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ABSTRACT. — The purpose of this work is to prove existence and uniqueness results of suitably
smooth solutions for an isothermal model of capillary compressible fluids derived by J.E. Dunn
and J. Serrin (1985), which can be used as a phase transition model.

We first study the well-posedness of the model in spaces with critical regularity indices with
respect to the scaling of the associated equations. In a functional setting as close as possible
the physical energy spaces, we prove global existence of solutions close to a stable equilibriun
and local in time existence for solutions when the pressure law may present spinodal region:
Uniqueness is also obtained.

Assuming a lower and upper control of the density, we also show the existence of weak
solutions in dimension 2 near equilibrium. Finally, referring to the work of Z. Xin (1998) in
the non-capillary case, we describe some blow-up properties of smooth solutions with finite tota
mass.
© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME. — On s'intéresse ici a des résultats d'existence et d'unicité de solutions pour un
modéele de fluides compressibles isothermes avec capillarité. Ce modéle de transition de phas
été dérivé par J.E. Dunn et J. Serrin (1985).

Pour commencer, on montre que le probleme de Cauchy est bien posé dans des espac
a régularité critique pour lscaling des équations. Pour des données initiales proches d'un
état d’équilibre stable, on obtient I'existence globale (et 'unicité) de solutions dans un cadre
fonctionnel aussi proche que possible de I'espace d’énergie physique. Pour des lois de pressi
plus générales (pouvant étre décroissantes), on prouve des résultats locaux en temps.

En supposant que I'on dispose d’'un minorant strictement positif et d’'une borne supérieure pou
la densité, on obtient I'existence de solutions faibles en dimension 2 pour des données initiale
proches de I'équilibre. Enfin, en adaptant un travail de Z. Xin pour les fluides sans capillarité, or
établit I'explosion de solutions réguliéres a masse totale finie.
© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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1. Introduction

Let us consider a fluid of density > 0, velocity fieldu € RY (d > 2), entropy
density s, energy density, and temperaturé = (de/ds),. We are interested in the
following model of compressible capillary fluid, which can be derived from a Cahn—
Hilliard like free energy (see the pioneering work by J.E. Dunn and J. Serrin in [11], and
also [1,6,12])

d;p 4 div(pu) =0, 1)

9;(pu) +div(pu ® u) = div(S+K), 2

2 2
0, (,0 (e + %)) + div (pu (e + %)) =div(eV0) +div((S+K) - u), 3)

where the viscous stress tengand the Korteweg stress tengéread as

S.,; = (Adivu— P(p, e))é; ; + 2uD(u); ;, (4)
K
Kij= E(Aﬂz - |VP|2)51',,/ —Kk0;pd;p, (5)

D(u);; = (d;u; + d;u;)/2 being the strain tensor, and, 1) the constant viscosity
coefficients of the fluid. We require thatandu satisfy > 0 and A+ 2 > 0, which in
particular covers the case wharand i satisfy Stokes’ lawii + 2u = 0. The thermal
conduction coefficient is a given non negative function of the temperat@rand the
surface tension coefficiert> 0 is assumed to be constant. In view of the first principle
of thermodynamics, the entropy densitgolves

3, (ps) + div(psu) = %(div(ave) +K : D(U) 4+ 2uD(u) : D(u) + Aldivu[?).  (6)

As a reasonable starting point of our analysis, we consider the scaled Van der Waal
equation of state

. 8 3p
P(,O)—Cl,OQ(ﬂ - ?), (7)

wherea is a positive constant, and the critical densityand temperaturé, are equal
to 1. Depending on the fixed temperatédrethe pressure is a nondecreasing function of
the densityp or may present decreasing regions (spinodal regions) for some values o
0, which are thermodynamically unstable. The above equation of Gatnsures the
presence of two basic states, a “liquid” one, and a “gaseous” one. Let us as in [20] pu
emphasis on the existence of steady solutions connecting a gas phase to a liquid pha
through a smoothly varying density profile. When initial conditions involve densities in
the unstable (spinodal) region, the two phases are expected to spontaneously separe
For details on the derivation of the above Korteweg like model, we refer to [1,11,12,16].
In what follows, we do not consider thermal fluctuations so that the pregsigsa
function of p only. The corresponding isothermal model which was also considered in
[13,20] then reads as



R. DANCHIN, B. DESJARDINS / Ann. Inst. Henri Poincaré Anal. nonlinear 18 (2001) 97-189

3p +div(pu) =0, (8)
9;(pu) +div(pu® u) — uAU — (A 4+ n)Vdivu + VP (p) = divK + pf, 9)

wheref is an exterior forcing term, supplemented with initial conditions
pi—o=po=0 and pu,_o=mo. (10)

In a bounded domair, we would have to precise the boundary conditions, namely
homogeneous Dirichlet conditions for the velocity;, = 0 and Neumann conditions
for the density:0, 0,52 = 0. In order to simplify the presentation, we will focus on the
whole space case’ (d > 2) and study the well-posedness of (8) (9) for an initial density
close enough to an equilibrium densjiy> 0, or at least bounded away from vacuum,
which is a major difficulty in most of compressible fluid models.

Before getting into the heart of mathematical results, we first derive the physical
energy bounds of the above system in the dase0 to simplify the presentation. Let
o > 0 be a constant reference density, andefined by

w(s)=s (/ PZ(ZZ) dz — P;ﬁ)>, (12)
;

so thatP(s) = sz’(s) — (s), 7'(p) =0, and
7 (p) +div(ur(p)) + P(p)divu=0 inD'((0, T) x R?). (12)

Notice thatr is convex as far a® is non decreasing (sinck’(s) = sz”(s)), which is
the case foi -type pressure laws. Multiplying the equation of momentum conservation
by u and integrating by parts ov&¢“, we obtain the following energy estimate

1
[ (G2 + (o) =70 + 51951 ) 1) dx
Rd
+ /ds /(u D(u) : D(u) + (A + w)|divul?) dx
0

ﬂ'@zl

Imol? ok ,
<[< 2p0 + (7 (po) — 7 (p)) + §|VP0| >dX. (13)

Indeed, in order to compute formally the contribution to energy of the capillary tensor
K, we observe that

divK =« pVAp. (14)

In view of the above expression, this model can be understood as a diffuse interfac
model, in which surface tension takes place between level sets of the continuousk
varying density. As a matter of fact, the right hand sidd) can be rewritten up to a
gradient term as the product betweéép and Ap, which, roughly speaking, respectively
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represent the normal direction and the curvature of the level sets of the density. A:
observed for instance in [1], formal analyses show that the sharp interface limit lead:
to the classical two-fluid problem. We obtain indeed

. . d [|Vpl?
—/U-leKdX:/KdIV(pU) Ade:K/B,V,O-V,OdX:Kd—/ 2 dx.
R4 R4 R4 th
It follows that assuming that the total energy is finite
1T, _ K 2
&= [ (5pot+ (xp0) = x(3) + 51V ol ) < +ox. (15)
R2
we have thea priori bounds
n(p)—n(p) and plul*e L0, 00; LYRY), (16)
Vp e L*(0, 00 L2(RY))? and Vu e L2((0, 00) x RY)" (17)

Let us emphasize at this point that the abavpriori boundsdo not provide any.*
control on the density from below or from above. Indeed, even in dimensien2,
H'(R?) functions are not necessarily locally bounded. Thus, vacuum patches are likely
to form in the fluid in spite of the presence of capillary forces, which are expected to
smooth out the density.

2. Mathematical results

We wish to prove existence and uniqueness results of solutions to (8) (9) in functional
spaces very close to energy spaces. In the eas® andp(p) = ap?, with a > 0 and
y > 1, P.-L. Lions proved in [17,18] the global existence of weak solutions “a la Leray”
(p,u) to (8) (9) for y > 3d/(d + 2) and initial data(pg, mg) such that

Imo|?

n(po) — 7 (p) and e LY(RY), (18)

where we agree thanhg = 0 on X € R?/po(X) = 0}. More precisely, he obtains the
existence of global weak solutiorig, u) to (8)—(10) such that
e p—p e L®0,o0; L)Z,(Rd)) (WhereLi(Rd) spaces are Orlicz spaces defined in
[18]),
e uc L?%0,00; HY(RY)? (H* being defined in Section 3),
with in addition
e peC(0,00); L, (R)if1<p<y,

e plul2 e L¥(0, 00; LL(RY)), pu € C([0, 00); L2/ HY (RY)-weak,

loc

e pe Ll ([0,00) x R)forg=y —14+2y/d.

loc

Moreover, the energy inequalityL3) holds for almost every > 0.



R. DANCHIN, B. DESJARDINS / Ann. Inst. Henri Poincaré Anal. nonlinear 18 (2001) 97-161

Notice that the main difficulty for proving Lions’ theorem consists in strong
compactness properties of the dengitiyn L], . spaces required to pass to the limit in the
pressure termp(p) = ap” . In the capillary case > 0, more a priori bounds are available
for the density, which belongs > (0, oo; Hl(]R")). Hence, one can easily pass to the
limitin the pressure term. However, in the remaining quadratic terms involving gradients
of the densityVp ® Vo (see(b)), we have been unable to pass to the limit.

Let us mention now that the existence of strong solutions is known since the works
by H. Hattori and D. Li [13,14]. Notice that high order regularity in Sobolev spdtes
is required, namely the initial dat@o, mg) are assumed to belong f&* x H*~! with
s > d/2+ 4. Moreover, they considered convex pressure profiles, which cannot covel
the case of Van der Waals’ equation of state.

Here we want to investigate the well-posedness of the problamitical spacesthat
is, in spaces which are invariant by the scaling of Korteweg'’s system. Recall that such a
approach is now classical for incompressible Navier—Stokes equations (see, for exampl
[7] and the references therein) and yields local well-posedness (or global well-posednes
for small data) in spaces with minimal regularity.

Let us explain precisely the scaling of Korteweg’s system. We can easily verify that,
if (0, u) solves (8) (9), so doe®;,, u,), where

0. (t,x) = p(A%t, ax) and Uy (f, x) = AU(A%r, Ax),

provided the pressure law has been changed intgP.

DeriNITION 1. —We will say that a functional space is critical with respect to the
scaling of the equation if the associated norm is invariant under the transformation
(p, W) — (py, U;) (up to a constant independent of.

This suggests us to choose initial d&tg, up) in spaces whose norm is invariant by
(o, Uo) = (po(A-), AUg(A-)). ] )

A natural candidate is the homogeneous Sobolev sp&cé x (H/?~1)?, but since
H4/2 is not included inL>, we cannot expect to get™® control on the density when
po € HY/2, This is the reason why, instead of the classical homogeneous Sobolev space
H*(R%), we will consider homogeneous Besov spaces with the same derivative index
B* = B, (R) (for the corresponding definitions, we refer to Section 3). One of the nice
property of B’ spaces for critical exponeniss thatB4/? is an algebra embedded A1¥°.
This allows to control the density from below and from above, without requiring more
regularity on derivatives gb.

Since a global in time approach does not seem to be accessible for general data, v
will mainly consider the global well-posedness problem for initial data close enough to
stable equilibria (Section 4). More precisely, we will state the following theorem:

THEOREM 1. —-Let p > 0 be such thatP’(p) > 0. Suppose that the initial density
fluctuation pg — p belongs toB?/?> N B4/?>~1, that the initial velocityu, is in (B4/?~1)?
and that the exterior forcing terrhis in LYX(R*; B/?>~1)?. Then there exists a constant
n > 0 depending only ow, u, A, p, P’(p) andd, such that, if

o0 — Pl parz-1npare + IUoll parz-1 + [Ifll L1 gare-1) < m,
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then (8)—(10) has a unique global solutiorip, u) such that the density fluctuation
(p — p) € C(RT; BY?71 0 B4/2) n LY(R*; BY/?*1 N B%/?+2) and the velocityu e
C(R-‘r; Bd/2—1)d N LI(R+; Bd/2+l)d_

In Section 5, we get a local in time existence result for initial densities bounded away
from zero, which does not require any stability assumption on the pressure law, and thu
applies to Van der Waals’ law. The precise statement reads as follows:

THEOREM 2. —Suppose that the forcing termf belongs to L} .(Ry;
B4/2~1d that the initial velocityuy belongs to(B?/?~1)¢, and that the initial den-
sity po satisfies(po — p) € B?/? and py > ¢ for a positive constant. Then there
exists T > 0 such that(8)—(10) has a unique solutior(p, u) satisfying (0 — p) €
C([0, T1; BY?) N LX([0, T1; BY/?*?) andu € C([0, T1; B> Y4 N LY([0, T]; BY/?+1)4,

In Section 6, we show that the problem is still locally well-posed in more general
scaling invariant Besov spaces of tyg@g ; which are not related to energy spaces

(namely p — 4 is assumed to be iB)/{ and uo to be in (By/Y ). No stability
assumption on the pressure is requwed but we have to suppose that the density is close
a constant (see Theorem 5). Let us observe that working pvithd allows to consider
initial velocities in B, ; spaces with negative exponestsvhich is in particular relevant
for oscillating initial data

Finally, we will investigate blow-up properties of smooth solutions without smallness
assumptions on the data, like in the work of Z. Xin [22], and study sufficient conditions
for the existence of weak solutions close to equilibria in dimengien?2.

Notation. In all the paper,C will stand for a “harmless” constant, and we will
sometimes use the notatiogh< B equivalently toA < CB.

3. Littlewood—Paley theory and Besov spaces
3.1. Littlewood—Paley decomposition

The homogeneous Littlewood—Paley decomposition relies upon a dyadic partition of

unity. We can use for instance apye C*(R%), supported ir¢ £ e R, 3/4 < €| <
8/3} such that

Yoe(2e)=1 ifszo0.
LeZ

Denotingh = F ¢, we then define the dyadic blocks by

Au®p(27D) u—ZM/h (2y)u(x—y)dy and Su= > Awu.

R4 k<1

The formal decomposition

u= Z Agu (19)

LEL
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is called homogeneous Littlewood—Paley decomposition. Let us observe that the abov
formal equality does not hold i§’(R¢) for two reasons:

(i) The right-hand side does not necessarily converg# (R?).

(i) Evenifit does, the equality is not always trueSi(R¢) (consider the case= 1).

Nevertheless, (19) holds true modulo polynomials (see [21]).

Furthermore, the above dyadic decomposition has nice properties of quasi-orthogona
ity: with our choice ofy, we have

A Au=0 iflk—¢]>2, and A(Se_uAu)=0 iflk—¢|>5. (20)
3.2. Homogeneous Besov spaces

DEFINITION 2.—-Fors eR, p e [1, +o0], g € [1, +oo] andu € S’'(R?), we set

def st q Ha
s, & (@ 1awl)")

LeZ

A difficulty due to the choice of homogeneous spaces arises at this point. Indeed
lIlg;,, cannot be a norm orfu € S'(RY), lullgs, < 400} because||u||Bc =0
means thai is a polynomial. This enforces us o adopt the following definition for
homogeneous Besov spaces (see [5] for more details):

DEFINITION 3.-Lets e R, p e[1, +oc] andg € [1, +oc0]. Denotem = [s —d/ p] if
s—d/p¢Zorqg>1landm=s—d/p—1otherwise. lfn <0, then we definé, , as

B;’q = {u € S’(Rd) | ||u||B;’q <ooandu = ZAgu in S’(Rd)}.
LeZ

If m >0, we denote byP,,[R?] the set of polynomials of degree less than or equat to
and we set

By, = {u e S'(RY) /P, [RY] | lull gy, < oo and u = > Awin S (RY) P, [RY] }
el

Remark1. — The above definition is a natural generalization of the homogeneous
Sobolev or Holder spaces: one can show that_ is the homogeneous Hoélder space

C* and thatBs , is the homogeneous Sobolev spate

In the sequel, we will use only Besov spadgs, with ¢ = 1 and we will denote them
by B;, or even byB"* if there is no ambiguity on the index.

3.3. Basic properties of Besov spaces

PrRopPoOsSITION 1. — The following properties hold
(1) Density if p < +o0 and|s| <d/p, thenCg® is dense inB;,.
(i) Derivation there exists a universal constafitsuch that

-1
il gy < IVl g1 < Cllull -
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(ii") Fractional derivation let Ad:efm and o € R. Then the operatoA? is an
isomorphism fromB;, to B, ™.

(i) Sobolev embedding#: p; < p, then B, < BS 4/r1=1/r2 (where— means
continuous embeddifg

(iv) Algebraic propertiesfor s > 0, B) N L> is an algebra.

(v) Interpolation: (BSt, Bj?)g.1 = By 112,

In Section 6, we will make extensive use of the spB@é”. Note that, ifp < +o0,
then B;f/l’ is an algebra included in the spa€g of continuous functions which tend to
0 at infinity. Note also thaB:/? x (B¢/?~1)? is invariant by the scaling of Korteweg’s
system.

In Sections 4 and 5, we will focus on the case- 2. Note that the following inclusion
chain

Bd/ZL) I_'Id/zz Bd/z Bd/z

dJ? ,1/2

shows us that/4/2 is very close taB5’. But BS

be an algebra and to be a subseC@f

has two additional nice properties: to

3.4. Besov—-Chemin-Lerner spaces

The study of non stationary PDE’s usually requires spaces of A& ) L’(O
X) for appropriate Banach spac#s In our case, we expedf to be a Besov space, o)
that it is natural to localize the equations through Littlewood—Paley decomposition. We
then get estimates for each dyadic block and perform integration in time. But, in doing
so, we obtain bounds in spaces which are not of %p@, T'; B;). This approach was
initiated in [9] and naturally leads to the following definitions:

DEFINITION 4. —Let(p, p) € [1, +00]?, T €]0, +00] ands € R. We set

1/p
ez, 5527 / 18l dr)

LeZ

Noticing that Minkowski's inequality yields|ull,» s, < llull;o 5\, We define
TP T(B[’)

L1 (BS) spaces as follows
Ly (By) € {u e LL(B)) | ull gy ) < +00}-

Let us observe thaLl(B )y =Lk 7(B)) but that the embeddln@T(B )y C L% 7(B) is
strict if p > 1. N B

We will denote byCT(B;,) the subset of functions dI‘;O(B;) which are continuous
on [0, T'] with values inB;.

Throughout the paper, the notation Z‘;(BS N BS’) (respectively
L‘T)(BA xB‘ )) will stand forL? (B‘)mL (B‘ )(respectlverL (B}) x L" (BA )). More-
over, in the casé& = +o0, theT will be omitted. For examplel,p(B;) meansl” foo(B).



R. DANCHIN, B. DESJARDINS / Ann. Inst. Henri Poincaré Anal. nonlinear 18 (2001) 97-185%

We will often use the following interpolation property

" 1-6
lullZe gy < IIMIILpl(B e, ﬂ2<B with — = — + ands = 6s; + (1 —6)s2,

P p1 P2
and the following embeddings
LY (BY/P) < L4(Co) and Cr(BYP)— C([0,T]x R?).
TheZ‘;(B;;) spaces suit particularly well to the study of smoothing properties of the heat
equation. In [7], J.-Y. Chemin proved the following proposition
PROPOSITION 2. — Letp € [1, +o0] and1 < p, < p1 < 400. Letu solve
{ ou —vAu = f,
Lt|,=o =uo.

Then there exist€' > 0 depending only od, v, p1 and p, such that
el gr2imy < Clluoll gy + CllLf Nz gi-2v2iee, -

In Sections 4, 5 and 6, we will point out similar smoothing properties for the linearized
Korteweg system. N
Let us now state properties ﬂfT’(BS) spaces with respect to the product.

PROPOSITION 3. — If s > 0,1/p, +1/p3 = 1/,01+ 1/pa=1/p <L ueLF(L®)N
L"3(B*) andv € L?(L*®) N L"“(BA) thenuv € L7.(B;) and

Huv”L/’(BS) ~ ”M”L"l(LOO)”v” /’4(35 + ”UHLPZ(LOQ)”MH ”S(BS)

If s1,52 <d/p,s1+52>0,1/p1+1/p2=1/p <1 u ELpl(le) and v GLPZ(BSZ)
thenuv e L@(B;lﬂz 4/ry and

||MU||L,; (351“2 "/I’ ”Lt ”L’;l(B;l) ”U ”L’;Z(B;Z)-

This proposition is a straightforward adaptation of the corresponding results for usua
homogeneous Besov spaces (see [8]).
We finally need a composition IemmaM(BS) spaces.

LEMMA 1.— Lets >0, p €[1, +00] andu € L 7(B,) N LF(L™).

(i) Let F e Wl (R?) such thatF (0) = 0. ThenF (u) € L7.(B3). More precisely,
there exists a function’ depending only on, p, d and F such that

IFGON g sy < C (o)) Nl s -

(ii) I v also belongs td.}(B3) N LF(L®) andG € WS> (RY), thenG (v) — G(u)

belongs toL” 7(B;) and there exists a functiofi depending only os, p, d andG, and
such that
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G V) — G u T s
1GW) = G|z 4,
< C(”u”L?(LOO), ||v||L709(L90))(||v — u||2;<3;)(1+ el oo ooy + NVl oo o))
+llv = ullggewoey Nullge g, + 101170 gs))-

Proof. —For (i), one just has to use the proof of [2] and repld@enorms with L?
norms. For (ii), we use the following identity

1
G(v) —G(u)=<v—u)/H(u+r<v—u))dr+G’(0)<v—u),
0

whereH (w) = G'(w) — G’(0), and we conclude by using (i) and Proposition 3]

4. Global solutions near equilibrium

In this section, we want to prove global existence and uniqueness of suitably smootl
solutions to the Korteweg syste(@) (9) in the functional spacek’ (B3) which are very
close to the physical energy spaces. Given a reference densitgh that the stability
condition P’(p) > 0 is satisfied, we introduce the density fluctuatipe= (0 — p)/p
and the scaled momentum = pu/p. We also define the scaled viscosity coefficients
it =u/p andi = A/p and the scaled surface tension coefficiert px. Assuming that
the densityp is bounded away from zero, we rewrite the Korteweg system (8) (9) as
follows

d,q +divm =0, (21)

3m— iAm— (A + )Vdivm — i VAg + P'(p)Vq = G(g, m) + 1, (22)

(g, M) ;=0 = (g0, Mo), (23)
where we defing = G, + G, + Gz + G4 + Gs by

me m), Ga(g.m) = —VH(q),

G = —di
0. = —an( 22

(1) - G mvan ()
Gs(g,m)=—pA| —— | — (A + ) Vdiv ,
3(g, m) M<1+q A+ 114

K I -
Galg,m) =5 V(Ag” — |Vg|?) — R div(Vq ® Vq) =gV Aq,
and
Gs(q, m) =fq,

H being defined by (¢) = (P(p(1+q)) — P(p) — P'(p)qp)/p-

In Section 4.1, we study the linearized system arogndn) = (0, 0), which turns
out to have the same smoothing properties as the heat equation. Finally, we prove |
Section 4.2 our main global theorem, estimating the right-handGidé (22) in terms
of suitable norms ofg, m). Notice that in Sections 4 and B} will stand forB;»l.
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4.1. Estimates for the linearized system

This section is devoted to the linearized isothermal system of Korteweg type arounc
(g, m) = (0, 0). This system reads

M — aAm— (A +@)vdivm —kVAg + Vg =G (LNSK1)

The termBVq corresponds to the linearized pressure (thag is P’(p) > 0). Our
purpose is to prove estimates for (LNSK1) in Besov spaces closely related to energ
spaces. We get:

PROPOSITION 4. — Lets e R, 1 <r <r < +oo and T €]0, +o0]. If (go, Mp) €
(B°N Bsfl) % (Bsfl)d and (F,G) e Lrl((BA 2+2/r1 N BS— 3+2/r1) x (BS~ 3+2/r1)d) then
the linear systend_NSK1) has a unique solutioy, m) € C((B* N B*~1) x (B*~1H)4)N
L} (B2 0 Bs=142/7)  (Bs~1+2/7)d) Moreover, there exists a constafitdepending
only onr, r1, fi, A, k and 8 such that the following inequality holds:

||C] ||z’7'“(BS+2/rnBS71+2/r) + ||m”29(3s—1+2/r)
C (lqoll gsps— + IIMoll g1 + ||F||Z’Tl(Bs—2+2/rm3s—3+2/r1) + ||G||’L”;1(Bs—3+2/r1))~

Proof. —Denote by W(r) the semi-group associated to (LNSK1). According to
Duhamel’s formula,

(103 ) =0 () [ () e

Let us first consider the cas& = 0 and G= 0 and denote(g.(¢), m,(r))" =
W (t)(Aeqo, A¢Mg)'. Then, we have the following lemma

LEMMA 2. — There exist two positive constantsind C depending only on., j, &
and B such that for all¢ € Z,

IMe iz +1IVge iz + llge(0)ll 22
< Ce™ P (| Agmoll 2 + 1V Agoll 2 + | Aegoll .2)-
Proof. —We apply the operataf, to (LNSK1) in the casg” = G =0 and get
9;q¢ +divm, =0, (25)
dm, — pAm, — (A + )vVdivm, —kcVAg, — BVq, = 0. (26)
In view of Eq. (25), integrations by parts yield

1d
/qu divm, dx = ——IIVQelle and
R4

1
/%lemzdx————HCH”Lz
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Thus, taking scalar product of (26) with,, we get

577 (Imellze + Bllgellze +RIVael) + £IVMATe + O+ @) divm, 7. = 0. (27)
In order to obtain a second energy estimate, we take the scalar prodnginth the
gradient of (25), which yields

/mg -3, Vqedx — ||divm,||%, = 0. (28)

R4

Taking the scalar product of (26) witig,, we obtain

/ Vae - dmedx + & Agell22 + BlIVGelF2 < CIVMll 21 Vel 2. (29)
Rd

Summing (28) and (29), we deduce
d K
S (e Vacax) + SivPale + pIVgE <OV (30)
]Rd
Let o > O be a constant to be chosen later and denote

h? = ||me||iz+E||qu||iz+ﬁ||qe||iz+2a/me-qudx.
Rd

As a result, from (30) and (27), we derive for some positive constant

1d 2
52+ co(IVmelZz + e[| Va1 + el Vaell72)
< Cal|lVmy||2,. (31)
Now choosingx suitably small, we deduce that

1 i
ghf <Ml +klIVaell?2 + Bllgell?2 < 8h2, (32)

for some positiveS. Thus, there exists a constant 0 such that
1d

5 Ehf +c2%n? <0,

so that the proof of Lemma 2 is completen

Proof of Proposition 4 (continued). ka view of Lemma 2 and formula (24), we have

[AM@)l2 + [IVAg @)Lz + [Acg (@)l 2
_e2
< Ce™ " (IlAMoll 2 + IV Aegoll 2 + | Argoll .2)
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t
+ / P (JAGD 2+ IVAF @l 2+ 1A F (D)l 2) d,
0

so routine computations yield Proposition 4
4.2. Global existence and uniqueness

Let us first introduce functional spaces needed in the main global existence result. W
will prove existence in the space

E— (6(Bd/271 N Bd/Z) N Ll(Bd/z+1m Bd/2+2)> (5<Bd/271) N Ll(Bd/2+l)>d’
and uniqueness in the larger space
E=C(B"2x (B*%)") n L2(B"2 x (B12)").

We denote byj-||; and||-||; the corresponding norms. Sing¢/? is a Banach space, it

is easy to verify thaZ and E are also Banach spaces. We now turn to our main global
existence theorem

THEOREM 3. — Let p > 0 be such thatP’(p) > 0. Suppose that the initial density
fluctuation go belongs toB4/2 N B4/271, that the initial momentunmg is in B%/?~1
and that the forcing ternfi is in LX(R*; B/?>~1)?. Then there exists a constamt> 0
depending only oR, i, A, p, P such that, if

lgoll pasz-1npasz + [IMol| garz-1 + ||f”L1(Bd/2*1) <,

then(21)—-(23)has a unique global solutiofy, m) in E. In addition, (7, m) belongs to
E.

Proof. —Let us denotdq; , m; ) the “free” solution of the linearized system

qr(®) \ _ qo0 / B O)
(mL(r>)‘W(”<mo>+o/W“ ”(f(s) ds.

We define the functional,, ,,, in a neighborhood of 0 it by

- — / 0
lIJQL,mL(q,m)=O/W(l—S) (G(C]L'f‘é,mL-i-m)(S)) ds. (33)

To prove the existence part of the theorem, we just have to show/that, has a fixed
pointin E.
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First step stability of B(0, R).
We start by proving that the bal}(0, R) of E is stable unde#,, ,,, providedR is
small enough. Denotg = ¢g; +¢ andm = m; +m. According to Proposition 4, we have

(g, m)llg < Cn, (34)
¥, m, (@, Mz < CIG(g, M)l 1(parz-1). (35)

Making the assumption
||CI||Lw(R+de) 1/2, (H)

and using Proposition 3 and Lemma 1, we deduce the following estimates:
1G1(gq, M)l Lacparz-2) < ClIIMIl L2 garzeny 1M 7o garo1, (14 11700 garzy) )
( ) (B/2)
1G2(q, m)”Ll(Bd/Z*l) < C||CI||L1<Bd/2+1)||Q||Loo Bdj2-1y
( )
1Ga(g, M)l 1gar2-1,
”G4(qs m)”Ll(Bd/Z’l) X C”q”Ll(Bd/erz) ”q”ZOO(Bd/Z)’

”G5(qs m) ”L]'(Bd/z’]') < C‘”f”Ll(B'd/2 1) ”q ||LOO<B(1/2)’
since by interpolation, we have

/

//\

C (g2 pa2e2) IM 7 o1, + 1 oogare, 1M L1 garny),

N

1Z1Z2080) S N Z 150 oy 1 Z 1oy
In the second inequality above, we also used fihéf) = g H (¢) for a smooth function
H such thatd (0) = 0. Therefore, assuming th&t< 1, we obtain
1Warm @ M)z < Cligr + G, Mz + M) £ (g + G, M + M)z + 1)
<C((C+Dn+R). (36)

Let ¢ be a constant such thft || a2 < ¢ implies |||z~ < 1/5. We choos€R, n) such
that

R <inf((5C)™%, ¢, 1) andn <inf(R, ¢)/(C + 1), so thatH, is satisfied (37)

From (36), we finally deduce that,, ,,, (B(0, R)) C B(0, R).

Second stepContraction properties.
Consider two elementg;, m;) and(g,, My) in B(0, R), and denote; = g, + ¢; and
m; =m; +m; fori =1, 2. According to (33) and to Proposition 4, we have

H qrL.mp, (an mZ) qL mp, (CIl’ ml) HE CHG(CIZ’ mZ) G(CIl’ ml) HL1(3(1/2—1)~ (38)

Under assumption) for ¢; andg,, we obtain estimates fa&(q,, m,) — G(g1, M1).
Indeed, we just have to apply Proposition 3 and Lemma 1 to

Gi(g2, m2) — Gi(g1, M)
i m my —m my; —m m
=d|v(m1®ml( @2 q )_ 2® (M —My) + (M —M1) @ 1>’
1+q2 1+Cll 1+6I2
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Ga(g2, M) — Ga(g1, M1) = =V ((g2 — q0) H(q2) + q1(H (q2) — H(q1))),
Gs(g2, m2) — Gs(g1, M1)

_ - _ . q2 q2 q1
— (@A + G+ Vd|v<m—m +m< _—)>
(m A+ ) ){ (Mg 1)l+q2 1 I

Ga(g2, M2) — Galgr, M) = k(g2 — q1)VAG2 + kq1V A(q2 — q1),
Gs(g2, M) — Gs(q1, M1) =f(g2 — q1).
This leads to the following inequality

HIIJ(IL»W!L (g2, M2) — lI/qL,mL (g1, ml)HE
< Cll(g2 — q1, My —My)| g
x (1@, M g + 11(G2, M)l g + 2l (g, M)z + ||f||L;(Bd/2—1))-

Now, if (R, n) satisfies (37) (for a greater constanif needed), we deduce

o o 4. _ _ _ _
| Wrme (G2, M2) — Wy, iy (G, MD)|| p < g”(ﬂ]z — g1, My —my)||

and the proof of the existence part of Theorem 3 is achieved.
Notice that in view of (34) and (37)g, m) satisfies

101 oty <2/5 NG 11q 72 ) < 2/(5C).

The solution(g, m) obviously belongs to the spaoégo defined in Section 6.2 (we
haveE = E2)). ChangingC into a greater constant if necessary, we therefore can apply
Lemma 4 to get uniqueness M

5. Local solutions away from vacuum

In this section, we want to show local well-posedness for the Korteweg system with
initial data (po, Mg) such that(pg — p, M) in B%/? x (B4/?~1)?, Let us emphasize that
no smallness assumption is required: we just need the initial density to be bounde
away from zero. The pressum® may be any (possibly decreasing) smooth function
of p (P € W\/?3> is enough).
It is convenient to rewrite (8) (9) in terms @f and m by using the same scaled

coefficients as in Section 4

d,qg +divm =0, (39)
Dtm—ﬂdiv< vm ) - (I\+ﬁ)v<d'v—m) _ V(1 +q)Aq)
l1+g¢ l+g¢q

wherel" = I'y + I'> + I'3+ I, + 5 is defined by

I'(g.m)=-V(P(p(L+q)) — P(p))/p.
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. mg@m
I -
(g, M) dIV( 1tg )

. 1 - 1
Is(. m)=udnv(m®v<m>) + ()»-HL)V(m - V<m)>

o P
Iy(g,m) = —ic div(Vg ® Vq) — EVIVQIZ,

I's(g, m) =qgf.

The proof of our local existence theorem relies upon the study of the linearized systen
around(1+ ¢, 0) for a giveng such that 1 ¢ is bounded away from zero, whereas the
first order linearized pressure term is dropped. The purpose of Section 5.1 is to deriv
estimates for such a system. Well-posedness for (39) (40) is obtained in Section 5.
through an iterative method.

5.1. Estimates for the linearized system

We now study the following linearized system

{ d;g+divm=F, (LNSK2)

am — div(@Vm) — (A + ) V(adivm) —kcV(bAg) = G,

wherem is a vector field inR?, anda, b are scalar functions, bounded and bounded
away from zero

O<ci<as<Mi<+oo, O<ecx< b<My<+ox on[0,T]. (41
Our purpose is to prove estimates for (LNSK2) in Besov spaces closely related to energ
spaces. We obtain

PROPOSITION 5. — Let1 < ry < r < 400, (o, Mg) € BY?x (B>~ 1) and(F, G) €
L'} (B4/2-2+2/n . (B4/2-3+2/m)dy - Suppose(41), Vb and Va belong to L2 (B?/?),
db e LY(0, T; L™®). Let(q, m) € L} (BY/2t2/7 x (B4/2-1+2/rydy n [ 2 (Bd/2+1 5 (Bd/2)d)
be a solution of the syste(aNSK2). Then there exists a constafitdepending only on
r, 1, A L, K, c1, c2, M1, and M, such that the following inequality holds:

Vg, m)“z'{r(Bd/Z—1+2/r) (1- CHVI’”L%(]}O))
< C(1(Vgo. M)l garz-1 + (V. G) | 1 parz-sszimmy + 1801 L1 2oy 1V G I Foe o
+ || (vq’ m) ”Z?_(Bd/Z) (” Vb”z%(Bd/Z) + || Va ”z%(Bd/Z)) ) .

Proof. —It is just a matter of showing appropriate estimates foy and A,m.
Denotingg, = Ayg, m; = A;m, F, = Ay F, G, = AyG, and applyingA, to (LNSK2),
we get

3tqg + div m, = F@, (42)
am, — iidiv(@avmy) — (A + ) V(adivm,) — kV(bAq;)) =G, +R,,  (43)
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where
re=—pdiv(la, AJVM) — (A + @)V ([a, Addivm) — eV ([b, A]Ag).
Using integrations by parts and Eq. (42), we obtain

/m V(bA )dx—ld /b|v 12dx
¢ qe = our qe
R4 R4

1Vgel?

_ / <divmg(ng-Vb)+
R4
We now take the scalar product of (43) with, and use the previous identity, which
yields
1d
2dt

a,b + bqu . VFg) dax.

(Imeiz-+ [ brvaiitax) + [ (a1vmi + G+ o idivm ) adx
R4 R4

IVgel?

R4

In order to obtain a second estimate, we take the scalar product of the gradient of (42
with m,, the scalar product of (43) witkig, and sum both inequalities. We obtain

d
d—/ng . mng—i-/lzb(AqK)de
th R4

= [(G+R) - Vg, + ldvm? 4 m; - VF, ~ iavm, : Vg,
R4
— (A + it)aAg,divmy) dXx. (45)
Let« > 0 be suitably small, and define

k12d=ef||mg||%2+/(Eb|ng|2+2que-mg)dx and ¥ =inf(iZ, » + 2/1).
R4
Using (44), (45) and(41), we deduce that when
D My(fi + | X+ j2])? -
a<3< 1(M+|_+M|) +1> ,
2 2cok

we have
1d

1/, i}
Eak§+ E/(avnvmelliz+ou<b|Aqnz|2) dx
Rd

< (IGell2 + IRell2) (@ Vaell 2 + ImMell 2) + IV Fell 2 (e limell 2 + Vel .2)

1 _
+ EllazblleIIVCIelliz + K IVhl L=Vl 2VMe| 2. (46)
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Using (41), we clearly have for > 0 small enough

1 [ 3
SKE< Il + 7 / bIVal? < K2 (47)

R4

so that using the above energy estimate, the spectral localizatidryefm,) and (41),
we get for some positiv&

1d
k2 + K22K?
2dt ¢ + ¢

< Clke(IGelz + IVFell 2 + IRl 2) + 18,1 = IVqel|52 + 2°kZ | Vb ). (48)

Integrating with respect to time yields

t
ke() < e K1k, (0) + C / K200 (19,b(0) | 1 | Ve (D) 12
0

+IVE @2+ 1Ge() 12 + IRe(D) 12 + 2%k (DI V(D) || 1) dT.  (49)
Using convolution inequalities, we easily get
Ik, ”L’([O,T]) < (:(Z—ZE/rkZ (0) + 2—2@(1+l/r—l/r1) I(VF:, Gy) ”LrTl(LZ)
+27 HRK HL%(LZ) +272

Ve ||L;°(L2) 9.l LE (L)
+ “Vb”err(Loo)”kf”L’([O,T]))~ (50)

We first use (47) and (41) to infer that there exists a congfantO such that
C ke < IVaellpz + IMell 2 < Cke,
then multiply both sides of (50) by*@/2~1+2/") and sum ovef, which yields
1(Vq, m)”ZrT(Bd/Z—lJrZ/r)(l = ClIVbll 2 ~)
< 1(Vgo, Mol parz-2 + IV F, Gl gae-svaim)

((d/2—1
IV e a1y 1Bl r ey + D 2“2 NIR 2 12)-
qeL

We then obtain the desired inequality thanks to Lemma 5 in the appendix.

Remark?2. — Whenr, = 1, estimates of Proposition 5 clearly enable us to prove the
existence and uniqueness of a solutighm) to (LNSK2) in the spacd.:(B4/?+2 x
(B2 Yy N Cr(BY? x (BY?7Y)4) as long as

||Va||z,2r(3d/2) + ||Vb||zgr(3d/2) + ||atb||L%(LN) < Cil-

This stems from a basic duality method.
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5.2. Local existence and uniqueness

First we define the functional spaces needed in our local existence and uniguenes
theorem. We will prove existence in the space

def d =~ _1\d
Fr 2 LL(BY22 5 (B N Cr (BY? x (BYF1)Y)
endowed with the norm
(g Mller = gLz gz + g1 7e0 parzy + 1M1 oty + IMIZoo g1
and uniqueness in the larger space
Fr €L2(BY2+ < (BY)") 0 Cr (B2 x (BY*Y)7)
endowed with the norm
”(qa m)”FT = ”q”zg_(Bd/ZJrl) + ”q”ZCY{O(Bd/Z) + ||m”Z§_(Bd/2) + ”m”z]O?(Bd/Z—l)'
THEOREM 4. —Suppose that the exterior forcing terfivbelongs to(Lk (B4/2-1))4,
that the initial momentunmg belongs to(B%/?>~1)¢, and that the initial densityog
satisfies(pp — p) € BY/? and pg > ¢ for a positive constant. Then, there exist§ > 0

such that the systei89) (40)with initial data ((oo — p)/p, Mo) has a unique solution
(g, m) in Fr. In addition, (g, m) belongs toF;.

Proof. —The existence part of the theorem is proved by an iterative method. We define
asequencé(g”, m")},cy as follows: the first ternig®, m°) is taken to be the solution of

the heat equation
0 0 0
q g\ _ (0O q _( 40
(o) =2 (me)= (1) (%), =(m) o
with go = (po — p)/p. Assuming thailg”, m") belongs toF;, we then defing/"** =

g%+ gt andm”tt = m°® + m**t with (g**%, m"*1) solution of the following linear
system

3"t +divm'tt = —A¢° — divm®,
~n+1 _ divmn+l
am”*l—‘div< )—,\+‘V<7)
' K 1+4g" A+ i) 1+4g" (52)
—kV((1+¢"AG") =T (", m") + Hog", m"),

gii5=0, mi5=0,

where
vmO - divm®
H°(g", m" =—Am°+‘div< >+ x+‘v( >+/2V 1+ g")AgY).
(", m") vl (A + 1) 1tqn (1+4")Aq°)
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First step uniform bounds inF

We want now to show thatg”, m") is uniformly bounded inF;. Denote Eq =
llgoll garz + [IMg| gas2-1. Lete € (0, 1). In view of Proposition 2, we can choo%ec |0, ¢]
such that

||f||L;<B,1/2,1) S
0
16°11 3 (garz2) + IMCll 3 (garen, <&, (He)
0 0
”q ||Z;O(le/2) + ”m ||zgrO(Bd/2—1) < C(EO + 1)
We are going to show that ifis chosen suitably small, we have for alE N,

I(g" M), < Ve (Pn)

Sinceg® = 0 andm® = 0, (Py) is true. Suppose thaP) is fulfilled and that,/z is less
thanc/(4C1p) (whereC is the norm of the embedding?/2 — L°). From the fact that
q"(t) — qo = — Jo divm"(z) dz and (H.), we gather

Hq" — quLOO([O,T]x]Rf’) < Cl(HdivaHL%(Bd/z) + HdiVI’ﬁ"HL%(Bd/z))s

< Ci(e + Vo),
<c/2p.
We thus have
£ gl h0 7, (53)
2p o

which entails, according to Lemma 1,

1
- gc ! 7 o0 ’ 54
”1+qn Z?ro(Bd/Z) ||q ||LT (Brl/Z) ( )
1 q"
v = ||V < Cllg" I+ . 55
H <1+qn) L2(B42) H <1+6]") 12(B4/2) lg ”L%(Bd/ZH) (55)

Apply Proposition 5 to (52), and use thay”" = — divm”. This yields

[[CasuSs]/ (1_ C(Iva" lzzpnm + HV<1+q")

L2(B4/2)

+ HdiVm”HL%(BJ/Z)))
< C(HF(q”, m") HL%(BWZ*H + HHO(qn’ m") HL%(BWZ*H
+ HAqOHL;(Bd/Z) + ||diV mOHL;(Bd/Z))' (56)

Next, we use Proposition 3, Lemma 1, (53), (54) and (55) to estimate the right-hand sidt
of (56). The following bounds hold:
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n

=
Q:
E

HLl(Bd/Z 1y CTH‘I HZOO(BWZ)’
HLl(le/Z 1) X CHm HLZ(B‘I/Z) (1+ ||q ||L°°(Bd/2))
HLl(Bd/Z X CHm HLZ(B"/Z)Hq HL2(34/2+1)’

||L;(Bd/2—1) < CHVC] ||Z2 (B4/2)>

=
~—  ~— ~—  — ~—

HLl Bd/2-1) X <Cllg" HL<>°(Bd/2)||f”L1 Ba/2-1)-
We also have

()
\Y
1+ g
IV ((1+4") Aq%) [ 1 pare-s, < CUAG N L3 (parey (14 [|9" [ 7o )
Therefore, using (55), the above computations, (56)@md, we deduce that

(3", n+1)HF (1—CV/e(Eo+ 1)) < Ce(1+ Ep)>.

Choosings < (4C%(1+ Eo))_l, this implies (P,.1). The sequencég(g”, m")},cy iS
therefore bounded in the spagg. Moreover, (53) holds for ak € N.

L1(Bd/2-1y < Clle0||L%(Bd/2)(1+ anHz?’(Bd/z))’
T

Second steonvergence of the sequencefin.

Next, we are going to show thaj”, m") converges strongly it to a solution(g, m)
of (39) (40). We denotég” = ¢"*1 — ¢" andém” = m"** —m". According to (51) and
(52), we have

9,6¢" +divsm® =0,

9,6m” 'div(wmn) A+ ‘)v(divamn> <V ((L+g")A8q")
: pdv( o PV T ) F q")Adq

=1’*(qn’ mn) o F(qn—l’ mn—l) —I—H(q”_l, mn—l’ qn’ mn)’
8q",—0=0, ém",—o=0,

(57)

with
o 6qn—1vmn
H(g" Y, m" 1 ¢" m" :—,udlv< >
( ) 1+gmHA+qh
_ _ 6q”_1divm” _ _1
— (A + V( )+KV§"A".
GV T gnare D (a™q")

We keep the same assumptionseaas in the first step. According to Proposition 5, (53),
(P,) and (55), we thus get

15a”,3m) L, < T (@ M) = T (@ M) |1 g
+ ||H (qn—l’ m"‘l, qn’ mn) ||L#(B"/2’l))' (58)

Denotes I} i (g", m") — [(g"L, m"=1). Thanks to Proposition 3, to Lemma 1, (53),
(54) and (55) we obtain the following estimates:
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H(SFJTLHL%(B‘I/Z*H ST(1+ anHZ;O(Bd/Z) + anilHZ;O(Bd/Z)) HéqnilHZ;O(Bd/z)’
||8F2" HL%(Bd/Zfl) S(1+ anHZ;?(Bd/Z)) (Hmn_l||2§(3d/2)
+ [[m” HZ%(B(I/Z)) H‘Smn_lHE(Bd/Z)
112 _
+ ||m” lHZ%(Bd/Z)(l—" lg" lHZ;?(Bd/Z))
x (14 anHZ‘f(Bd/Z)) ’|‘Sqn_lHZ‘;°(B<l/2)’
H(SF;HL%(B‘I/Z*H S an HZ?(BWZH)H‘Smnilufg(z;dﬂ) + Hmnilei(Bd/Z)H‘SqnilHE(Bd/zﬂ)
+ HmnilH’Lv%(Bd/Z)(”qn71”Z§(Bd/2+l)
+[|g" ’|Z§(Bd/2+l)> H5f1”_1||z;o<3d/2y
||81—ZL||L;(B(1/2,1) S HV‘SC]WlHZZ(Bd/2)(qunilHZZ(Bd/Z) + HV‘/nHZ%(Bd/Z))s

H‘SFSnHLl Ba/2-1y ~5 HfHL1<Bd/2 1)H8q” 1“Lw(34/2),

H n lvmn
(1+q )1+t
S (L4 [lg" Mo garzy) L+ " 7o oz VM | 1 i) 186" 7 garzy
T T T T

LY(B/?)

HSqnilAanL%Bd/Z) 5 HAqnHL%(B(I/Z)H(Sqni:I-HZ?O(BzI/Zy
Using (H.) and (P,) in the above computations, then (58), we thus get

(g™, 8m")|| ., < C/E(Eo+ 1>,

Now, if we choose am such that < (4C?)~Y(Eq + 1)~° holds, (¢,, M,).ex IS Clearly
a Cauchy sequence and thus convergegsinto a limit (¢, m) which satisfies (53).
The verification that the limit is solution d39) @0) in the sense of distributions is a
straightforward application of Proposition 30

Third step uniqueness ity
_ Consider the solutiorig, m) built in the previous part and suppose tliat, m’) e
L2(B4/2+Y x (BY/2)?) N Cr(BY? x (B¥271)?) also solves (39) (40) with initial data
(g0, Mg). Denotesqg = ¢’ — g andém =m’ — m. We have

9;8g +divém =0,
divém

aém—‘div(wm>—(X+')v<—>—'v((1+ )ASq)
: AVl T, WV T, ) " q)Adq

= F(q/’ m/) - F(q’ m) - H(q/’ m/, q, m)s

(59)

8qi=0=0, &my_o=0.



R. DANCHIN, B. DESJARDINS / Ann. Inst. Henri Poincaré Anal. nonlinear 18 (2001) 97-1%9

LetT* € [0, T] be the greatest time such that (53) is satisfied'tiyn [0, 7*]. Continuity
for ¢’ in C([0, T]; BY/?) implies that 0< T* < T.

We now apply Proposition 5 to (59) using bounds of step 1 and (53} faunlike
in the second step, our assumptions(gh m’) only provide us with bounds fof in
L2.(B%/272), This leads to the following estimate:

”(561’ Sm)”ﬁr* S ||F(q/a m/) - F(qa m)”L],i*(Bll/Z*l) + ”H(q/’ m/a q, m)”zg_*(Bd/Z—Z)'

Using the same estimates as in step 2|f6g’, m") — I'(g, m)”L%_*(Bd/Z—l), and the fact
that

IH(q',m',q, m)HZ?*(Bd/zfz)
S (14 19072 o) (1 10" W ) (172 gz, + 19 172, gy
we finally gather
1Ga. 57, S L+ 1l o) (24 19 I, i)
x (T* + ||f||L;*(Bd/2*1) + K(Hm”’[;*(Bd/z)
+ ||VCI||Z§*(BA/2) + ||m/||zg*(3d/2)
+1V4 72, o)) 16, 51 5,

with K (z) = z + z2. This obviously entailssg = 0 andém = 0 on a suitably small
interval [0, T'] with T’ > 0.

Using the same arguments as for the proof of Lemma 4, we can now conclude that th
two solutions coincide on the whole internj@ 7]. O

6. Local strong solutions near equilibrium

In this section, we want to show that local well-posedness for Korteweg system wher
the density is close to a constant also holds in spaces ofRypeith p # 2, that is, in
spaces which are not related to physical energy spaces. Recall that this approach w
extensively used for the study of incompressible Navier—Stokes equations (see [7] an
the references enclosed).

This viewpoint enables us to get well-posedness even if the initial velocity belongs to
a spaceB? such that the regularity indexis negative, which in particular is relevant for
oscillating initial velocities.

To avoid tedious discussions about the definitiogipfwe suppose from now on, that
f =0 (see Remark 3 at the end of the section). Using the same notations as in Section
the Korteweg system rewrites as follows:

dq +divm =0, (60)
m— aAm— (A + )Vdivm —kVAg = G(g, m), (61)
(Qs m)|t=0 = (CIO, mo)s (62)



120 R. DANCHIN, B. DESJARDINS / Ann. Inst. Henri Poincaré Anal. nonlinear 18 (2001) 97-133

where we defin€s = G; + G, + Gz + G4 by

S /m®m
G —_d
1(g, m) |V< 14gq >,

Ga(g.m) =-V(P(p(1+q) — P(p))/p,

— q
Gi(g,m)=—ndiv(V +—Vm)
3@ m =4 ( (1+q>® 1+g

- _ q q
_(A+”)V(V<1+q) m+ 1+qdlvm>

and
Ga(g, m) = —%V(|Vq|2) — kdiv(gV3g).

Let us emphasize that no stability assumption on the pressure law is required: we jus

have to assume thdt is suitably smooth ® € W/“/?"*3> is enough).

In Section 6.1 we study the linearized system aroid) where we drop the first
order linearized pressure term. Local well-posedness(dgrmp) is then proved in
Section 6.2 through a fixed-point argument.

6.1. Estimates for the linearized pressure-less system
This section is devoted to the proof of estimates for the following linear system

{atq +divm=F,

3m—aAm— (A + @)Vdivm —kVAg =G. (LNSK3)

The main result of this section is the following proposition:

PROPOSITION 6. — Lets € R, p € [1,+00], 1 < p1 < +oo and T €]0, +oo]. If
(g0, Mo) € B}, x (By ") and (F,G) € L"l(B; 242/ x (By~3+2/rmyd) then the linear
system(LNSK3) has a unique solutiorg, m) € Cr (B3 x (B5™)?%) N LI*(B3+2/7 x
(B;—“Z/Pl)d). Moreover, for allp € [p1, +00], there exists a constadt depending only
on i, A, k, p, p1 andd such that the following inequality holds:

||CI||Z/> (35*2/10) + ”m”ZP(BS*l*Z//’)
C (lgoll gy + 1Mol + 1F g -2 + 1G22,

Proof. —Apply operator A to the first equation and operators div and curl (with
curlg:=d;9' — 9;¢’) to the second one. Denotig= 1 + 2/1, we obtain

g, divm — bAdivm — i A%g =divG, (63)

9,Aq + Adivm = AF,
o;curlm — g Acurlm = curl G.

Proposition 2 gives the following estimates for the third equation, which decouples from
the first two equations

||cur|m||z,;(B;fz+z/p) (||cur|mo||Bv 2+ |leurl G|~ T 4+z/p1)) (64)
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The following lemma points out a smoothing effect for the first two equations:

LEMMA 3.— Let s € R, (p,p1) € [1, +00]? and T €10, +o0]. Suppose that
(co. vo) € (B3)? and (h, k) € (L7 (B} 2t%/1))2, Then the system

d,c+ Av=h,
v — VAV —kAc=k, (65)
(¢, v)1=0 = (co, Vo),

has a unique solution(c,v) in (Cr(B3) N L{*(B3+%#1))2. Moreover, for all p e
[p1, +00], there exist< > 0 depending only om, i, p, p1 such that

eVl vz, < C((cor 00l + G ) go-2v2m, ).

Using (64), Lemma 3 witleg = Ago, vg = divmg, i = Af, k = divg and noticing
that Am = Vdivm + divcurlm, Proposition 6 is now obvious. O

Proof of Lemma 3. Benoting byU (¢) the semi-group associated to (65), we deduce
from Duhamel’s formula that

c(t) h(s)
(vt =vo (i) + /U“ (s ) @
with U (t) = e "4 and

(0 —gP
A“’”‘(msﬁ a|s|2)‘

Straightforward computations show that

P <hl<r, £) + Sha(t, &) ha(t, &) )
—kha(t,§) ha(t, &) — 5ha(t,§)
with
ha(t,&) =cosV'|E|%), ho(t,&) = m if 2 < 4k,
hi(t, &) =1, ho(t,&) =1|E|?, if V% =4k,
hi(t,&) =coshV'|E)%1), ha(t, &) = w if V2 > 4k

andv’ = /|k — v2/4).
Let ¢ be a smooth function supported {in € R? | |£]*! < 2} and such thap = 1 on
Suppyp. Denoteq;; (¢, &) the coefficients of the matrix—'4¢ and

Hi (%) = (Zn)"’/eix'éaij(l, §)p(2778) dé.
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We assume that the following inequality holds:
i 52\920
||Hl(§ ”Ll g Ce ¢ min(1,4x/v<)2 ‘Ivt’ (66)

whereC depends only om, d andi, andc is a universal constant. Since

U (ch> ) = ((Hfl(t, )% Age)(X) + (Hip(t, -) % Aqv)<x>>
Ay — \(HGy(t, ) * Ago)(X) + (H(t, ) * Agv)(X)

estimate (66) yields
U0 (Age, Agu)llr < Ce™MMESDZI (A ey 4| AgllLr).
Now, we complete the proof of Lemma 3 coming back to the definition of Besov spaces,

and using convolution inequalities.
In order to prove (66), we first remark th| ||L1 = ||h || 1 with

hii(t,y) = (2n)™ / e a; (¢, 27n)¢(n) dn.

All the functlonshq are of the type

1 (1, x) = / o (2218 20) G (E) dE. (67)

for a function f € C*(R™). Using integrations by parts and Leibniz’ formula, we get
forall o« e N9,

(ix o0 =3 (&) [ ol g (@i Pos o) de. (68)

BLa

Next, from Faa-di-Bruno’s formula, we deduce that

(g = D (22117 (2%1) (Hawm )) (69)
y1++ym=p
lyil=1

Let us suppose first thaf < 4ic. Then, we just have to prove that
1Al < Ce™ 20 (70)

for f(u) =eV"e "2 andv’ = \/k — v2/4. We have

-\ m
f(m)(u) — (il)/ _ E) eiv’ue—f)u/Z
2 b
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so that| £ u)| < (v 4+ v/2)"e~"*/2. Using (68), (69) and that Sugpc {£ € R? |
€11 < 2}, we prove the existence of constaniis; , such that

|8
XRI 0| <SS Copm (221)" e TEE,

B<Lam=1

For any constant < 1 andm € N, there existC,, such thatu”e™ < C,,e~". This
clearly yields (70).

When v? = 4ic, we must verify (70) forf (u) = ue="*/? and f (u) = e~""/. This is
obvious in view of (69) and Leibniz’ formula. Wheit > 4i, we must verify (70) for

f(u):exp(—%(liﬂl—i—i)u).

Using again (69) we thus get
’Xahq (X)’ < Ce—cﬁtzz’i(l:t«/l—mz/ﬁz) < Ce—c’(,z/v)zztz
and we conclude to (66).0

6.2. Local well-posedness for an initial density close to a constant

In this section, we agree that stands forB;,. Let us introduce the functional spaces
needed in the local existence theorem. We will prove existence in

EP =Cr(BYP x (BY/P~H?)y N LY (B/P+2 x (Bd/erl)d)
and uniqueness in
E¥ = (NjT(Bd/p % (Bd/pfl)) N Z%(Bd/p+l % (Bd/p>d>‘

We have the following result:

THEOREM 5. — Let p € [1, +oo[. Then there existg > 0 such that ifgy € BY/?,
mo € (BY/P~1? and

llgoll garr < 1,

then there exist§ > 0 such that systerf60)—(62)has a unique solutiog, m) in E;’.
In addition, (¢, m) belongs toE?.

Proof. —ForT > 0 andp € [1, +o0o[, we denote

(g, m)”F{_’ = ||q||z]®9(8d/p) + “quL;(Bd/mz) + ||m“Z§_(Bd/p) + ||m||L#(Bd/P+1).
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Let (go, Mg) be as in Theorem 5 and denote )y , m;) the solution of the linearized
pressure-less system on the intef\Mal7]:

am— Am— (A + )Vdivm —kVAg =0,

(g, M)j,—0 = (g0, Mo).

Denoting byV (r) the semi-group generated by the above system, we have

(gL, mp)(#) = V(1)(qo0, Mo).

Let us define

def

S m)-/vu—s)(o,G<qL+é,mL+m)(s))ds

In order to prove the existence part of the theorem, we just have to sho@ that has a
fixed pointinE}. SinceE? is a Banach space, we are going to prove éhat,,, satisfies
the hypotheses of Picard's theorem in a @0, R) of EZ for sufficiently smallr.

1st step Stability of B(0, R)
Denoteg = ¢; + ¢ andm = m; 4+ m. According to Proposition 6, we have

||¢qL,mL q, m)HE? < C||G(q, m)”L;(Bd/pfl)- (71)
Under the assumption

g1l Lo, 71xR) < 1/2, (H)
and using Proposition 3 and Lemma 1, we state the following estimates:
1G1(g. M)l 1 (par-1) S (1+ IIqIILm<Bd/,,))II IILZ(BW) (72)
”GZ(q’ m)”Ll (Bd/l’ 1) ~ T”q”LOO(Bd/p)’ (73)
”G3(CI’ m)”z%_(Bd/pfl) ~ ||q||LOO(Bd/p)”lelzl (B[l/p + ”qu'[Z (Bd/erl)”m”Z?.(Bd/l’)’ (74)
1Ga(g. M) L1 (parr-1) S IIVCIIILZ(B,,/I, + IIqIILoowd/,,)IIV qllLx sarr)- (75)

This leads to the following inequality:
”¢qL,mL (é’ m)”E? < C(1+ ||qL||ZYO§J(Bd/2)) (”(CIL’ mL)”F,;’ + ”(é’ m)”F,;’)
X(T + l(qr. M)l pr + 1@, M)l 5r).
Let ¢ be a constant such thit || zo2 < ¢ implies ||| .~ < 1/5. We choose

R =min((10C) ™, ¢, 1), (76)

and suppose thatigollze» < R/2. Then, sinceq; € C([0,T]; B¢?), we have
(gL, mL)||F;z < R for T small enough so thatH) is fulfilled. We also suppose that
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T < R/4 and we get
®,, m, (B(O,R)) C B(0,9R/10). (77)

2nd stepContraction properties

Suppose thaizi, M) and(g», M) belong to the balB (0, R) of EF, and denotey; =
qr + g1, Mmy=m; + My, g2 =q; + g andm, = m; + M. Using again Proposition 6,
we get

H¢QLJ’V£L (éZa mZ) - ¢qL,mL (éla ml)‘ E;f < CHG(CIZ’ mZ) - G(CIl’ ml)HL%_(Bd/p—l)-

Under assumption’®) for g; and g, we can derive estimates fdg; (g, my) —
G, (g1, m1). We apply Proposition 3 and Lemma 1 to the following identities:

Gi(g2, m2) — Gi(g1, My)

=div((m1 ® M1)(g2 — q1) — g2(M2 ® (M — My) + (M — My) ® My)),
Ga(q2, M2) — Ga(g1, M1) = =V(P(p(1+g2)) — (P(p(1+q1))/p,
Gs(g2, m2) — Gz(g1, My)

=—/ div(Vgl ® (M —my) +g1V(mz —my)
+ V(G2 — q1) @ M2+ (g2 — 671)sz) — A+ V().

Ga(gz, M2) — Ga(gr. my) = —%V(V(qz —q1) V(g2 +q1)

—kdiv((g2 — 9 Vg2 + 91V%(q2 — q1)).
whereg; d=Efq,»/(1 + g;). We finally get a constan@ such that
H¢qL,mL (éz’ mZ) - ¢qL,mL (éla ml) HE?
< CT g2 — qalleggarry + ClI(G2 — go. Mz — M) ||z
% (IltqL, M)z + 11 (g2, M) ). (78)

We make the same assumption®andT as in the first step (replacing with a larger
constant if necessary) and get

o o 9
HéqL,mL (CIZ’ m2) - ¢qL,mL (CIl’ ml)”E¥ g 1_0”(6]2 —q1, m2 - ml)”Fﬁ

This completes the proof of the existence of a solutiprm) for (60)—(62)in EZ, which
in addition satisfies

2 1
g1l L 0,71 Ry < 5 and |Iq|IZ<7>_O(Bd/2) < 5C" (79)
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3rd step:Uniqueness
Unigueness is a straightforward application of the following lemma, which yields also
the global uniqueness result of Section 4.

LEMMA 4.— There exists a constar@ depending only or/ and p such that if
T €10, +o0] and (g;, m;) (i = 1,2) are two solutions 0{60)—(62) belonging toE,{
and (g1, m,) satisfies(79) with the constanC, then(g,, m;) = (g1, m1) on [0, T].

Proof. —Let T* be the largest time such that/] is satisfied byy,. As ||¢g2(0) |~ <
1/5 andg, € C([0, T] x RY), we haveT* > 0. Let [0, 7,,] C [0, T*] be the biggest
interval such that the two solutions coincide [@n7,,]. Suppose thaf,, < T. Let

(G (), (1) Lgs (1 = Tp), Myt — T,)).

Continuity in time forg; implies that {¢) is satisfied byg; andg, on an interval0, ¢]

for ¢ > 0 small enough. Moreove(g;, M;)}1<i<2 belongs toE? x EP.
We now use the decomposition

G(gi, m;) = Gi(gi, M;) + Ga(g:i, m;) + G5(gi, M;) + G, (gi, m;) + Gg(gi, M;)

with

_ qim; - - . gqim;
Gs(gi, m;) =— A( )— A+ Vd|v< >
3(qi, M) =—pn 1tq A+ ) 1+,

, K .
Gilgi,m) ==V (Vg |*) +kdv(Vg: @ V),
Gé(%’, m;) = —kA(q:Vq;).

Proposition 3 provides us with estimates @®1(g;, m;), G2(g;, m;) andG3(g;, m;) in
Li(BY/P=1), and forG)(g;, m;) andGg(g;, m;) in L% (B%/?~2). Thanks to Proposition 6,
we get

(g2 — g1, M2 = M1) [l 3 < Z(e) (g2 — g1, M2 — M) | 37,
with

Z(e)=Ce+C su 700, pa/» i+ ) m; ||+ .
( ) + je{l’g}(”ql ||LT (Bd/l) + ”q1 ”L?.(Bd/l +1) + ” ’”L%(Bd/p))

From (79) for ¢; and the definition of the spae@; (B*/?), we infer that

lim Z(e) = 2Cllga (Tl s < 4/5.

thusZ(e) < 1 for ¢ small enough. We therefore gef,, M,) = (g1, M1) on [0, ¢]. This
achieves the proof of Lemma 4.0

Remark3. — In Theorem 5, we supposed that the external forcing fevamishes.
We can easily show that the local existence and uniqueness still hdidsibngs to
Li(BY/P=1ywherep < 2d. Indeed, the usual product mapé/” x B4/»~linto B4/,
providedp < 2d.
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7. Further remarks
7.1. Weak solutions in dimension 2

We now focus on the 2-dimensional problem and study existence results of weak
solutions. A weak solutiorip, u) of (8)—(10) inD’ (R, x R?) is required to satisfy the
finite energy a priori bound&l6) (17) for initial data verifying(15). More precisely, we
require that for all test function@/s, ¢) € C3°([0, 00) x R?) x C([0, o0) x R?)2,

/,Ollf(l‘)dX—/,Oollf(O)dX—/ds/pu Vi dX,

R2 R2 R2

/ U - $(1) dX = / polo - $(0) dx + / ds / (pu®u D(¢) — 12 D(U) : D(¢)

R2 R2 R2
— (A + pdivu d|v¢ + p(p)dive

+K<| p|2d|V¢+Vp ® Vp:D(¢) — —Ad|v¢>>

As pointed out in the introduction, we are not able to prove a global existence theoren
like in [17] whenk # 0 because of the quadratic terivig ® Vp, even thoughvp is a

priori bounded inL>((0, 7); L?(R%))?. We focus now on weak solutions in dimension

d = 2 near a stable equilibrium, i.e. solutiofis, u) close to(p, 0), wherep > 0 satisfies
P'(p) > 0. Let us introduce

p(t)_— 0 , (80)
)

L()Q

|

which measures the density fluctuationZif®. Unfortunately, such an a priori bound
does not seem to be available for finite energy initial data. However, in view of the
results of the preceding sections, it is valid for suitably smooth initial data and small
enough time, which motivates the following result

PrROPOSITION 7. —There existg > 0 such that as long as

Eo+ sup 8(1) <1
1€[0,7]

there exist§ a weak solutiofp, u) on (0, T) of (NSK) such thatp — p € L%, T;
HY(R?) N H?(R?)), u e L%0, T; HX(R?))?>N L>(0, T; L?(R?))2.

Proof. —First, multiplying the equation of momentum conservation By? and
integrating by part, we easily infer

d K 2
— [ m-Vp2dx —/Az
dt/ prdx+ s [

R2 R2
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= /(2p|divm|2 + 2¢|Vp|*+ V2p?: (pu® u)
RZ
— (A4 2w Ap?divu — 2p P'(0) |V |?) dX, (81)
hence, denoting (s) = 2s P'(s), we obtain
d _ K
E/m.szder/(Z(p)|vp|2+ ZyApzyz) dx
R2 R2
<C(L+llplF=)IVUllZz + Clipll=llu- Vol: + ClIVpla
+ Cllplli~llulljs + ClIZ(p) = Z(P) L~V pllZ>.
Let us now recall Gagliardo—Nirenberg’s inequality

IF1Ze < CUF 2NV 2 (82)
Thus, we obtain assuming th&®) < 1/2

4 2 2
ullzs < Cllullz2lIVullz2,

IVoI2e < Cllp 71V P2 1s < C(A+ 80| V? 2] 407 2
<C(A+803IVollz| 20?2
lu-Voli2, < lull2allVoli2s < C(1+ 803 ull 2 Vull 2V oll 12]| Ap?| 2.
lullz < CA—8) Y2 /pull 2.
Hence, foré (1) < n (wheren > 0 depends oix’), we have for som€j > 0

d
d_t/m - Vp2dx+ Co([IV o122 + | Ap?I122)

R2

< CIIVUllZ2 + Cllull 2l Vull 21V pll 2| Ap% 2

+ CIV ol Ap?|[22 + Cllull, 1 Vull2s,
< CIVUZ(1+ [lul22) + ClIVpll%] | Ap?7-
< CIVUlZ(1+ [ /pulZ:) + [Vl A0? |,

2
< C&(IVUllF2 +[|Ap?[72) + ClIVUlZ.
Therefore, as soon & is small enough, we have for some constant- 0

d
[ mevoPax+ IVl + | as?7) < CIVule. (83)
R2

Let«o > 0 and definaw, by

1 _ K
we() = SIVAUIE: + 7o) = 7)1+ 51Vl +a [ m-Vp2ax
R4



R. DANCHIN, B. DESJARDINS / Ann. Inst. Henri Poincaré Anal. nonlinear 18 (2001) 97-129

Then, choosing: small enough, we deduce that

! (1) < (t<3 t)
Zwa )\wO )\Zwol( s

and from the energy bounds af®B) that

d 2

T wa(®) + Co(IIVUIZe + 1V pll2 + | A0 1) <O, (84)

so that we have the claimed a priori bounds. Now considering a suitable approximate
problem, we can easily pass to the limit in quadratic terms Yike® Vp, sinceVp

is bounded inL?(0, T; H*(R%)), and also inC([0, T1; H1(R%)), as can be seen by
writing a linear transport equation dhp. O

7.2. Blow-up of solutions with compactly supported density

Let us finally make a few remarks based upon the work of Z. Xin [22] in the non-
capillary case. We consider the full Navier—Stokes Korteweg system (1)—(3) (with energy
equation), for which Hattori and Li [14] proved global existenceHt solutions (for
s > 0 large) close enough to constant stdtes, Mo, o) — (p, 0, 6)| < 1 when the heat
conduction parameter is positive. We expect that the preceding results, namely global
well-posedness of the Korteweg system, still hold in scale invariant Besov spaces fo
solutions close to constant states.

In contrast to the preceding approach wheris close to a constant, we assume now
that the initial data satisfy

def |up — X/
A0)= i — + poeo | dX < +00,

R4
which is the case for instance iy has compact support. For the sake of simplicity,
we consider a perfect gas law = pR6, e = ¢,0, and sety =1+ R/c,. When

y € (1,1+ 2/d], we defineo (r) = (1 + t), whereas whew € (1 + 2/d, o0), we take
o (t) =t. Then, we deduce from easy computations (see [22]) that

d
EA(t) =0 (1) /(Zpe —dp)dXx,
Rd

where

. Y A
A(t)=/<ﬂw+a(t)2pe>(t)dx+ K(d+2)/U(S)/|Vp(S,X)|2dst.
) .

2 2

R4 R4

Using the fact thap = (y — 1)pe and denotingg =2 — d(y — 1), we obtain

A@) < 5@, henceA(t) < A(0)o (1)™@:0
o)
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Therefore, we have

o (1)in@d=1) / pdx < (y — DA). (85)

]Rd
As a consequence, we obtain in the isothermal 6asé
RMOo ()™ 0= < (y — 1)A(0),

denoting byM the total mass, which proves that solutions blow up after some critical
time Ty as soon ag (0) is finite.

Let us remark that similar observations can be done in the isentropic case, as well
in the non-isentropic case when the thermal diffusion is neglectedy(€0). In order
to get blow up estimates, we have to consider initial densities compactly supported ir
R? (see [22]), and observe that the support of the density does not grow as time evolve:
Then, blow up estimates stem from estim@b) and Hdlder’s inequality.

Appendix

This section is devoted to a commutation lemma that we used to prove Proposition 5

LEMMA 5.— SupposeA € L2(B%/?*Y) and B € L2(B%?). Then the following
estimate holds of0, T']:

—(d/2—-1
13eLA, A1Bll Ly 12 < Cee2 PN Al o | Bl 72 oo

whereC depends only od, and) ", ¢, < 1.

Proof. —The proof of the above lemma requires some paradifferential calculus. We
have to recall here that paradifferential calculus enables to define a generalized produ
between distributions, which is continuous in many functional spaces where the usue
product does not make sense (see the pioneering work of J.-M. Bony in [4]). The
paraproduct betweenandv is defined by

def
TMU = Z ngluAgU.
LeZ

We thus have the following formal decomposition (modulo a polynomial):

uv=T,v+Tju, with T u d=efz SeiovAqu.
LeZ

Coming back to the proof of Lemma 5, we s@i{A, A,]B into

WA, A B =TS, 3 A — HATHA+[Ta, AldkB + Ty aAB — AyTy 4 B.
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From now on, we agree thét,),.z denotes a positive sequence such hat, ¢, < 1.
According to (20) and to the definition @f', we have

WTx,pA= Y h(Sui2ABA,A).
m>{—2

Thus, in view of Bernstein’s lemma and the definitionﬁSf(BS) spaces,

d/2
10cTA 5 AN s g2 S D 2"2PIABI 2 02| An Al 12,
m>0—2
d /2 —md /2 d/2+1
S22 ABll 2z Y 27 (2MYEN AL A2 12,
m>0—2
S2EDRIED A Bz ) Yo 2" A ANz 2,
m>0—2
—L0(d/2—-1
SC[Z @/ )”B”Z%(Bd/Z—l)||A”Z§_(Bd/2+l)~

We use classical estimates for the paraproduct to bound the second term of the right-hat
side (see [7] and [8]). We get

||Tz/;A||L1(Bd/2) ~ ||B||L2 (B4/2- 1)||A||L2 (BA/2+1y.

Using spectral localization ok, and definition ofL” (B*) spaces, we get

10k A TR Al L 12y S €22V B Al

L%(le/Z—l) | L%(Bll/2+l)‘

According to (20), the third term reads

[T, Ar]OxB = Z [Sm-1A, Ae]A, 0k B
Im—L|<4
Applying first order Taylor's formula, we get fore R?,
[Sm—1A, D¢l Ay B(X)

=2 //h(y) (Y- Su_1VA(X—27"2y)) A, B(Xx — 27'y) dr dy.
Rd 0O
Convolution inequality thus yields

[Sm-14, AA % B| 2 S 27 VAl Lo | Ande Bll 12,
hence

—L(d/2—-1
H[TA, Ae]akBHLl(Lz) Sc2 @/ )||VA||L2(L°°)”B||L2(B[1/271)-

Finally, thanks to (20), we have

ToadeB= > Sy 10cAANA,B
[6—m|<1
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so that
|| TakAAEB ”L%(LZ) < ”akA”L%(LOO) ”AEB ”L%(LZ)-

Classical estimates for the paraproduct yield
||T3kAB“L]f(B‘l/2*1) /S ”B”z%(gd/Zfl) ”akA”z%(Bd/Z)

so that the proof of Lemma 5 is achieved:
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