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ABSTRACT. – The purpose of this work is to prove existence and uniqueness results of suitably
smooth solutions for an isothermal model of capillary compressible fluids derived by J.E. Dunn
and J. Serrin (1985), which can be used as a phase transition model.

We first study the well-posedness of the model in spaces with critical regularity indices with
respect to the scaling of the associated equations. In a functional setting as close as possible to
the physical energy spaces, we prove global existence of solutions close to a stable equilibrium,
and local in time existence for solutions when the pressure law may present spinodal regions.
Uniqueness is also obtained.

Assuming a lower and upper control of the density, we also show the existence of weak
solutions in dimension 2 near equilibrium. Finally, referring to the work of Z. Xin (1998) in
the non-capillary case, we describe some blow-up properties of smooth solutions with finite total
mass.

RÉSUMÉ. – On s’intéresse ici à des résultats d’existence et d’unicité de solutions pour un
modèle de fluides compressibles isothermes avec capillarité. Ce modèle de transition de phase a
été dérivé par J.E. Dunn et J. Serrin (1985).

Pour commencer, on montre que le problème de Cauchy est bien posé dans des espaces
à régularité critique pour lescaling des équations. Pour des données initiales proches d’un
état d’équilibre stable, on obtient l’existence globale (et l’unicité) de solutions dans un cadre
fonctionnel aussi proche que possible de l’espace d’énergie physique. Pour des lois de pression
plus générales (pouvant être décroissantes), on prouve des résultats locaux en temps.

En supposant que l’on dispose d’un minorant strictement positif et d’une borne supérieure pour
la densité, on obtient l’existence de solutions faibles en dimension 2 pour des données initiales
proches de l’équilibre. Enfin, en adaptant un travail de Z. Xin pour les fluides sans capillarité, on
établit l’explosion de solutions régulières à masse totale finie.
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1. Introduction

Let us consider a fluid of densityρ > 0, velocity field u ∈ Rd (d > 2), entropy
density s, energy densitye, and temperatureθ = (∂e/∂s)ρ . We are interested in the
following model of compressible capillary fluid, which can be derived from a Cahn–
Hilliard like free energy (see the pioneering work by J.E. Dunn and J. Serrin in [11], and
also [1,6,12])

∂tρ + div(ρu)= 0, (1)

∂t(ρu)+ div(ρu⊗ u)= div(S+K ), (2)

∂t

(
ρ

(
e+ u2

2

))
+ div

(
ρu
(
e+ u2

2

))
= div(α∇θ)+ div

(
(S+K) · u), (3)

where the viscous stress tensorS and the Korteweg stress tensorK read as

Si,j = (λdivu−P(ρ, e))δi,j + 2µD(u)i,j , (4)

K i,j = κ
2

(
1ρ2− |∇ρ|2)δi,j − κ∂iρ∂jρ, (5)

D(u)i,j = (∂iuj + ∂jui)/2 being the strain tensor, and(λ,µ) the constant viscosity
coefficients of the fluid. We require thatλ andµ satisfyµ> 0 and λ+2µ> 0, which in
particular covers the case whenλ andµ satisfy Stokes’ lawdλ+ 2µ = 0. The thermal
conduction coefficientα is a given non negative function of the temperatureθ and the
surface tension coefficientκ > 0 is assumed to be constant. In view of the first principle
of thermodynamics, the entropy densitys solves

∂t(ρs)+ div(ρsu)= 1

θ

(
div(α∇θ)+K :D(u)+ 2µD(u) :D(u)+ λ|divu|2). (6)

As a reasonable starting point of our analysis, we consider the scaled Van der Waals
equation of state

P(ρ)= aρθ
(

8

3− ρ −
3ρ

θ

)
, (7)

wherea is a positive constant, and the critical densityρc and temperatureθc are equal
to 1. Depending on the fixed temperatureθ , the pressure is a nondecreasing function of
the densityρ or may present decreasing regions (spinodal regions) for some values of
ρ, which are thermodynamically unstable. The above equation of state(7) ensures the
presence of two basic states, a “liquid” one, and a “gaseous” one. Let us as in [20] put
emphasis on the existence of steady solutions connecting a gas phase to a liquid phase
through a smoothly varying density profile. When initial conditions involve densities in
the unstable (spinodal) region, the two phases are expected to spontaneously separate.
For details on the derivation of the above Korteweg like model, we refer to [1,11,12,16].

In what follows, we do not consider thermal fluctuations so that the pressurep is a
function ofρ only. The corresponding isothermal model which was also considered in
[13,20] then reads as
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∂tρ + div(ρu)= 0, (8)

∂t(ρu)+ div(ρu⊗ u)−µ1u− (λ+µ)∇div u+∇P(ρ)= divK + ρf, (9)

wheref is an exterior forcing term, supplemented with initial conditions

ρ|t=0= ρ0> 0 and ρu|t=0=m0. (10)

In a bounded domainΩ , we would have to precise the boundary conditions, namely
homogeneous Dirichlet conditions for the velocity:u|∂Ω = 0 and Neumann conditions
for the density:∂nρ|∂Ω = 0. In order to simplify the presentation, we will focus on the
whole space caseRd (d > 2) and study the well-posedness of (8) (9) for an initial density
close enough to an equilibrium densityρ̄ > 0, or at least bounded away from vacuum,
which is a major difficulty in most of compressible fluid models.

Before getting into the heart of mathematical results, we first derive the physical
energy bounds of the above system in the casef ≡ 0 to simplify the presentation. Let
ρ̄ > 0 be a constant reference density, andπ defined by

π(s)= s
( s∫
ρ̄

P (z)

z2
dz− P(ρ̄)

ρ̄

)
, (11)

so thatP(s)= sπ ′(s)− π(s), π ′(ρ̄)= 0, and

∂tπ(ρ)+ div
(
uπ(ρ)

)+ P(ρ)divu= 0 inD′
(
(0, T )×Rd). (12)

Notice thatπ is convex as far asP is non decreasing (sinceP ′(s) = sπ ′′(s)), which is
the case forγ -type pressure laws. Multiplying the equation of momentum conservation
by u and integrating by parts overRd , we obtain the following energy estimate∫

Rd

(
1

2
ρu2+ (π(ρ)− π(ρ̄))+ κ

2
|∇ρ|2

)
(t) dx

+
t∫

0

ds

∫
Rd

(
µ D(u) :D(u)+ (λ+µ)|divu|2)dx

6
∫
Rd

( |m0|2
2ρ0
+ (π(ρ0)− π(ρ̄))+ κ

2
|∇ρ0|2

)
dx. (13)

Indeed, in order to compute formally the contribution to energy of the capillary tensor
K , we observe that

divK = κ ρ∇1ρ. (14)

In view of the above expression, this model can be understood as a diffuse interface
model, in which surface tension takes place between level sets of the continuously
varying density. As a matter of fact, the right hand side(14) can be rewritten up to a
gradient term as the product between∇ρ and1ρ, which, roughly speaking, respectively
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represent the normal direction and the curvature of the level sets of the density. As
observed for instance in [1], formal analyses show that the sharp interface limit leads
to the classical two-fluid problem. We obtain indeed

−
∫
Rd

u · div K dx=
∫
Rd

κ div(ρu)1ρ dx= κ
∫
Rd

∂t∇ρ · ∇ρ dx= κ d

dt

∫
Rd

|∇ρ|2
2

dx.

It follows that assuming that the total energy is finite

E0=
∫
R2

(
1

2
ρ0u2

0+
(
π(ρ0)− π(ρ̄))+ κ2 |∇ρ0|2

)
<+∞, (15)

we have thea priori bounds

π(ρ)− π(ρ̄) and ρ|u|2 ∈ L∞(0,∞;L1(Rd)), (16)

∇ρ ∈L∞(0,∞;L2(Rd))d and ∇u ∈L2((0,∞)×Rd)d2

. (17)

Let us emphasize at this point that the abovea priori boundsdo not provide anyL∞
control on the density from below or from above. Indeed, even in dimensiond = 2,
H 1(Rd) functions are not necessarily locally bounded. Thus, vacuum patches are likely
to form in the fluid in spite of the presence of capillary forces, which are expected to
smooth out the density.

2. Mathematical results

We wish to prove existence and uniqueness results of solutions to (8) (9) in functional
spaces very close to energy spaces. In the caseκ = 0 andp(ρ)= aργ , with a > 0 and
γ > 1, P.-L. Lions proved in [17,18] the global existence of weak solutions “à la Leray”
(ρ,u) to (8) (9) for γ > 3d/(d + 2) and initial data(ρ0,m0) such that

π(ρ0)− π(ρ̄) and
|m0|2
ρ0
∈L1(Rd), (18)

where we agree thatm0 = 0 on {x ∈ Rd/ρ0(x) = 0}. More precisely, he obtains the
existence of global weak solutions(ρ,u) to (8)–(10) such that
• ρ − ρ̄ ∈ L∞(0,∞;L2

γ (Rd)) (whereL2
p(Rd) spaces are Orlicz spaces defined in

[18]),
• u ∈ L2(0,∞; Ḣ 1(Rd))d (Ḣ s being defined in Section 3),

with in addition
• ρ ∈ C([0,∞); Lploc(Rd)) if 1 6 p < γ ,
• ρ|u|2 ∈ L∞(0,∞; L1(Rd)), ρu ∈ C([0,∞); L2γ /(γ+1)

loc (Rd)-weak),
• ρ ∈ Lqloc([0,∞)×Rd) for q = γ − 1+ 2γ /d.

Moreover, the energy inequality(13)holds for almost everyt > 0.
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Notice that the main difficulty for proving Lions’ theorem consists in strong
compactness properties of the densityρ in Lploc spaces required to pass to the limit in the
pressure termp(ρ)= aργ . In the capillary caseκ > 0, more a priori bounds are available
for the density, which belongs toL∞(0,∞; Ḣ 1(Rd)). Hence, one can easily pass to the
limit in the pressure term. However, in the remaining quadratic terms involving gradients
of the density∇ρ ⊗∇ρ (see(5)), we have been unable to pass to the limit.

Let us mention now that the existence of strong solutions is known since the works
by H. Hattori and D. Li [13,14]. Notice that high order regularity in Sobolev spacesHs

is required, namely the initial data(ρ0,m0) are assumed to belong toHs ×Hs−1 with
s > d/2+ 4. Moreover, they considered convex pressure profiles, which cannot cover
the case of Van der Waals’ equation of state.

Here we want to investigate the well-posedness of the problem incritical spaces, that
is, in spaces which are invariant by the scaling of Korteweg’s system. Recall that such an
approach is now classical for incompressible Navier–Stokes equations (see, for example,
[7] and the references therein) and yields local well-posedness (or global well-posedness
for small data) in spaces with minimal regularity.

Let us explain precisely the scaling of Korteweg’s system. We can easily verify that,
if (ρ,u) solves (8) (9), so does(ρλ,uλ), where

ρλ(t, x)= ρ(λ2t, λx) and uλ(t, x)= λu(λ2t, λx),

provided the pressure lawP has been changed intoλ2P .

DEFINITION 1. –We will say that a functional space is critical with respect to the
scaling of the equation if the associated norm is invariant under the transformation
(ρ,u) 7→ (ρλ,uλ) (up to a constant independent ofλ).

This suggests us to choose initial data(ρ0,u0) in spaces whose norm is invariant by
(ρ0,u0) 7→ (ρ0(λ·), λu0(λ·)).

A natural candidate is the homogeneous Sobolev spaceḢ d/2× (Ḣ d/2−1)d , but since
Ḣ d/2 is not included inL∞, we cannot expect to getL∞ control on the density when
ρ0 ∈ Ḣ d/2. This is the reason why, instead of the classical homogeneous Sobolev spaces
Ḣ s(Rd), we will consider homogeneous Besov spaces with the same derivative index
Bs = Bs2,1(Rd) (for the corresponding definitions, we refer to Section 3). One of the nice
property ofBs spaces for critical exponentss is thatBd/2 is an algebra embedded inL∞.
This allows to control the density from below and from above, without requiring more
regularity on derivatives ofρ.

Since a global in time approach does not seem to be accessible for general data, we
will mainly consider the global well-posedness problem for initial data close enough to
stable equilibria (Section 4). More precisely, we will state the following theorem:

THEOREM 1. –Let ρ̄ > 0 be such thatP ′(ρ̄) > 0. Suppose that the initial density
fluctuationρ0− ρ̄ belongs toBd/2 ∩ Bd/2−1, that the initial velocityu0 is in (Bd/2−1)d

and that the exterior forcing termf is in L1(R+;Bd/2−1)d . Then there exists a constant
η > 0 depending only onκ,µ,λ,ρ,P ′(ρ̄) andd, such that, if

‖ρ0− ρ̄‖Bd/2−1∩Bd/2 + ‖u0‖Bd/2−1 +‖f‖L1(Bd/2−1) 6 η,
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then (8)–(10) has a unique global solution(ρ,u) such that the density fluctuation
(ρ − ρ̄) ∈ C(R+;Bd/2−1 ∩ Bd/2) ∩ L1(R+;Bd/2+1 ∩ Bd/2+2) and the velocityu ∈
C(R+;Bd/2−1)d ∩ L1(R+;Bd/2+1)d .

In Section 5, we get a local in time existence result for initial densities bounded away
from zero, which does not require any stability assumption on the pressure law, and thus
applies to Van der Waals’ law. The precise statement reads as follows:

THEOREM 2. –Suppose that the forcing termf belongs to L1
loc(R+;

Bd/2−1)d , that the initial velocityu0 belongs to(Bd/2−1)d , and that the initial den-
sity ρ0 satisfies(ρ0 − ρ̄) ∈ Bd/2 and ρ0 > c for a positive constantc. Then there
existsT > 0 such that(8)–(10) has a unique solution(ρ,u) satisfying (ρ − ρ̄) ∈
C([0, T ];Bd/2)∩L1([0, T ];Bd/2+2) andu ∈ C([0, T ];Bd/2−1)d ∩L1([0, T ];Bd/2+1)d .

In Section 6, we show that the problem is still locally well-posed in more general
scaling invariant Besov spaces of typeBsp,1 which are not related to energy spaces

(namely ρ − ρ̄ is assumed to be inBd/pp,1 and u0 to be in (Bd/p−1
p,1 )d ). No stability

assumption on the pressure is required, but we have to suppose that the density is close to
a constant (see Theorem 5). Let us observe that working withp > d allows to consider
initial velocities inBsp,1 spaces with negative exponentss, which is in particular relevant
for oscillating initial data.

Finally, we will investigate blow-up properties of smooth solutions without smallness
assumptions on the data, like in the work of Z. Xin [22], and study sufficient conditions
for the existence of weak solutions close to equilibria in dimensiond = 2.

Notation. In all the paper,C will stand for a “harmless” constant, and we will
sometimes use the notationA.B equivalently toA6 CB.

3. Littlewood–Paley theory and Besov spaces

3.1. Littlewood–Paley decomposition

The homogeneous Littlewood–Paley decomposition relies upon a dyadic partition of

unity. We can use for instance anyϕ ∈ C∞(Rd), supported inC def={ξ ∈ Rd,3/46 |ξ |6
8/3} such that ∑

`∈Z
ϕ
(
2−`ξ

)= 1 if ξ 6= 0.

Denotingh=F−1ϕ, we then define the dyadic blocks by

1`u
def= ϕ(2−`D)u= 2`d

∫
Rd

h
(
2`y
)
u(x− y) dy and S`u=

∑
k6`−1

1ku.

The formal decomposition

u=∑
`∈Z

1`u (19)
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is called homogeneous Littlewood–Paley decomposition. Let us observe that the above
formal equality does not hold inS ′(Rd) for two reasons:

(i) The right-hand side does not necessarily converge inS ′(Rd).
(ii) Even if it does, the equality is not always true inS ′(Rd) (consider the caseu= 1).
Nevertheless, (19) holds true modulo polynomials (see [21]).
Furthermore, the above dyadic decomposition has nice properties of quasi-orthogonal-

ity: with our choice ofϕ, we have

1k1`u≡ 0 if |k − `|> 2, and 1k(S`−1u1`u)≡ 0 if |k − `|> 5. (20)

3.2. Homogeneous Besov spaces

DEFINITION 2. –For s ∈R, p ∈ [1,+∞], q ∈ [1,+∞] andu ∈ S ′(Rd), we set

‖u‖Bsp,q def=
(∑
`∈Z

(
2s`‖1`u‖Lp)q)1/q

.

A difficulty due to the choice of homogeneous spaces arises at this point. Indeed,
‖·‖Bsp,q cannot be a norm on{u ∈ S ′(Rd),‖u‖Bsp,q < +∞} because‖u‖Bsp,q = 0
means thatu is a polynomial. This enforces us to adopt the following definition for
homogeneous Besov spaces (see [5] for more details):

DEFINITION 3. –Let s ∈ R, p ∈ [1,+∞] andq ∈ [1,+∞]. Denotem= [s− d/p] if
s − d/p /∈ Z or q > 1 andm= s − d/p− 1 otherwise. Ifm< 0, then we defineBsp,q as

Bsp,q =
{
u ∈ S ′(Rd) | ‖u‖Bsp,q <∞ andu=∑

`∈Z
1`u in S ′

(
Rd
)}
.

If m> 0, we denote byPm[Rd] the set of polynomials of degree less than or equal tom

and we set

Bsp,q =
{
u ∈ S ′(Rd)/Pm[Rd] | ‖u‖Bsp,q <∞ and u=∑

`∈Z
1`u in S ′

(
Rd
)
Pm
[
Rd
]}
.

Remark1. – The above definition is a natural generalization of the homogeneous
Sobolev or Hölder spaces: one can show thatBs∞,∞ is the homogeneous Hölder space
Ċs and thatBs2,2 is the homogeneous Sobolev spaceḢ s .

In the sequel, we will use only Besov spacesBsp,q with q = 1 and we will denote them
byBsp or even byBs if there is no ambiguity on the indexp.

3.3. Basic properties of Besov spaces

PROPOSITION 1. – The following properties hold:
(i) Density: if p <+∞ and |s|6 d/p, thenC∞0 is dense inBsp.
(ii) Derivation: there exists a universal constantC such that

C−1‖u‖Bsp 6 ‖∇u‖Bs−1
p
6 C‖u‖Bsp .
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(ii ′) Fractional derivation: let Λ
def=√−1 and σ ∈ R. Then the operatorΛσ is an

isomorphism fromBsp toBs−σp .
(iii) Sobolev embeddings:if p1 < p2 thenBsp1

↪→ Bs−d(1/p1−1/p2)
p2

(where↪→ means
continuous embedding).

(iv) Algebraic properties: for s > 0, Bsp ∩L∞ is an algebra.
(v) Interpolation: (Bs1p ,B

s2
p )θ,1= Bθs1+(1−θ)s2p .

In Section 6, we will make extensive use of the spaceBd/pp . Note that, ifp < +∞,
thenBd/pp is an algebra included in the spaceC0 of continuous functions which tend to
0 at infinity. Note also thatBd/pp × (Bd/p−1

p )d is invariant by the scaling of Korteweg’s
system.

In Sections 4 and 5, we will focus on the casep = 2. Note that the following inclusion
chain

B
d/2
2,1 ↪→ Ḣ d/2= Bd/22,2 ↪→ B

d/2
2,∞

shows us thatḢ d/2 is very close toBd/22,1 . ButBd/22,1 has two additional nice properties: to
be an algebra and to be a subset ofC0.

3.4. Besov–Chemin–Lerner spaces

The study of non stationary PDE’s usually requires spaces of typeLrT (X)
def=Lr(0, T ;

X) for appropriate Banach spacesX. In our case, we expectX to be a Besov space, so
that it is natural to localize the equations through Littlewood–Paley decomposition. We
then get estimates for each dyadic block and perform integration in time. But, in doing
so, we obtain bounds in spaces which are not of typeLr(0, T ;Bsp). This approach was
initiated in [9] and naturally leads to the following definitions:

DEFINITION 4. –Let (ρ,p) ∈ [1,+∞]2, T ∈]0,+∞] ands ∈R. We set

‖u‖
L̃
ρ

T
(Bsp)

def=∑
`∈Z

2`s
( T∫

0

‖1`u(t)‖ρLp dt
)1/ρ

.

Noticing that Minkowski’s inequality yields‖u‖Lρ
T
(Bsp)
6 ‖u‖

L̃
ρ

T
(Bsp)

, we define

L̃
ρ
T (B

s
p) spaces as follows

L̃
ρ
T

(
Bsp
) def= {u ∈ LρT (Bsp) | ‖u‖L̃ρ

T
(Bsp)

<+∞}.
Let us observe thatL1

T (B
s
p) = L̃1

T (B
s
p) but that the embedding̃LρT (B

s
p) ⊂ LρT (Bsp) is

strict if ρ > 1.
We will denote byC̃T (Bsp) the subset of functions of̃L∞T (Bsp) which are continuous

on [0, T ] with values inBsp.

Throughout the paper, the notation L̃ρT (B
s
p ∩ Bs

′
p′) (respectively

L̃
ρ
T (B

s
p×Bs ′p′)) will stand forL̃ρT (B

s
p)∩L̃ρT (Bs ′p′) (respectivelỹLρT (B

s
p)×L̃ρT (Bs ′p′)). More-

over, in the caseT =+∞, theT will be omitted. For example,̃Lρ(Bsp)means̃Lρ+∞(Bsp).
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We will often use the following interpolation property

‖u‖
L̃
ρ

T
(Bsp)
6 ‖u‖θ

L̃
ρ1
T
(B

s1
p )
‖u‖1−θ

L̃
ρ2
T
(B

s2
p )

with
1

ρ
= θ

ρ1
+ 1− θ

ρ2
ands = θs1+ (1− θ)s2,

and the following embeddings

L̃
ρ
T

(
Bd/pp

)
↪→L

ρ
T (C0) and C̃T

(
Bd/pp

)
↪→C

([0, T ] ×Rd).
TheL̃ρT (B

s
p) spaces suit particularly well to the study of smoothing properties of the heat

equation. In [7], J.-Y. Chemin proved the following proposition

PROPOSITION 2. – Letp ∈ [1,+∞] and16 ρ26 ρ16+∞. Letu solve{
∂tu− ν1u= f,
u|t=0= u0.

Then there existsC > 0 depending only ond, ν, ρ1 andρ2 such that

‖u‖
L̃
ρ1
T
(B

s+2/ρ1
p )

6C‖u0‖Bsp +C‖f ‖L̃ρ2
T
(B

s−2+2/ρ2
p )

.

In Sections 4, 5 and 6, we will point out similar smoothing properties for the linearized
Korteweg system.

Let us now state properties of̃LρT (B
s
p) spaces with respect to the product.

PROPOSITION 3. – If s > 0, 1/ρ2+ 1/ρ3= 1/ρ1+ 1/ρ4= 1/ρ 6 1, u ∈Lρ1
T (L

∞)∩
L̃
ρ3
T (B

s
p) andv ∈Lρ2

T (L
∞)∩ L̃ρ4

T (B
s
p), thenuv ∈ L̃ρT (Bsp) and

‖uv‖
L̃
ρ

T
(Bsp)
. ‖u‖Lρ1

T
(L∞)‖v‖L̃ρ4

T
(Bsp)
+‖v‖Lρ2

T
(L∞)‖u‖L̃ρ3

T
(Bsp)

.

If s1, s2 6 d/p, s1 + s2 > 0, 1/ρ1 + 1/ρ2 = 1/ρ 6 1, u ∈ L̃ρ1
T (B

s1
p ) and v ∈ L̃ρ2

T (B
s2
p ),

thenuv ∈ L̃ρT (Bs1+s2−d/pp ) and

‖uv‖
L̃
ρ

T
(B

s1+s2−d/p
p )

. ‖u‖Lρ1
T
(B

s1
p )
‖v‖Lρ2

T
(B

s2
p )
.

This proposition is a straightforward adaptation of the corresponding results for usual
homogeneous Besov spaces (see [8]).

We finally need a composition lemma iñLρT (B
s
p) spaces.

LEMMA 1. – Let s > 0, p ∈ [1,+∞] andu ∈ L̃ρT (Bsp)∩L∞T (L∞).
(i) LetF ∈W [s]+2,∞

loc (Rd) such thatF(0)= 0. ThenF(u) ∈ L̃ρT (Bsp). More precisely,
there exists a functionC depending only ons, p, d andF such that

‖F(u)‖
L̃
ρ

T
(Bsp)
6 C

(‖u‖L∞
T
(L∞)

)‖u‖
L̃
ρ

T
(Bsp)

.

(ii) If v also belongs tõLρT (B
s
p)∩L∞T (L∞) andG ∈W [s]+3,∞

loc (Rd), thenG(v)−G(u)
belongs toL̃ρT (B

s
p) and there exists a functionC depending only ons, p, d andG, and

such that
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L̃
ρ

T
(Bsp)

6C
(‖u‖L∞

T
(L∞),‖v‖L∞

T
(L∞)

)(‖v − u‖
L̃
ρ

T
(Bsp)

(1+‖u‖L∞
T
(L∞) + ‖v‖L∞

T
(L∞))

+ ‖v − u‖L∞
T
(L∞)(‖u‖L̃ρ

T
(Bsp)
+ ‖v‖

L̃
ρ

T
(Bsp)

)
)
.

Proof. –For (i), one just has to use the proof of [2] and replaceL2 norms withLp

norms. For (ii), we use the following identity

G(v)−G(u)= (v − u)
1∫

0

H
(
u+ τ(v − u))dτ +G′(0)(v− u),

whereH(w)=G′(w)−G′(0), and we conclude by using (i) and Proposition 3.2
4. Global solutions near equilibrium

In this section, we want to prove global existence and uniqueness of suitably smooth
solutions to the Korteweg system(8) (9) in the functional spaces̃LρT (B

s
2) which are very

close to the physical energy spaces. Given a reference densityρ̄ such that the stability
conditionP ′(ρ̄) > 0 is satisfied, we introduce the density fluctuationq = (ρ − ρ̄)/ρ̄
and the scaled momentumm = ρu/ρ̄. We also define the scaled viscosity coefficients
µ̄= µ/ρ̄ andλ̄= λ/ρ̄ and the scaled surface tension coefficientκ̄ = ρ̄κ . Assuming that
the densityρ is bounded away from zero, we rewrite the Korteweg system (8) (9) as
follows

∂tq + divm= 0, (21)

∂tm− µ̄1m− (λ̄+ µ̄)∇div m− κ̄∇1q + P ′(ρ̄)∇q =G(q,m)+ f, (22)

(q,m)|t=0= (q0,m0), (23)

where we defineG=G1+G2+G3+G4+G5 by

G1(q,m)=−div
(

m⊗m
1+ q

)
, G2(q,m)=−∇H(q),

G3(q,m)=−µ̄1
(
qm

1+ q
)
− (λ̄+ µ̄)∇div

(
qm

1+ q
)
,

G4(q,m)= κ̄2∇
(
1q2− |∇q|2)− κ̄ div(∇q ⊗∇q)= κ̄q∇1q,

and

G5(q,m)= fq,

H being defined byH(q)= (P (ρ̄(1+ q))−P(ρ̄)−P ′(ρ̄)qρ̄)/ρ̄.
In Section 4.1, we study the linearized system around(q,m) = (0,0), which turns

out to have the same smoothing properties as the heat equation. Finally, we prove in
Section 4.2 our main global theorem, estimating the right-hand sideG of (22) in terms
of suitable norms of(q,m). Notice that in Sections 4 and 5,Bs will stand forBs2,1.
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4.1. Estimates for the linearized system

This section is devoted to the linearized isothermal system of Korteweg type around
(q,m)= (0,0). This system reads{

∂tq + div m= F,
∂tm− µ̄1m− (λ̄+ µ̄)∇divm− κ̄∇1q + β∇q =G.

(LNSK1)

The termβ∇q corresponds to the linearized pressure (that isβ = P ′(ρ̄) > 0). Our
purpose is to prove estimates for (LNSK1) in Besov spaces closely related to energy
spaces. We get:

PROPOSITION 4. – Let s ∈ R, 16 r1 6 r 6 +∞ and T ∈]0,+∞]. If (q0,m0) ∈
(Bs ∩ Bs−1)× (Bs−1)d and (F,G) ∈ L̃r1T ((Bs−2+2/r1 ∩ Bs−3+2/r1)× (Bs−3+2/r1)d) then
the linear system(LNSK1) has a unique solution(q,m) ∈ C̃T ((Bs ∩Bs−1)× (Bs−1)d)∩
L̃rT ((B

s+2/r ∩Bs−1+2/r)× (Bs−1+2/r)d). Moreover, there exists a constantC depending
only onr , r1, µ̄, λ̄, κ̄ andβ such that the following inequality holds:

‖q‖
L̃r
T
(Bs+2/r∩Bs−1+2/r )

+‖m‖
L̃r
T
(Bs−1+2/r )

6 C
(‖q0‖Bs∩Bs−1 + ‖m0‖Bs−1 + ‖F‖

L̃
r1
T
(Bs−2+2/r1∩Bs−3+2/r1)

+ ‖G‖
L̃
r1
T
(Bs−3+2/r1)

)
.

Proof. –Denote byW(t) the semi-group associated to (LNSK1). According to
Duhamel’s formula,

(
q(t)

m(t)

)
=W(t)

(
q0

m0

)
+

t∫
0

W(t − s)
(
F(s)

G(s)

)
ds. (24)

Let us first consider the caseF ≡ 0 and G≡ 0 and denote(q`(t),m`(t))
t =

W(t)(1`q0,1`m0)
t . Then, we have the following lemma

LEMMA 2. – There exist two positive constantsc andC depending only on̄λ, µ̄, κ̄
andβ such that for all̀ ∈ Z,

‖m`(t)‖L2 +‖∇q`(t)‖L2 +‖q`(t)‖L2

6Ce−c22`t
(‖1`m0‖L2 +‖∇1`q0‖L2 + ‖1`q0‖L2

)
.

Proof. –We apply the operator1` to (LNSK1) in the caseF ≡G≡ 0 and get

∂tq` + divm` = 0, (25)

∂tm` − µ̄1m` − (λ̄+ µ̄)∇div m` − κ̄∇1q` − β∇q` = 0. (26)

In view of Eq. (25), integrations by parts yield∫
Rd

1q` div m` dx= 1

2

d

dt
‖∇q`‖2L2 and

∫
Rd

q` div m` dx=−1

2

d

dt
‖q`‖2L2.
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Thus, taking scalar product of (26) withm`, we get

1

2

d

dt

(‖m`‖2L2 + β‖q`‖2L2 + κ̄‖∇q`‖2L2

)+ µ̄‖∇m`‖2L2 + (λ̄+ µ̄)‖div m`‖2L2 = 0. (27)

In order to obtain a second energy estimate, we take the scalar product ofm` with the
gradient of (25), which yields∫

Rd

m` · ∂t∇q` dx− ‖divm`‖2L2 = 0. (28)

Taking the scalar product of (26) with∇q`, we obtain∫
Rd

∇q` · ∂tm` dx+ κ̄‖1q`‖2L2 + β‖∇q`‖2L2 6 C‖∇m`‖L2‖∇2q`‖L2. (29)

Summing (28) and (29), we deduce

d

dt

(∫
Rd

m` · ∇q` dx
)
+ κ̄

2
‖∇2q`‖2L2 + β‖∇q`‖2L2 6 C‖∇m`‖2L2. (30)

Let α > 0 be a constant to be chosen later and denote

h2
` = ‖m`‖2L2 + κ̄‖∇q`‖2L2 + β‖q`‖2L2 + 2α

∫
Rd

m` · ∇q` dx.

As a result, from (30) and (27), we derive for some positive constantc0

1

2

d

dt
h2
` + c0

(‖∇m`‖2L2 + α∥∥∇2q`
∥∥2
L2 + α‖∇q`‖2L2

)
6 Cα‖∇m`‖2L2. (31)

Now choosingα suitably small, we deduce that

1

δ
h2
` 6 ‖m`‖2L2 + κ̄‖∇q`‖2L2 + β‖q`‖2L2 6 δh2

`, (32)

for some positiveδ. Thus, there exists a constantc > 0 such that

1

2

d

dt
h2
` + c22`h2

` 6 0,

so that the proof of Lemma 2 is complete.2
Proof of Proposition 4 (continued). –In view of Lemma 2 and formula (24), we have

‖1`m(t)‖L2 +‖∇1`q(t)‖L2 + ‖1`q(t)‖L2

6Ce−c22`t
(‖1`m0‖L2 +‖∇1`q0‖L2 + ‖1`q0‖L2

)
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+
t∫

0

e−c2
2`(t−τ )(‖1`G(τ )‖L2 + ‖∇1`F(τ)‖L2 + ‖1`F(τ)‖L2

)
dτ,

so routine computations yield Proposition 4.2
4.2. Global existence and uniqueness

Let us first introduce functional spaces needed in the main global existence result. We
will prove existence in the space

E =
(
C̃
(
Bd/2−1∩Bd/2)∩L1(Bd/2+1∩Bd/2+2))(C̃(Bd/2−1)∩L1(Bd/2+1))d ,

and uniqueness in the larger space

Ẽ = C̃
(
Bd/2× (Bd/2−1)d)∩L2

(
Bd/2+1× (Bd/2)d).

We denote by‖·‖
Ẽ

and‖·‖E the corresponding norms. SinceBd/2 is a Banach space, it

is easy to verify that̃E andE are also Banach spaces. We now turn to our main global
existence theorem

THEOREM 3. – Let ρ̄ > 0 be such thatP ′(ρ̄) > 0. Suppose that the initial density
fluctuation q0 belongs toBd/2 ∩ Bd/2−1, that the initial momentumm0 is in Bd/2−1

and that the forcing termf is in L1(R+;Bd/2−1)d . Then there exists a constantη > 0
depending only on̄κ, µ̄, λ̄, ρ̄, P such that, if

‖q0‖Bd/2−1∩Bd/2 +‖m0‖Bd/2−1 + ‖f‖L1(Bd/2−1) 6 η,

then(21)–(23)has a unique global solution(q,m) in Ẽ. In addition,(q,m) belongs to
E.

Proof. –Let us denote(qL,mL) the “free” solution of the linearized system

(
qL(t)

mL(t)

)
=W(t)

(
q0

m0

)
+

t∫
0

W(t − s)
(

0
f(s)

)
ds.

We define the functionalΨqL,mL in a neighborhood of 0 inE by

ΨqL,mL(q̄, m̄)=
t∫

0

W(t − s)
(

0
G(qL + q̄,mL + m̄)(s)

)
ds. (33)

To prove the existence part of the theorem, we just have to show thatΨqL,mL has a fixed
point inE.
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First step: stability ofB(0,R).
We start by proving that the ballB(0,R) of E is stable underΨqL,mL providedR is

small enough. Denoteq = qL+ q̄ andm=mL+m̄. According to Proposition 4, we have

‖(qL,mL)‖E 6Cη, (34)

‖ΨqL,mL(q̄, m̄)‖E 6C‖G(q,m)‖L1(Bd/2−1). (35)

Making the assumption

‖q‖L∞(R+×Rd ) 6 1/2, (H)

and using Proposition 3 and Lemma 1, we deduce the following estimates:

‖G1(q,m)‖L1(Bd/2−1) 6C‖m‖L1(Bd/2+1)‖m‖L̃∞(Bd/2−1)

(
1+ ‖q‖

L̃∞(Bd/2)
)
,

‖G2(q,m)‖L1(Bd/2−1) 6C‖q‖L1(Bd/2+1)‖q‖L̃∞(Bd/2−1)
,

‖G3(q,m)‖L1(Bd/2−1) 6C
(‖q‖L1(Bd/2+2)‖m‖L̃∞(Bd/2−1)

+ ‖q‖
L̃∞(Bd/2)‖m‖L1(Bd/2+1)

)
,

‖G4(q,m)‖L1(Bd/2−1) 6C‖q‖L1(Bd/2+2)‖q‖L̃∞(Bd/2),
‖G5(q,m)‖L1(Bd/2−1) 6C‖f‖L1(Bd/2−1)‖q‖L̃∞(Bd/2),

since by interpolation, we have

‖Z‖2L2(Bs) 6 ‖Z‖L̃∞(Bs−1)
‖Z‖L1(Bs+1).

In the second inequality above, we also used thatH(q)= qH̃ (q) for a smooth function
H̃ such thatH̃ (0)= 0. Therefore, assuming thatR 6 1, we obtain

‖ΨqL,mL(q̄, m̄)‖E 6C‖(qL + q̄,mL + m̄)‖E
(‖(qL + q̄,mL + m̄)‖E + η

)
6C

(
(C + 1)η+R)2. (36)

Let c be a constant such that‖ · ‖Bd/2 6 c implies‖·‖L∞ 6 1/5. We choose(R,η) such
that

R 6 inf
(
(5C)−1, c,1

)
andη6 inf(R, c)/(C + 1), so thatH, is satisfied. (37)

From (36), we finally deduce thatΨqL,mL(B(0,R))⊂ B(0,R).
Second step:Contraction properties.
Consider two elements(q̄1, m̄1) and(q̄2, m̄2) in B(0,R), and denoteqi = qL+ q̄i and

mi =mL + m̄i for i = 1,2. According to (33) and to Proposition 4, we have∥∥ΨqL,mL(q̄2, m̄2)−ΨqL,mL(q̄1, m̄1)
∥∥
E
6 C

∥∥G(q2,m2)−G(q1,m1)
∥∥
L1(Bd/2−1)

. (38)

Under assumption (H) for q1 andq2, we obtain estimates forG(q2,m2)−G(q1,m1).
Indeed, we just have to apply Proposition 3 and Lemma 1 to

G1(q2,m2)−G1(q1,m1)

= div
(

m1⊗m1

(
q2

1+ q2
− q1

1+ q1

)
− m2⊗ (m2−m1)+ (m2−m1)⊗m1

1+ q2

)
,
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G2(q2,m2)−G2(q1,m1)=−∇((q2− q1)H̃ (q2)+ q1
(
H̃ (q2)− H̃ (q1)

))
,

G3(q2,m2)−G3(q1,m1)

=−(µ̄1+ (λ̄+ µ̄)∇div
)(
(m2−m1)

q2

1+ q2
+m1

(
q2

1+ q2
− q1

1+ q1

))
,

G4(q2,m2)−G4(q1,m1)= κ(q2− q1)∇1q2+ κq1∇1(q2− q1),

G5(q2,m2)−G5(q1,m1)= f(q2− q1).

This leads to the following inequality∥∥ΨqL,mL(q̄2, m̄2)−ΨqL,mL(q̄1, m̄1)
∥∥
E

6C‖(q̄2− q̄1, m̄2− m̄1)‖E
× (‖(q̄1, m̄1)‖E +‖(q̄2, m̄2)‖E + 2‖(qL,mL)‖E + ‖f‖L1

T
(Bd/2−1)

)
.

Now, if (R,η) satisfies (37) (for a greater constantC if needed), we deduce

∥∥ΨqL,mL(q̄2, m̄2)−ΨqL,mL(q̄1, m̄1)
∥∥
E
6 4

5

∥∥(q̄2− q̄1, m̄2− m̄1)
∥∥
E

and the proof of the existence part of Theorem 3 is achieved.
Notice that in view of (34) and (37),(q,m) satisfies

‖q‖L∞(R+×Rd ) 6 2/5 and ‖q‖
L̃∞
T
(Bd/2)

6 2/(5C).

The solution(q,m) obviously belongs to the spacẽE2∞ defined in Section 6.2 (we
haveẼ = Ẽ2∞). ChangingC into a greater constant if necessary, we therefore can apply
Lemma 4 to get uniqueness iñE.

5. Local solutions away from vacuum

In this section, we want to show local well-posedness for the Korteweg system with
initial data(ρ0,m0) such that(ρ0− ρ̄,m0) in Bd/2× (Bd/2−1)d . Let us emphasize that
no smallness assumption is required: we just need the initial density to be bounded
away from zero. The pressureP may be any (possibly decreasing) smooth function
of ρ (P ∈W [d/2]+3,∞

loc is enough).
It is convenient to rewrite (8) (9) in terms ofq and m by using the same scaled

coefficients as in Section 4

∂tq + divm= 0, (39)

Dtm− µ̄div
( ∇m

1+ q
)
− (λ̄+ µ̄)∇

(
divm
1+ q

)
− κ̄∇((1+ q)1q)

= Γ (q,m)+ f, (40)

whereΓ = Γ1+ Γ2+ Γ3+ Γ4+ Γ5 is defined by

Γ1(q,m)=−∇(P (ρ̄(1+ q))−P(ρ̄))/ρ̄,
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Γ2(q,m)=−div
(

m⊗m
1+ q

)
,

Γ3(q,m)= µ̄div
(

m⊗∇
(

1

1+ q
))
+ (λ̄+ µ̄)∇

(
m · ∇

(
1

1+ q
))
,

Γ4(q,m)=−κ̄ div(∇q ⊗∇q)− κ̄
2
∇|∇q|2,

Γ5(q,m)= qf.

The proof of our local existence theorem relies upon the study of the linearized system
around(1+ q,0) for a givenq such that 1+ q is bounded away from zero, whereas the
first order linearized pressure term is dropped. The purpose of Section 5.1 is to derive
estimates for such a system. Well-posedness for (39) (40) is obtained in Section 5.2
through an iterative method.

5.1. Estimates for the linearized system

We now study the following linearized system{
∂tq + divm= F,
∂tm− µ̄div(a∇m)− (λ̄+ µ̄)∇(a div m)− κ̄∇(b1q)=G,

(LNSK2)

wherem is a vector field inRd , anda, b are scalar functions, bounded and bounded
away from zero

0< c16 a 6M1<+∞, 0< c26 b6M2<+∞ on [0, T ]. (41)

Our purpose is to prove estimates for (LNSK2) in Besov spaces closely related to energy
spaces. We obtain

PROPOSITION 5. – Let16 r16 r 6+∞, (q0,m0) ∈ Bd/2×(Bd/2−1)d and(F,G) ∈
L̃
r1
T (B

d/2−2+2/r1 × (Bd/2−3+2/r1)d). Suppose(41), ∇b and ∇a belong to L̃2
T (B

d/2),
∂tb ∈L1(0, T ;L∞). Let(q,m) ∈ L̃rT (Bd/2+2/r×(Bd/2−1+2/r)d)∩ L̃2

T (B
d/2+1×(Bd/2)d)

be a solution of the system(LNSK2). Then there exists a constantC depending only on
r, r1, λ̄, µ̄, κ̄ , c1, c2,M1, andM2 such that the following inequality holds:

‖(∇q,m)‖
L̃r
T
(Bd/2−1+2/r )

(
1−C‖∇b‖L2

T
(L∞)

)
6 C

(‖(∇q0,m0)‖Bd/2−1 + ‖(∇F,G)‖Lr1
T
(Bd/2−3+2/r1) + ‖∂tb‖L1

T
(L∞)‖∇q‖L̃∞

T
(Bd/2−1)

+ ‖(∇q,m)‖
L̃2
T
(Bd/2)

(‖∇b‖
L̃2
T
(Bd/2)
+ ‖∇a‖

L̃2
T
(Bd/2)

))
.

Proof. –It is just a matter of showing appropriate estimates for1`q and 1`m.
Denotingq` =1`q, m` =1`m, F` =1`F , G` =1`G, and applying1` to (LNSK2),
we get

∂tq` + div m` = F`, (42)

∂tm` − µ̄div(a∇m`)− (λ̄+ µ̄)∇(a divm`)− κ̄∇(b1q`)=G` +R`, (43)
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where

r` =−µ̄div([a,1`]∇m)− (λ̄ + µ̄)∇([a,1`]divm)− κ̄∇([b,1`]1q).
Using integrations by parts and Eq. (42), we obtain

−
∫
Rd

m`∇(b1q`) dx= 1

2

d

dt

∫
Rd

b|∇q`|2dx

−
∫
Rd

(
div m`(∇q` · ∇b)+ |∇q`|

2

2
∂tb+ b∇q` · ∇F`

)
dx.

We now take the scalar product of (43) withm` and use the previous identity, which
yields

1

2

d

dt

(
‖m`‖2L2 + κ̄

∫
Rd

b|∇q`|2dx
)
+
∫
Rd

(
µ̄|∇m`|2+ (λ̄+ µ̄)|div m`|2

)
a dx

=
∫
Rd

(
(G` +R`) ·m` + κ̄

(
div m`(∇b · ∇q`)+ |∇q`|

2

2
∂tb+ b∇q` · ∇F`

))
dx. (44)

In order to obtain a second estimate, we take the scalar product of the gradient of (42)
with m`, the scalar product of (43) with∇q` and sum both inequalities. We obtain

d

dt

∫
Rd

∇q` ·m` dx+
∫
Rd

κ̄ b (1q`)
2dx

=
∫
Rd

(
(G` +R`) · ∇q` + |div m`|2+m` · ∇F` − µ̄ a∇m` : ∇2q`

− (λ̄+ µ̄)a1q` div m`

)
dx. (45)

Let α > 0 be suitably small, and define

k2
l

def=‖m`‖2L2 +
∫
Rd

(
κ̄b|∇q`|2+ 2α∇q` ·m`

)
dx and ν̄ = inf(µ̄, λ̄+ 2µ̄).

Using(44), (45)and(41), we deduce that when

α 6 ν̄
2

(
M1(µ̄+ |λ̄+ µ̄|)2

2c2κ̄
+ 1

)−1

,

we have
1

2

d

dt
k2
` +

1

2

∫
Rd

(
aν̄‖∇m`‖2L2 + ακ̄b|1q`|2)dx

6
(‖G`‖L2 + ‖R`‖L2

)(
α‖∇q`‖L2 + ‖m`‖L2

)+ ‖∇F`‖L2

(
α‖m`‖L2 + ‖∇q`‖L2

)
+ 1

2
‖∂tb‖L∞‖∇q`‖2L2 + κ̄‖∇b‖L∞‖∇q`‖L2‖∇m`‖L2. (46)
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Using(41), we clearly have forα > 0 small enough

1

2
k2
` 6 ‖m`‖2L2 + κ̄

∫
Rd

b|∇q`|26 3

2
k2
` , (47)

so that using the above energy estimate, the spectral localization of(∇q`,m`) and (41),
we get for some positiveK

1

2

d

dt
k2
` +K22lk2

`

6 C
(
k`
(‖G`‖L2 +‖∇F`‖L2 + ‖R`‖L2

)+ ‖∂tb‖L∞‖∇q`‖2L2 + 2`k2
`‖∇b‖L∞

)
. (48)

Integrating with respect to time yields

k`(t)6 e−K22`t k`(0)+C
t∫

0

e−K22`(t−τ )(‖∂tb(τ)‖L∞‖∇q`(τ)‖L2

+ ‖∇F`(τ)‖L2 + ‖G`(τ )‖L2 + ‖R`(τ )‖L2 + 2`k`(τ )‖∇b(τ)‖L∞)dτ. (49)

Using convolution inequalities, we easily get

‖k`‖Lr ([0,T ])6C
(
2−2`/rk`(0)+ 2−2`(1+1/r−1/r1)‖(∇F`,G`)‖Lr1

T
(L2)

+ 2−2`/r∥∥R`

∥∥
L1
T
(L2)
+ 2−2`/r‖∇q`‖L∞

T
(L2)‖∂tb‖L1

T
(L∞)

+‖∇b‖L2
T
(L∞)‖k`‖Lr([0,T ])

)
. (50)

We first use (47) and (41) to infer that there exists a constantC > 0 such that

C−1k` 6 ‖∇q`‖L2 + ‖m`‖L2 6Ck`,

then multiply both sides of (50) by 2`(d/2−1+2/r) and sum overZ, which yields

‖(∇q,m)‖
L̃r
T
(Bd/2−1+2/r )

(
1−C‖∇b‖L2

T
(L∞)

)
6 ‖(∇q0,m0)‖Bd/2−1 + ‖(∇F,G)‖

L̃
r1
T
(Bd/2−3+2/r1)

+ ‖∇q‖
L̃∞
T
(Bd/2−1)

‖∂tb‖L1
t (L
∞) +

∑
q∈Z

2`(d/2−1)‖R`‖L1
T
(L2).

We then obtain the desired inequality thanks to Lemma 5 in the appendix.2
Remark2. – Whenr1 = 1, estimates of Proposition 5 clearly enable us to prove the

existence and uniqueness of a solution(q,m) to (LNSK2) in the spaceL1
T (B

d/2+2 ×
(Bd/2+1)d)∩ C̃T (Bd/2× (Bd/2−1)d) as long as

‖∇a‖
L̃2
T
(Bd/2)
+‖∇b‖

L̃2
T
(Bd/2)
+ ‖∂tb‖L1

T
(L∞) 6C−1.

This stems from a basic duality method.
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5.2. Local existence and uniqueness

First we define the functional spaces needed in our local existence and uniqueness
theorem. We will prove existence in the space

FT
def=L1

T

(
Bd/2+2× (Bd/2+1)d)∩ C̃T (Bd/2× (Bd/2−1)d)

endowed with the norm

‖(q,m)‖FT = ‖q‖L1
T
(Bd/2+2) + ‖q‖L̃∞

T
(Bd/2)
+ ‖m‖L1

T
(Bd/2+1) + ‖m‖L̃∞

T
(Bd/2−1)

,

and uniqueness in the larger space

F̃T
def= L̃2

T

(
Bd/2+1× (Bd/2)d)∩ C̃T (Bd/2× (Bd/2−1)d)

endowed with the norm

‖(q,m)‖
F̃T
= ‖q‖

L̃2
T
(Bd/2+1)

+‖q‖
L̃∞
T
(Bd/2)
+‖m‖

L̃2
T
(Bd/2)
+ ‖m‖

L̃∞
T
(Bd/2−1)

.

THEOREM 4. –Suppose that the exterior forcing termf belongs to(L1
T (B

d/2−1))d ,
that the initial momentumm0 belongs to(Bd/2−1)d , and that the initial densityρ0

satisfies(ρ0− ρ̄) ∈ Bd/2 andρ0> c for a positive constantc. Then, there existsT > 0
such that the system(39) (40)with initial data ((ρ0− ρ̄)/ρ̄,m0) has a unique solution
(q,m) in F̃T . In addition,(q,m) belongs toFT .

Proof. –The existence part of the theorem is proved by an iterative method. We define
a sequence{(qn,mn)}n∈N as follows: the first term(q0,m0) is taken to be the solution of
the heat equation

∂t

(
q0

m0

)
−1

(
q0

m0

)
=
(

0
f

)
,

(
q0

m0

)
|t=0
=
(
q0

m0

)
, (51)

with q0 = (ρ0 − ρ̄)/ρ̄. Assuming that(qn,mn) belongs toFT , we then defineqn+1 =
q0 + q̄n+1 andmn+1 = m0 + m̄n+1 with (q̄n+1, m̄n+1) solution of the following linear
system 

∂t q̄
n+1+ div m̄n+1=−1q0− divm0,

∂tm̄n+1− µ̄div
(∇m̄n+1

1+ qn
)
− (λ̄+ µ̄)∇

(
div m̄n+1

1+ qn
)

− κ̄∇((1+ qn)1q̄n+1)= Γ (qn,mn)+H 0(qn,mn),

q̄n+1
|t=0= 0, m̄n+1

|t=0= 0,

(52)

where

H 0(qn,mn
)=−1m0+ µ̄div

( ∇m0

1+ qn
)
+ (λ̄+ µ̄)∇

(
div m0

1+ qn
)
+ κ̄∇((1+ qn)1q0).
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First step: uniform bounds inFT
We want now to show that(qn,mn) is uniformly bounded inFT . DenoteE0 =
‖q0‖Bd/2+‖m0‖Bd/2−1. Let ε ∈ (0,1). In view of Proposition 2, we can chooseT ∈]0, ε]
such that

‖f‖L1
T
(Bd/2−1) 6 ε,

‖q0‖L1
T
(Bd/2+2) + ‖m0‖L1

T
(Bd/2+1) 6 ε,

‖q0‖
L̃∞
T
(Bd/2)
+‖m0‖

L̃∞
T
(Bd/2−1)

6 C(E0+ 1).

(Hε)

We are going to show that ifε is chosen suitably small, we have for alln ∈N,∥∥(q̄n, m̄n
)∥∥
FT
6
√
ε. (Pn)

Sinceq̄0= 0 andm̄0= 0, (P0) is true. Suppose that (Pn) is fulfilled and that
√
ε is less

thanc/(4C1ρ̄) (whereC1 is the norm of the embeddingBd/2 ↪→ L∞). From the fact that
qn(t)− q0=− ∫ t0 div mn(τ ) dτ and (Hε), we gather∥∥qn − q0

∥∥
L∞([0,T ]×Rd )6C1

(∥∥div m0∥∥
L1
T
(Bd/2)
+ ∥∥div m̄n

∥∥
L1
T
(Bd/2)

)
,

6C1(ε+√ε),
6 c/2ρ̄.

We thus have
c

2ρ̄
− 16 qn 6 ‖ρ0‖L∞

ρ̄
on [0, T ], (53)

which entails, according to Lemma 1,∥∥∥∥ 1

1+ qn − 1
∥∥∥∥
L̃∞
T
(Bd/2)

6C‖qn‖
L̃∞
T
(Bd/2)

, (54)

∥∥∥∥∇( 1

1+ qn
)∥∥∥∥

L̃2
T
(Bd/2)

=
∥∥∥∥∇( qn

1+ qn
)∥∥∥∥

L̃2
T
(Bd/2)

6 C‖qn‖
L̃2
T
(Bd/2+1)

. (55)

Apply Proposition 5 to (52), and use that∂tqn =−divmn. This yields∥∥(q̄n+1, m̄n+1)∥∥
FT

(
1−C

(∥∥∇qn∥∥
L̃2
T
(Bd/2)
+
∥∥∥∥∇( 1

1+ qn
)∥∥∥∥

L̃2
T
(Bd/2)

+ ∥∥div mn
∥∥
L1
T
(Bd/2)

))
6C

(∥∥Γ (qn,mn
)∥∥
L1
T
(Bd/2−1)

+ ∥∥H 0(qn,mn
)∥∥
L1
T
(Bd/2−1)

+ ∥∥1q0∥∥
L1
T
(Bd/2)
+ ∥∥div m0∥∥

L1
T
(Bd/2)

)
. (56)

Next, we use Proposition 3, Lemma 1, (53), (54) and (55) to estimate the right-hand side
of (56). The following bounds hold:
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(
qn,mn

)∥∥
L1
T
(Bd/2−1)

6CT
∥∥qn∥∥

L̃∞
T
(Bd/2)

,∥∥Γ2
(
qn,mn

)∥∥
L1
T
(Bd/2−1)

6C
∥∥mn

∥∥2
L̃2
T
(Bd/2)

(
1+‖qn‖

L̃∞
T
(Bd/2)

)
,∥∥Γ3

(
qn,mn

)∥∥
L1
T
(Bd/2−1)

6C
∥∥mn

∥∥
L̃2
T
(Bd/2)

∥∥qn∥∥
L̃2
T
(Bd/2+1)

,∥∥Γ4
(
qn,mn

)∥∥
L1
T
(Bd/2−1)

6C
∥∥∇qn∥∥2

L̃2
T
(Bd/2)

,∥∥Γ5
(
qn,mn

)∥∥
L1
T
(Bd/2−1)

6C
∥∥qn∥∥

L̃∞
T
(Bd/2)
‖f‖L1

T
(Bd/2−1).

We also have∥∥∥∥∇( ∇m0

1+ qn
)∥∥∥∥

L1
T
(Bd/2−1)

6 C‖∇m0‖L1
T
(Bd/2)

(
1+ ∥∥qn∥∥

L̃∞
T
(Bd/2)

)
,

∥∥∇((1+ qn)1q0)∥∥
L1
T
(Bd/2−1)

6 C‖1q0‖L1
T
(Bd/2)

(
1+ ∥∥qn∥∥

L̃∞
T
(Bd/2)

)
.

Therefore, using (55), the above computations, (56) and(Pn), we deduce that∥∥(q̄n+1, m̄n+1)∥∥
FT

(
1−C√ε(E0+ 1)

)
6 Cε(1+E0)

2.

Choosingε 6 (4C2(1+E0))
−1
, this implies (Pn+1). The sequence{(qn,mn)}n∈N is

therefore bounded in the spaceFT . Moreover, (53) holds for alln ∈N.

Second step:convergence of the sequence inFT .
Next, we are going to show that(qn,mn) converges strongly inFT to a solution(q,m)

of (39) (40). We denoteδqn = qn+1− qn andδmn =mn+1−mn. According to (51) and
(52), we have

∂tδq
n + div δmn = 0,

∂tδmn − µ̄div
(∇δmn

1+ qn
)
− (λ̄+ µ̄)∇

(
div δmn

1+ qn
)
− κ̄∇((1+ qn)1δqn)

= Γ (qn,mn
)− Γ (qn−1,mn−1

)+H
(
qn−1,mn−1, qn,mn

)
,

δqn|t=0= 0, δmn|t=0= 0,

(57)

with

H
(
qn−1,mn−1, qn,mn

)=−µ̄div
(

δqn−1∇mn

(1+ qn)(1+ qn−1)

)
− (λ̄+ µ̄)∇

(
δqn−1div mn

(1+ qn)(1+ qn−1)

)
+ κ̄∇(δqn−11qn

)
.

We keep the same assumptions onε as in the first step. According to Proposition 5, (53),
(Pn) and (55), we thus get∥∥(δqn, δmn

)∥∥
FT
6C

(∥∥Γ (qn,mn
)− Γ (qn−1,mn−1)∥∥

L1
T
(Bd/2−1)

+ ∥∥H(qn−1,mn−1, qn,mn
)∥∥
L1
T
(Bd/2−1)

)
. (58)

DenoteδΓ n
i

def= Γi(qn,mn)− Γi(qn−1,mn−1). Thanks to Proposition 3, to Lemma 1, (53),
(54) and (55), we obtain the following estimates:
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1

∥∥
L1
T
(Bd/2−1)

. T
(
1+ ∥∥qn∥∥

L̃∞
T
(Bd/2)
+ ∥∥qn−1∥∥

L̃∞
T
(Bd/2)

)∥∥δqn−1∥∥
L̃∞
T
(Bd/2)

,

∥∥δΓ n
2

∥∥
L1
T
(Bd/2−1)

.
(
1+ ∥∥qn∥∥

L̃∞
T
(Bd/2)

)(∥∥mn−1∥∥
L̃2
T
(Bd/2)

+ ∥∥mn
∥∥
L̃2
T
(Bd/2)

)∥∥δmn−1∥∥
L̃2
T
(Bd/2)

+ ∥∥mn−1∥∥2
L̃2
T
(Bd/2)

(
1+ ∥∥qn−1∥∥

L̃∞
T
(Bd/2)

)
× (1+ ∥∥qn∥∥

L̃∞
T
(Bd/2)

)∥∥δqn−1∥∥
L̃∞
T
(Bd/2)

,

∥∥δΓ n
3

∥∥
L1
T
(Bd/2−1)

.
∥∥qn∥∥

L̃2
T
(Bd/2+1)

∥∥δmn−1∥∥
L̃2
T
(Bd/2)
+ ∥∥mn−1∥∥

L̃2
T
(Bd/2)

∥∥δqn−1∥∥
L̃2
T
(Bd/2+1)

+ ∥∥mn−1∥∥
L̃2
T
(Bd/2)

(∥∥qn−1∥∥
L̃2
T
(Bd/2+1)

+ ∥∥qn∥∥
L̃2
T
(Bd/2+1)

)∥∥δqn−1∥∥
L̃∞
T
(Bd/2)

,

∥∥δΓ n
4

∥∥
L1
T
(Bd/2−1)

.
∥∥∇δqn−1∥∥

L̃2
T
(Bd/2)

(∥∥∇qn−1∥∥
L̃2
T
(Bd/2)
+ ∥∥∇qn∥∥

L̃2
T
(Bd/2)

)
,∥∥δΓ n

5

∥∥
L1
T
(Bd/2−1)

.
∥∥f ∥∥

L1
T
(Bd/2−1)

∥∥δqn−1∥∥
L̃∞
T
(Bd/2)

,

∥∥∥∥ δqn−1∇mn

(1+ qn)(1+ qn−1)

∥∥∥∥
L1
T
(Bd/2)

.
(
1+ ∥∥qn−1∥∥

L̃∞
T
(Bd/2)

)(
1+ ∥∥qn∥∥

L̃∞
T
(Bd/2)

)∥∥∇mn
∥∥
L1
T
(Bd/2)
‖δqn−1‖

L̃∞
T
(Bd/2)

,

∥∥δqn−11qn
∥∥
L1
T
(Bd/2)

.
∥∥1qn∥∥

L1
T
(Bd/2)

∥∥δqn−1∥∥
L̃∞
T
(Bd/2)

.

Using (Hε) and (Pn) in the above computations, then (58), we thus get∥∥(δqn, δmn)
∥∥
FT
6 C
√
ε(E0+ 1)3.

Now, if we choose anε such thatε 6 (4C2)−1(E0+ 1)−6 holds,(qn,mn)n∈N is clearly
a Cauchy sequence and thus converges inFT to a limit (q,m) which satisfies (53).
The verification that the limit is solution of(39) (40) in the sense of distributions is a
straightforward application of Proposition 3.2

Third step: uniqueness iñFT
Consider the solution(q,m) built in the previous part and suppose that(q ′,m′) ∈

L̃2
T (B

d/2+1 × (Bd/2)d) ∩ C̃T (Bd/2 × (Bd/2−1)d) also solves (39) (40) with initial data
(q0,m0). Denoteδq = q ′ − q andδm=m′ −m. We have

∂tδq + div δm= 0,

∂tδm− µ̄div
(∇δm

1+ q
)
− (λ̄+ µ̄)∇

(
div δm
1+ q

)
− κ̄∇((1+ q)1δq)

= Γ (q ′,m′)− Γ (q,m)−H(q ′,m′, q,m),
δq|t=0= 0, δm|t=0= 0.

(59)
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LetT ∗ ∈ [0, T ] be the greatest time such that (53) is satisfied byq ′ on [0, T ∗]. Continuity
for q ′ in C([0, T ];Bd/2) implies that 0< T ∗ 6 T .

We now apply Proposition 5 to (59) using bounds of step 1 and (53) forq. Unlike
in the second step, our assumptions on(q ′,m′) only provide us with bounds forH in
L̃2
T ∗(B

d/2−2). This leads to the following estimate:

‖(δq, δm)‖
F̃T ∗
. ‖Γ (q ′,m′)− Γ (q,m)‖L1

T ∗ (Bd/2−1) +‖H(q ′,m′, q,m)‖L̃2
T ∗ (Bd/2−2)

.

Using the same estimates as in step 2 for‖Γ (q ′,m′)− Γ (q,m)‖L1
T ∗ (Bd/2−1), and the fact

that

‖H(q ′,m′, q,m)‖
L̃2
T ∗ (Bd/2−2)

.
(
1+‖q‖

L̃∞
T ∗ (Bd/2)

)(
1+‖q ′‖

L̃∞
T ∗ (Bd/2)

)(‖m′‖
L̃2
T ∗ (Bd/2)

+‖∇q ′‖
L̃2
T ∗ (Bd/2)

)
,

we finally gather

‖(δq, δm)‖
F̃T ∗
.
(
1+ ‖q‖

L̃∞
T ∗ (Bd/2)

)(
1+ ‖q ′‖

L̃∞
T ∗ (Bd/2)

)
× (T ∗ + ‖f ‖L1

T ∗ (Bd/2−1) +K
(‖m‖

L̃2
T ∗ (Bd/2)

+‖∇q‖
L̃2
T ∗ (Bd/2)

+ ‖m′‖
L̃2
T ∗ (Bd/2)

+‖∇q ′‖
L̃2
T ∗ (Bd/2)

))‖(δq, δm)‖
F̃T ∗
,

with K(z) = z + z2. This obviously entailsδq ≡ 0 and δm ≡ 0 on a suitably small
interval [0, T ′] with T ′ > 0.

Using the same arguments as for the proof of Lemma 4, we can now conclude that the
two solutions coincide on the whole interval[0, T ]. 2

6. Local strong solutions near equilibrium

In this section, we want to show that local well-posedness for Korteweg system when
the density is close to a constant also holds in spaces of typeBsp with p 6= 2, that is, in
spaces which are not related to physical energy spaces. Recall that this approach was
extensively used for the study of incompressible Navier–Stokes equations (see [7] and
the references enclosed).

This viewpoint enables us to get well-posedness even if the initial velocity belongs to
a spaceBsp such that the regularity indexs is negative, which in particular is relevant for
oscillating initial velocities.

To avoid tedious discussions about the definition ofqf, we suppose from now on, that
f ≡ 0 (see Remark 3 at the end of the section). Using the same notations as in Section 4,
the Korteweg system rewrites as follows:

∂tq + div m= 0, (60)

∂tm− µ̄1m− (λ̄+ µ̄)∇div m− κ̄∇1q =G(q,m), (61)

(q,m)|t=0= (q0,m0), (62)
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where we defineG=G1+G2+G3+G4 by

G1(q,m)=−div
(

m⊗m
1+ q

)
,

G2(q,m)=−∇(P(ρ̄(1+ q))− P(ρ̄))/ρ̄,
G3(q,m)=−µ̄div

(
∇
(

q

1+ q
)
⊗m+ q

1+ q∇m
)

− (λ̄+ µ̄)∇
(
∇
(

q

1+ q
)
·m+ q

1+ q divm
)
,

and

G4(q,m)=− κ̄
2
∇(|∇q|2)− κ̄ div

(
q∇2q

)
.

Let us emphasize that no stability assumption on the pressure law is required: we just
have to assume thatP is suitably smooth (P ∈W [d/p]+3,∞

loc is enough).
In Section 6.1 we study the linearized system around(0,0) where we drop the first

order linearized pressure term. Local well-posedness for(q0,m0) is then proved in
Section 6.2 through a fixed-point argument.

6.1. Estimates for the linearized pressure-less system

This section is devoted to the proof of estimates for the following linear system{
∂tq + divm= F,
∂tm− µ̄1m− (λ̄+ µ̄)∇div m− κ̄∇1q =G.

(LNSK3)

The main result of this section is the following proposition:

PROPOSITION 6. – Let s ∈ R, p ∈ [1,+∞], 16 ρ1 6 +∞ and T ∈]0,+∞]. If
(q0,m0) ∈ Bsp × (Bs−1

p )d and (F,G) ∈ L̃ρ1
T (B

s−2+2/ρ1
p × (Bs−3+2/ρ1

p )d), then the linear

system(LNSK3) has a unique solution(q,m) ∈ C̃T (Bsp × (Bs−1
p )d) ∩ L̃ρ1

T (B
s+2/ρ1
p ×

(Bs−1+2/ρ1
p )d). Moreover, for allρ ∈ [ρ1,+∞], there exists a constantC depending only

on µ̄, λ̄, κ̄, ρ, ρ1 andd such that the following inequality holds:

‖q‖
L̃
ρ

T
(B

s+2/ρ
p )
+‖m‖

L̃
ρ

T
(B

s−1+2/ρ
p )

6 C
(‖q0‖Bsp +‖m0‖Bs−1

p
+‖F‖

L̃
ρ1
T
(B

s−2+2/ρ1
p )

+‖G‖
L̃
ρ1
T
(B

s−3+2/ρ1
p )

)
.

Proof. –Apply operator1 to the first equation and operators div and curl (with
curlg := ∂jgi − ∂igj ) to the second one. Denotingν̄ = λ̄+ 2µ̄, we obtain

∂t1q +1div m=1F,
∂tdivm− ν̄1divm− κ̄12q = divG,
∂tcurlm− µ̄1curlm= curlG.

(63)

Proposition 2 gives the following estimates for the third equation, which decouples from
the first two equations

‖curlm‖
L̃
ρ

T
(B

s−2+2/ρ
p )

6 C
(‖curlm0‖Bs−2

p
+ ‖curlG‖

L̃
ρ1
T
(B

s−4+2/ρ1
p )

)
. (64)
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The following lemma points out a smoothing effect for the first two equations:

LEMMA 3. – Let s ∈ R, (p,ρ1) ∈ [1,+∞]2 and T ∈]0,+∞]. Suppose that
(c0, v0) ∈ (Bsp)2 and(h, k) ∈ (L̃ρ1

T (B
s−2+2/ρ1
p ))2. Then the system

∂tc+1v = h,
∂tv − ν̄1v − κ̄1c= k,
(c, v)|t=0= (c0, v0),

(65)

has a unique solution(c, v) in (C̃T (B
s
p) ∩ L̃ρ1

T (B
s+2/ρ1
p ))2. Moreover, for all ρ ∈

[ρ1,+∞], there existsC > 0 depending only on̄ν, κ̄, ρ, ρ1 such that

‖(c, v)‖
L̃
ρ

T
(B

s+2/ρ
p )

6 C
(‖(c0, v0)‖Bsp + ‖(h, k)‖L̃ρ1

T
(B

s−2+2/ρ1
p )

)
.

Using (64), Lemma 3 withc0 = 1q0, v0 = div m0, h = 1f , k = divg and noticing
that1m=∇div m+ divcurlm, Proposition 6 is now obvious.2

Proof of Lemma 3. –Denoting byU(t) the semi-group associated to (65), we deduce
from Duhamel’s formula that

(
c(t)

v(t)

)
=U(t)

(
c0

v0

)
+

t∫
0

U(t − s)
(
h(s)

k(s)

)
ds,

with U(t)= e−tA(D) and

A(ξ)=
(

0 −|ξ |2
κ̄|ξ |2 ν̄|ξ |2

)
.

Straightforward computations show that

e−tA(ξ) = e− t ν̄ |ξ |
2

2

(
h1(t, ξ )+ ν̄

2h2(t, ξ ) h2(t, ξ )

−κ̄h2(t, ξ ) h1(t, ξ )− ν̄
2h2(t, ξ )

)
with

h1(t, ξ )= cos(ν′|ξ |2t), h2(t, ξ )= sin(ν′|ξ |2t)
ν′

, if ν̄2< 4κ̄ ,

h1(t, ξ )= 1, h2(t, ξ )= t|ξ |2, if ν̄2= 4κ̄,

h1(t, ξ )= cosh(ν′|ξ |2t), h2(t, ξ )= sinh(ν′|ξ |2t)
ν′

, if ν̄2> 4κ̄

andν′ =√|κ̄ − ν̄2/4|.
Let ϕ̃ be a smooth function supported in{ξ ∈ Rd | |ξ |±16 2} and such that̃ϕ ≡ 1 on

Suppϕ. Denoteaij (t, ξ ) the coefficients of the matrixe−tA(ξ) and

H
q
ij (t,x)= (2π)−d

∫
eix·ξaij (t, ξ )ϕ̃(2−qξ) dξ.
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We assume that the following inequality holds:

‖Hq
ij‖L1 6 Ce−cmin(1,4κ̄/ν̄2)22q ν̄t , (66)

whereC depends only on̄ν, d andκ̄ , andc is a universal constant. Since

U(t)

(
1qc

1qv

)
(x)=

(
(H

q
11(t, ·) ? 1qc)(x)+ (Hq

12(t, ·) ? 1qv)(x)
(H

q
21(t, ·) ? 1qc)(x)+ (Hq

22(t, ·) ? 1qv)(x)

)
,

estimate (66) yields

‖U(t)(1qc,1qv)‖Lp 6 Ce−cmin(1,4κ̄/ν̄2)22q ν̄t
(‖1qc‖Lp + ‖1qv‖Lp).

Now, we complete the proof of Lemma 3 coming back to the definition of Besov spaces,
and using convolution inequalities.

In order to prove (66), we first remark that‖Hq
ij‖L1 = ‖hqij‖L1 with

h
q
ij (t,y)= (2π)−d

∫
eiy·ηaij

(
t,2qη

)
ϕ̃(η) dη.

All the functionshqij are of the type

hq(t,x)=
∫
eix·ξf

(
22q |ξ |2t)ϕ̃(ξ ) dξ, (67)

for a functionf ∈ C∞(R+). Using integrations by parts and Leibniz’ formula, we get
for all α ∈Nd ,

(−ix)αhq(x)=∑
β6α

(
α

β

)∫
eix·ξ∂βf

(
22q |ξ |2t)∂α−βϕ̃(ξ) dξ. (68)

Next, from Faà-di-Bruno’s formula, we deduce that

∂βf
(
22q |ξ |2t)= ∑

γ1+···+γm=β|γi |>1

f (m)
(
22q |ξ |2t)(22qt

)m( m∏
j=1

∂γj (|ξ |2)
)
. (69)

Let us suppose first thatν̄2< 4κ̄ . Then, we just have to prove that

‖hq‖L1 6 Ce−c22q ν̄t (70)

for f (u)= eiν ′ue−ν̄u/2 andν′ =√κ̄ − ν̄2/4. We have

f (m)(u)=
(
iν′ − ν̄

2

)m
eiν
′ue−ν̄u/2,
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so that|f (m)(u)| 6 (ν′ + ν̄/2)me−ν̄u/2. Using (68), (69) and that Supp̃ϕ ⊂ {ξ ∈ Rd |
|ξ |±16 2}, we prove the existence of constantsCα,β,m such that

∣∣xαhq(x)∣∣6∑
β6α

|β|∑
m=1

Cα,β,m
(
22qt

)m
e−ν̄t2

2q/8.

For any constantc < 1 andm ∈ N, there existsCm such thatume−u 6 Cme−cu. This
clearly yields (70).

When ν̄2 = 4κ̄ , we must verify (70) forf (u) = ue−ν̄u/2 andf (u) = e−ν̄u/2. This is
obvious in view of (69) and Leibniz’ formula. When̄ν2> 4κ̄ , we must verify (70) for

f (u)= exp

(
− ν̄

2

(
1±

√
1− 4κ̄

ν̄2

)
u

)
.

Using again (69) we thus get

∣∣xαhq(x)∣∣6 Ce−cν̄t22q(1±
√

1−4κ̄/ν̄2) 6Ce−c′(κ̄/ν̄)22q t

and we conclude to (66).2
6.2. Local well-posedness for an initial density close to a constant

In this section, we agree thatBs stands forBsp. Let us introduce the functional spaces
needed in the local existence theorem. We will prove existence in

E
p
T = C̃T

(
Bd/p × (Bd/p−1)d)∩L1

T

(
Bd/p+2× (Bd/p+1)d)

and uniqueness in

Ẽ
p
T = C̃T

(
Bd/p × (Bd/p−1))∩ L̃2

T

(
Bd/p+1× (Bd/p)d).

We have the following result:

THEOREM 5. – Let p ∈ [1,+∞[. Then there existsη > 0 such that ifq0 ∈ Bd/p,
m0 ∈ (Bd/p−1)d and

‖q0‖Bd/p 6 η,
then there existsT > 0 such that system(60)–(62)has a unique solution(q,m) in ẼpT .
In addition,(q,m) belongs toEpT .

Proof. –ForT > 0 andp ∈ [1,+∞[, we denote

‖(q,m)‖Fp
T
= ‖q‖

L̃∞
T
(Bd/p)

+ ‖q‖L1
T
(Bd/p+2) + ‖m‖L̃2

T
(Bd/p)

+‖m‖L1
T
(Bd/p+1).
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Let (q0,m0) be as in Theorem 5 and denote by(qL,mL) the solution of the linearized
pressure-less system on the interval[0, T ]:

∂tq + divm= 0,
∂tm− µ̄1m− (λ̄+ µ̄)∇div m− κ̄∇1q = 0,
(q,m)|t=0= (q0,m0).

Denoting byV (t) the semi-group generated by the above system, we have

(qL,mL)(t)= V (t)(q0,m0).

Let us define

ΦqL,mL(q̄, m̄)
def=

t∫
0

V (t − s)(0,G(qL + q̄,mL + m̄)(s)
)
ds.

In order to prove the existence part of the theorem, we just have to show thatΦqL,mL has a
fixed point inEpT . SinceEpT is a Banach space, we are going to prove thatΦqL,mL satisfies
the hypotheses of Picard’s theorem in a ballB(0,R) of EpT for sufficiently smallR.

1st step: Stability ofB(0,R)
Denoteq = qL + q̄ andm=mL + m̄. According to Proposition 6, we have

‖ΦqL,mL(q̄, m̄)‖EpT 6C‖G(q,m)‖L1
T
(Bd/p−1). (71)

Under the assumption

‖q‖L∞([0,T ]×Rd ) 6 1/2, (H)

and using Proposition 3 and Lemma 1, we state the following estimates:

‖G1(q,m)‖L1
T
(Bd/p−1) . (1+‖q‖L̃∞

T
(Bd/p)

)‖m‖2
L̃2
T
(Bd/p)

, (72)

‖G2(q,m)‖L1
T
(Bd/p−1) . T ‖q‖L̃∞

T
(Bd/p)

, (73)

‖G3(q,m)‖L̃1
T
(Bd/p−1)

. ‖q‖
L̃∞
T
(Bd/p)
‖∇m‖

L̃1
T
(Bd/p)

+ ‖q‖
L̃2
T
(Bd/p+1)

‖m‖
L̃2
T
(Bd/p)

, (74)

‖G4(q,m)‖L1
T
(Bd/p−1) . ‖∇q‖2L̃2

T
(Bd/p)

+‖q‖
L̃∞
T
(Bd/p)
‖∇2q‖L1

T
(Bd/p). (75)

This leads to the following inequality:

‖ΦqL,mL(q̄, m̄)‖EpT 6C
(
1+ ‖qL‖L̃∞

T
(Bd/2)

)(‖(qL,mL)‖Fp
T
+ ‖(q̄, m̄)‖Fp

T

)
×(T + ‖(qL,mL)‖Fp

T
+ ‖(q̄, m̄)‖Fp

T

)
.

Let c be a constant such that‖ · ‖Bd/2 6 c implies‖·‖L∞ 6 1/5. We choose

R =min
(
(10C)−1, c,1

)
, (76)

and suppose that‖q0‖Bd/p 6 R/2. Then, sinceqL ∈ C([0, T ]; Bd/p), we have
‖(qL,mL)‖Fp

T
6 R for T small enough so that (H) is fulfilled. We also suppose that
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T 6 R/4 and we get

ΦqL,mL
(
B(0,R)

)⊂ B(0,9R/10). (77)

2nd step:Contraction properties
Suppose that(q̄1, m̄1) and(q̄2, m̄2) belong to the ballB(0,R) of EpT , and denoteq1=

qL + q̄1, m1=mL + m̄1, q2= qL + q̄2 andm2=mL + m̄2. Using again Proposition 6,
we get∥∥ΦqL,mL(q̄2, m̄2)−ΦqL,mL(q̄1, m̄1)

∥∥
E
p

T
6 C

∥∥G(q2,m2)−G(q1,m1)
∥∥
L1
T
(Bd/p−1)

.

Under assumption (H) for q1 and q2, we can derive estimates forGi(q2,m2) −
Gi (q1,m1). We apply Proposition 3 and Lemma 1 to the following identities:

G1(q2,m2)−G1(q1,m1)

= div
(
(m1⊗m1)(q̃2− q̃1)− q̃2

(
m2⊗ (m2−m1)+ (m2−m1)⊗m1

))
,

G2(q2,m2)−G2(q1,m1)=−∇(P (ρ̄(1+ q2))− (P (ρ̄(1+ q1))/ρ̄,

G3(q2,m2)−G3(q1,m1)

=−µ̄div
(
∇q̃1⊗ (m2−m1)+ q̃1∇(m2−m1)

+∇(q̃2− q̃1)⊗m2+ (q̃2− q̃1)∇m2

)
− (λ̄+ µ̄)∇(· · ·),

G4(q2,m2)−G4(q1,m1)=− κ̄
2
∇(∇(q2− q1) · ∇(q2+ q1)

)
− κ̄ div

(
(q2− q1)∇2q2+ q1∇2(q2− q1)

)
,

whereq̃i
def= qi/(1+ qi). We finally get a constantC such that∥∥ΦqL,mL(q̄2, m̄2)−ΦqL,mL(q̄1, m̄1)

∥∥
E
p

T

6 CT ‖q̄2− q̄1‖L∞
T
(Bd/p) +C‖(q̄2− q̄1, m̄2− m̄1)‖Fp

T

× (‖(q1,m1)‖Fp
T
+ ‖(q2,m2)‖Fp

T

)
. (78)

We make the same assumption onR andT as in the first step (replacingC with a larger
constant if necessary) and get

∥∥ΦqL,mL(q̄2, m̄2)−ΦqL,mL(q̄1, m̄1)
∥∥
E
p

T
6 9

10
‖(q2− q1,m2−m1)‖Fp

T
.

This completes the proof of the existence of a solution(q,m) for (60)–(62) inEpT , which
in addition satisfies

‖q‖L∞([0,T ]×Rd ) 6
2

5
and ‖q‖

L̃∞
T
(Bd/2)

6 1

5C
. (79)
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3rd step:Uniqueness
Uniqueness is a straightforward application of the following lemma, which yields also

the global uniqueness result of Section 4.

LEMMA 4. – There exists a constantC depending only ond and p such that if
T ∈]0,+∞] and (qi,mi) (i = 1,2) are two solutions of(60)–(62)belonging toẼTp
and(q1,m1) satisfies(79)with the constantC, then(q2,m2)≡ (q1,m1) on [0, T ].

Proof. –Let T ∗ be the largest time such that (H) is satisfied byq2. As ‖q2(0)‖L∞ 6
1/5 andq2 ∈ C([0, T ] × Rd), we haveT ∗ > 0. Let [0, Tm] ⊂ [0, T ∗] be the biggest
interval such that the two solutions coincide on[0, Tm]. Suppose thatTm < T . Let(

q̃i (t), m̃i(t)
) def= qi((t − Tm),mi(t − Tm)).

Continuity in time forqi implies that (H) is satisfied bỹq1 and q̃2 on an interval[0, ε]
for ε > 0 small enough. Moreover{(q̃i, m̃i)}16i62 belongs toẼpε × Ẽpε .

We now use the decomposition

G(qi,mi)=G1(qi,mi )+G2(qi,mi)+G′3(qi,mi)+G′4(qi,mi)+G′5(qi,mi)

with

G′3(qi,mi )=−µ̄1
(
qimi

1+ qi
)
− (λ̄+ µ̄)∇div

(
qimi

1+ qi
)
,

G′4(qi,mi )=− κ̄
2
∇(|∇qi |2)+ κ̄ div

(∇qi ⊗∇qi),
G′5(qi,mi )=−κ̄1(qi∇qi).

Proposition 3 provides us with estimates forG1(qi,mi), G2(qi,mi ) andG′3(qi,mi ) in
L1
T (B

d/p−1), and forG′4(qi,mi ) andG′5(qi,mi ) in L̃2
T (B

d/p−2). Thanks to Proposition 6,
we get

‖(q̃2− q̃1, m̃2− m̃1)‖Ẽpε 6 Z(ε)‖(q̃2− q̃1, m̃2− m̃1)‖Ẽpε ,
with

Z(ε)= Cε+C sup
i∈{1,2}

(‖qi‖L̃∞
T
(Bd/p)

+ ‖qi‖L̃2
T
(Bd/p+1)

+‖mi‖L̃2
T
(Bd/p)

)
.

From(79) for q1 and the definition of the spacẽCT (Bd/p), we infer that

lim
ε→0

Z(ε)= 2C‖q1(Tm)‖Bd/p 6 4/5,

thusZ(ε) < 1 for ε small enough. We therefore get(q̃2, m̃2)= (q̃1, m̃1) on [0, ε]. This
achieves the proof of Lemma 4.2

Remark3. – In Theorem 5, we supposed that the external forcing termf vanishes.
We can easily show that the local existence and uniqueness still holds iff belongs to
L1
T (B

d/p−1) wherep < 2d. Indeed, the usual product mapsBd/p×Bd/p−1 intoBd/p−1,
providedp < 2d.
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7. Further remarks

7.1. Weak solutions in dimension 2

We now focus on the 2-dimensional problem and study existence results of weak
solutions. A weak solution(ρ,u) of (8)–(10) inD′(R+ × R2) is required to satisfy the
finite energy a priori bounds(16) (17) for initial data verifying(15). More precisely, we
require that for all test functions(ψ,φ) ∈ C∞0 ([0,∞)×R2)×C∞0 ([0,∞)×R2)2,

∫
R2

ρψ(t) dx=
∫
R2

ρ0ψ(0) dx−
t∫

0

ds

∫
R2

ρu · ∇ψ dx,

∫
R2

ρu(t) · φ(t) dx=
∫
R2

ρ0u0 · φ(0) dx+
t∫

0

ds

∫
R2

(
ρu⊗ u :D(φ)−µD(u) :D(φ)

− (λ+µ)divu divφ + p(ρ)divφ

+ κ
( |∇ρ|2

2
divφ +∇ρ ⊗∇ρ :D(φ)− ρ

2

2
1divφ

))
dx.

As pointed out in the introduction, we are not able to prove a global existence theorem
like in [17] whenκ 6= 0 because of the quadratic terms∇ρ ⊗∇ρ, even though∇ρ is a
priori bounded inL∞((0, T );L2(Rd))d . We focus now on weak solutions in dimension
d = 2 near a stable equilibrium, i.e. solutions(ρ,u) close to(ρ̄,0), whereρ̄ > 0 satisfies
P ′(ρ̄) > 0. Let us introduce

δ(t)=
∥∥∥∥ρ(t)− ρ̄ρ̄

∥∥∥∥
L∞
, (80)

which measures the density fluctuation inL∞. Unfortunately, such an a priori bound
does not seem to be available for finite energy initial data. However, in view of the
results of the preceding sections, it is valid for suitably smooth initial data and small
enough time, which motivates the following result

PROPOSITION 7. –There existsη > 0 such that as long as

E0+ sup
t∈[0,T ]

δ(t)6 η,

there exists a weak solution(ρ,u) on (0, T ) of (NSK) such thatρ − ρ̄ ∈ L2(0, T ;
Ḣ 1(R2)∩ Ḣ 2(R2)), u ∈L2(0, T ; Ḣ 1(R2))2 ∩L∞(0, T ;L2(R2))2.

Proof. –First, multiplying the equation of momentum conservation by∇ρ2 and
integrating by part, we easily infer

d

dt

∫
R2

m · ∇ρ2 dx+ κ
2

∫
R2

(
1ρ2)2dx
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=
∫
R2

(
2ρ|div m|2+ 2κ|∇ρ|4+∇2ρ2 : (ρu⊗ u)

− (λ+ 2µ)1ρ2 divu− 2ρP ′(ρ)|∇ρ|2)dx, (81)

hence, denotingZ(s)= 2sP ′(s), we obtain

d

dt

∫
R2

m · ∇ρ2dx+
∫
R2

(
Z(ρ̄)|∇ρ|2+ κ

4

∣∣1ρ2∣∣2)dx

6 C
(
1+ ‖ρ‖3L∞

)‖∇u‖2L2 +C‖ρ‖L∞‖u · ∇ρ‖2L2 +C‖∇ρ‖4L4

+C‖ρ‖2L∞‖u‖4L4 +C‖Z(ρ)−Z(ρ̄)‖L∞‖∇ρ‖2L2.

Let us now recall Gagliardo–Nirenberg’s inequality

‖f ‖2L4 6 C‖f ‖L2‖∇f ‖L2. (82)

Thus, we obtain assuming thatδ(t) < 1/2

‖u‖4L4 6 C‖u‖2L2‖∇u‖2L2,

‖∇ρ‖2L4 6C
∥∥ρ−1∥∥2

L∞
∥∥∇ρ2∥∥2

L4 6 C
(
1+ δ(t)2)∥∥∇ρ2∥∥

L2

∥∥1ρ2∥∥
L2

6C
(
1+ δ(t)3)‖∇ρ‖L2

∥∥1ρ2∥∥
L2,

‖u · ∇ρ‖2L2 6 ‖u‖2L4‖∇ρ‖2L4 6C
(
1+ δ(t)3)‖u‖L2‖∇u‖L2‖∇ρ‖L2

∥∥1ρ2∥∥
L2,

‖u‖L2 6C(1− δ(t))−1/2‖√ρu‖L2.

Hence, forδ(t) < η (whereη > 0 depends onZ′), we have for someC0> 0

d

dt

∫
R2

m · ∇ρ2dx+C0
(‖∇ρ‖2L2 +‖1ρ2‖2L2

)
6C‖∇u‖2L2 +C‖u‖L2‖∇u‖L2‖∇ρ‖L2

∥∥1ρ2∥∥
L2

+C‖∇ρ‖2L2

∥∥1ρ2∥∥2
L2 +C‖u‖2L2‖∇u‖2L2,

6C‖∇u‖2L2

(
1+ ‖u‖2L2

)+C‖∇ρ‖2L2

∥∥1ρ2∥∥2
L2

6C‖∇u‖2L2

(
1+ ‖√ρu‖2L2

)+‖∇ρ‖2L2

∥∥1ρ2∥∥2
L2,

6CE0
(‖∇u‖2L2 + ∥∥1ρ2∥∥2

L2

)+C‖∇u‖2L2.

Therefore, as soon asE0 is small enough, we have for some constantC1> 0

d

dt

∫
R2

m · ∇ρ2dx+C1
(‖∇ρ‖2L2 + ∥∥1ρ2∥∥2

L2

)
6C‖∇u‖2L2. (83)

Let α > 0 and definewα by

wα(t)= 1

2
‖√ρu‖2L2 + ∥∥π(ρ)− π(ρ̄)∥∥L1 + κ

2
‖∇ρ‖2L2 + α

∫
Rd

m · ∇ρ2dx.
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Then, choosingα small enough, we deduce that

1

2
wα(t)6w0(t)6

3

2
wα(t),

and from the energy bounds and(83) that

d

dt
wα(t)+C2

(‖∇u‖2L2 +‖∇ρ‖2L2 + ∥∥1ρ2∥∥2
L2

)
6 0, (84)

so that we have the claimed a priori bounds. Now considering a suitable approximate
problem, we can easily pass to the limit in quadratic terms like∇ρ ⊗ ∇ρ, since∇ρ
is bounded inL2(0, T ;H 1(Rd)), and also inC([0, T ];H−1(Rd)), as can be seen by
writing a linear transport equation on∇ρ. 2
7.2. Blow-up of solutions with compactly supported density

Let us finally make a few remarks based upon the work of Z. Xin [22] in the non-
capillary case. We consider the full Navier–Stokes Korteweg system (1)–(3) (with energy
equation), for which Hattori and Li [14] proved global existence ofHs solutions (for
s > 0 large) close enough to constant states|(ρ0,m0, θ0)− (ρ̄,0, θ̄ )| � 1 when the heat
conduction parameterα is positive. We expect that the preceding results, namely global
well-posedness of the Korteweg system, still hold in scale invariant Besov spaces for
solutions close to constant states.

In contrast to the preceding approach whereρ is close to a constant, we assume now
that the initial data satisfy

A(0) def=
∫
Rd

(
ρ0
|u0− x|2

2
+ ρ0e0

)
dx<+∞,

which is the case for instance ifρ0 has compact support. For the sake of simplicity,
we consider a perfect gas lawp = ρRθ , e = cvθ , and setγ = 1 + R/cv. When
γ ∈ (1,1+ 2/d], we defineσ (t)= (1+ t), whereas whenγ ∈ (1+ 2/d,∞), we take
σ (t)= t . Then, we deduce from easy computations (see [22]) that

d

dt
A(t)= σ (t)

∫
Rd

(2ρe− dp)dx,

where

A(t)=
∫
Rd

(
ρ
|uσ (t)− x|2

2
+ σ (t)2ρe

)
(t) dx+ κ (d + 2)

2

t∫
0

σ (s)

∫
Rd

|∇ρ(s,x)|2ds dx.

Using the fact thatp = (γ − 1)ρe and denotingδ = 2− d(γ − 1), we obtain

Ȧ(t)6 δA(t)
σ (t)

, henceA(t)6A(0)σ (t)max(δ,0).
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Therefore, we have

σ (t)min(2,d(γ−1))
∫
Rd

p dx6 (γ − 1)A(0). (85)

As a consequence, we obtain in the isothermal caseθ = θ̄

RMθ̄σ (t)min(2,d(γ−1))6 (γ − 1)A(0),

denoting byM the total mass, which proves that solutions blow up after some critical
timeT0 as soon asA(0) is finite.

Let us remark that similar observations can be done in the isentropic case, as well as
in the non-isentropic case when the thermal diffusion is neglected (i.e.α = 0). In order
to get blow up estimates, we have to consider initial densities compactly supported in
Rd (see [22]), and observe that the support of the density does not grow as time evolves.
Then, blow up estimates stem from estimate(85)and Hölder’s inequality.

Appendix

This section is devoted to a commutation lemma that we used to prove Proposition 5.

LEMMA 5. – SupposeA ∈ L̃2
T (B

d/2+1) and B ∈ L̃2
T (B

d/2). Then the following
estimate holds on[0, T ]:

‖∂k[A,1`]B‖L1
T
(L2) 6Cc`2−`(d/2−1)‖A‖

L̃2
T
(Bd/2+1)

‖B‖
L̃2
T
(Bd/2−1)

,

whereC depends only ond, and
∑
`∈Z c` 6 1.

Proof. –The proof of the above lemma requires some paradifferential calculus. We
have to recall here that paradifferential calculus enables to define a generalized product
between distributions, which is continuous in many functional spaces where the usual
product does not make sense (see the pioneering work of J.-M. Bony in [4]). The
paraproduct betweenu andv is defined by

Tuv
def=∑

`∈Z
S`−1u1`v.

We thus have the following formal decomposition (modulo a polynomial):

uv = Tuv+ T ′vu, with T ′vu
def=∑

`∈Z
S`+2v1`u.

Coming back to the proof of Lemma 5, we split∂k[A,1`]B into

∂k[A,1`]B = ∂kT ′1`BA− ∂k1`T
′
BA+ [TA,1`]∂kB + T∂kA1`B −1`T∂kAB.
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From now on, we agree that(c`)`∈Z denotes a positive sequence such that
∑
`∈Z c` 6 1.

According to (20) and to the definition ofT ′, we have

∂kT
′
1`B

A= ∑
m>`−2

∂k(Sm+21`B1mA).

Thus, in view of Bernstein’s lemma and the definition ofL̃
ρ
T (B

s) spaces,

‖∂kT ′1`BA‖L1
T
(L2)
.

∑
m>`−2

2m2`d/2‖1`B‖L2
T
(L2)‖1mA‖L2

T
(L2),

. 2`d/2‖1`B‖L2
T
(L2)

∑
m>`−2

2−md/2
(
2m(d/2+1)‖1mA‖L2

T
(L2)

)
,

. 2−`(d/2−1)(2`(d/2−1)‖1`B‖L2
T
(L2)

) ∑
m>`−2

2m(d/2+1)‖1mA‖L2
T
(L2),

. c`2−`(d/2−1)‖B‖
L̃2
T
(Bd/2−1)

‖A‖
L̃2
T
(Bd/2+1)

.

We use classical estimates for the paraproduct to bound the second term of the right-hand
side (see [7] and [8]). We get

‖T ′BA‖L1
T
(Bd/2) . ‖B‖L2

T
(Bd/2−1)‖A‖L2

T
(Bd/2+1).

Using spectral localization of1` and definition ofL̃ρT (B
s) spaces, we get

‖∂k1`T
′
BA‖L1

T
(L2) . c`2−`(d/2−1)‖B‖

L̃2
T
(Bd/2−1)

‖A‖
L̃2
T
(Bd/2+1)

.

According to (20), the third term reads

[TA,1`]∂kB =
∑
|m−`|64

[Sm−1A,1`]1m∂kB.

Applying first order Taylor’s formula, we get forx ∈Rd ,
[Sm−1A,1`]1m∂kB(x)

= 2−`
∫
Rd

1∫
0

h(y)
(
y · Sm−1∇A(x− 2−`τy

))
1m∂kB

(
x− 2−`y

)
dτ dy.

Convolution inequality thus yields∥∥[Sm−1A,1`]1m∂kB
∥∥
L2 . 2−`‖∇A‖L∞‖1m∂kB‖L2,

hence ∥∥[TA,1`]∂kB
∥∥
L1
T
(L2)
. c`2−`(d/2−1)‖∇A‖L2

T
(L∞)‖B‖L̃2

T
(Bd/2−1)

.

Finally, thanks to (20), we have

T∂kA1`B =
∑
|`−m|61

Sm−1∂kA1`1mB
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so that

‖T∂kA1`B‖L1
T
(L2) 6 ‖∂kA‖L2

T
(L∞)‖1`B‖L2

T
(L2).

Classical estimates for the paraproduct yield

‖T∂kAB‖L1
T
(Bd/2−1) . ‖B‖L̃2

T
(Bd/2−1)

‖∂kA‖L̃2
T
(Bd/2)

so that the proof of Lemma 5 is achieved.2
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