.

With a very similar analysis, one obtains

Eq (vl + p—+v2> (p—/v’l + v’z)
P Py

= [E1p_ + Eop-lviv) + E1v1vy + Eouavy + [Eoply + E1p]vavs.
Moreover we have the relations:

2Ey = ?L*/’ 2, = #’
DP-Dy — P+P- P-Py — P+P-
. 2a—a) ,
o= m =p-pi —p+p., (2.21)

wherec is the decay exponent in (2.14).

3. Proof of Theorem 1

In this section we prove the first theorem stated in the introduction. The main tool is
the introduction of a Glimm type interaction potential which gives a bound on the growth
of the total variation of the solution to (1.4). Before proving the result in the general case,
we consider the case in which we have two equations of the form) (&ith constants
a andd’, a # a’, and we want to bound the instantaneous interaction,

/ PO LX) + fH )Y @) d.
R

We first recall the basic quantities obtained in the previous sectioh; A’ are the
collision matrices in the right hand side of (2,land A is the hyperbolic matrix of the
principal part, i.e.
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- 14a 1—a 1+d 1-4d
. 2 2 - 2 2
A= 1+a l1—a |’ A= 1+da 1-d |’
-2 2 2 2
.[-1 0
A= 0 1 (3.1)

then the exponent of decayand the corresponding eigenvaluere defined as

. 2(a—ad) . (@a—d)a+ad)
“Ta—at+ar T G—@ta)® (3:2)

The above definitions implies that the projectors

lo=1[1,1], lo=1[1,1],
h=[p_.ps). L=[p..p]. (3.3)

satisfy the following relations:

loA =0, LA =0,
WA -0l —aA)=0, I1(A"+o0l4+aA)=0. (3.4)

We recall that the quantities_, p., p’, p/. are defined in (2.18), (2.19):

1+a
_=——, p.=1-p_ and
P-= o fatra P P
l1—a
= - =1—p,. 3.5
P+=EG——— Py P+ (3.5

Remark 3.1. — One can define the quantitieso, and the projectors (3.3) using (3.4).
It is clear that the results are exactly the same. However the computation performed il
Section 2 can be useful to study the transversal terms in other situation, for example i
connection with discrete numerical schemes.

Define the interaction potenti@( f, /) as

of. 1=/ S (Prau(x — ) + Posax — ) (o), (f3)), ce dly

g2 ki=1

- / / (Eo+ Ev)(lo, £(t,0)){lh. (1, y)) dx dy

x<y

//(p+p_ D p+)<ll,f(f )1, f(t,y))e**V de dy. (3.6)

For a fixed timer, this quantity gives precisely the future expected number of mutual
crossings of the two particles. One thus expects that its time derivative coincides with
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—{/f_(t, X)), %)+ fHx)(f7) (2, x) dX},
R

i.e. the instantaneous crossings at time
Differentiating Q with respect ta one has

d
Q(f 9 // Eo+ E1)(lo, f(t,0))(Ip, f(t, y)) dx dy

x<y

+ [ (Bo+ Ex) o, £6.0) U it )y

X<)
—a(x )
Gt ot
—a(x—y)
+//(p+p_ _ ><ll Fe )0, £t y))e Y dx dy
=L+ L+ L+ 14 (37)

The above integrals will be studied separately. Using Y2dd (3.1)—(3.5), one finds

h=(Eo+ E) [(/700 = £ @) ((F) () + (7 (10)

R

I = (Eo+ E3) /(f*(t, X+ L) (=) () + (F5) (1)) dr

R

E E
13=( s l/>/k_Pf(LX)+p+fth»
pP+p—  p-pPy 2

x (p(f)(, x> LY (1) de
E
+( 0 )// (. £t 0N 10, y))e S dx dy,

pP+pL P py

E E
I4=( O/ + l/ )/(pf‘(t,x)+p+f+(l,x))
p+p_  P-DPy &

< (P, x) LY ()
)// (I, £ ) (L (2, 3)e ) d dy,

(s
p+pL P P

Summing up all integrals, from (3.7) we obtains

do()
dr

=h+ DL+ 13+ 14

= (Eo+Eq) [ (2f(f+)’—2f+(f>’>dx+( oy 2 )

J p+p.  p-pl
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X /(—2p—p;f*(f+)/ +2pp (7)) dx
R

=2(Eo+ Ey— EgPPe _ El) £y
P+P

+ 2<—Eo —E1++Eo+ Eo§,§+)f+(f)/

+P-

== [0 @0+ 00 0 (3.8)
R
because of the relation (2.20). Using again (2.20), we can rewrite the potential (3.6) as

O(f. £ = / / (Eo+ E0)(f~+ fH((f7) + (F1)) de dy

N / / 2E1(f~+ f* - pi/po)

x>y
() pl/p+ (fF5))e e dxdy, (3.6)
with p, /p_ <1, p’ /p/, < 1. This proves the estimate

O(f. f) < 2E; / / =+ IO + () dedy. (3.7)
RZ

Formula (3.8) can be better understood by considering two situations (Fig. 7).

(i) The fast particle is overtaking the slow one. In this case the potential before the
interaction isE;. Afterwards it equal€y. Therefore the variation of the potential
in atime d is given by

dO(t) = 2(E1 — Eo) fT(f ) dt = f7(f7) dr.

The coefficient 2 is due to the difference in speed of the particles, since in the
interval of time d they cover a distance 2d
(i) A slow particle is overtaking the fast one. The computation is exactly the same of

(i):
dO(t) = 2(E1 — Eo) f~(f ") dt = f~(f ) dr.

Now we can handle the general case. We start by choosing constdptso that the
compact set

Kli{u ER"; diSt(M,K) <50} (38)

is entirely contained insid€, and moreover

Aj(u) —X;(v) >c whenevel < j, u,veKj. (3.9)
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Q(L,f)
E|
Ey
distance of the perticles
Q)
By
Eq
distance of the perticles
Fig. 7.
We also choose a constafiy such that
('), orj(u))| < Co forallu e K. (3.10)
Moreover we define
A= mlnA (), AT =maxi;(u) forali=1,...,n. (3.11)
ueks ueky

Using the above definitions and (2.2), from (1.5) it follows that

|fi_|t_|fi_|x<_ l(u)lf’ |+ |f’+|+Con¢k|f’ [Wiaat

) . 1+ A 1—X;
L+ L < (M)If’ - (”)|fl+|+coz,¢k|ff 174,

(3.12)
We now introduce the interaction potential as
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Q(z‘,z“L)iZ{//(Eéj+Eij)<lo, Fi(t. y)]) dedy

J>i Sy

e g o y
+//( 7ot Ujﬁ/)aﬂ
woNprps p=(py)

x (1)
=§:Q% (3.13)

Jj>i

1, x)]) o,

i x)|)

fi (t, y)’>e*aij()€*}') dx dy}

where f'* are the components of the spatial derivativeszof z* defined in the
Introduction. Forj > i, the constants are chosen such that

Ge 20074 (3.2))
_4_(}\’74—)\,;’»)2’ o—1+ 4l L.
J. A+AHA =25 J. (A=2DHA+25
EJ o +)( — -’), EY o +)( — -’), (3.14)
AR —Aj) A —Aj)
and the projectors are
- 1447 1—27 S
l”ﬁ{ T J ]i iopi,
L2 A 2= 0 A [P P2]
14+ A7 1-Aa7 G
0y = [ ARy )] 23
Defining the matrices
1+4;  1-47
Al = 2 2 ’
l—i-)»; 1—k;
2 2
1+ 1=
AT) = :
(47) 1+Af 1-2f
2 2
. |-1 0 /
a=[ @)

we can rewrite (3.12) in vector form for the components as
|f1 e+ AL e S AT 4 i = XD BIF 45, 0)[L, 11,
17+ AL < (A9)1f 1+ g = 2B | 4 (1,011, 1], (3.12)
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where

-1 _1} , (3.15)

s:CoZ|f]+|fk7| and Bi%{l 1
J#k

and|f|=(f"|.1fT). The meaning of (3.12is that, neglecting the source terms, the
particlei will have an average speed lower thgh, while the particlej will travel at
least with speed ;. Thus in the coefficients of the potential (3.13) we are assuming the
worst case, i.e. for all couple of particles the case in which their speed is closer.

We now compute the derivative of ea¢h;. With a computation similar to (3.8), we
find

inj
dr

<—/ (7= @ 0| £+ 0] + | £+ @] f~ @ x)|) de

£ S

" < Ty Ty )(’\'—/\-) pi—=pd)[f (. x)
// Pty p;’(m’)/ s =2 pe =)l |
x (1) | F @,
ij U / Eij ) ij
+//<E Ty e
X ((p;) — p; ‘f (t,x)’ef‘)‘ij(xfy)dxdy

+AEYCo [[(1£1¢0| + |0 dx [ s,
R

R

Ye @) dy dy

(&, W) — A

(|7~ fFO|+ O O],0)
HAEY (| ST O 2+ 17 O ) Is @1, (3.16)
because.; > 7, p” > pf anda; <A, (p”) > (p?)'. Letus introduce the constant

2

_ p 1 c
E=maxEy < —(1+ -] . 3.17
naxE! < 4o (1+7) 317)

Summing up all terms in (3.16) with > i, we obtain the estimate
d - 1 -
d—Q(z 2 S == llsOllpr +4m —DEV(E, 2)|Is(0) 2
t Co
- 1d
—(1=2nCoEV(z~, 1)) =—=V(z ", z"). (3.18)
Co dr
Indeed,

d
G ) < 2nlls(@)ll 2
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By choosing a smaller constasy, we can assume that

1
0 < =,
dnCoE

(3.19)

so that the first two points of Theorem 1 are proved vitk= 2nCy. Indeed by (3.8),
(3.18) and (3.19), it follows that the solutigb—, z) remains inK; for all t > 0, and
hence all estimates (3.9), (3.10) are valid.

To prove the Lipschitz continuous dependence with respect to the initial data, as
in [1,6] we consider the variational equation satisfied by an infinitesimal perturbation
(h=, h"):

A Wt ko
h™ —ho =— (”)(h++h)+———,
2 2

A() o (3.20)
ot AW o
B = =S ) = S

We now project the perturbatioik —, 1) in components along the eigenvector§:):

== 0w,
J

hf= Zh{irj (u) + Zh"'iu, or;

J J

kt+ _ ok
:Zhijirj —Zh‘/i(%)m orj,
j Jk

K+ o k-
; ; +
hf:ZhiirﬂrZhﬁ(if 2f )I‘korj.
j jk
Each componeni‘* thus satisfies the equations

i— i— 1+)"t(u) i— 1_)"1(14) i
hi= — hi= = —(T)h + (T)h +
+ S 0, r ) I
hit — it = <71+ M'”)hi - <71_ A"(”)>hi+
2 2
— Yl @ riYhit

The analysis is now very similar to the one above. Consider the functional

(3.21)

D(z,h)iZ{//(Eéj—i—Eij)(lo, h (t, )| )lo, | (2, y)|) dx dy
j>i
+// (E§ )lo, | £7(t, x)|){lo, |W (2, y)|) dx dy

x<y



40 S. BIANCHINI / Ann. Inst. Henri Poincaré Anal. nonlinear 18 (2001) 19-42

E{ > i)
i i ij, ij ! ’ '(t’x)
//<p’(p’)/ pL(ply & )
< ()| 1, p)ye @ dudy
gl Fii o
[ A
//} Py ) e
x ((17) e dy dy}

< 2E|h| V(7. 2. (3.22)
Its time derivative satisfies

d 1d - d - d
—D(z,h) < ——— IIh(t)IIL1 + 2E||h(t)||L1—V(z’, 2+ 2EV (7, 2 — |h(@)] 1
dr nCod dr

1
< _%_llh(t)||L1 + IIh(l)IILl—Q(Z .25,

With easy computation one concludes
t
d
IA@ e < 1A (Ol + ZnCo/ ED(Z’ h) exp{2nCo(Q(1) — Q(s)) } ds
0

<722 + 20CoD(2(0), h(0)) < 2/~ (0)]| 2. (3.23)

This holds for any infinitesimal perturbation. Consider a smaller dor®aim D, such
that given now two initial datézg , z3), (z1, z7) € D', we construct the smooth path

0—>¢0)=1-0)(z5,28) +0(z1,29) €D, 6€l0,1]. (3.24)

If S denotes the semigroup generated by (1.4), one has by (3.23)

1
/175

do
0

1
degz/ 1@, d0, forallf e R,
Ll
0

Finally

ds;c @
15. 25 28) = S,zps D) n < {/H m” de}<2/||z(e>||L1d0

:ZH(ZO’ZO - (leZ]_)HLl- (3.25)

This concludes the proof of Theorem 1, since the continuous dependence with respe
to time follows from (1.4) and the fact that the solutiG (r), z*(¢)) takes values in a
compact set oR?".

Remark 3.2. — Since all propagation speeds are contained in the intepfall], a
similar argument shows that
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b

/](z_(t,x), 27t x)) — (Z_(t,x),2+(t,x))]dx

b—I.—t
<L / [(z7(0,x),z7(0,x)) = (27(0,x), Z7(0, x)) | dx. (3.26)

a—t

4. Proof of Theorem 2

In this section we give a proof of Theorem 2, retracing the arguments in [6]. For each
givene > 0, letS? the continuous semigroup generated by’j1Rccording to Theorem
1, this defines a continuous semigroup. However but as 0, dependence on time is
not uniformly continuous.

Define

Z() = Z/I<li (1(=00)), v(t, x) — F(u(t, 1))} dx. 4.1)
i:lR

With easy computations, since the total variation@$ bounded, we have

Z(t) = (9(1){—? + Tot.Var.(u(1)) }

Therefore
Z(t) =0 {Zoe " +¢]}. (4.2)

By (1.2) this implies that the semigrouff is uniformly Lipschitz continuous if >
¢loge. Moreover by (1.2) one has

[|u(r) — o, <1 - TotVar.(v). (4.3)

By a standard compactness argument, this proves the convergence to a uniqt
Lipschitz semigroup for all > 0, which can be characterized as the unique entropic
solution to (1.1) constructed by wave front tracking (see [1,6]). Moreover (4.2) implies
v(t) = F(u(t)) for all r > 0. Formula (1.11) follows easily from (1.8).

Remark4.1. — One sees that the discontinuous behavidt“dé due to the exponen-
tially fast decay ofv(¢) to ane-neighborhood of~ (u(¢)) in the L norm, where the long
time dynamics takes place.
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