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ABSTRACT. — We study the Dirichlet problem for a system of nonlinear elliptic equations of
Leray—Lions type in a sequence of domaids’, s = 1,2, ..., with fine-grained boundaries.
Under appropriate structure conditions on the system and the geome®y’pfve prove that
the sequence of solutions of the problem converges in suitable topologies to the solution of a limi
problem which contains an additional term of capacity type. We construct the limit problem.
© 2003 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME. — Nous étudions le probléme de Dirichlet pour un systéme d’équations non linéaires
élliptiques de type Leray-Lions dans une suite de domafdey s = 1,2,..., avec des
frontieres finement granulées. Sous des conditions de structure appropriées que nous imposc
sur le systéme et sur la géometrie@®’, nous démontrons que la suite de solutions du probléme
tend dans des topologies appropriées vers la solution d’un probléme limite qui contient un term
additionnel de type capacitaire. Nous construisons le probléme limite.
© 2003 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction

Let @2 be a bounded domain iR” and for each given positive integeret there be
defined a systemFl-(“; i=1,...,1(s)} of closed, pairwise disjoint sets lying inside
In the domainQ® = @\ U'Y) £, we consider the boundary value problem for a
system of nonlinear elliptic equations

ZiA{(x,a—”):o inQY; j=1,...,N, (1)
= 0x; 0x

u(x)=f(x) onaQY, 2)
where f(x) = (f2(x), ..., fv (@) is a given vector-function i, u(x) = (u1(x), ...,
un()’, o= (541w —1..a IS the gradient ofu, A/ = Al(x,p) =
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(Ai(x, p))i=1....n is @ vector function fronf2 x RM into R" with p = (p})i=1.._n: 1=1....n
€ RV, 3. denotes the boundary of a setVe shall assume throughout thit= Al (x, p)
has the representation

N
Al (x,p)=>_a(x,p)p] for pe R
i=1

For an open set we shall denote by (., N) the direct product ofV copies of the

Sobolev spacé’!(.) and byW(., N) the set of vector-functions frow: (-, N) which
vanish ond-. For a vectorw € RY with components; (i =1,..., M), we denote its
Euclidean norm byv|, i.e., [v] = (XM, v?) Y2,

In this work we investigate the possibilities of approximating the problem (1)—(2)
in the perforated domai®® by a new homogenized problem {2 whose solution
is the limit of the sequence, of solutions of (1)—(2) as — oo. In the scalar case,

i.e., whenN = 1, this problem has been studied by Skrypnik under various conditions
on the geometry of2) in many papers among which we cite [16-18] (the geometric
restrictions in this paper are the weakest among those considered by the author so fa
These works represent the nonlinear version of the theory invented by Marchenko an
Khruslov (see [10]) for the study of linear elliptic boundary value problems in domains
with fine-grained boundaries; the limit problem in this theory contains an additional
term involving a function of capacity type. We note that a different approach has beer
elaborated by Cioranescu and Murat [3] and further developed in many other papers (se
for instance [2,5—7], and the references therein); it does not require any conditions on th
perforation and the limit problem contains an additional term involving a Borel measure
which may assume infinite values. At the present moment many powerful methods ir
homogenization have been developed and an abundant literature on various aspects
the theory exist in form of monographs [1,4,10,17,12,19], just to cite a few.

Some considerable difficulties arise at key turning points of our work, due to the
nature of the system of nonlinear equations that we are dealing with, in particular in the
appropriate choice of some auxiliary model problems whose solutions (satisfying som
special boundary conditions) and their a priori estimates are of paramount importanc
in the asymptotic analysis of problem (1)—(2); they are needed for the construction of
the asymptotic expansion of the solutions of (1)—(2) and the test function used for the
derivation of the limit problem. The results of this work have been announced in [14].

The work is organized as follows. In Section 2, we formulate the conditions ensuring
that any solutiore, of problem (1)—(2) exists for eachand the sequence is bounded
in W(Q® N) (in particular the system has a Leray-Lions structure), using Moser’s
iteration technics we prove that it is uniformly bounded. For a background on Moser's
method, we refer to his celebrated paper [11] and the work of Serrin [15]. Next we
introduce an auxiliary model problem which plays a crucial role in the sequel and the
geometric conditions of2e® under which we investigate (1)—(2), we formulate our main
result. In Section 3, we derive some sharp pointwise and integral estimates for solution
of the model problem, some of which have been obtained by us in [13]. In Section 4, we
construct an appropriate asymptotic expansion with a remainder term for the sequenc
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of solutionsu, of problem (1)—(2), we prove that the sequence converges strongly in
WI}(Q, N) for p € (1, m), and that the remainder term converges strongly to zero in

W1(Q, N). In Section 5, we construct the problem of which the limit of u, is a
solution.

2. Hypotheses and formulation of main results

1) We assume that the functioms are Caratheodory functions @, i.e., they are
defined for allx € © andp € RY", continuous inp for a.e.x € Q and measurable in
for any p € RV",

2) The functionsA{ satisfy the following structure conditions: there exist the constants
V1, V2, v3 @andm, with 2 < m < n such that for every vectdr= (&4, ..., &,)

> ai(x, p)&& = vilpl" g%, (3)

i,l=1

..........

> (P = q7) (A (x. p) — Al (x.q)) = valp — ql". (4)
j=1

|AY(x, p) — AV (x, )| < [L+vs(IpI" 2+ g™ ) ]Ip—ql, j=1...,N. (5

We shall often use the symba6lfor nonessential constants depending on the data.
We shall call the vector functiom € W1 (Q®), N) a weak solution of problem (1)—(2)

if, ue f+ W(Q®, N) with £ being a function which belongs (22, N), and for
any vector functionp(x) = (¢1(x), ..., oy (x)) € W(Q®, N), the integral identity

zN:i:/Alj(x,g—z>%dx:0 (6)

8)61

holds.
From the results of Leray and Lions [9], we have

THEOREM 1. — Under the conditiond) and?2), if f € W(Q, N), then the problem
(1)—(2) has at least one solution, € f + W1(Q®, N) and there exists a positive
constantM; independent of, such that for alls, the inequality

HMSHW,%(Q(-V),N) < Mla (7)

holds.

Letu, be one of the solution of problem (1)—(2) satisfying inequality (7). We extend
to Q by settingu,(x) = f(x) in @\ Q. The resulting function that we denote without
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fear of confusion by, belongs toW! (2, N) and satisfies the inequality

(178 ”Wl(Q N <M+ ”f”Wl(Q N)*

m

From this inequality and the weak compactness of bounded s&ts i€, N), we may
assume, by passing if necessary to a subsequenca, t@tverges weakly to a function
uoin Wi(Q, N).

In our investigations the boundedness of the sequenceill be needed. We show
that in the following

THEOREM 2. — Let the conditionsl) and 2) be satisfied and lef be a function
belonging tqul(Q, N) with ¢ > n. Then there exists a constamf independent of
such thatu, satisfies the estimate,

vrai m%Aus(x)| <M. (8)

Before proving the theorem, we note that the membership tf qu(Q, N) with
g > n and the boundedness Qfimply that f is continuous ir2 and

af

o (9)

sug f (x)| < C(meas)t/ /4
xeQ

Lq<sz)’
with the constant depending only om, N andg.
Proof. —We use a modification of Moser's method. Let(x) = |u,(x) — f(x)]. Itis

clear thatw, € W1(Q®). We consider the positive real numbersk and K such that
r > 2,0<k < K. We define the truncated functiagnR" > x — ¢(x) e R as

ko if0 < x| <k,
t(x)=< |x| if k<|x] <K,
K if K <|x|,

and set

i () = ¢ (u,(x) = £ ().
The functionw'}’ so defined is clearly bounded and singeis Lipshitz, standard
arguments as in the scalar case (see, e.g., [8, Chapter 2, § 3]) shou\f{ihatW,i(Q).

Let us denote by~ the characteristic function of the sate Q): k < |u, — f| < K}.
We consider the functiop(x) = (p1(x), ..., ex(x)), with

0;(0) = (ug; () — f;0)) [w @], j=1,...,N.

Owing to the properties of)s(,’f) we see thap € W1(QW, N). Thuse is an admissible
test function in the integral identity (6). We have

r—20 (g — fl
dx;

Dy _ Dy = S

x. (10
0x; 0x; - (10)

we]" +r2(uw s — f) [w]
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Let us write the identity (6) in the form

N n . 8( .- ) d0
3 [l ) e

, 0x
j=11=1 g !

M (s — ) S dug\0¢;
_ Al ( 7) Al ( )i %9 4. (11)
;;9(/”[ ! 0x ! ax

sz

Substituting formula (10) in (11) and using the condition 2), we get

3(us — ) ‘a(uy f) 2
/‘ 0x ](x)d tr /

(K)1r  (K)
[wsk ] Xe  dx
Q) Q)

< C{H,+ H, + H3},

where

m—2 (K)

8x

m_(+D/PWP% fﬂ(m X,

Q)

Hz—(r—i—l)/‘

Q)

af || 9 (uy
e e

auY m—2
H3z =

d(us — f)‘ (K)

By Young’s inequality, we have

" 8 m’il 8 s
H1<C81(r+1>m/‘a_f wic | dx e /’ s = D" e
X
Qs)

Q)
)
%éCdHﬂW/b% (“Mi+e/

(s — f)
Q) Q)

ox
o(ug —
H3<C83(r+l)’"/’— W& dx 46 /’ (
0x
Q®

Q)
a m—
+cu+nm/+£
0x
Q)
Choosinges, &2 andeg sufficiently small in these inequalities, we get

T d,

) ax

[wyi ] dx.

o(us — 1<) 3(Ms K K)r (K
/’ 0x ( dx+r / 8x [ws(k ] X dx
Q) Q)
m (K)

9 ﬁ 9
<co+w%/k£‘ <“ei+/’f
Q)
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+[IZ

Q®

Let us denote the integrals in the right-hand side of this inequalitydby H;, and
Hi 3 respectively. Using Young’s and Hdolder’s inequalities, we estimate these integrals

" l w'P] } (12)

as follows.
a q (m 5 1
qim= r+m
H11<C{/ —f dx} {1-1—/[ (K)](+ )pl} )
ox
Q) Q)
wherep; = L2
m 1
1 a (K)1(r+m)p2 2
legc{ = dx} {1+/[ ] } :

Q® Q®

wherep; = -

m’

m=1

1
0 4 g r+m 73
ngc{/ a_f dx} {1+/[ (K)](-i- s g } 3’
Q) . Q)
wherep; = q_le.

Let Q = max{p1, p2, p3}. Sincef e qu(Q, N), and

3w(K)
’ 0x

‘3(% — )(ug —
= 0x

it follows from the above estimations @fy, k =1, 2, 3 and the inequality (12) that

1/0
/‘aw (K)] dx<C(r+l)m{1+/[ (K)](r—i—m)Q( )dx} . (13)

Q) Q)

(K) m

Sincew';’ is bounded, we have thav'f]* € W1 (Q®) for anyr > 1. Thus (13) implies

9 (K)14-(r/m) ym m 1/0
/‘% dx<C(r+1)m{1+/[w§,f)](+ )Q(x)dx} .19

Q® Q®

The Sobolev embedding'! (Q2) — L (2) holds. Thus for any > 0, we have

a (K) r(n m) m n/(n_m)
/ w®) d { / ‘ [w dx} . (15)

Q) Q)
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By rescalingr in (14), we obtain from (15) the inequality

n r(n—m) Q(nnfm)
/[w§f>]’dx <C(r +1)3'_"—,,,{1+ / [w'd] Q(x)dx} : (16)
Q) Q)

Passing to the limit in this inequality d&s— 0 and K— oo, and applying Fatou’s
Lemma in the left-hand side and Lebesgue’s dominated convergence theorem in th
right-hand side, we get

2mn r(n—m) Q ﬁ
/w;dx<C(r+1>m{1+/ws—" (x)dx} . (17)
Q) Q)
Letting
F=r=—2 ( . ) . i=0,12...,
n—m\Q(m—m)
and
=1+ / wi (x)dx,
Q)
we obtain from (17) the recurrent inequality
2um_
n n—m 71
L LC||———— I7 4, 18
K(n—m)Q> ] "t G5
with o = 2= |terating the inequality (18), we get
I-Ui < C0i+0i_l+~~~+oAio[+(i—l)0i_l+~~~+oIO’ (19)
2mn

n—m

whereA = [m]
Let Uy = {x € QW wy(x) > M}, with M = vraimax,.q» ws(x) and assume that
mead/,,, the Lebesgue measure ©f; is different from zero. We have

I > /w;f(x)dx +1> M5 mead/y.

Um
Thus from (19), as approaches infinity, we get

n—m

vrai mans(x)gc{lJr/wF(x)dx} )
xeQe) -
QS

This implies that

vrai mé}ﬂ(’”s(x)’ < C{””s — flle am @.n) + ||f||wa(sz,1v) + 1};
xeQls —m

n
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here we have used inequality (9). The theorem is proved.

We now state the conditions on the geometry of thecset Let dl-(” be the diameter
of the setF") and letx* be the center of the baB(x", d**) of radiusd®’ such that

[ )

F® c B(x"",d™). We denote by " the distance from the baB(x(", ') to the set
Uji B(x{",d{") U 3. We assume that the following conditions are satisfied: There
exist the constant@o andC; independent of ands such that

B1. lim,_ .o maxr®} =0,d" < C1r”.

B2.
15) 1 () m(n—m) 7 71
d, m—1
S| <
i=1 [I"- ]

For the formulation of another condition we introduce a model problem which will
play a central role in our investigations. Lete RY andk the euclidean norm of.
We denote by the unit N-dimensional vectof, and set?" = B(x", 1) \ F. Let

¥ € C(B(x”, 1)) with (x) =1 in B(x", ;) For anylz whend; < 1, we denote

by v (x, k), the vector-function fronky (x — x*))é + Wl(Q“) N) which satisfies the
integral identity

ﬁ:i/Al< av@)a% dx =0, (20)

=1 8)6[
Q(A)

for any p(x) = (p1(x), ..., pn (x)) € Wl(Q(” N). Further the functions (x, k) are
extended ta2 by settingv (x, k) = kv (x — x*))é for x ¢ Q. In other worda)™ (x, k)
is a weak solution of the boundary value problem

n a 8 .
Z_AJ< v>:0 |an(v),J:177N7 (21)
0x; 0x
v(x) =k (x —xV)é onaQ. (22)

Under the conditions 1) and 2) the existence of a solution to the problem (21)—(22)
follows from Leray and Lions [9]. We impose on the séts’ the following restriction:

C. Letk = (ky, ... ky) € RN. For anya = 1,..., N, there exists a continuous
function C@ (x, k) such that for any subsé c , we have

/ C@(x,k)dx

Nog “(x 0\ ove  (x k)
lim. Zk—/ ( ) A kA0 oy

zelb(D) =1

0 if k, =0,

wherev)y ;(x,k) (j = 1,...,N) are the components of the vector-functioff (x, k)
which is a solution of problem (21)—(22) with= ¢@; ¢ being theN-dimensional
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vector whosexth component equalk, /|k.| (k, # 0) and the remaining components
equal zero,l;(D) = {i=1,...,10): x() € D}, and the convergence in the I|m|t in
(23) is uniform in k with |k| < co0. We can look at the vector-functiof (x, k) =
(CO(x,k),...,C™(x,k)) as the vector-valued analog of the additional term of
capacity type in the works [17] and [18].

Now we are in a position to formulate our main result.

THEOREM 3. — Let the conditionsl), 2), B1, B2and C be satisfied. Assume that
f e qu(Q, N) with ¢ > n, and letu; be the sequence of solutions of probléb)
(2) which satisfies inequality7) and converges weakly to the vector-functiog in
WL(Q, N). Then the sequence, converges strongly tag in WI}(Q,N) for every
p € (1, m), and the functiong is a solution to the boundary value problem

Z%A’ (x 2—2) +CY(x, f(x) —u(x)) =0 inQ, j=1...,N, (24)
1
u(x) = f(x) onag. (25)

WhenN =1, this theorem is due to Skrypnik [17, Chap. 9]. The theorem will follow
from a suitable asymptotic expansion of the solutiensf problem (1)—(2) which plays
an important role in the construction of the limit problem (24)—(25). The asymptotic
expansion and the derivation of the limit problem rely on the solutions of the model
problems (21)—(22) and some of their integral and pointwise a priori estimates. In the
next section we deal with these a priori estimates.

3. Integral and pointwise estimates of the solutions of problem (21)—(22)

We start with
LEMMA 4. — Le the assumption%) and 2) be satisfied. Then for any vectBr;é 0}

any solution™ (x, k) € kv (x —x™)é + W1(Q!", N) of problem(21)—(22)satisfies the
inequality

v (. B)| < k. (26)
Proof. —In the integral identity (20), let

v, k) — ke if v (x, k)| > k.

Let E; = {x € Q: [v*)(x, k)| < k}. Thus we have
8v,-(‘v) "

8v(v) v
dx < A/ — ) —Ldx=0.
/ 0x o / Z ( ) 0x o

j=1
B D\ Eg B(x,.(s),l)\EA

This implies that either mea&(x*, 1)\ E, = 0 orv*) has constant components. In the
last case)” (x, k) = ké. Hence in both situations we have (26)a



192 M. SANGO / Ann. |. H. Poincaré — AN 20 (2003) 183-212

In analogy with [13], we have
THEOREM 5. — Let the conditionsl) and 2) be satisfied. Then there exist the
constantsK;, K, and K3 depending only orV, n, m, v, v, vz such that fori =

1,....1(s), s =1,2,..., for any solutionv (x, k) € kv (x — x*)é + WL(Q™, N)
of problem(21)—(22)the following claims hold
1

av'(s) m B
/ | dx < Kok [dO)" @7)
dx
B, 1)
2.ForO<t<kandE, ={x € B(x*, 1): v (x, k)| < 1)
9 '(s) m e
/ P gk < Kotk a0 28)
ax
E,
3.
. PO
’Ui(s)(X, k)| < K3k [17(0] ) (29)
lx —x;

foranyx € B(x”, D\B(x;", d").

We prove the following

THEOREM 6. — Letk = (kq, ..., ky) andk = (ky, ..., ky) be someN-dimensional
vectors with|k|, |k| < oo and letv® (x, k) € kyr (x — x) + WE(QY, N), v (x, k) €

ky (x —x) + W@, N) be solutions of problert21)—(22) If the conditionsl) and
2) are satisfied, then the following inequalities hold

m

0 _ A - A n—m
/ ’— P, k) — v (x, b)]| < Kalk — k|71 [d®]" ", (30)

ox

B, 1)

and forky, kq # 0,

N v, N 1 av® (x, k)
Z / {AJ (x’ i ’ )__ i ’

- ox ke 0x
J= B(X;S),l)
v,k 1 av) (x, k) o a1 onem
— A/ (xv : )T = }dx < Kslk — k|m=1 [dis ] ; (31)
ox k, ox

the constant¥X, and Ks depend only oV, n, m, vq, v,, vs.
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Proof. —For simplicity, we writei (x) = v\ (x, k), 9(x) = v\ (x, k). Substituting the
test function

x(S)
() = 5(x) — D(x) — [ — mw( — )a

1

with § = l.— ¥ € CP(B(™, D), ¥(y) =1in B(x, }), in the integral identity
(20) for v and v, and subtracting the resulting equations from each other, and using

the condition 2), we get

[ 5

B, 1)

m

< C{h+ I+ I3}, (32)

where
3(v D)

dx,

m—2

ov (v —
v (v v)d

ox

’

= K=K / | &
= di(S) .

Ik — k| /
I3= | |
3 dl.(x) W

B, 1)

m—2

o 0 D
v (v—2) dx

0x

By Young'’s inequality, we have

hee [ |80
S —
! 0x

B(x.1)
3@ — D) lk — k|71
12 < & / ’ dx + CS |: di(x) :| / |:

0x
B(x".1) B(x".1)

dx + Colk — k|1 [a]"™", (33)

m

m—2- 2=
e

Bh -1
a|had ] dx.

Applying Hoélder's inequality to the second integral in the right-hand side of this
inequality and using inequality (27), we get

m

o(v — D R A UL n—m
L<e / ‘ (”a RN e [0 (34)
X
B(x" 1)
We estimatel; analogously. Thus from (32)—(34), with sufficiently small, we

obtain (30).
Next we prove (31). We substitute the test functions

1 x—x(y) .
o) = o (0 )E

« i
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and

1 x—x\ .
(p(x)=E 0® (o, B) — W( o )e(oo’

in the integral identity (20) corresponding 67 (x, k) and v (x, k) respectively, the
function v“)(x k) are defined as in the formulation of condition C. Subtracting the
resulting equations from each other, we get

N (s) 7 ~ (s) 7
Z / {Aj<x,—> 1 dv,, (x,k)_Aj<x’8_v>i8via(x,k)}dx
— ox ) k, ax ox / k, ox

N - N

. av ) ov Y

<§ A/ , — — A/ , — .
- / ‘ (x 8x) (x ax)Hax

-1
IR

dx = J1. (35)

Let us estimate/;. From condition 2) and Hélder’s inequality, we have

a__A m n(m 1)

J1<C{ / ‘M dx} [d(s)] -1
0x
ov

B(x".1)

m m=2

ol [ fled "+ ]
0x

B(x® 1) B(x® 1)

N N m % n—m
X { / ‘Lv —9) dx} [di(‘v)]T.
0x

B(x.1)
Thus from (27) and (30), we get

a0

0x

m m=2
m
dx } }

L < Clk— ki1 [d®]" ™"
(31) immediately follows from this inequality and inequality (35). The theorem is
proved. O
4. Asymptotic expansion of the sequence of solutions

In this section we construct an asymptotic expansion for the sequence of solutions
of the problem (1)—(2) with a remainder. We prove the convergence of the remaindel
term to zero in appropriate topologies. Let us introduce the sequence

1 1
(s) (s) (s) 2 (Y)
=max |1+ d’’, — ;| In“r ,
pl { ( 2C1> 1 2C3 [rl ] }

where( is the constant from hypothesis B1 and

C3= max {timIn?t
8 0<t<d|am§2{ }
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A simple calculation shows that

r
pi(S) g di(S) + 17’

and from the definition of the numbe#§’ andr*, it follows that the ballsB(x", 4 +
r,.“)/Z) (i=1,...,1(s)) are pairwise disjoint. Let;, 6, and 63 be some numbers
such that O< 63 < 6> < 61 < 1. We consider the infinitely differentiable functions,

Jj =1,2, satisfying the conditions: € x;(r) <1, x;(t) =1if t <644, x;(t) =0 if
t>0;, x;(t) <oo (j =1,2). We introduce the functions

‘ Ix — x| ‘ |X—x(v)| .
wi(v)(x):X]-(T , (/)i(v)(x):X2 T ; l:l,...,I(S).
Oi Pi

We set
1
’ . . ) () 7m (s)
S={z=l,...,1(s). ud? > e ) }
1= {i =1,...,1(s): 61d" < 2 [ Inzrl-(s)}.
We have

LEMMA 7.— If conditionsB1 and B2 are satisfied, then

lim >[4 =0, (36)
S—>OOiEI/
zel”

Proof. —We have

1

e 1 L}y

da® <C max{ } [ i } .
S o ma (LT

()
iell iell [ri"]

By condition B2, (36) follows from a passage to the limit as> oo in the above
inequality; here we have made use of the definition of thd set

For the proof of the relation (37), we note that since the balis', " + r*/2),
i=1,...,1(s) are pairwise disjoint an€ is bounded, it follows that

S <G (38)

C is a constant independent ofWe have, by the definition of the s&,

_nm_

1 n
(s)1n - (Y) n—m 2n (Y) (Y)
S 1) < 5] max (6T ey S

1'61;/ 161”
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A passage to the limit in both sides of this inequality and the relation (38) yield (37).
The lemma is proved. O

As an immediate consequence of Lemma 7, we have

1(s)

lim_ Z ok (39)

Further we see that
1(s)

S < ¢ (40)

i=1
C is independent of. Indeed by Hdlder’s inequality, we have

L) o vm [ @Oy 7 5 1) o 0
>y {3 M T e}

i=1 i=1 i=1

Thus, (40) is an immediate consequence of condition B2 and relation (39). Inequal-
ity (40) implies in particular that

1(s)

lim > " [d]" =0;
§—>00 i1

i.e., the set'") F*) vanishes as — cc.
Now we are in a position to construct the asymptotic expansion of the sequence o
solutionsu, of the problem (1)-(2). We assume that satisfies the inequalities (7)

and (8) and converges weakly to the vector-functigne f + W(Q, N) with f €
Wl(Q N) andg > n. We denote the means of the functiamgand f over the balls

B = B, 1 by

1
®) _j{ _.
u;” = P ug(x)dx =: 7/u (x)dx,
P ° meass” ./

1 B,(S>

i

£ = / £ dx,

l

measB“)

respectively. In the sequel we sBf” =: B(x*, 6,p{").
We seek a solution of problem (1)—(2) in the form

4
s (x) = uo(x) + Y RP(x) + wy(x), (41)
k=1

where



M. SANGO / Ann. |. H. Poincaré — AN 20 (2003) 183-212 197

RO =>"{[uf” —uo)] + [f ) — 1} (),

icl]
R(Z) Z{ (s) _ uo(x)] [f(x) _ fi(s)] }(0,-@)()6),
iell
R(3) Z U(Y) (Y) (s))(p_(s)(x)
1 ’
iell
R(4) _ Z U(S) (S) (S))(p_(S)(x)
1 ’
iel!

wherev® (x, £ — u!) is a solution of problem (21)-(22) with= | £ — «”| and
(5) (s)
?m “)l , wy is the remainder term whose behavior will be dealt with in the following

corrector result which gives a justification of the expansion (41). For simplicity we shall
write v (x, ;) — ;) asv” and indicate “converge to” by

THEOREM 8. — Let the conditions of Theoregbe satisfied. Then

1. R® — Ostrongly inW(Q, N) (k=1,2,3).

2. R® — Oweakly inW,.(22, N) and strongly inW (2, N) for all p € (1,m).
3. wy — Ostrongly inWl(Q, N).

Proof. —
Proof of 1. We have

HR(l)HLm(QN) Z/ [uf” — o)™ + £ = fO["] v " a

iel{ &

Theorem 2 implies that is uniformly bounded inQ2. Thus using inequality (9),
Poincare inequality and the definition §f we get

IR, .0 < C D[] (42)

iell

Next

81#(5)

IRD
=

Ln(2,N)

3140

CZ/{ 1) — o) " + | £ = F0)["]
+ [+

el’
m (S)
o | L o s

<c{S @™ /{ ’_
{ + 0x

iell

af

8uo

ISl .
iel]



198 M. SANGO / Ann. |. H. Poincaré — AN 20 (2003) 183-212

where as above, we have used Theorem 2, inequality (9) and the definitignTdfe
function @, (x) = ;¢ [ (x)|" is bounded and by Poincare’s inequality, we have

31//-(0 " (s)yn—m
d,(x)dx <C /‘ ! dx<C d; .
/ z[:/ ox 21:/[ ]
Q JASY S D:_;) JAST R
Thus, we get
lim H s <C d;’ ) 43
s=ooll dx | r,@.N) f

ielg
Passing to the limit in (42) and (43) and using (36), we obtainlﬂfétconverges to zero

strongly inW1(Q, N).
In a similar fashion we show that

lim | R?]]y1 v, =O- (44)

§—>00 (Q.N)
Next we have

IR

oo <3 [ =)ol

iel{ &

<CZ/

iel]

dx g CZ[di(S)]n_m,

iel]

Bv,-(s)
ox

where we have used Poincare inequality and inequality (27) from Theorem 5.
Next we have

AR®
H dx

d¢;”

0x

m

v
+ 1

2| ax

<c3 [[rer
iEIS/Q
<y [dd).

iell

L (2,N)

Here we have used the boundedness.f the definition ofp®’ and the inequality (27)
from Theorem 5. Combining this inequality and the previous one and taking account
of (36), we get

sli—[goH RS(S) H WL (Q,N) —

Part 1 of the theorem is proved.
Proof of 2. By Theorem 5 (inequality (27)) and the boundedness dfwe have

||Rs(4)||’vrxl/1(9,1v) <C Z{ [ )" ™" + [p0]" ).

m
iell

0. (45)

Thus the relation (40) and (39) imply

im [|R)

5§—>00

0. (46)

<
Wi (Q2,N)
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We deduce from here thak® converges weakly inW?!(Q, N). Next by Holder's
inequality and (46), we have ford p <m

1 1 i 1
p m p m
IR e < CIR g { S measf”} " " < {1}

iel iely
we have used the fact thaf” (x) = 0 outsidel J/ ) D'. Hence by relation (37), we get

i “
sll—[goHRV prl(Q,N)

=0. 47
This implies the claimed strong convergenceRé? to zero inWI}(Q, N).

Proof of 3. From the assertions 1 and 2 of the theorem and the weak convergence o
us tou in W(2, N), it clearly follows thatw, weakly converges to zero iw1(2, N).
Furthermore, since the sequenggis uniformly bounded, we also have that strongly
converges to zero in any, (2, N) for all » < co by Sobolev embedding’s theorem.

We havew, € W(QW, N); in particular w,(x) = 0 in U/ F*). Hence we can
substitutep (x) = w,(x) = (w,1(x), ..., wyy(x)) in the integral identity (6) and get

N . ou,
> /A’ (x,

- 0x
J=1Q

We rewrite the left-hand side of (48) as

>8wsj(x)

dx =0. (48)
ox

N
; oug\ dws; (x s 5 5 s
Z/AJ(X’ a;) 52(—)dx:11()+15)+1é)+12>,
j=1

)

where

N
i a s i a s a s 0 sj
Il(‘v) = /Z[AJ (x, " ) — A’ (x, s _ W )} W, (*) dx,
2 ox ox ox ox

N 4 .
1 Z/Z[Aj (x’ dus awx) o (x’ duo IRy )} wy (™)
— 0x 0x 0x 0x 0x
Q /=1
N 4 4
, dug ORW , AR™N\ 1 dwy;(x)
1<S>=/ [A/< , — d )—A’(, . )] Y dx,
3 z_: * 0x + 0x * 0x 0x *
Q /=1
N
S ORWY dwy; (x)
= AJ(, : ) i g,
4 z_: * 0x 0x *
Q /=1
By condition (4) on thed/’s, we obtain the estimate
dw, "
19> v / ‘ a“; dx. (49)
Q



200 M. SANGO / Ann. |. H. Poincaré — AN 20 (2003) 183-212

Inequality (5) and Holder’s inequality yield

“ m e
15‘”<c{/{1+ Ous| 4 |Ouo ‘aRS ‘aws]dx}

0x ox ox 0x

Q
3 |aR® dwy [\ 7
2% {/\ e

o] dx
Q

From relations (43)—(45) we deduce from this inequality that

lim 1" =0. (50)

§—>00

For the estimation of{", we note that sinc®@(x) =0 in K© = Q\ U’ DY, w
have the following representation

0 oWy,
(S) /ZAJ (x ﬂ) E;U]d)c
ax X

K& J=1
8u0 dRW ./ ORWN\10w,;
Al x, — S ) — A x, =2 Ld
+]§:1; Z[ (x dx ox ) <x dx )} ox o

By inequality (5) and Young’s inequality, we have

[t e e

This implies that|A/(x, d“°)| € L_» (). Hence from the weak convergence wf

to zero in W(Q, N), we obtain thatl(s) converges to zero as— oo. Further by
inequality (5) and Hdélder's inequality, we have
1
o 3 [l e

Fo {5 ) (2

In view of (39) and the absolute continuity of integrals, the last integral converges to
zero ass — oo; the two previous are bounded. ng) converges to zero. Hence we
obtain

3140

al/lo auo

Q

0x

IR
‘ 0x

(s)
YIl_)ngo I3 =0. (52)
Now we proceed to the estimation a)f). It is technically the most complicated
part of the proof of the theorem. But firstly, let us introduce a new test function. Let
2 € (0,63) and let us consider the functiong” e C2°(2) such that 0< x,* (x) < 1,
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ao(s)
Xi(s)(x) 1in B(x(s) )\pi(S))v Xi(s)(x) 0 OutsldeB(x(S) 93101,(5)) and|d§_lx| < p((’;) . USing

these functions, we rewritg” as follows

I(v) — ivl) +1 i;)’ (53)
where
( ) (s)
S 1 a[ws Xl ]
Ly =3 / ZA]< ) 3jx dx
iel] D(;) Jj=1
and

s a[“<ﬁ [wy; (1 — %)
=5 [ (s R e

lels{/D((> Jj=1

i

Let s be sufficiently large so thatzp!” < 1. ThenI) = 0 by the definition of the

functionsv” (x, £*) — u'”). For simplicity let us denote the bai(x", 1p"*) by G
Appealing to Holder's and Young's inequalities and using inequality (5) we get
161” D(S)

1
ws: (L — x; " n
(v)\cz{/‘ [wy; ( Xi dx}

ox
olei v
(s) i i
SRR

" dx } (54)

)\ ~(s)
D;7\G;

Letm” =max _ PNGY lv(x)|. By Theorem 5 (inequality (29)), we have

Thus using the properties of the function@ and the inequality (28) in Theorem 5, we

get
a 8 (s) ym 8 (s) ym
/ ‘L dxéC{/ Vi dx + / Al dx}
0x X ox
DG E,o DIN\GY
<CmPd] ™ + )" (o))
d(S) 1=
<c[“ ™ (55)
P

For the estimation of the first factor in the last inequality in (54), we need the following
Poincare’s inequality from [17, Lemma 1.4, Chap. 8]. Lek I < n, then for any
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functionu € WI}(B(O, r)) and any numberg; and p, such that 0< p; < p2 < 3, the
inequality
u|?

/ |u(x)|pdx<C{(,o§’—pf) / o dx~|—'02r_7npl / |u(x)]pdx}, (56)

K (p1,p2) K (p1,7) K(5.r)

holds with the constant depending only om and p; K (a, b) = {x: a < |x| < b}.

We have
Mw,; (L — x;
[Pl [ e
p¥ p® ¥
Let 7 = d + "=, Thus D c B(x"", 7)) c B(x”, 27"). By inequality (56) it
follows that
m m OW.: m [0 p(V)]n
(s) sJ
/]wsj(x)| dxéC{[szi ] / ’ ™ dx[ 4 200
DY BV, 7)) " !
X / |wxj(x)]mdx}
B, 7Y)

Thus we obtain

/ ‘ fws; (1 — x;
0x

($)yn—m
[pi] m
+IT / |wsj(x)| dx ¢.
Y "1 Y
B, 7Y B 7))

From this inequality and (54)—(55), we get

(8)m nm;
i <o [ gl T {/‘ws }

iely i iely Q

1 m—1

[dfs)]n1(rz—m) ﬁ (v) (S)]n m1 m=1N m_
e e e

(s) (S)
et I iel! I"

x {/|wsj(x)|mdx}. (57)
Q

By the definition of the sef;’, we get

d(s) ” % 1 d(S) m(n—m) mj;l
As — Z [%] g C maX n—m (S) Z |:[ : ] :|

2 (s)
ie[;/ pi 1<i<I(s) In m—1 r [A{/ [ri ]n
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Passing to the limit in this inequality we get from the conditions B1 and B2 Ahat
converges to zero as— oo. Thus in view of (37), we obtain that the first term in the
right-hand side of (57) converges to zerasas oo.

Further, we have

i w1 s) )2+ O
Eo= Yl [P < max () I Y|

(s)
iel! =1 ISISIs) 1<i<I(s)

The first factor in the right-hand side of this inequality converges to zere-aso while

the second factor is bounded by (38). Thus by condition B2 and the strong convergenc
of w, to zero inL,, (2, N) it follows that the second term in (57) converges to zero as
s — 0o. Hence we obtain that lim, ., 1,3 = 0 and this shows that

lim 1,V =0, (58)

§—>00

smcelg_o Relations (48), (49), (50), (52) and (58) imply thatstrongly converges
to zero le(Q N). The theorem is proved.O

The results of this section establish the first claim in the main Theorem 3. The
remaining of our work is devoted to the proof of the second claim of the theorem. We
deal with this question in the next section.

5. Derivation of thelimit problem

In this section we shall prove that the vector-functieg the weak limit of the
sequence of solutions of problem (1)—(2) is a solution of problem (24)—(25)% betan
arbitrary vector-function if€° (2, N). We consider the sequence of functions

gs(x) = g(x>+2p<“(x> (59)
k=1
where
1(s)
PP =) [g" = ] v (),
i=1
p? (x) = Z Y wl @gi e @),
a=liell,
pPx) = Z 308, Dol (),
a=lier],
where

L 0O, £9 —u®), i (fO = u®
.(‘Y)(x) _ (fi(x)_”z(‘”) (x f ), if (fl U; Do F 0,
0. if (" —u)a = 0;
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(-)¢ denotes thexrth component of the vector g(” is the mean of the vector-function
g over the ballB(x"", 6,0"), v (x, ¥ — u®) is a solution of problem (21)-(22)
with & = |(f¥ — u'”),| and ¢ the N-dimensional vector whoseth component is
S = u)e /I = u),| and the remaining components are zarf),(x, 1) is a
solution of problem (21)—(22) with = 1 and the vectoé has itsath component equal
to 1 and the remaining components zed? andg " are the test functions defined in
the previous section. By the symbdls and!;,, we mean the sets

= {l =1,...,1(s): |(fi(s) _M§S))a| >di(s)}’
L={i=1.. 1) [(f = u?),| <d}.

Using the same arguments as in the proof of Theorem 7, we can show that the
sequencep.” andp$’ strongly converge to zero iW1(2, N), i.e.,

lim {Hp(S)HWl(Q Mt ||/0(S)Hw,ﬁ(9,zv)} =0. (60)

§—>00 m

We also get that

9| < 00, (61)

12" | wa )

and

s)
YI'_[QOsz HWpl(Q,N) =0, (62)

forall p € (1, m).

A simple verification shows that, € W1(Q®), N). Hence we can substitute(x) =
gs(x) in the integral identity (6). By doing so, we get

(V)+J2(Y)+ (Y)+J4§Y):O, (63)

where

; du,\ 0
[
dx /) dx;
Q
ap(l) ap(S)
dx,
x)(axz * 3X1> *
2

N n
j as av
=28 [ 5 e

; 8)61
=1ll=1g

~

We investigate the behavior of eagh’ (k = 1,2, 3) ass — oo.
We have

JO = ZZ/ (wﬁ&d+MK

j=li=1%
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where

i du ag;
(v) 0 &
=33 [[ar (o 5) -1 (x 52
From condition 2) and Holder’s inequality we have

j=l1=1g
oo {1 e

x} - (64)

auo m

e[
Q

0x

ol
0x

n C”{/’ a(us — uo)

with ¢ € (0, 1). Sinceu, strongly converges tog in WI}(Q, N) forany p € (1, m), and

the first factor in the second inequality in (64) is bounded, we seelftjfamonverges to
zero ass — oo. Thus

lim =33 [t (x 52 ) (65)

j=li=1% dx;

Sincep™ and p® strongly converge to zero i1 (2, N) then by condition 2) and
Holder’s inequality, it follows that

lim /¥ =0. (66)

§—>00

Using expansion (41), let us rewritg" as follows

[ OR®\19p?
= 33 [0 (5 2 (2
X

j=11=1 dx;
N n 4 2
./ ORW\
+§ E A{(x, s ) Psi_ gy
— = 0x dx;
j=li=1%

The inequality (5) from condition 2) applied tlﬁ) yields

(s) IO, (s)2 3,0(2) IR® dw;
< C{J3 }=C —
= 1 ox 0x

oug

0x
8uo
0x

‘ IR

m—2
] ) dx
0x

) w

X (l—l— [

9p?

+/‘ ox
Q

By Holder’s inequality, we have
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{5 o { (R 5] o)
ne Val ™

The second factor in the right-hand side of this inequality converges to zero by Theoren
8, while the other factors are bounded. Thus

IRM
ax

’ 0w

ol
0x

IR™
0x

*|

lim 79t =0. (68)

§—>00

By Holder’s inequality, we have

m—2
m e 2
<] [l [ad " 1%
ox
Q Q

Let us show that the second factor (that we denotélb‘))/) in this inequality converges
to zero. Indeed applying Holder's inequality, taking account of the properties of the
functlonSv andcpl and appealing to the estimate (27) in Theorem 5, we get

90@ 2
Hl(s)=/H—§; } dx
Q

el gy

iel] Q
1
2

el

1// 1//

ou
ox

3140

0x

IR
’ 0x

fdx}? ©9)

8uo
0x

1
dug|™ 2
oto dx}
0x

3140

} .

The first term in the right-hand side of this mequallty converges to zero by (36),
the second term also converges to zero by (39), (40) and the absolute continuit
of an integral. HenceLIl(” converges to zero as — oo. Thus from (69), we get
lim,_ o J§;? = 0. This together with (68) and (67) shows that lim, J5;’ =0

Now we are left with the investigation o3 . Using the definition oR®, we rewrite
J53) as follows.

n I(s)

S S aU(S) a (Y) A S
I =— Zzzg()/A1< ) Wi e + IS+ JS2, (70)

sz

where

Jw1 (s) j 3”5” dw l(;)j
f22 _ZZ 2 S / ( ax)a—dx’

b
a,j=11=1i¢1/nI, Q
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2= © [f 41 3[vf‘”<p§”])3[¢(” wie,)]
Z Z Z i /{ (» 0x

a,j=1I=liel/nI), dx;

(s) (s)
_ Al (x, 9v; )%}dx,
ox 0x;

wherew/;,; is the jth component ofw{,). By condition 2) and Holder's inequality, we
have
IOV CLHY x HY).
where
m—2 1
. 8 (S) o av'(s) m m
= 5 ([ (B )]
i¢I{ NIy, p® p®
and
) N (Y)
ng=y x| f[Re)
a=lig1’nI, (w
Noticing that{i: i = SIONL NI =1 U[I'N1]], by Theorem 5, we get
(S) < CZ Z d(S) n— m (s) l(s))a’m
a=LigI/ NI,
<C{Z [d1" "+ > ()] }
i€1_/ lel.//mll//

Here we have used the definition of the séfsand I;,. By (36) and (37), we
conclude from this inequality that lim ., H. 3(1) = 0. Analogous arguments show that
lim,_ o Hiy =0. Thus

(s)1
YIl_)rToLJ =0. (72)
Next, we write
J(S)Z_ L(S) +L§S) + L(s)’ (72)

where

) _ (s) 3[”;'(5)%(5)]) [l(S) l(zl)j]
Ly = zzzg/{ (o 2

a,j=11=1 iel/nl, 9x

(s) (s)
— Alj <x ov )(p(y)awmj }dx
T dx toox ’

LY = Z Z 3 gm/ (Y))Az( ’3;)5)) dwy; dx.

0x
aj=li=liel/nl, & !
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N n (s) (s) (s)
L(S):_ Z Z Z gl(;)/ l(;)j < [vax(pl ])a(p dx.

, ax
@, j=11=1icI/NI, !

From condition 2), we have

Ly <C{Ly] + L33}, (73)
where
s) (s) (s) am—2
s s 8vi
=y ¥ r“/H |
o= 116[”(\1/
‘ [(1 (pz(S))U(S)]H (S)
X dx
dx
and
X s (1 (pV))U(Y)] aw(Y)
1=y ¥ ygw/\ i | g,

a= 1161_”01_/

Let us estimatel.\). Denote B(x*, 63p"") by E*. From the definition ofp!” and
Young’s inequality, we have

(s) m 180S ™ aw® ™
iec & [ (T o
s D(Y)\E(Y)

Let

m = max [v(c, [V —uM) o mi) = max o) (x £ = ui?),

xeD\EY xeD\EY

E o=1{xeD® | <m®}, E o=1{xeD™: [ <m®}.

By Theorem 5 and the definition of the g¢t we get
m

s [[5e

(Y) (v)

LY < @) dv;”
<oy, 3 {meri s [ 5

a=liel!ni},

o}

<C max

16) (@) pntn=m) 7 51
1
1<i<I(s) In?it ) { } '

=t
A passage to the limit in this inequality and condition B2 yield that

lim L) =o0. (74)

§—>00
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For the estimation oL“) we use Hoélder's and Young'’s inequalities to get
1 (5)y. . (s) m %
LY < {Z Z / (‘ [( </> )Ui 1 )dx} ‘

a=1 lEI”ﬂIY/a D(A)\E(A
Arguing as in the estimation af'}, we see that lim, ., L{) = 0. This fact together
with (74) and (73) imply that

Bw(s)

ox

m ’

lim L =o0.

§—> 00
The convergence afs’ and LY’ to zero ass — o is established analogously. Hence
we have shown that

lim J$)? =0. (75)

§—>00

We still have to investigate the first term in the right-hand side of (70). In particular
we shall show that

n I(s) 0) ()
av; ow;,,
lim “)/A ( ) — %l g
§—00 Z Zzg ! 0x; .
o, j=11=1i=1
N . .
=3 [ewc? e f — o) dx. (76)
a,j=1g

wheres/ =1 if @ = j, ands = 0 if a # j; the functionCY(x, f — uo) is defined as
in (23).

Since ug € WX(Q, N), there exists a uniformly bounded sequence of infinitely
differentiable functionsu;(x), k = 1,2,..., which converges tay in W,ﬁ(Q, N) as
s — oo. For a givenk let there be defined a numbér= d (k) > 0 such that for any set
E C Q with its diameter less thard?

max{|ux(x) — (W] + £ ) = FO] + [g) =g W[} <k P (77)

Let us represer® = J, 2, t =1,..., T(k), 2, NQy =@ for t # ¢/, where theQ, are
some sets with piecewise smooth boundaries such that their diameters is legs than
for all ¢. Let s; = s1(k) be such that fos > s,(k) andi =1,..., I(s), the inequality

d® +r® <d holds. Letl,(2,) ={i € {1,...,I(s)}: x* € Q,}. We have the following
representation

1
=MD + MY + M, (78)
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where

3U(Y) ) awf;{j
8)61

MY = ZZ 3 gf;){ /AJ<

t=1a,j=1iel(2) 1= 152

g / € (e, £~ uf)3]dx .

5 50 SID SR ('l LIt LRun Y

t=1a,j=1iel;(2) Q,

~ [auc, g —uo>6g;dx},
Q
N
M= 3 [a0C (., 1 —ul)s]dx.

j,a:lg

From the assumption C, we see that for &yin the partition of©2 ands sufficiently
large

N (s)

j v, 8w1a j s s
Z Z [/A{ (x, Vi )—’j dx —/C("‘)(x,fi() ()) dx| < o,
j=liel(@) g, dx /. ox

with lim;_, ., a1, = 0. This implies that

lim M) =0. (79)

§—>00

From the definition ofCY)(x,-) and Theorem 6, we have fdr= (ki, ..., ky) and
k=(kla"'akN)’

ICD(x, k) — CY(x, k)| < Clk — k|1 [d®)" ™"

for |k|, |k| < co. This inequality together with (77) and Theorem 5 imply

My = Z Z > {/ g — gu(0))CY (x, £ — u)8] dx

t=1a,j=1iel; () Q,

—/ga(x)(C(j)(x,fi(s) —ul@) —C(j)(x,f—uo))r?édx}

T N l
<CZ Z Z {|gl(;)_ga(x)|+|fi(s)—f(x)|m

t=1a,j=1licl ()

= o077 x [
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C 1(s) (syn—m
S k Z ;"] = . (80)
i=1
By (40), it is clear that lim_, o, oy = O.
Recapitulating all that has been done so far in this section, we conclude that

Z/{ (x —x)aﬁ+ «()CY (x, f(x) — uo(x))$ }dX—ﬂHr% (81)

ja=1lg d

whereq; is from (80) andg8, — 0, ass — oo. Since the left-hand side in this equation
is independent of ands, then we can make, and s, as small as we wish fdr ands,
respectively large. This implies thag satisfies the integral identity

j 0 Jo
Z /{ ( L;O)a;ij + 8 (X)CYP (x, £ (x) — uo(x))8 }dx_O

Ja=1lg
forall g € C°(€2, N). This completes the proof of Theorem 3.
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