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ABSTRACT. — We establish the existence of nontrivial solutions for the nonlinear eigenvalue
problem which describes self-trapped transverse magnetic field modes in a cylindrical optica
fiber made from a self-focusing dielectric material. It amounts to finding solutions in the Sobolev
spaceH(}(O, oo) of a singular second order differential equation which is quasilinear and, in an
appropriate sense, asymptotically linear. Solutions are critical points of an energy functiona
which has a mountain pass structure, although for all relevant parameter values the problem
in resonance at infinity. The quasilinearity complicates the proof of a Palais—Smale condition
and the asymptotic linearity means that the standard methods for showing that a P-S sequen
is bounded do not apply. Both the linearization and the asymptotic linearization have only
continuous spectrum. The eigenvalues determine the wavelengths of self-trapped modes and c
results establish the existence of such modes for the largest possible range of wavelengths.
© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME. — On montre 'existence de solutions d’un probléme aux valeurs propres non linéaire
qui modélise des modes guidés cylindriques TM dans un fibre optique. Il s'agit de trouver
des solutions dans I'espace de Sobolé&(o, o0) d'une équation différentielle singuliere de
deuxiéme ordre qui est quasilinéaire et asymptotiquement linéaire. Les solutions sont des poin
critiques d’une fonctionnelle ayant la structure du théoréeme du col mais qui se trouve dans un ce
de résonance pour toutes les valeurs admises du parametre. La forme quasilinéaire complique
vérification de la condition du Palais—Smale et le comportement a I'infini fait que les méthodes
usuelles pour montrer que les suites P-S sont bornées ne s’appliquent pas. La linéarisation air
gue la linéarisation a l'infini n'ont que du spectre continu. Les valeurs propres du probleme
non linéaire déterminent les longueurs d’onde des modes guidés et nos résultats établisse
'existence de tels modes pour la gamme maximum de longueurs d’ondes.
© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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1. Introduction

The mathematical analysis of self-trapped beams of light propagating in a nonlineal
dielectric medium is part of the study of special solutions of Maxwell's equations
coupled with a nonlinear constitutive relation between the electric field and the electric
displacement field. In modeling optical fibers it is natural to seek solutions having
cylindrical symmetry. One family of special solutions describes situations where the
electric field is everywhere perpendicular to the direction of propagation. For these
transverse electric field (TE) modes the problem can be reduced to the study of
nonlinear second order differential equation with boundary conditions at infinity [5,9,
11] and [14]. A second (dual) family of special solutions corresponds to cases where
the magnetic field is everywhere transverse to the direction of propagation [2,3,8,12
and [13]. The equations governing these transverse magnetic field (TM) modes are mol
complicated than those for TE-modes because of the form of the constitutive relation ir
a nonlinear optical medium.

The discussion of guided waves in nonlinear optics is based on Maxwell’'s equations

¥B=—cVAE (1) 8D=cVAH (2
(1.1)

and the constitutive assumption for a homogeneous isotropic dielectric material is
H=B (1) and D=¢(E?)E (2 (1.2)

wheree : [0, c0) — (0, 0o) is a given function andE?) denotes the time-average of the
intensity E - E of the electric field. See [12,13] and the many references therein to papers
from physics and engineering. In a self-focusing material it is reasonable to suppose th:
the dielectric response functiarhas the following properties.
(A) e € C([0,00)) N CL((0, 00)) with &'(s) >0 for s > 0, £(0) > 0 and&(oo) =
lim,_ o &(s) < co. Furthermore, lim.gs&’(s) = 0 and there exisL. > 0 ando > 0
such that
im e(s) —e(0) _
s—0 a4
In seeking travelling-wave solutions of (1.1) and (1.2) with cylindrical symmetry
it is convenient to use cylindrical polar coordinatese, z) and to denote the usual
curvilinear basis vectors bi, iy andi,. In this notation an axi-symmetric TM-mode
is a solution of (1.1) and (1.2) in which the magnetic field has the form

L.

B =u(r)coskz — wt)ig, (1.3)
whereu : [0, 00) — R is a smooth scalar function with
u(0)=0

to ensure the smoothness Bfatr = 0. Then|u(r)|, 27 /k andw give the amplitude,
wavelength and frequency of the magnetic field. However, the system (1.1) and (1.2
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does not reduce to an equation for the unknowps andw in a straightforward way.
It follows easily from (1.1)(2) and (1.2)(2) that B has the form (1.3) then there are
smooth scalar functiong, ¥ : [0, co) — R such that

E = ¢(r)coskz — wt)i, + ¥ (r) sintkz — wt)i, (1.4)
with
(0 =0 and (0 =0. (1.5)

When studying TM-modes the standard procedure in nonlinear optics (see [2] and [3]
is to usep andvys as unknowns instead af because it is easy to reduce (1.1) and (1.2)
to the following system fop and+,

2

Kk + ') = <§) 8<%[(p2+1ﬁ2])§0s (L.6)

1 o\? /1
_ - k / /: - - 2 2 > ,
kg + ) = (2) o(Gle+ 07 )u
where the prime denotel/dr. The magnetic field corresponding to a solution of this
system has the form (1.3) with= () (k¢ + ). However, in more recent work [13], the
problem has been reduced to a single equation for the funeti®or this we introduce
a new functiony : [0, co) — (0, o0), which is determined by through the relation

g =y (%F)t, (1.7)

whereg is the inverse of the functiorf defined by f(s) = 8(%32)& As is shown in
Section 2.2 of [13], the propertig¢gl) of € ensure thay is well-defined and satisfies the
following conditions(H 1) to (H5).

(H1) y € C([0,00)) N CH((0, 00)).

(H2) Forallt >0,y'(t) <0<y @) +2ty'(r).

(H3) y(0) > 0andy (oc0) =lim;_ y(¢) > 0.

(H4) lim;_qty'(t) =0.

(H5) There are constanf§ > 0 ando > 0 such that

im y() —y(0) _

t—0 1o

—K.

With y as defined above there is a solution of (1.1) and (1.2) in whBidtas the form
(1.3) if and only if
w
u(r) =—wckr),
kc
wherew : [0, o0) — R satisfies the equation

2 2

O 1) C200) B T e

(1.8)
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with
w(0) =0, 1.9)

wherei = (w/kc)?.

A guided mode is a travelling-wave solution of (1.1) and (1.2) which has finite
electromagnetic energy in planes which are perpendicular to the direction of propagatiol
and in which all the fields decay to zeroras> co. For solutions of the form (1.3) these
guidance conditions become

/w +(w) |rdr < oo (1.10)
0

and
|I_)nc1>o wr) = ILrI;o w'(r) =0. (1.11)

The power (total intensity) of the light beam described by such a solution is then given

by
P—n—wf (E [wz—i- (w’—i-E)szzrdr (1.12)
s ) "\2 r ' '

All of these issues are discussed in more detail and the justified in [12] and [13] where
it is also shown (see Proposition 3.1 of [13] and Corollary 3.5 of [12]) that the problem
of finding solutions of (1.8) which satisfy the conditions (1.9), (1.10) and (1.11) is

equivalent to finding

(A, z) € (0,00) x H}(0,00) with z£0 (1.13)

such that
{a(r /){/—Fi}}/—a(r ’){ +i{’+i]}+/\ =0 on(0,00), (1.14)
»2,2) |2 o ,2,2)42 o> z > = , , (1.

wherez =z(r) = rl/zw(r), 7 =7(r) and

1 2
a(r,p,q)=vy (5 {p2+ <q + %) D forr > 0andp,q e R. (1.15)

Thus the existence of guided axi-symmetric TM-modes in a homogeneous medium i
reduced to establishing the existence of solutions of (1.13) and (1.14) wieatisfies
the conditions(H1) to (H5). This problem was studied in [12] where the following
results are obtained concerning the existence of solutions.
(i) Fora ¢ (y(c0), y(0)], there is no solution.
(i) There existsdy > 0 such that, for alll > dg, there is a solutiorir,, z4) of (1.14)
with [5° z4(r)?dr = d. Furthermore, € (y(00), ¥ (0)) andz,(r) > O for all
r > 0.Alsor; — y(c0) asd — oo.



C.A. STUART, H.S. ZHOU / Ann. Inst. Henri Poincaré Anal. nonlinear 18 (2001) 69-96 73

(i) f0 <o <1in (H5), then we can sely =0 and we have.;, — y(0) asd — 0.
(iv) If o > 1in (H5), then there existg; > 0 such that (1.14) has no solution with
Io° za(r)?dr < ds.

In these results, the parameigr= fo°°z(r)2dr is of physical interest since it is
proportional to the total intensity of the light beam associated with the solgtidhe
existence results stated in (i) and (iii) are obtained by using the condffon(r)?dr =
d as a constraint for the minimization of a functional definedlqu(o, 00). In this
approach the parameterappears as Lagrange multiplier. Further results in this spirit
concerning the existence of higher (nonpositive) modes are given in [9]. However the
results (i) to (iv) do not give a complete picture of the situation concerning the existence
of solutions of (1.14). For example, far > 1, they yield no information about the
existence of solutions for values bf< y (0) but near toy (0).

The main result of the present paper shows that all wavelengths within the interval
(2 /y(c0), Z£/y(0)) are indeed possible, under the following mild additional
assumption,

(H6) y'(t) <Oforallr >0and lim_,ty'(t) =0, (< &'(s) > 0 foralls > 0 and

lIM;_ o s8'(s) =0).

Then,

(v) foranya e (y (00), y(0)), there exists a solutio¢k, z) of problem (1.14), and, by
(), we know that this conclusion is almost optimal. In fact, to ensure the existence
of a solution withix = y (0) requires extra hypotheses on the dielectric response.

Our method of proving (v) is to fix a value afiin the interval(y (c0), ¥ (0)) and to
obtain a solution of (1.14) as a critical point of an appropriate energy functigneby
an application of a variant of the mountain pass theorem. In this approach there are tw
main difficulties which have to be overcome.

(@) The hypothesig H3) implies thatJ, has quadratic, but not super-quadratic,
growth near infinity. This means that the usual ways, [7], of obtaining a bounded
Palais—Smale sequence fgrfail.

(b) In proving that/; satisfies the Palais—Smale condition Bg(0, co), we have to
confront simultaneously the problems due to the nonquadratic dependerice of
onz’ and the noncompactness of the Sobolev embeddings.

Some notation and preliminary results are given in Section 2. The functidpal,
defined onHZ (0, co), which will be used is introduced in Section 3. In Section 4, we
recall (as Proposition 4.2) a version of the mountain pass theorem, due to Bartolo, Benc
and Fortunato [1], which is then used to prove our main result. The first two conditions
which must be checked amount to verifying that the functioal has what is usually
called the mountain pass geometry. It is here that the restrigtian) < A < y(0)
appears in a natural way, but it should be observed that, for all sutte linearized
problem at infinity is in resonance in the sense of [1] since the spectrum of that
linearization (which is a form of Bessel's equation) is the whole intefyabo), co).

The remaining conditions, (c) and (d), correspond to showing that the condition_(P-S)
is satisfied for bounded Palais—Smale sequences and that some restricted Palais—Sm
sequences are indeed bounded. In verifying (c), the noncompactness of the Sobole
embeddings ori0, co) is compensated by the radial symmetry of the problem, so the
real difficulty lies in dealing with the non-quadratic dependence of the functigpal,
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onz'. In this respect it is the inequality (r) + 2ty'(¢) > 0 in (H2) which allows us to
obtain the required conclusion. This inequality asserts;xl(l%utz)t is a strictly increasing
function ofz. Thus it is satisfied in every self-focusing medium. Our method of verifying
the condition (d) was inspired by a recent paper by Jeanjean, [4], where a semilines
perturbation of the Laplacian with a similar quadratic growth of the energy functional at
infinity is treated using a different variant of the mountain pass theorem. Our equatior
has a different and more complicated structure, but his approach to establishing th
boundedness of a P-S sequence lies at the heart of our method of proving the conditic
(d).

Notation.In order to avoid lengthy expressions, we shall often truncate the argument
of a function when we believe that no confusion should result. For example,

2

1 {22 + (z/ + i) ] stands for 1 {z(r)2 + (z/(r) + @)2]
2r | 2r 2r | 2r ’

wherez: (0, c0) — R, and

a(r,z,z') standsfor a(r,z(r),z'(r)).

2. Notation and preliminary results

In this section we establish some consequences of the hypottiédeso (H6). We
consider a functiory satisfying(H1) and we set

F(t):/y(s)ds fort >0, (2.1)
0

7O =y —y(0 <0 and f(t)=/;7(s)ds fort > 0.
0

Clearly, I" (1) = I'(t) — y (0)t and, using H?2) and (H3), we see that
(i) I' e CY([0, 00)) N C?((0, 00)).
(i) I is strictly increasing and concave @) o).
(i) 0O <yt <yt <I'() <y(Oxforz=>0.
(iv) —[y(0) = y(00)]t < (1) <Ofors >0.
We now deduce some further properties of these functions.

LEMMA 2.1.-Lety satisfy(H1) to (H3) and (H5). Then there is a constaxt > 0
such that

7| < Ci* forallz >0
whereu = min{o, 1} ando is the constant appearing i(H5).
Proof. —By (H5), there exist constants > 0 ands € (0, 1) such that

|7(0)| < Lt” < Lt* forallz €0, $).
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Using (H2) and(H 3), we also have that
|7(1)] <y (0) —y(c0) forallz>0.

SettingC = max{L, § *[y(0) — y (c0)]} the result follows. O

Next we consider the functioii : (0, co) x R> — R defined by
2

_r(L],e P
f(r,p,q)—rl“<2r{p +<q+2r)]>, (2.2)
wherer is given by (2.1). Clearlyf € C%((0, oo) x R?) and we set
g(r,p,q)=09,f(r,p,q) and h(r,p,q)=03,f(r, p,q). (2.3)

Recalling (1.15), we have that

1
g(r,p,q)=y<—{p2+ (q + ﬁ)

2r 2r } p
1
=a(r, p,q) {p + (q + %) 5} (2.4)
and
s (a8 ]) o8
P =y {5 |P q+ 5 9+
=a(r, p.q) (q + %) (2.5)

LEMMA 2.2.—Let y satisfy the conditiongH1) to (H4). Then for eachr >
0, h(r,-) € C1(R?) with

. 1 1
0) |8ph(r,p,q)|<<§+;>y(0) and

(i) [9,7(r, p,q)| <2y(0).
If (H6) is also satisfied, then there exists- 0 such that

d,h(r,p,q) =8 forallr>0and(p,q) e R?

Proof. —Forr > 0 and(p, ¢) # (0, 0) we have that

1 1
ipo=rodlp ()3 (04 5) 52

and
2

1 P
dgh(r,p,q)=vy (r); (q + 5) +y (1),

wherer denotes the expressiah[p? + (¢ + £)?]. Also for r > 0,

aph(r,0,0)=(70) and 9,h(r,0,0) =y (0)
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since,

h(r’p’o)_h(raoao) _a(rapao) N V(O)
p 2 2r

asp — 0O,

h(,0,9) —h(,0,0
(r.0,9) (r ):a(r,O,q)—>y(0) asp — 0.
q
But, forr > 0 and(p, g) # (0, 0), we have that

roplr o g)zl (o g)
<@l swla+ 2|+ 5 (a %)}
o2 (or2)]-2
<<1+;)

2

2+ (04 5) )

and

1 2
ror(e+ L) <2yl
r 2r
Using (H1) and(H4), it follows thato,h(r, -) andd,h(r, -) are continuous atp, g) =
(0,0) and soi(r, -) € C1(R?) for eachr > 0. Furthermore, for > 0 and(p, g) # (0, 0),
we have

2r

1 y (1)
( ) () + >

1 1
)V(T) < (E + —)J/(O)
r

040 (r, p,@)| < —2y'(1)T + ¥ (x) <2y (1) < 27(0).

Finally we note that a function which also satisfiés6) has the property that there is a
8 > 0suchthat () +2ty’(t) = 8. In fact, by(H3) and(H6), lim,_. o y (t) + 2ty'(t) =
y(00) > 0, whereas, byH3) and (H4), lim;_qoy () + 2ty’'(r) = y(0) > 0. Using
(H?2) it now follows that inf.qy (t) + 2ty’(¢r) > 0 as claimed. Hence, for > 0 and
(p,q) #(0,0), we have

1
|aph(r,p,q>!<—( )y( )

/\I\)I

and

dh(r, p,q) = 2y' ()t +y (1) = 6. O
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3. The variational problem

In this section we formulate the variational problem which will be used to deal with
(1.14). We begin by recalling some essential properties of the Sobolev Agadex).
Itis a real Hilbert space with the norm defined by

o 1/2
Izl = {/{z(r>2+ |z/(r)!2}dr} . (3.1)
0

The usual norm on the Banach spdd&0, co) will be denoted byz|, for 1< p < oo
For anyz(r) € H}(0, oo), the following estimates are valid,

202, < (3.2)
lz(n| <r (3.3)
and
o0 2 o0
/ Z(Vz) dr <4/z’(r)2dr. (3.4)
0 g 0
Furthermore,
|i_)l’T})r_l/2z(r) = lim z(r) =0. (3.5)

LEMMA 3.1.—Foranyz € Hi (0, 00),

/(z +5) dr:/(z) o (3.6)
0 0

Hence the expression
1/2

IIZII1={7Z2+ (z/+2Z—r>2dr} (3.7
0

defines a norm ot/ (0, co) which is equivalent to that defined (8§.1).

Proof. —For z € H(0, 00) and O< a < b < o

b
Z/(V)Z(V) {z(r)? } (b)2 z(a)? (r)z
/ r / { b a + / r2 }

a a

and so, by (3.4) and (3.5),

/ooz’(r)z(r) / Z(r)2
r —2 "

0
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This proves (3.6), and (3.7) follows easily since

I 3 [ o

1zI°< [ @)+ 22+ Sdr=z5< [ 4Z)*+2%dr <4|z|> by (3.4 O
. 472 .
0 0

We now introduce the functios on H}(0, co) which will be used to deal with (1.14).
For a numbei and a functiony which satisfiefH 1) to (H 3), we set

o0 2 o0
J(2) = / rr (% {z2+ (z/ + %) D dr — %/zzdr, (3.8)
0 0

wherer is defined by (2.1) and € HZ (0, c0).
Sincey (co)r < I'(t) < y(0)t forall r > 0, it is easy to see that

1 1
—00 < S {y (00)llzllf — Alzl3} < J (@) < S{y Ollzllf — Alzl3} < o0

for all z € H}(0, 00).
In fact, J is continuously differentiable o#(0, co) and any nonzero critical point
of J is a solution of (1.14). More precisely, we have the following results.

LEMMA 3.2. —Lety satisfy the conditionsH 1) to (H5). Then
(i) Foranyi eR, J e CY(Hi(0, 00), R) with

J' (e = /O?a(r, z, z’){w + (z’ + %) <<p’ + %) } — Azpdr, (3.9)
0

forall z, ¢ € H}(0, 00).
(i) If »eRandz e HE(O, oo) are such that

J'(2)p=0 forall g € Hy(0,c0),

thenz e C?(0, o) and (&, z) satisfieg(1.14)
Proof. —Part (i) is Lemma 3.1 of [12] and part (ii) is Theorem 3.3 of [12]1

Remark — Inspecting the proofs of the results cited from [12], we see that Lemma 3.2
is valid even ify only satisfieg H1) to (H4).

We end this section with two technical results, which will be used later.

LEMMA 3.3.-Let y satisfy the conditiongH 1) to (H3), let {u,} C H}(0, c0) be
bounded and set

r

v, (1) =/sg(s,u,,(s),u,’1(s)) ds and

0

V,(r) = /h(s,un(s),u;(s)) ds, (3.10)
0
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where ¢ and i are defined by(2.4) and (2.5), respectively. Then by passing to a
subsequence which we still denote{by}, we can assume that the sequentesr)}
and{V,(r)} converge strongly ir.?(0, b) for all b € (0, c0).

Proof. —Let K > 0 be such thafu,| < K for all n € N. By (3.2)
|un|oo<Ka |un|2<K and |u;|2<K (311)
The functionh (s, u, (s), u,,(s)) is integrable orn(0, r) since

Un(s)

|1, 1n (5), 1,,(5)) | < v (0) >

i, (s) +

and

u,(s)

u, (s) + >

) 12
ds }

<2y (02 |u |, < 2K y (0)r™/2. (3.12)
HenceV, has a weak derivative ai®, co) and

/|h(sa”n(s),u;(s))‘ds§y(o)rl/z{/
0

0

Vi(r)=h(r,u,(r),u,(r)) a.e.on(,co).

Furthermore, by (3.4) and (3.6) we have

2 ® 2
/!V,:(r)|2dr < y(0)? /<u;(r) + anir)> dr < 4y (0)2K2. (3.13)
0 0

By (3.12) and (3.13) it follows thdtV, (r)} is a bounded sequence # (0, b) for any
b > 0. Hence passing to a suitable (diagonal) subsequence we may suppds$& hat
converges strongly if?(0, b) for everyb > 0.

The functionsg(s, u,(s), u,,(s)) is also integrable ox0, r) since

1 n
S|g(S,u,,(s),ul’1(s))’ < V(O){S’Mn(s)| + > u (s)+ Mzis) }
and
/r. |8 (5, un(5), 1, (5)) | ds < (0){r3/2|u o+ F Y2 | }
SI8LS UnlS), Uy ()W SV —=lunl2 nl2
0 V3

<Ky (0 1/2{L+1} by (3.4)and (3.6) (3.14
y (O)r 7 y(3.4)and (3.6) (3.14)
Hencev, has a weak derivative af®, co) and

v (r) =rg(r,u,(r),u,(r)) a.e.on0, o).

Thus, for anyy > 0, we have that
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b

'/bv;,(r)Zdr < y(0)? {run(r) n % {u;(r) N Mn(r):| }Zdr

2r
0 0

b 2
< 2y(0)2/{r2u,,(r)2 + % {u;(r) n ””(r)] }dr
0

2r

<2y (0 {b*u, |5+ lu, 5} by (3.4) and (3.6)
<2y (0%(h?+ 1) K2
Therefore {v,(r)} is a bounded sequence#i(0, b) for anyb > 0 and so, by passing to

afurther (diagonal) sequence, we may assumegthéat)} converges strongly in2(0, b)
foreveryb > 0. O

Finally we recall the following result which will be used several times.

LEMMA 3.4 ([10], Proposition 3.4). et {u,} be a bounded sequence it (0, c0)
for somep € (1, 0o) such thatu, (r) — u(r) for almost all» > 0. Thenu € L? (0, c0)
andu, — u weakly inL? (0, co).

4. The main result

We now come to the main result of this paper.

THEOREM 4.1. —Let y satisfy the conditiongH 1) to (H6) and let A € (y(c0),
¥(0)). Then there exists(r) € C%((0, 00)) N H}(0, 00) such thatz # 0 and (A, z)
satisfies Eq(1.14)

In view of Lemma 3.2(ii), it is enough to show that, under the hypotheses of Theorem
4.1, the functionall : H3(0, co) — R defined by (3.8) satisfies the conditions which are
required for the following version of the mountain pass theorem.

PrRoOPOSITION 4.2 (Bartolo, Benci and Fortunato [1])..-et H be a real Hilbert space
and consider a functional € C*(H, R) which satisfies the following conditions.
(@) J(0) =0 and there exisp > 0 anda > 0 such that/ (u) > « for all u € H with
lull = p.
(b) There existe € H with |le|| > p such that/ (e) <O.
(c) Foranyc > 0, every bounded sequenfg,} in H such that

J(u,) > ¢ and J'(u,) > Ostrongly inH*

possesses a convergent subsequence.
(d) Foranyc > 0, there exist positive constantsR andn such that

| @)]||llull =n forallue A,

whereA={ue H: c—5§ < J(u)<c+3dand|ul > R}.
Then, there exists an elemen& H such that/ (1) > « and J'(u) = 0.
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We prove Theorem 4.1 by showing that the functiosatlefined by (3.8) for a fixed
value of € (v (00), y(0)), satisfies the hypotheses of Proposition 4.2. Clednl§) =
and by Lemma 3.2(i) we have thdte C1(H (0, 00), R).

Verification of(a). The function/” is concave o010, co) and so

(gl (o 5) )2 (D) -2 (e +3)

1 y (00) z
>§F(r)+7(”5)

for all » > 0 andz € H(0, 00), since I'(t) > y(co)t for all + > 0. Thus, for any
z € H3(0, 00),

SCORSIUCES
J(z)> 7+ - 5 L) TAydr
2 O/ 2r 20/

1 o0

0

Sete = (y(0) — A)/2. Thene > 0 and there exist > 0 such that
y()=>y(0) —e forallrel0,35],
and consequently,
'@ > (y@©) —e)r forallze0,3].
By (3.3),2%/r <I2'I5 < l|z|l* and so
2

2
r (Z—) > (y(0) — s)z— for all z € H}(0, oo) such that|z[|* < 8.
r r

Hence forz € H}(0, oo) with |z]|2 < 8,

10> Y5213+ 2/ (v(© — )22~ 17 o

y(o0) J/(O)—
=T|z|§+ yamEL

> % min{y(oo), V(O)Z_ . }llzllz.

Settingp (1) = +/8 anda (1) = §/2min{y (c0), (¥ (0) — 1)/2}, we see that the condition
(a) is satisfied.
Verification of(b). Fora > 0, we set

Ve (r) = 22%%re™" | forr > 0.
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Then for alle > 0, v, € HE(0, 0o) with |v,|2 = 1 and|v),|, = «. Hence fora, ¢ > 0,

2

o0
J(tvy) 1 1? 2 . Uy A 2
2 ﬂ‘z/”(ﬂ”a* <+2—) Ddr‘ 2/l
0

and, forr > 0,

1 £2 o) )
_F<2r{v“(r) +<v&(r)+ > >D
tZ[”a(f)z-&-(v(;(r)_A,_vazrﬁ)z]

:ti / y(s)ds

0

N

1

, v ()] 1 2 (o Ve (r)\?
/ ( [va(r) +<va(r)+ > )}I)Z{UO‘(” —i—(va(r)—i— > )]dt

0

1 2 ! b)) ast
~ 5 {va(r) + <vo,(r)+ o > }V(OO) — 00

by dominated convergence.
Hence, again by dominated convergence, fowaH 0,

Tty y(oo) Ve \ 2 A
i, 72 { ( +5>}W—§
y(oo) 3 Oov A

J/(OO) A
e {1+§ } 5

Choosinge = /(A — y (00))/(5y (0)) we have that

|5

N

. J(tvy)
[im 5

1—>oo f

<0,

and there exist¥" = T(«) > 0 such thatJ(tv,) < 0 for all t > T. But |jtv,|| =
{1+ «?}¥/? and so by choosing

r = max{T 2 }
N "1+ a?)t2)’
wherep is chosen as in (a), we see that (b) is satisfied &yrv, .
Verification of(c). We fixc > 0 and consider a bounded sequefieg in Hg (0, oo)
such that

J'(u,) > 0 strongly inH~1(0, 00). (4.1)
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By passing to a subsequence, we may suppose that there is an eleméft(0, co)
such that

u, —u  weakly in H}(0, c0), (4.2)
u, — u strongly inL?(0, b) for everyb > 0, (4.3)
u,(r) > u(r) a.e.on, o). (4.4)

Step 1The first step is to show that we may also assume that
(i) u, S strongly inL?(a, b) for all a, b € (0, co) with a < b, and
(ii)
u, > u'  a.e.on0, o). (4.5)
Using the Riesz representation theoremiy(0, co) with the scalar product

(u,v) = /{u’v/ +uv}dr foru,ve Hy (0, 00),
0

there exists an elemen} (r) € H}(0, co) such that
J () = (., ¢) forall g € Hy (0, 00),

and, by (4.1),

.1l = 0. (4.6)
Recalling the expression (3.9) fdr, this means that

o0

, / Uup , @
/a(r, U, un){unsﬂ + (un + —) ((P + —)} — Au, g dr
" 2r 2r

o0
= /n;(p’ +n.pdr forall g € HJ(0, 00)
0

which can be rewritten as

o0

/[h(r, Up, uy,) — 1, ] @ dr +/[g(r, Up, Uy) — Ny — Ay | dr =0
0 0

for all ¢ € Hg (0, 00), (4.7)
in the notation (2.4) and (2.5). Setting
w, (r) =h(r,u,(r),u,(r)) —n,(r) and
2a(r) = g (r, un (r), u, (r)) = 0y (r) — Ay (r),

the functionsw,, andz, are locally integrable o010, co) and, by (4.7)w, has a weak
derivative on(0, co) where
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w, (r)=z,(r) a.e.on0, o). (4.8)

In particular,w, is continuous on0, co) (after modification on a set of measure zero)
and for anya > 0,

r r r

/szn(s) ds =/sw;(s) ds =rw,(r) —aw,(a) —/w,,(s) ds.

a a a

Thus fora, r > 0,

r r

aw,(a) =rw,(r) — /w,,(s) ds — / 52, (s) ds. (4.9)

a a

In the proof of Lemma 3.3 we showed thats, u, (s), u, (s)) andsg(s, u,(s), u,(s))
are both integrable onoO, r) for every r > 0. From this and (4.9) it follows that
lim,_oaw,(a) exists and that

limy aw, @) = 1w, ()4 1) = Vo) = v, @)+ [ s{3an) + 1, (9)} s, (4.20)
0

where we have used the notation (3.10).
But

w,(r) =V, (r)—n,(r) a.e.on(0,co)

and so, by (3.13)w, € L?(0, c0).
Thus we must have that

Iimoaw,, (a)=0
and so (4.10) yields

1 r
Wy (r) = ;{Vn(r) + 0 (r) = (r) — /S [11a(5) + Aty (5)] dS}- (4.11)
0

Now forr > 0, i(r, -) € C1(R?) by Lemma 2.2. Hence for amy, m > 1,
B (r,u, (r), uy, (r)) — h(r, un (r), u,, (r))

1
/ (rytuy(r) + (L= Ouy (r), tu, (r) + (1 — t)u,, (r)) d
0

1
/ (t,r,n,m) [uy(r) — uy(r)] + B(t, r,n,m)[u, (r) — u,,(r)] dr
0

where

A(t,ryn,m) =3,k (r, tu, (r) + (L= Ouy (r), tu, (r) + (1 —t)u,, (r))
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and

B(t,r,n,m) = 9,h(r,tu, (r) + (L= O, (r), tu, (r) + (L — t)u,,(r)).

Using the mean-value theorem for integrals, there existsd (r, n, m) € (0, 1) such
that

h(r,uny(r), u,(r)) — h(r, u, (r), u,(r))
= 0,h(r, p(r,n,m), q(r,n,m))(u, — uy)(r)
+ 8,h(r, p(r,n,m), q(r,n, m)) (u,, — u,,)(r), (4.12)
wherep(r,n,m) =0u,(r) + (1 —0)u,, (r) andg(r,n, m) = 0u, (r) + (1 — 0)u,, (r).
Using (4.12) and Lemma 2.2, there exiéts 0 such that
8|ul, (r) — ul, (r)|
< h(r, p(ron,m), q(r,n,m))|ul,(r) —u,, (r)|

1 1 , ,
< (5 + ;)V(O)!un(r) — 1ty (M) + | (1, 0, (1), 1y, (1)) = B (1, w0, (), w0y, (1))

1 1
< (é * ;)woﬂun(r) = un (O] + [1,(7) =1, O] + [wa (1) —wn (). (4.13)

From (4.11) and Lemma 3.3, itis easy to see that, by passing to a suitable subsequenc
we may assume thaiv,} is a Cauchy sequence fif(a, b) for anya, b € (0, co) with
a < b. It then follows from (4.13) thatu/} is a Cauchy sequence it?(a, b) for any
a,b € (0,00) with a < b. Recalling (4.3), we now have thét,} is a Cauchy sequence
in H(a, b) for all a, b € (0, oo) with a < b. From this and (4.3) it follows immediately
that u,, — u strongly in H(a, b) for all a, b € (0, 00) with a < b. By passing to a
suitable (diagonal) subsequence we may henceforth assume that (4.5) holds.

Step 2We now show that

[ oty (s 52) =ateatr (w4 1)}
' a(r,u,,u,)| u, > a(r,u,u’)| u > r
0
+ (y(0) — /u —u? )dr — 0 asn— oc. (4.14)
0

Sincefu, } is bounded inHg (0, co), it follows from (4.1) that
J'(w)u, -0 and J'(u,)u—0 asn— co.

Recalling (3.9), this means that

2

/a(r, Uy, ul) {u,zl + (u; + ;r_n> } dr — A/us dr 50 (4.15)
0 0
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and

/a(r, Uy, U,) [unu + (u; + u—”) (u’ + i)} dr — A/unu dr > 0. (4.16)
/ 2r 2r "

By (4.4) and (4.5),

a(r, y, ), = a(r,u,u’)u a.e.on0,00) and
" " (4.17)
i I n n I i
a(r,u,, u,) (un + —> —a(r,u,u )<u + —) a.e. on(0, c0).
2r 2r

Also, {a(r,u,,u,)u,} and {a(r,u,,u,)(u, + %)} are bounded iNnL2(0, co) since
y(00) < a(r, u,,u,) < y(0). Using Lemma 3.4, it follows from (4.16) that

[o/e] 2 o0

/a(r, u,u’) {uz + <u’ + %) ] dr — A/uzdr =0. (4.18)

0 0
Next we show that

K,—0 and L,— 0 asn— oo, (4.19)
where
Ko = [0,y 0, = )|
0
and
L,= /]&(r, Uy W uptt — a(r, u, u'u?| dr,
0

with

” ,)_~<1{ ()2+<,()+un(r>)2]>

a(run, ) =y | o |n(r u, (r >

=a(r,u,(r), u,(r)) —y(0)

and

) N I N (O
a(r,u,u):y(g[u(r) +<u (r)—i-?) })

=a(r,u(r),u’(r)) —y(0).
As above, (4.4), (4.5) and Lemma 3.4 imply that
aqr, uy, u,)uy, LG u,u)yu  weakly in L2(0, co), (4.20)

from which it follows immediately thaL,, — 0 asn — oo.
To deal withK,,, we considerR > 0 and note that
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R 00
K, :/|El(r, U, )|y (uy — u)| dr +/]é(r, U, )y (y — u)| dr
0 R

R o0
< (y(@—y(oo))/|un||un—u|dr+/\a(r, s ] Yt (it — )| .
0 R

By (4.3) we have that
R
/lun||u,, —u|dr >0 foreveryR > 0. (4.21)
0
By Lemma 2.1, there exists € (0, 1] andC > 0 such that

/‘5(7‘, Uy, u;,)un(un - u)’ dr
R

<C/{—[u2+<u’+u—") ]} |ty (uy — w)| dr
= J 2r | " " 2r e

o0 ©
< /{uﬁ + (u; + u—”) } | (uy — u)| dr, (4.22)
R

m
] ‘un(u,, - u)’ dr

1—p

o0 2 124 o0
{/{uf—l— <u;+g—”) }dr} {/\un(un—u>yl/“‘“)dr} . forpe 1),
R d R
o u 2
{/|:u72l+<u;+_n> :|dr}|un|oo|un_u|<>0a forp=1,
J 2r

201 .
- {{4||unl| Vltnlzyaplitn —ulopayy <ty oo gy
Ay | unloolttn — uloo if uw=1,
< {17y Nua = el sincelul, < ul for2< p<ooby (3.2).  (4.23)

Using (4.21) to (4.23) we see that there is a constant 0 such that
. D
limsupkK, < — forall R > 0.
n—00 RM

Hencek, — 0 asn — oo and (4.19) is established. It follows that

o0
I, >0 wherel, = /]&(r, U, Y2 — a(r, u, u/)uz‘ dr (4.24)
0
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sincel, < K,+ L,.
From (4.15), (4.18) and (4.24), we see that

oo oo 2

/y(O)(u,f — u2) dr +/ {a(r, u,,,u,@)(uil + ;r—”>
0 0

2 oo

—a(r,u,u’) <u’ + %) ] dr — A /(uﬁ —u®)dr—-0 asn—> oo (4.25)

and so (4.14) is established.

Step 3We now complete the proof of property (c) by showing that — u|| — O as
n — oQ.

Indeed by (4.4), (4.17) and Fatou’s Lemma,

lul3 <liminf u,|5 and
n—oo

2 o0 2

/a(r, u,u’) (u’ + i) dr <liminf [ a(r,u,,u)) <u,’1 + M—") dr.
0

2r n—o0o 2r

By (4.14), this implies that

o0 2 2

0<”n”li£f {a(r,u,,,%)(lfi;‘i‘;r_n) —a(r,u,u/)(u/+%) }dr
0
2

<limsup .{a(r, Uy, U),) <u; + u_”) —a(r,u,u’) (u/ + i) }d"

n—o0

=—(y(0 —2) Iiergf/[ufl _?dr <0,
0

sincey (0) — A > 0. Hence,

o0 2 o0 2
/a(r, Uy, U,) (u; + u_,,) dr > /a(r, u,u’) (u’ + i) dr (4.26)
2r 2r
0 0
and by (4.14),
a5 = lul3. (4.27)
From (4.2) and (4.27), we already have that
lu, —ulp,— 0 asn— oo. (4.28)
Furthermore
o0 2

’ 1 Up , u d
fatmaip| (w4 5) = (w45 ) @

0
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- [eeni{(ie5) (i 5) () (0 5)
—Oar,un,un Uy + 5 uy o)\t Wt o r,

where

2

O/a(r u,,,u)(u —i—z) dr—>/a(ru u)(u +2> dr by (4.26)

T / / u 2d n 7 , , u Zd
/a(r’u”’un)<u +Z) r%/a(r’u,u)(u +Z> r,
0 0

by (4.4), (4.5) and dominated convergence, and

/OO( ’)(’+””)(’+”)d —”>7( ’)<’+”)2d
a(ry s )\ wy, + o7 ) (' + 5 ) dr a(rou,u){u'+ o | dr,
0 0

by (4.17) and Lemma 3.4.

Hence,
7 u u\12
/a(r, Uy, ) Ku; + j) — <u’ + Z)] d >0
0

and since O< y (0c0) < a(r, u,, u,) < y(0) we deduce that

2
(63)- (30

Using Lemma 3.1, this implies that

2
/(u S(M" u) dr >0

I‘2

and so recalling (4.28), we see thiat, — u|| — O as required. This completes the proof
of the property (c).
Verification of(d). We fixc > 0 and forn € N, we set

m, = inf{”]’(u)”llu”: uesS,},
where S, = {u € H3(0,00): ¢ — + < J(u) < ¢ + 2 and|u| > n} with m, = oo if

S, =@. If J does not have the property (d) at this value:mlhenmn =0forallneN,
and consequently there is a sequefigg such that

1
" ) |[llen || < - and u, €S,.
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It follows that, as1 — oo,
, 1
J(u,) —c, |lu,||— oo and |J (u,,)u,,| < -
n

forall n e N.

We prove the property (d) by showing that the existence of such a subsequence leac
to a contradiction.

From the formulae fov andJ’, asn — oo,

o0 1 ., 2 k o
/FF<Z[M,2,+<M;,+%) })dr—é/uﬁdr%c (4.29)
0 0
and
1 T I 2 l Un 2 i 2 1
——</a(r,un,un) us + (u), + — dr—k/undr<— (4.30)
n 2r n
0 0
for all n € N. We claim that (4.30) implies that
1412
J(tu,) < ( ;rn ) + J(u,) forallt>0andneN. (4.32)

In fact, for allf > 0 andn € N,

2

J(tun):/rl“<[5{urzl+<u;+;—") ])dr—% urzldr
. r .
0 0
7 27, LUy,
<O/rF<Z{un+<un+Z) ])dr

Lt 7( ’){%(#””ﬂd (4.32)
510 Oar,un,un , + (0, + = e .

For fixedr andn, we set

=r — U u —_— — —alr,u,,u u u -
or [ T\ T Y o @t U U T U T 5

fort > 0. Then
"= H*(*)DZ{*(*H
A L ™ or | T\ T oy

2

u
—ta(r,u,, u,) {u,zl + (u; + —n> }

2r
2 ’ Un
=1 —
i (+3)

(Gl (ar3) )

2
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(g (e3) )

>0 forO<r <1,
<0 forr>1.

Henceh(t) < k(1) for all r > 0 and so (4.32) yields

2 7 2 7
T(tun) < 5 +/h<z>dr <5 +'/h<1>dr
0 0

— o [zl () ])
~ .Or or [fn T\ T o)

1 2
— za(r,u,, u,) {uﬁ + (u; + u—") ] dr. (4.33)
2 2r

But, again from (4.30),

> [rr (e (n+22) )
(up)= | r > uy, u, > r
0
1(1 7 T U2
—E{r—l-i-b/a(r,u,,,un){un—i- <un+5) ]}dr

[rr (Gl (i ) ]) - gormanfite (14 5) e
or o U wy+ 5 A i, 1) (1t y+ 5 r

1
< o + J(u,) forallneN. (4.34)

so that

Combining (4.33) and (4.34), we see that the claim (4.31) has been established.
Now we set

2,/c

= , = and w, =t,u,.
[min{y (co), XG0z ™ Jlu, | S

Clearly, the sequendev, } is bounded inH3(0, co) and so, by passing to a subsequence,
we can suppose that, — w weakly in H§ (0, oo) for some element € H}(0, co). We
obtain the desired contradiction by showing that there can be no such elemfetdo
this in three steps. First we show that# 0. Then we show thay must satisfy a certain
linear differential equation. Finally we show that this equation cannot have a nonzerc
solution in Hg (0, 00).

Step 1.Suppose thatv = 0. In particularw,, — 0 uniformly on compact subsets of
[0, 00). As in the proof of part (a) of Proposition 4.2, we note that the concavityy’ of
implies that
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J(w,) =7{r1“<% {war (w + 5 )ZD _ %wf} dr
0
> 7{; ()7 (w2 ] ) o
y(oo)/( ﬂ) dr + = /{rF( 2)—%w3}dr.
Let ¢ = (y(0) — A)/2. Then there exist8 > 0 such thatl"(r) > (y(0) — &)¢ for all

t € [0, 8]. SettingR(¢) = d?/8, we have thatw?(r)/r < dZ/R(s) < S forall r > R(e),
and so

0 2 o 2
/rf<&>dr> /r[y(O)—e]&dr
r r
R(e) R(e)
for all n. Hence
00 2 R(e)
w
/rF(—”)dr/ /ry(oo) dr—l— / [y (0) — e]w?dr
0 ’ R(e)

00 R(e)
/y(O)—e w?dr + / [y(oo)—y(O)—i—e]wfdr
0 0

oo

=@~ [uidr+o)

0
sincew, — 0 uniformly on[0, R(¢)] asn — oo. Thus we see that

o0

J(w,,)}@/(w;)zdr—i—%[y@)_g_k]/wsdr+o(1)
0

0

_)/(OO) T I\2 } o T 2
=5 O/(w”) dr—|—4[y(0) k]/w”dr—i-o(l)

0

1 1
>2m|n{y(oo) Y- ]}||wn||2+o<1>

=2c+0(1)

by the definition ofd andw,,.
On the other hand we have already shown in (4.31) that

+ J(u,) forallt,>0andn eN

2
J(wn) = J (tait) < (1;’")

=c+0(1),
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where as before(@) represents any quantity which tends to zera as oco. Combining
these inequalities we see find that

2c+0(1) <c+0(d),

contradicting the fact that > 0. This proves thatv £ O.
Step 2 At this point our aim is to show that for al € C3°((0, 00)),

T ;W ;L _
O/V(OO){U)(P-i- (w +5) <<p +5>}—/\w¢dr_o.

We begin by recalling thatJ’(u,)|| — 0 andz, — 0. Hence, for allp € C5°((0, 00)),

et seiofuss (v 52) (6 + ) s
ryUp, n A . - n r
Oa,u u, Wy w, 2 () 2 wyQ

=t,J (u,)9 -0 asn — oo.
To complete this step we show that,/as> oo,

O [{at ) = jugd — [{y(0) - iwpdr
0 0

and

0 Joomilae 3o oo )5
0 0

We fix ¢ € C3°((0, o0)) and choosé, [ such that supg C [k, ] C (0, 00). Form e N,
let

2
A(n,m) = {r ek, 1]: w,(r)® + [w,;(r) + w"(r)] < 1}
2r m

and letB(n, m) = [k, I[\A(n, m).
There exists,, > 0 such thaty (s) — y(0c0)| < 1/m for all s > s,,. But

, 1 o [ w0
a(r,un,un):J/(ﬁ {wn(r) + |:w”(r)+ 2 :| :|),

where

1[(%+[%)+W“rk>l
2rt? Wnlr Wnll 2r - 2t2m

for all r € B(n, m). Hence, since, — 0, there exista(m) € N such that

W, (1)

2r

2
22 {wn(r)2 + {w;(r) + ] } >s, foralln>n@m)
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and so
1

la(r, u,, u,) —y(c0)| < =
m

for all r € B(n, m) provided thatz > n(m). Hence

/\a(r,un,u:,)—y(oo>y|wn||<p|dr=( / + /)|a(r,un,u;)—y(oo>y|wn||<p|dr

0 A(n,m) B(n,m)
- [y (0) — y(0)]
ST

provided that: > n(m). Recalling thajw, |~ < |[w,|| =d, we see that

lim sup .’a(r’”n’“il)—J/(OO)\Iw,,llga|dr<{[V(O) )/(oo)] }/I o

n—o00

1 n
oldr + — / lwallo] dr
m

A(n,m) B(n,m)

for all m € N. Thus

n—oo

lim /‘a(r, U, 1)) — v (00)||w,|lp|dr =0

and (i) follows from the weak convergencewf to w in H3(0, co).
Similarly,

/\a(ru,,,u)— (oo)]’(w + )H(go—i-¢>
" 2r

([« ] Jesesa=reo (e ) (4 )
ord [ 2o 2)

[J/(O)«/i/(OO) /‘( )

provided that: > n(m). Hence

o
. w 1%
lim su Uy, U — ! —")H(’ —>
s s (w02 (42

. [y(0) —y(c)] [ ¢
<lim sup ———— ’( —)
n— 00 A m b/ 2)”

L @ —y(0)] 7\( )
\/’7_1 0

dr

dr

dr

4 /
m

4d
dr + _|¢n|2
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by (3.4) and (3.6) for allz € N. Thus

lim /!a(r Mn,u)—V(OO)W(w + >H< )

and (ii) follows from the weak convergence of to w in Hg (0, 0o).
Step 3By step 2 we know that for alh € C5°((0, 00)),

Z{w¢+< ) (¢ +5) } ~wpdr =0

where u = A/y(00) > 1 andw € H(0, 00). It follows that (w’ + ) has a weak
derivative on(0, oo) and that

(v+g) =a-wwrz(v+3)
w o) = wyw er > )

This equation simplifies to

r=0

// 3

y SwW= 1—-ww
which is a form of Bessel's equation having two linearly independent solutions which
can be expressed as

wi(r) =/rJi(v/u—1r) and wy(r) =/rY1(v/n —1r),

where J; andY; denote the usual Bessel functions of order one of the first and second
kind, respectively. (Here we use the standard notation as in [6], for example.) Hence
there are constant$ and B such that

w() = Aw1(r) + Bwa(r) forr > 0.

But, from the properties af; andY; (see Sections 5.16.1 and 5.16.2 of [6]), it follows
that

Iimowl(r)=0 and Iirng(r)=

and so we must havB = 0. On the other hand,

lim wl(r) 2
oo oS —1r —31) \\n/e—1D

which shows thatw; ¢ L2(0, 00). But w € H(0,00) C L?(0,00) SO we must have
A = 0. Thus we find thatv =0, contradicting what was proved in step 1.

Thus we see that the assumption that= 0 for all n € N leads to a contradiction and
this in turn proves that the property (d) of Proposition 4.2 is satisfied.

This completes the proof of Theorem 4.1.
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