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ABSTRACT. - Let S be a smooth compact imbedded surface in (~3
and let B be the unit disc in f~2. We consider the problem of finding a sur-
face that minimizes area among all surfaces which have the topological
type of a disc and which have boundaries in a given nontrivial homotopy
class H of curves y : ~B -~ S. We show that H can be decomposed into
finitely many homotopy classes H1, ... , Hk for which the problem is
solvable.

RESUME. - Soit S une surface compacte reguliere dans f~3 et soit B

un disque dans f~2. On etudie le problème de trouver une surface qui
minimise la superficie entre les surfaces qui sont topologiquement equi-
valentes a un disque et qui ont des frontières dans une classe d’homotopie H
nontriviale des courbes y : S. On prouve qu’on peut decomposer H
dans des classes d’homotopie Hi, H2, ..., Hk non triviales pour lesquelles
il existe une solution du problème etudie.

1 INTRODUCTION AND RESULTS

In this work, we consider the problem of finding a surface that minimizes
area among all surfaces which have the topological type of a disc and
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which have boundaries in a given nontrivial homotopy class. In his book
[2 ; p. 213 ], R. Courant described a difficulty that makes the treatment
of such free boundary problems rather difficult. Namely, the boundary
values of an arbitrary minimizing sequence need not converge uniformly.
The main purpose of this paper is to show how one can find minimizing
sequences having uniformly convergent boundary values. We believe
that this method can be applied to many other free boundary problems
for minimal surfaces, harmonic mappings or H-surfaces. The idea for this
work was born in a discussion with S. Hildebrandt and F. Tomi in the
« Oberseminar Analysis » at the University of Bonn.
Now, we have to introduce some notations and assumptions. By B,

we denote the unit disc in [R2. For v E H1~2(B), we set

We consider a two-dimensional embedded connected compact C’-sur-
face S c [R3. Two continuous curves ~B ~ S are homotopic, if there
is a continuous mapping h : [0,1] ] x ~B -~ S such that 
for i = 0, 1 and all a E aB. By IIo(S), we denote the set of all homotopy
classes of continuous curves y : ~B --~ S. We suppose that

where 0 is the homotopy class containing the constant curves. A tupel
H2, ..., Hk) of Hj E IIo(S) belongs to the set Zo(H) of all decomposi-

tions of a homotopy class H E IIo(S), if there are}’ j E H~ such that the curve

belongs to H, where A0 = n/k and 03B8j = j. A0. For HE IIo(S), we set

Z(H) _ ~ (H I , for j = 1, 2, ... , k ~ ,
1VI(H) _ ~ v E C°(B) n H 1 ~ 2 (B) ( v as E H ~ ,

dH = inf ~ D(v) 
We note that

THEOREM 1. - Suppose that HE II(S). Then, there are a decomposition
(H i , H2, ..., Hk) E Z(H) and u J E M(H;) such that .

Additions to T heorem l. Let H, and u~ be as in Theorem 1. The
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159MINIMAL SURFACES WITH FREE BOUNDARIES

results on classical minimal surfaces (cf. [~] ] [8 ] [10 ] [11] ] and the lite-
rature cited there) imply that u~ E C °° (B) and that

where x = (xl, x2) _ (r . cos 0, r. sin 0). Moreover, one can use the method
of S. Hildebrandt &#x26; J. C. C. Nitsche [6 ] and A. Kuster [7] ] in order to esti-
mate the length of ... u only in dependence
on S and an upper bound for dH.

’THEOREM 2. - Pick a c ~ ]0, oo [. Then, there are at most finitely many
H E IIo(S) for which dH  c.
From Theorem 1 and 2, one easily derives the following four existence

results.

COROLLARY 1. - Suppose that H E II(S) and that the « Douglas-Cri-
terion »

holds. Then, there is a u E M(H) such that

COROLLARY 2. - There is an H* E II(S) and a u* E M(H*) such that

COROLLARY 3. - Suppose that

for some H E n(S). Then, there is a u E M(H) that solves (1.9).

COROLLARY 4. - Suppose that r is a Jordan arc in L~~ B S which is
not contractable, in [R3 BS. Let II(S, r) c n(S) be the set of all homotopy
classes of curves which are linked with r. Then, there is an H’ E II(S, r)
and a u’ E M(H’) such that

Corollary 4 has been stated by R. Courant in his book [2; p. 213 ].
There he also gave an idea for its proof. This has been performed exactly
by S. Hildebranct [4 ], not only for minimal surfaces, but also for H-sur-
faces. We have to admit that Courant’s and Hildebrandt’s result holds
also for non-smooth surfaces S, while our method cannot work for arbi-
trary non-smooth surfaces S.
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A. Kuster attracted my attention to the work of N. Davids [16 ] which
generalizes Courant’s method. By the Alexander duality, one can charac-
terize homology classes by means of linking conditions. Thus, he obtained
a result similar to our Theorem 1, but only for homology classes.

It makes more physical and geometrical sense to consider such problems
for surfaces that have to be contained in one connectivity component U
of (~3 B S. This has been done by W. H. Meeks &#x26; S. T. Yau [9 ]. Just recently.
F. Tomi [15 ] and H. W. Alt &#x26; F. Tomi [1 ] gave rather strong results on the
structure of set of the minimal solutions. In [1 ], [9] and [15 ], it is supposed
that the inward mean curvature of U is nonnegative. This excludes the possi-
bility, that the minimal solutions touch aU. Apart from the restriction on the
competing surfaces, the problems considered in [7] ] [9] ] [15 ] are similar
to those of Corollary 2 and 4. We want to point out that the conclusions
of Theorem 1 and 2 can be generalized to the situations considered in [1 ]
[9] 1 
Now, let us make some remarks on surfaces S which are diffeomorphic

to a sphere, i. e. for which II(S) == ~. Then, the problems considered in
this work do not make sense, any more. Nevertheless, it has been conjec-
tured by J. C. C. Nitsche [12 ] that there exist three different non constant
minimal surfaces that satisfy (1.5)-(1.7). For a quadrilateral, this has been
proven by B. Smyth [13]. In the general case, the existence of one
nontrivial minimal surface satisfying (1.5)-(1.7) has been established by
M. Struwe [14 ]. In the case that the bounded connectivity component of
(~3 B S is convex, M. Gruter &#x26; J. Jost [3 ] showed that there exists such a
minimal surface which is embedded.

2. PROOFS

DEFINITION. - For v e and Q c B, we set

where the supremum is taken over all regular injective arcs ym : [o, 1 ] --~ Q

that satisfy

and over all (9 = em,1  8m, 2  ...  1. In the case
that Q = aB, we write l(v) instead of l(v, aB). 
We begin by stating two simple properties of S.

LEMMA 1. - Pick a ce ]0, oo [. Then, there are at most finitely many
H E IIo(S) for which there exists a v E M(H) satisfying l(v)  c.
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161MINIMAL SURFACES WITH FREE BOUNDARIES

LEMMA 2. - Let U be the bounded connectivity component of 
let N be the outer normal of S with respect to U and set

Then, there is a ~, > 0 such that ~ : ] - 2~,, 2~~ [ x S -~ ~ q E (~3 ~ p(q)  2i~ ~
is a C~-diffeomorphism. Moreover, there is a C~-mapping

such that

for all s E ] - 2~,, 2i~~ [ and all pES.

LEMMA 3. - There is a cd > 0 such that

ProofofLemma 3. Let us suppose that Lemma 3 is wrong. Then, there
are sequences of HV E IY(S) and of uv E M(Hy) such that

In the case that p o u~  ~,, in B, one can use the mapping P to show that
HV = 0. This and the conformal invariance of (2.1) and (2.2) imply that
we can choose the sequence (Tr,.) in such a way that p o u,.(o) _>_ ~,, Vv e l~.
There is a u E H 1 ?2(B) n and a subsequence of (uv) that converges
to u, in the sense of COO(B) and weakly in the sense of H1,2 (B). This u has
to satisfy

As (2.3) and (2.4) contradict each other, Lemma 3 must be true.

Remark. A similar argument has been used also by S. Hildebrandt [4 ].
We pick a t > 0 and an H E n(S) and set

We note that dH and DH are non-increasing functions of t, and that
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From (2.5), Lemma 1 and Lemma 3, one easily derives

LEMMA 4. - Suppose that M(H, t) # ~. Then, there are a decompo-
sition (Hi, H2, ..., Hk) E Z(H) and a 5 > 0 such that

for j = 1, 2, ... , k and all (H ~ ,~, H2,~ ) 

PROPOSITION 1. - Suppose that M(H, t ) and that there is a ~ > 0

such that

Then, there exists a solution u E M(H, t ) of

PROPOSITION 2. - Let H, t, 5 and u be as in Proposition 1. Then, there
is a to > 0, depending only on S and an upper bound for D(u) such that

Proofof Theorem 1 and 2. Theorem 1 follows from (2 . 5)-(2 . 7), Lemma 4,
Proposition 1 and Proposition 2. For Theorem 2, we have to use Lemma 1
and Lemma 3, additionally.

Proof of Proposition ~. We set

We can find a sequence of u03BD E M(H, t ) such that

where Ci, C2 and C3 are the connected components of ~B ~ ~ e°, e4i~/3 ~,
By the smoothness of S, we can find a c > 0 and an e > 0 such that, for all
p0, p1 E S satisfying po - there is a C°°( [0, 1 ])-curve a : [o, 1 ] ~ S
satisfying

Now, suppose that the u~, are not equicontinuous, on ~B, with respect to
v Then, we can use (2 .13) and the Courant-Lebesgue-Lemma [2; p. 103]
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in order to determine a a E ]0, t*/4 ], a subsequence of (uv) and a sequence
of balls with radius r  E ]o, 1/2 ] and center at x  E aB that satisfy

Following S. Hildebrandt &#x26; J. C. C. Nitsche [5 ], one can use (2.11), (2.12)
and (2.14)-(2.18) in order to find sequences of (Hl,u, E Zo(H) and
of E M(Hi,jl) that satisfy

In the case that O, for infinitely many ,u E ~I, (2 19)-(2 . 21) contra-
dict (2 . 8). In the case that H2,tI = O (i. e. H1tI = H), for infinitely many

f~, (2.19)-(2.21) contradict the definition of t*. Thus, we have proven
that the u03BD are equicontinuous, on ~B, with respect to 

This and (2.12) imply that there is a subsequence of (uv) such that

in the sense of and weakly in the sense of H I ~ 2(B). Now, it is easily
verified that u E M(H, t) and that u satisfies (2. 9).

Proof of Proposition 2. With the aid of the mapping c~ of Lemma 2,
for each ~e]0~/4] ] and each s E ]o, ~. ], one can construct a mapping
FE,s : f~3 -~ I1~3 that satisfies

for some constant 1 depending only on S. Hence, there is a constant
c2 > 0 depending only on S and an upper bound for D(u) such that, for
each ee ]o, ~,/4 ], there is an ]0, /~] ] satisfying

The works cited in the Additions to Theorem 1 imply that u is a classical
minimal surface, in particular that u E Hence, by Sard’s theorem,
there is a null-set A c ]0, /L/4 ] such that

Now, pick an E E ]0, ~,/4 ] BA. The implicit function theorem implies that
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164 P. TOLKSDORF

there are simply connected open subsets Ut:.l, ..., of B such that

is + I)-fold connected and that

Moreover, we can choose the in such a way that

Let be curves that parametrize and let E IIo(S)
be the homotopy classes generated The above considerations,
in particular (2.23) and (2.27) imply that

By the coarea formula,

Hence, there is a c3 > 0 depending only on S and an upper bound for D(u)
and an E E ]0, ~,/4 ] B1~ such that

By (2 . 31), there is an Eo E [0, ~~/4 ] and a sequence of Bv E i I4 ] B11 tending
to so such that

From (2 . 25), (2 . 26), (2 . 29), (2 . 33) and the coarea formula, we obtain 
estimate

clo l’Institut Henri Poincaré - Physique théorique
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Now, it is easily seen that (2. 30), (2. 32), (2. 34) and the Riemann mapping
theorem imply the conclusion of Proposition 2.
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