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ABSTRACT. – We study the Dirichlet problem for a system of nonlinear elliptic equations of
Leray–Lions type in a sequence of domains�(s), s = 1,2, . . . , with fine-grained boundaries.
Under appropriate structure conditions on the system and the geometry of�(s), we prove that
the sequence of solutions of the problem converges in suitable topologies to the solution of a limit
problem which contains an additional term of capacity type. We construct the limit problem.

RÉSUMÉ. – Nous étudions le problème de Dirichlet pour un système d’équations non linéaires
élliptiques de type Leray–Lions dans une suite de domaines�(s), s = 1,2, . . . , avec des
frontières finement granulées. Sous des conditions de structure appropriées que nous imposons
sur le système et sur la géometrie de�(s), nous démontrons que la suite de solutions du problème
tend dans des topologies appropriées vers la solution d’un problème limite qui contient un terme
additionnel de type capacitaire. Nous construisons le problème limite.

1. Introduction

Let � be a bounded domain inRn and for each given positive integers let there be
defined a system{F (s)

i ; i = 1, . . . , I (s)} of closed, pairwise disjoint sets lying inside�.
In the domain�(s) = � \ ⋃I (s)

i=1 F
(s)
i , we consider the boundary value problem for a

system of nonlinear elliptic equations
n∑
l=1

∂

∂xl
A
j
l

(
x,

∂u

∂x

)
= 0 in�(s); j = 1, . . . ,N, (1)

u(x)= f (x) on ∂�(s), (2)

wheref (x) = (f1(x), . . . , fN(x))
T is a given vector-function in̄�, u(x) = (u1(x), . . . ,

uN(x))
T , ∂u

∂x
= (

∂uj
∂xl

)j=1,...,N; l=1,...,n is the gradient of u, Aj = Aj(x,p) =
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(Ai
l (x,p))l=1,...,n is a vector function from�×RNn into Rn with p = (pi

l )i=1,...,N; l=1,...,n

∈ RNn, ∂· denotes the boundary of a set·. We shall assume throughout thatAi
l =Ai

l(x,p)

has the representation

A
j
l (x,p)=

N∑
i=1

ali(x,p)p
j
i for p ∈ RNn.

For an open set·, we shall denote byW 1
m(·,N) the direct product ofN copies of the

Sobolev spaceW 1
m(·) and by

◦
W 1

m(·,N) the set of vector-functions fromW 1
m(·,N) which

vanish on∂·. For a vectorv ∈ RM with componentsvi (i = 1, . . . ,M), we denote its
Euclidean norm by|v|, i.e., |v| = (

∑M
i=1 v

2
i )

1/2.
In this work we investigate the possibilities of approximating the problem (1)–(2)

in the perforated domain�(s) by a new homogenized problem in� whose solution
is the limit of the sequenceus of solutions of (1)–(2) ass → ∞. In the scalar case,
i.e., whenN = 1, this problem has been studied by Skrypnik under various conditions
on the geometry of�(s) in many papers among which we cite [16–18] (the geometric
restrictions in this paper are the weakest among those considered by the author so far).
These works represent the nonlinear version of the theory invented by Marchenko and
Khruslov (see [10]) for the study of linear elliptic boundary value problems in domains
with fine-grained boundaries; the limit problem in this theory contains an additional
term involving a function of capacity type. We note that a different approach has been
elaborated by Cioranescu and Murat [3] and further developed in many other papers (see
for instance [2,5–7], and the references therein); it does not require any conditions on the
perforation and the limit problem contains an additional term involving a Borel measure
which may assume infinite values. At the present moment many powerful methods in
homogenization have been developed and an abundant literature on various aspects of
the theory exist in form of monographs [1,4,10,17,12,19], just to cite a few.

Some considerable difficulties arise at key turning points of our work, due to the
nature of the system of nonlinear equations that we are dealing with, in particular in the
appropriate choice of some auxiliary model problems whose solutions (satisfying some
special boundary conditions) and their a priori estimates are of paramount importance
in the asymptotic analysis of problem (1)–(2); they are needed for the construction of
the asymptotic expansion of the solutions of (1)–(2) and the test function used for the
derivation of the limit problem. The results of this work have been announced in [14].

The work is organized as follows. In Section 2, we formulate the conditions ensuring
that any solutionus of problem (1)–(2) exists for eachs and the sequence is bounded
in W 1

m(�
(s),N) (in particular the system has a Leray–Lions structure), using Moser’s

iteration technics we prove that it is uniformly bounded. For a background on Moser’s
method, we refer to his celebrated paper [11] and the work of Serrin [15]. Next we
introduce an auxiliary model problem which plays a crucial role in the sequel and the
geometric conditions on�(s) under which we investigate (1)–(2), we formulate our main
result. In Section 3, we derive some sharp pointwise and integral estimates for solutions
of the model problem, some of which have been obtained by us in [13]. In Section 4, we
construct an appropriate asymptotic expansion with a remainder term for the sequence
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of solutionsus of problem (1)–(2), we prove that the sequence converges strongly in
W 1

p(�,N) for p ∈ (1,m), and that the remainder term converges strongly to zero in
W 1

m(�,N). In Section 5, we construct the problem of which the limitu0 of us is a
solution.

2. Hypotheses and formulation of main results

1) We assume that the functionsAj
l are Caratheodory functions in̄�, i.e., they are

defined for allx ∈ �̄ andp ∈ RNn, continuous inp for a.e.x ∈ �̄ and measurable inx
for anyp ∈ RNn.

2) The functionsAj
l satisfy the following structure conditions: there exist the constants

ν1, ν2, ν3 andm, with 2�m< n such that for every vectorξ = (ξ1, . . . , ξn)

n∑
i,l=1

ali(x,p)ξlξi � ν1|p|m−2|ξ |2, (3)

and for everyp, q ∈ RNn; p = (pj )j=1,...,N , q = (qj )j=1,...,N we have

N∑
j=1

(
pj − qj

)(
Aj(x,p)−Aj(x, q)

)
� ν2|p − q|m, (4)

∣∣Aj(x,p)−Aj(x, q)
∣∣ �

[
1+ ν3

(|p|m−2 + |q|m−2)]|p − q|, j = 1, . . . ,N. (5)

We shall often use the symbolC for nonessential constants depending on the data.
We shall call the vector functionu ∈W 1

m(�
(s),N) a weak solution of problem (1)–(2)

if, u ∈ f +
◦
W 1

m(�
(s),N) with f being a function which belongs toW 1

m(�,N), and for

any vector functionϕ(x)= (ϕ1(x), . . . , ϕN(x)) ∈
◦
W 1

m(�
(s),N), the integral identity

N∑
j=1

n∑
l=1

∫
�(s)

A
j
l

(
x,

∂u

∂x

)
∂ϕj

∂xl
dx = 0 (6)

holds.
From the results of Leray and Lions [9], we have

THEOREM 1. – Under the conditions1) and2), if f ∈W 1
m(�,N), then the problem

(1)–(2) has at least one solutionus ∈ f +
◦
W 1

m(�
(s),N) and there exists a positive

constantM1 independent ofs, such that for alls, the inequality

‖us‖W1
m(�

(s),N) �M1, (7)

holds.

Letus be one of the solution of problem (1)–(2) satisfying inequality (7). We extendus
to� by settingus(x)= f (x) in � \�(s). The resulting function that we denote without
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fear of confusion byus belongs toW 1
m(�,N) and satisfies the inequality

‖us‖W1
m(�,N)

�M1 + ‖f ‖W1
m(�,N)

.

From this inequality and the weak compactness of bounded sets inW 1
m(�,N), we may

assume, by passing if necessary to a subsequence, thatus converges weakly to a function
u0 in W 1

m(�,N).
In our investigations the boundedness of the sequenceus will be needed. We show

that in the following

THEOREM 2. – Let the conditions1) and 2) be satisfied and letf be a function
belonging toW 1

q (�,N) with q > n. Then there exists a constantM independent ofs
such thatus satisfies the estimate,

vrai max
x∈�

∣∣us(x)∣∣ �M. (8)

Before proving the theorem, we note that the membership off to W 1
q (�,N) with

q > n and the boundedness of� imply thatf is continuous in�̄ and

sup
x∈�

∣∣f (x)∣∣ � C(meas�)1/n−1/q
∥∥∥∥∂f∂x

∥∥∥∥
Lq(�)

, (9)

with the constantC depending only onn, N andq.

Proof. –We use a modification of Moser’s method. Letws(x) = |us(x)− f (x)|. It is

clear thatws ∈
◦
W 1

m(�
(s)). We consider the positive real numbersr , k andK such that

r � 2, 0< k <K . We define the truncated functionζ : Rn � x �→ ζ(x) ∈ R as

ζ(x)=


k if 0 � |x| � k,
|x| if k < |x|<K,
K if K � |x|,

and set

w
(K)
sk (x)= ζ

(
us(x)− f (x)

)
.

The functionw(K)
sk so defined is clearly bounded and sinceζ is Lipshitz, standard

arguments as in the scalar case (see, e.g., [8, Chapter 2, § 3]) show thatw
(K)
sk ∈W 1

m(�).
Let us denote byχ(K)

k the characteristic function of the set{x ∈�(s): k < |us −f |<K}.
We consider the functionϕ(x)= (ϕ1(x), . . . , ϕN(x)), with

ϕj(x)= (
usj (x)− fj (x)

)[
w
(K)
sk (x)

]r
, j = 1, . . . ,N.

Owing to the properties ofw(K)
sk we see thatϕ ∈

◦
W 1

m(�
(s),N). Thusϕ is an admissible

test function in the integral identity (6). We have

∂ϕj

∂xl
= ∂(usj − fj)

∂xl

[
w
(K)
sk

]r + r

N∑
i=1

(usj −fj )(usi −fi)
[
w
(K)
sk

]r−2∂(usi − fi)

∂xl
χ
(K)
k . (10)
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Let us write the identity (6) in the form

N∑
j=1

n∑
l=1

∫
�(s)

Ai
l

(
x,

∂(us − f )

∂x

)
∂ϕj

∂xl
dx

=
N∑
j=1

n∑
l=1

∫
�(s)

[
Ai
l

(
x,

∂(us − f )

∂x

)
−Ai

l

(
x,

∂us

∂x

)]
∂ϕj

∂xl
dx. (11)

Substituting formula (10) in (11) and using the condition 2), we get∫
�(s)

∣∣∣∣∂(us − f )

∂x

∣∣∣∣
m[
w
(K)
sk

]r
(x) dx + r

∫
�(s)

∣∣∣∣∂(us − f )

∂x

∣∣∣∣
m−2∣∣∣∣∂w

(K)
sk

∂x

∣∣∣∣
2[
w
(K)
sk

]r
χ
(K)
k dx

� C{H1 +H2 +H3},
where

H1 = (r + 1)
∫
�(s)

∣∣∣∣∂f∂x
∣∣∣∣
∣∣∣∣∂(us − f )

∂x

∣∣∣∣[w(K)
sk

]r
dx,

H2 = (r + 1)
∫
�(s)

∣∣∣∣∂f∂x
∣∣∣∣
∣∣∣∣∂(us − f )

∂x

∣∣∣∣
m−1[

w
(K)
sk

]r
dx,

H3 = (r + 1)
∫
�(s)

∣∣∣∣∂f∂x
∣∣∣∣
∣∣∣∣∂us∂x

∣∣∣∣
m−2∣∣∣∣∂(us − f )

∂x

∣∣∣∣[w(K)
sk

]r
dx.

By Young’s inequality, we have

H1 � Cε1(r + 1)
m

m−1

∫
�(s)

∣∣∣∣∂f∂x
∣∣∣∣

m
m−1 [

w
(K)
sk

]r
dx + ε1

∫
�(s)

∣∣∣∣∂(us − f )

∂x

∣∣∣∣
m[
w
(K)
sk

]r
dx,

H2 �Cε2(r + 1)m
∫
�(s)

∣∣∣∣∂f∂x
∣∣∣∣
m[
w
(K)
sk

]r
dx + ε2

∫
�(s)

∣∣∣∣∂(us − f )

∂x

∣∣∣∣
m[
w
(K)
sk

]r
dx,

H3 � Cε3(r + 1)m
∫
�(s)

∣∣∣∣∂f∂x
∣∣∣∣
m[
w
(K)
sk

]r
dx + ε3

∫
�(s)

∣∣∣∣∂(us − f )

∂x

∣∣∣∣
m[
w
(K)
sk

]r
dx

+C(r + 1)m
∫
�(s)

∣∣∣∣∂f∂x
∣∣∣∣
m−1[

w
(K)
sk

]r
dx.

Choosingε1, ε2 andε3 sufficiently small in these inequalities, we get∫
�(s)

∣∣∣∣∂(us − f )

∂x

∣∣∣∣
m[
w
(K)
sk

]r
dx + r

∫
�(s)

∣∣∣∣∂(us − f )

∂x

∣∣∣∣
m−2∣∣∣∣∂w

(K)
sk

∂x

∣∣∣∣[w(K)
sk

]r
χ
(K)
k dx

� C(r + 1)m
{ ∫
�(s)

∣∣∣∣∂f∂x
∣∣∣∣

m
m−1 [

w
(K)
sk

]r
dx +

∫
�(s)

∣∣∣∣∂f∂x
∣∣∣∣
m[
w
(K)
sk

]r
dx
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+
∫
�(s)

∣∣∣∣∂f∂x
∣∣∣∣
m−1[

w
(K)
sk

]r
dx

}
. (12)

Let us denote the integrals in the right-hand side of this inequality byH11, H12 and
H13 respectively. Using Young’s and Hölder’s inequalities, we estimate these integrals
as follows.

H11 � C

{ ∫
�(s)

∣∣∣∣∂f∂x
∣∣∣∣
q

dx

} m
q(m−1)

{
1+

∫
�(s)

[
w
(K)
sk

](r+m)p1

} 1
p1

,

wherep1 = q(m−1)
q(m−1)−m .

H12 � C

{ ∫
�(s)

∣∣∣∣∂f∂x
∣∣∣∣
q

dx

} m
q
{

1+
∫
�(s)

[
w
(K)
sk

](r+m)p2

} 1
p2
,

wherep2 = q

q−m .

H13 � C

{ ∫
�(s)

∣∣∣∣∂f∂x
∣∣∣∣
q

dx

} m−1
q

{
1+

∫
�(s)

[
w
(K)
sk

](r+m)p3
dx

} 1
p3
,

wherep3 = q

q−m+1.

LetQ= max{p1,p2,p3}. Sincef ∈W 1
q (�,N), and

∣∣∣∣∂w
(K)
sk

∂x

∣∣∣∣ �
∣∣∣∣∂(us − f )(us − f )

∂x

∣∣∣∣,
it follows from the above estimations ofH1k, k = 1,2,3 and the inequality (12) that

∫
�(s)

∣∣∣∣∂w
(K)
sk

∂x

∣∣∣∣
m[
w
(K)
sk

]r
dx � C(r + 1)m

{
1+

∫
�(s)

[
w
(K)
sk

](r+m)Q
(x) dx

}1/Q

. (13)

Sincew(K)
sk is bounded, we have that[w(K)

sk ]t ∈W 1
m(�

(s)) for anyt > 1. Thus (13) implies

∫
�(s)

∣∣∣∣∂[w
(K)
sk ]1+(r/m)

∂x

∣∣∣∣
m

dx � C(r + 1)m
{

1+
∫
�(s)

[
w
(K)
sk

](r+m)Q
(x) dx

}1/Q

. (14)

The Sobolev embeddingW 1
m(�) ↪→ L nm

n−m (�) holds. Thus for anyr > 0, we have

∫
�(s)

[
w
(K)
sk

]r
dx � C

{ ∫
�(s)

∣∣∣∣∂[w
(K)
sk ] r(n−m)nm

∂x

∣∣∣∣
m

dx

}n/(n−m)
. (15)
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By rescalingr in (14), we obtain from (15) the inequality

∫
�(s)

[
w
(K)
sk

]r
dx �C(r + 1)

2mn
n−m

{
1+

∫
�(s)

[
w
(K)
sk

] r(n−m)
n Q

(x) dx

} n
Q(n−m)

. (16)

Passing to the limit in this inequality ask → 0 and K→ ∞, and applying Fatou’s
Lemma in the left-hand side and Lebesgue’s dominated convergence theorem in the
right-hand side, we get

∫
�(s)

wr
s dx �C(r + 1)

2mn
n−m

{
1+

∫
�(s)

w
r(n−m)

n Q
s (x) dx

} n
Q(n−m)

. (17)

Letting

r = ri = nm

n−m

(
n

Q(n−m)

)i

, i = 0,1,2, . . . ,

and

Ii = 1+
∫
�(s)

wri
s (x) dx,

we obtain from (17) the recurrent inequality

Ii � C

[(
n

(n−m)Q

) 2nm
n−m ]i

I σ
−1

i−1 , (18)

with σ = Q(n−m)
n

. Iterating the inequality (18), we get

I σ
i

i �Cσi+σ i−1+···+σAiσ i+(i−1)σ i−1+···+σ I0, (19)

whereA= [ n
Q(n−m) ]

2mn
n−m .

Let UM = {x ∈ �(s): ws(x) � M}, with M = vrai maxx∈�(s) ws(x) and assume that
measUM , the Lebesgue measure ofUM is different from zero. We have

Ii �
∫
UM

wri
s (x) dx + 1�M( nm

n−m )σ
i

measUM.

Thus from (19), asi approaches infinity, we get

vrai max
x∈�(s)

ws(x)� C

{
1+

∫
�(s)

w
nm
n−m
s (x) dx

} n−m
nm

.

This implies that

vrai max
x∈�(s)

∣∣us(x)∣∣ � C
{‖us − f ‖L nm

n−m (�,N) + ‖f ‖W1
q (�,N)

+ 1
};
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here we have used inequality (9). The theorem is proved.✷
We now state the conditions on the geometry of the set�(s). Let d(s)i be the diameter

of the setF (s)
i and letx(s)i be the center of the ballB(x(s)i , d

(s)
i ) of radiusd(s)i such that

F
(s)
i ⊂ B(x

(s)
i , d

(s)
i ). We denote byr(s)i the distance from the ballB(x(s)i , d

(s)
i ) to the set⋃

j �=i B(x
(s)
j , d

(s)
j ) ∪ ∂�. We assume that the following conditions are satisfied: There

exist the constantsC0 andC1 independent ofi ands such that
B1. lims→∞ max{r(s)i } = 0, d(s)i � C1r

(s)
i .

B2.
I (s)∑
i=1

[ [d(s)i ]m(n−m)
[r(s)i ]n

] 1
m−1

� C0.

For the formulation of another condition we introduce a model problem which will
play a central role in our investigations. Let�k ∈ RN and k the euclidean norm of�k.
We denote by�e the unitN -dimensional vector�k

k
, and set�(s)

i = B(x
(s)
i ,1) \ F (s)

i . Let

ψ ∈ C∞
o (B(x

(s)
i ,1)) with ψ(x) = 1 in B(x

(s)
i , 1

2). For any�k, whendi < 1
2, we denote

by v(s)i (x, �k), the vector-function fromkψ(x − x
(s)
i )�e+

◦
W 1

m(�
(s)
i ,N) which satisfies the

integral identity

N∑
j=1

n∑
l=1

∫
�
(s)
i

A
j
l

(
x,

∂v
(s)
i

∂x

)
∂ϕj

∂xl
dx = 0, (20)

for anyϕ(x) = (ϕ1(x), . . . , ϕN(x)) ∈
◦
W 1

m(�
(s)
i ,N). Further the functionsv(s)i (x, �k) are

extended to� by settingv(s)i (x, �k)= kψ(x−x
(s)
i )�e for x /∈�

(s)
i . In other wordsv(s)i (x, �k)

is a weak solution of the boundary value problem
n∑
l=1

∂

∂xl
A
j
l

(
x,

∂v

∂x

)
= 0 in�(s)

i , j = 1, . . . ,N, (21)

v(x)= kψ
(
x − x

(s)
i

)�e on ∂�(s)
i . (22)

Under the conditions 1) and 2) the existence of a solution to the problem (21)–(22)
follows from Leray and Lions [9]. We impose on the setsF

(s)
i the following restriction:

C. Let �k = (k1, . . . , kN) ∈ RN . For any α = 1, . . . ,N , there exists a continuous
functionC(α)(x, �k) such that for any subsetD ⊂�, we have∫

D

C(α)(x, �k) dx

=



lim
s→∞

∑
i∈Is (D)

N∑
j=1

1

kα

∫
D

Aj

(
x,

∂v
(s)
i (x, �k)
∂x

)
∂v

(s)
iα,j (x,

�k)
∂x

dx if kα �= 0,

0 if kα = 0,

(23)

wherev(s)iα,j (x,
�k) (j = 1, . . . ,N) are the components of the vector-functionv(s)iα (x,

�k)
which is a solution of problem (21)–(22) with�e = �e(α); �e(α) being theN -dimensional
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vector whoseαth component equalskα/|kα| (kα �= 0) and the remaining components
equal zero,Is(D) = {i = 1, . . . , I (s): x

(s)
i ∈ D}, and the convergence in the limit in

(23) is uniform in �k with |�k| < ∞. We can look at the vector-function�C(x, �k) =
(C(1)(x, �k), . . . ,C(N)(x, �k)) as the vector-valued analog of the additional term of
capacity type in the works [17] and [18].

Now we are in a position to formulate our main result.

THEOREM 3. – Let the conditions1), 2), B1, B2and C be satisfied. Assume that
f ∈ W 1

q (�,N) with q > n, and letus be the sequence of solutions of problem(1)–
(2) which satisfies inequality(7) and converges weakly to the vector-functionu0 in
W 1

m(�,N). Then the sequenceus converges strongly tou0 in W 1
p(�,N) for every

p ∈ (1,m), and the functionu0 is a solution to the boundary value problem
n∑
l=1

∂

∂xl
A
j
l

(
x,

∂u

∂x

)
+C(j)

(
x,f (x)− u(x)

) = 0 in �, j = 1, . . . ,N, (24)

u(x)= f (x) on ∂�. (25)

WhenN = 1, this theorem is due to Skrypnik [17, Chap. 9]. The theorem will follow
from a suitable asymptotic expansion of the solutionsus of problem (1)–(2) which plays
an important role in the construction of the limit problem (24)–(25). The asymptotic
expansion and the derivation of the limit problem rely on the solutions of the model
problems (21)–(22) and some of their integral and pointwise a priori estimates. In the
next section we deal with these a priori estimates.

3. Integral and pointwise estimates of the solutions of problem (21)–(22)

We start with

LEMMA 4. – Le the assumptions1) and 2) be satisfied. Then for any vector�k �= 0,

any solutionv(s)i (x, �k) ∈ kψ(x−x
(s)
i )�e+

◦
W 1

m(�
(s)
i ,N) of problem(21)–(22)satisfies the

inequality ∣∣v(s)i (x, �k)∣∣ � k. (26)

Proof. –In the integral identity (20), let

ϕ(x)=
{

0 if |v(s)i (x, �k)| � k,
v
(s)
i (x, �k)− k�e if |v(s)i (x, �k)|> k.

LetEk = {x ∈�: |v(s)i (x, �k)| � k}. Thus we have

∫
B(x

(s)
i
,1)\Ek

∣∣∣∣∂v
(s)
i

∂x

∣∣∣∣
m

dx �
∫

B(x
(s)
i
,1)\Ek

N∑
j=1

Aj

(
x,

∂v
(s)
i

∂x

)
∂v

(s)
ij

∂x
dx = 0.

This implies that either measB(x(s)i ,1)\Ek = 0 or v(s)i has constant components. In the
last casev(s)i (x, k)= k�e. Hence in both situations we have (26).✷
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In analogy with [13], we have

THEOREM 5. – Let the conditions1) and 2) be satisfied. Then there exist the
constantsK1, K2 and K3 depending only onN , n, m, ν1, ν2, ν3 such that fori =
1, . . . , I (s), s = 1,2, . . . , for any solutionv(s)i (x, �k) ∈ kψ(x − x

(s)
i )�e +

◦
W 1

m(�
(s)
i ,N)

of problem(21)–(22)the following claims hold:
1.

∫
B(x

(s)
i
,1)

∣∣∣∣∂v
(s)
i

∂x

∣∣∣∣
m

dx �K1k
m
[
d
(s)
i

]n−m
. (27)

2. For 0< t < k andEt = {x ∈ B(x
(s)
i ,1): |v(s)i (x, �k)| � t}

∫
Et

∣∣∣∣∂v
(s)
i

∂x

∣∣∣∣
m

dx �K2tk
m−1[d(s)i

]n−m
. (28)

3.

∣∣v(s)i (x, �k)∣∣ �K3k

[
d
(s)
i

|x − x
(s)
i |

] n−m
m−1

, (29)

for anyx ∈ B(x
(s)
i ,1)\B(x(s)i , d

(s)
i ).

We prove the following

THEOREM 6. – Let k̄ = (k̄1, . . . , k̄N ) and k̂ = (k̂1, . . . , k̂N ) be someN -dimensional

vectors with|k̄|, |k̂| < ∞ and letv(s)i (x, k̄) ∈ k̄ψ(x − x
(s)
i )+

◦
W 1

m(�
(s)
i ,N), v(s)i (x, k̂) ∈

k̂ψ(x − x
(s)
i )+

◦
W 1

m(�
(s)
i ,N) be solutions of problem(21)–(22). If the conditions1) and

2) are satisfied, then the following inequalities hold:
∫

B(x
(s)
i
,1)

∣∣∣∣ ∂∂x
[
v
(s)
i (x, k̄)− v

(s)
i (x, k̂)

]∣∣∣∣
m

�K4|k̄ − k̂| m
m−1

[
d
(s)
i

]n−m
, (30)

and for k̄α , k̂α �= 0,

∣∣∣∣∣
N∑
j=1

∫
B(x

(s)

i
,1)

{
Aj

(
x,

∂v
(s)
i (x, k̄)

∂x

)
1

k̄α

∂v
(s)
iα (x, k̄)

∂x

−Aj

(
x,

∂v
(s)
i (x, k̂)

∂x

)
1

k̂α

∂v
(s)
iα (x, k̂)

∂x

}
dx

∣∣∣∣∣ �K5|k̄ − k̂| 1
m−1

[
d
(s)
i

]n−m; (31)

the constantsK4 andK5 depend only onN , n, m, ν1, ν2, ν3.
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Proof. –For simplicity, we writev̄(x)= v
(s)
i (x, k̄), v̂(x)= v

(s)
i (x, k̂). Substituting the

test function

ϕ(x)= v̄(x)− v̂(x)− |k̄ − k̂|ψ
(
x − x

(s)
i

d
(s)
i

)
�q,

with �q = k̄−k̂
|k̄−k̂| , ψ ∈ C∞

o (B(x
(s)
i ,1)), ψ(y) = 1 in B(x

(s)
i , 1

2), in the integral identity

(20) for v̄ and v̂, and subtracting the resulting equations from each other, and using
the condition 2), we get

∫
B(x

(s)
i
,1)

∣∣∣∣∂(v̄ − v̂)

∂x

∣∣∣∣
m

dx � C{I1 + I2 + I3}, (32)

where

I1 = |k̄ − k̂|
d
(s)
i

∫
B(x

(s)

i
,1)

|ψ ′|
∣∣∣∣∂(v̄ − v̂)

∂x

∣∣∣∣dx,

I2 = |k̄ − k̂|
d
(s)
i

∫
B(x

(s)
i
,1)

|ψ ′|
∣∣∣∣∂v̄∂x

∣∣∣∣
m−2∣∣∣∣∂(v̄ − v̂)

∂x

∣∣∣∣dx,

I3 = |k̄ − k̂|
d
(s)
i

∫
B(x

(s)
i
,1)

|ψ ′|
∣∣∣∣∂v̂∂x

∣∣∣∣
m−2∣∣∣∣∂(v̄ − v̂)

∂x

∣∣∣∣dx.
By Young’s inequality, we have

I1 � ε

∫
B(x

(s)
i
,1)

∣∣∣∣∂(v̄ − v̂)

∂x

∣∣∣∣
m

dx +Cε|k̂ − k̄| m
m−1

[
d
(s)
i

]n−m
, (33)

I2 � ε

∫
B(x

(s)

i
,1)

∣∣∣∣∂(v̄ − v̂)

∂x

∣∣∣∣
m

dx +Cε

[ |k̄ − k̂|
d
(s)
i

] m
m−1

∫
B(x

(s)

i
,1)

[
|ψ ′|

∣∣∣∣∂v̄∂x
∣∣∣∣
m−2] m

m−1

dx.

Applying Hölder’s inequality to the second integral in the right-hand side of this
inequality and using inequality (27), we get

I2 � ε

∫
B(x

(s)
i
,1)

∣∣∣∣∂(v̄ − v̂)

∂x

∣∣∣∣
m

dx +C|k̄ − k̂| m
m−1 |k̄|m(m−2)

m−1
[
d
(s)
i

]n−m
. (34)

We estimateI3 analogously. Thus from (32)–(34), withε sufficiently small, we
obtain (30).

Next we prove (31). We substitute the test functions

ϕ(x)= 1

k̄α
v
(s)
iα (x, k̄)−ψ

(
x − x

(s)
i

d
(s)
i

)
�e(α)
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and

ϕ(x)= 1

k̂α
v
(s)
iα (x, k̂)−ψ

(
x − x

(s)
i

d
(s)
i

)
�e(α),

in the integral identity (20) corresponding tov(s)i (x, k̄) andv(s)i (x, k̂) respectively, the
function v

(s)
iα (x,

�k) are defined as in the formulation of condition C. Subtracting the
resulting equations from each other, we get

N∑
j=1

∫
B(x

(s)

i
,1)

{
Aj

(
x,

∂v̄

∂x

)
1

k̄α

∂v
(s)
iα (x, k̄)

∂x
−Aj

(
x,

∂v̂

∂x

)
1

k̂α

∂v
(s)
iα (x, k̂)

∂x

}
dx

�
N∑
j=1

∫
B(x

(s)
i
,1)

∣∣∣∣Aj

(
x,

∂v̄

∂x

)
−Aj

(
x,

∂v̂

∂x

)∣∣∣∣
∣∣∣∣∂ψ∂x

∣∣∣∣dx = J1. (35)

Let us estimateJ1. From condition 2) and Hölder’s inequality, we have

J1 �C

{ ∫
B(x

(s)

i
,1)

∣∣∣∣∂(v̄ − v̂)

∂x

∣∣∣∣
m

dx

} 1
m [
d
(s)
i

] n(m−1)
m −1

+C

[{ ∫
B(x

(s)
i
,1)

∣∣∣∣∂v̄∂x
∣∣∣∣
m

dx

}m−2
m

+
{ ∫
B(x

(s)
i
,1)

∣∣∣∣∂v̂∂x
∣∣∣∣
m

dx

}m−2
m

]

×
{ ∫
B(x

(s)
i
,1)

∣∣∣∣∂(v̄ − v̂)

∂x

∣∣∣∣
m

dx

} 1
m [
d
(s)
i

] n−m
m .

Thus from (27) and (30), we get

J1 �C|k̄ − k̂| 1
m−1

[
d
(s)
i

]n−m
.

(31) immediately follows from this inequality and inequality (35). The theorem is
proved. ✷

4. Asymptotic expansion of the sequence of solutions

In this section we construct an asymptotic expansion for the sequence of solutionsus
of the problem (1)–(2) with a remainder. We prove the convergence of the remainder
term to zero in appropriate topologies. Let us introduce the sequence

ρ
(s)
i = max

{(
1+ 1

2C1

)
d
(s)
i ,

1

2C3

[
r
(s)
i

] n
n−m ln2 r

(s)
i

}
,

whereC1 is the constant from hypothesis B1 and

C3 = max
0�t�diam�

{
t

m
n−m ln2 t

}
.
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A simple calculation shows that

ρ
(s)
i � d

(s)
i + r

(s)
i

2
,

and from the definition of the numbersd(s)i andr(s)i , it follows that the ballsB(x(s)i , d
(s)
i +

r
(s)
i /2) (i = 1, . . . , I (s)) are pairwise disjoint. Letθ1, θ2 and θ3 be some numbers

such that 0< θ3 < θ2 < θ1 < 1. We consider the infinitely differentiable functionsχj ,
j = 1,2, satisfying the conditions: 0� χj(t) � 1, χj(t) = 1 if t < θj+1, χj (t) = 0 if
t > θj , χ ′

j (t) <∞ (j = 1,2). We introduce the functions

ψ
(s)
i (x)= χ1

( |x − x
(s)
i |

ρ
(s)
i

)
, ϕ

(s)
i (x)= χ2

( |x − x
(s)
i |

ρ
(s)
i

)
; i = 1, . . . , I (s).

We set

I ′
s =

{
i = 1, . . . , I (s): θ1d

(s)
i � 1

2C3

[
r
(s)
i

] n
n−m ln2 r

(s)
i

}
,

I ′′
s =

{
i = 1, . . . , I (s): θ1d

(s)
i <

1

2C3

[
r
(s)
i

] n
n−m ln2 r

(s)
i

}
.

We have

LEMMA 7. – If conditionsB1 andB2 are satisfied, then

lim
s→∞

∑
i∈I ′

s

[
d
(s)
i

]n−m = 0, (36)

lim
s→∞

∑
i∈I ′′

s

[
ρ
(s)
i

]n = 0. (37)

Proof. –We have

∑
i∈I ′

s

[
d
(s)
i

]n−m � C max
1�i�I (s)

{
1

[ln r(s)i ]2n−m
m−1

}∑
i∈I ′

s

[ [d(s)i ]m(n−m)
[r(s)i ]n

] 1
m−1

.

By condition B2, (36) follows from a passage to the limit ass → ∞ in the above
inequality; here we have made use of the definition of the setI ′

s .
For the proof of the relation (37), we note that since the ballsB(x

(s)
i , d

(s)
i + r

(s)
i /2),

i = 1, . . . , I (s) are pairwise disjoint and� is bounded, it follows that

I (s)∑
i=1

[
r
(s)
i

]n � C; (38)

C is a constant independent ofs. We have, by the definition of the setI ′′
s ,

∑
i∈I ′′

s

[
ρ
(s)
i

]n �
[

1

2C3

]n
max

1�i�I (s)

{[
r
(s)
i

] nm
n−m ln2n r

(s)
i

} ∑
i∈I ′′

s

[
r
(s)
i

]n
.
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A passage to the limit in both sides of this inequality and the relation (38) yield (37).
The lemma is proved. ✷

As an immediate consequence of Lemma 7, we have

lim
s→∞

I (s)∑
i=1

[
ρ
(s)
i

]n = 0. (39)

Further we see that
I (s)∑
i=1

[
d
(s)
i

]n−m
< C; (40)

C is independent ofs. Indeed by Hölder’s inequality, we have

I (s)∑
i=1

[
d
(s)
i

]n−m �
{

I (s)∑
i=1

[ [d(s)i ]n−m
[r(s)i ] n

m

] m
m−1

}m−1
m

{
I (s)∑
i=1

[
r
(s)
i

]n} 1
m

.

Thus, (40) is an immediate consequence of condition B2 and relation (39). Inequal-
ity (40) implies in particular that

lim
s→∞

I (s)∑
i=1

[
d
(s)
i

]n = 0;

i.e., the set
⋃I (s)
i=1 F

(s)
i vanishes ass → ∞.

Now we are in a position to construct the asymptotic expansion of the sequence of
solutionsus of the problem (1)–(2). We assume thatus satisfies the inequalities (7)

and (8) and converges weakly to the vector-functionu0 ∈ f +
◦
W 1

m(�,N) with f ∈
W 1

q (�,N) andq > n. We denote the means of the functionsu0 andf over the balls

B
(s)
i =: B(x(s)i ,1) by

u
(s)
i =

∮
Bs
i

u0(x) dx =: 1

measB(s)
i

∫
B
(s)
i

u0(x) dx,

f
(s)
i = 1

measB(s)
i

∫
B
(s)

i

f (x) dx,

respectively. In the sequel we setD
(s)
i =: B(x(s)i , θ2ρ

(s)
i ).

We seek a solution of problem (1)–(2) in the form

us(x)= u0(x)+
4∑

k=1

R(k)
s (x)+ws(x), (41)

where
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R(1)
s (x)= ∑

i∈I ′
s

{[
u
(s)
i − u0(x)

] + [
f (x)− f

(s)
i

]}
ψ

(s)
i (x),

R(2)
s = ∑

i∈I ′′
s

{[
u
(s)
i − u0(x)

] + [
f (x)− f

(s)
i

]}
ϕ
(s)
i (x),

R(3)
s = ∑

i∈I ′
s

v
(s)
i

(
x,f

(s)
i − u

(s)
i

)
ϕ
(s)
i (x),

R(4)
s = ∑

i∈I ′′
s

v
(s)
i

(
x,f

(s)
i − u

(s)
i

)
ϕ
(s)
i (x),

wherev(s)i (x, f
(s)
i − u

(s)
i ) is a solution of problem (21)–(22) withk = |f (s)

i − u
(s)
i | and

�e = f
(s)

i
−u(s)

i

|f (s)
i

−u(s)
i

| ,ws is the remainder term whose behavior will be dealt with in the following

corrector result which gives a justification of the expansion (41). For simplicity we shall
write v(s)i (x, f

(s)
i − ui) asv(s)i and indicate “converge to” by→.

THEOREM 8. – Let the conditions of Theorem3 be satisfied. Then
1. R(k)

s → 0 strongly inW 1
m(�,N) (k = 1,2,3).

2. R(4)
s → 0 weakly inW 1

m(�,N) and strongly inW 1
p(�,N) for all p ∈ (1,m).

3. ws → 0 strongly inW 1
m(�,N).

Proof. –
Proof of1. We have

∥∥R(1)
s

∥∥
Lm(�,N)

�
∑
i∈I ′

s

∫
�

[∣∣u(s)i − u0(x)
∣∣m + ∣∣f (s)

i − f (x)
∣∣m]∣∣ψ(s)

i

∣∣m dx.

Theorem 2 implies thatu0 is uniformly bounded in�. Thus using inequality (9),
Poincare inequality and the definition ofI ′

s , we get

∥∥R(1)
s

∥∥
Lm(�,N)

� C
∑
i∈I ′

s

[
d
(s)
i

]n−m
. (42)

Next

∥∥∥∥∂R(1)
s

∂x

∥∥∥∥
Lm(�,N)

�C
∑
i∈I ′

s

∫
�

{[∣∣u(s)i − u0(x)
∣∣m + ∣∣f (s)

i − f (x)
∣∣m]∣∣∣∣∂ψ

(s)
i

∂x

∣∣∣∣
m

+
[∣∣∣∣∂u0

∂x

∣∣∣∣
m

+
∣∣∣∣∂f∂x

∣∣∣∣
m]∣∣ψ(s)

i (x)
∣∣m}

dx

�C

{∑
i∈I ′

s

[
d
(s)
i

]n−m +
∫
�

[∣∣∣∣∂u0

∂x

∣∣∣∣
m

+
∣∣∣∣∂f∂x

∣∣∣∣
m]∑

i∈I ′
s

∣∣ψ(s)
i (x)

∣∣m dx}
,
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where as above, we have used Theorem 2, inequality (9) and the definition ofI ′
s . The

function=s(x)= ∑
i∈I ′

s
|ψ(s)

i (x)|m is bounded and by Poincare’s inequality, we have

∫
�

=s(x) dx �C
∑
i∈I ′

s

∫
D
(s)
i

∣∣∣∣∂ψ
(s)
i

∂x

∣∣∣∣
m

dx � C
∑
i∈I ′

s

[
d
(s)
i

]n−m
.

Thus, we get

lim
s→∞

∥∥∥∥∂R(1)
s

∂x

∥∥∥∥
Lm(�,N)

�C
∑
i∈I ′

s

[
d
(s)
i

]n−m
. (43)

Passing to the limit in (42) and (43) and using (36), we obtain thatR
(s)
1 converges to zero

strongly inW 1
m(�,N).

In a similar fashion we show that

lim
s→∞

∥∥R(2)
s

∥∥
W1
m(�,N)

= 0. (44)

Next we have ∥∥R(3)
s

∥∥
Lm(�,N)

�
∑
i∈I ′

s

∫
�

∣∣v(s)i

(
x,f

(s)
i − u

(s)
i

)∣∣m∣∣ϕ(s)i

∣∣m dx

�C
∑
i∈I ′

s

∫
�

∣∣∣∣∂v
(s)
i

∂x

∣∣∣∣
m

dx � C
∑
i∈I ′

s

[
d
(s)
i

]n−m
,

where we have used Poincare inequality and inequality (27) from Theorem 5.
Next we have∥∥∥∥∂R(3)

s

∂x

∥∥∥∥
Lm(�,N)

�C
∑
i∈I ′

s

∫
�

[∣∣v(s)i (x)
∣∣m∣∣∣∣∂ϕ

(s)
i

∂x

∣∣∣∣
m

+
∣∣∣∣∂v

(s)
i

∂x

∣∣∣∣∣∣ϕ(s)i (x)
∣∣m]

dx

�C
∑
i∈I ′

s

[
d
(s)
i

]n−m
.

Here we have used the boundedness ofv
(s)
i , the definition ofϕ(s)i and the inequality (27)

from Theorem 5. Combining this inequality and the previous one and taking account
of (36), we get

lim
s→∞

∥∥R(3)
s

∥∥
W1
m(�,N)

= 0. (45)

Part 1 of the theorem is proved.
Proof of2. By Theorem 5 (inequality (27)) and the boundedness ofv

(s)
i we have

∥∥R(4)
s

∥∥m
W1
m(�,N)

�C
∑
i∈I ′′

s

{[
d
(s)
i

]n−m + [
ρ
(s)
i

]n}
.

Thus the relation (40) and (39) imply

lim
s→∞

∥∥R(4)
s

∥∥
W1
m(�,N)

<∞. (46)
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We deduce from here thatR(4)
s converges weakly inW 1

m(�,N). Next by Hölder’s
inequality and (46), we have for 1< p <m

∥∥R(4)
s

∥∥
W1
p(�,N)

�C
∥∥R(4)

s

∥∥
W1
m(�,N)

{∑
i∈I ′′

s

measD(s)
i

} 1
p− 1

m

� C

{∑
i∈I ′′

s

[
ρ
(s)
i

]n} 1
p− 1

m

;

we have used the fact thatϕ(s)i (x)= 0 outside
⋃I (s)
i=1 D

(s)
i . Hence by relation (37), we get

lim
s→∞

∥∥R(4)
s

∥∥
W1
p(�,N)

= 0. (47)

This implies the claimed strong convergence ofR(4)
s to zero inW 1

p(�,N).
Proof of3. From the assertions 1 and 2 of the theorem and the weak convergence of

us to u in W 1
m(�,N), it clearly follows thatws weakly converges to zero inW 1

m(�,N).
Furthermore, since the sequencews is uniformly bounded, we also have thatws strongly
converges to zero in anyLr(�,N) for all r <∞ by Sobolev embedding’s theorem.

We havews ∈
◦
W 1

m(�
(s),N); in particularws(x) = 0 in

⋃I (s)
i F

(s)
i . Hence we can

substituteϕ(x)=ws(x)= (ws1(x), . . . ,wsN(x)) in the integral identity (6) and get

N∑
j=1

∫
�

Aj

(
x,

∂us

∂x

)
∂wsj (x)

∂x
dx = 0. (48)

We rewrite the left-hand side of (48) as

N∑
j=1

∫
�(s)

Aj

(
x,

∂us

∂x

)
∂wsj (x)

∂x
dx = I

(s)
1 + I

(s)
2 + I

(s)
3 + I

(s)
4 ,

where

I
(s)
1 =

∫
�

N∑
j=1

[
Aj

(
x,

∂us

∂x

)
−Aj

(
x,

∂us

∂x
− ∂ws

∂x

)]
∂wsj (x)

∂x
dx,

I
(s)
2 =

∫
�

N∑
j=1

[
Aj

(
x,

∂us

∂x
− ∂ws

∂x

)
−Aj

(
x,

∂u0

∂x
+ ∂R(4)

s

∂x

)]
∂wsj (x)

∂x
dx,

I
(s)
3 =

∫
�

N∑
j=1

[
Aj

(
x,

∂u0

∂x
+ ∂R(4)

s

∂x

)
−Aj

(
x,

∂R(4)
s

∂x

)]
∂wsj (x)

∂x
dx,

I
(s)
4 =

∫
�

N∑
j=1

Aj

(
x,

∂R(4)
s

∂x

)
∂wsj (x)

∂x
dx.

By condition (4) on theAj ’s, we obtain the estimate

I
(s)
1 � ν2

∫
�

∣∣∣∣∂ws

∂x

∣∣∣∣
m

dx. (49)
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Inequality (5) and Hölder’s inequality yield

I
(s)
2 �C

{∫
�

[
1+

∣∣∣∣∂us∂x

∣∣∣∣ +
∣∣∣∣∂u0

∂x

∣∣∣∣ +
∣∣∣∣∂R(4)

s

∂x

∣∣∣∣ +
∣∣∣∣∂ws

∂x

∣∣∣∣
]m

dx

}m−2
m

×
{∫
�

[
3∑

k=1

∣∣∣∣∂R(k)
s

∂x

∣∣∣∣
]m

dx

} 1
m {∫

�

∣∣∣∣∂ws

∂x

∣∣∣∣
m} 1

m

.

From relations (43)–(45) we deduce from this inequality that

lim
s→∞ I

(s)
2 = 0. (50)

For the estimation ofI (s)3 , we note that sinceR(4)
s (x) = 0 in K(s) = �\⋃I ′′(s)

i=1 D
(s)
i , we

have the following representation

I
(s)
3 =

∫
K(s)

N∑
j=1

Aj

(
x,

∂u0

∂x

)
∂wsj

∂x
dx

+
N∑
j=1

∑
i∈I ′′

s

∫
D
(s)
i

[
Aj

(
x,

∂u0

∂x
+ ∂R(4)

s

∂x

)
−Aj

(
x,

∂R(4)
s

∂x

)]
∂wsj

∂x
dx

≡ I
(s)
31 + I

(s)
32 . (51)

By inequality (5) and Young’s inequality, we have

∫
K(s)

∣∣∣∣Aj

(
x,

∂u0

∂x

)∣∣∣∣
m

m−1

dx � C

∫
�

∣∣∣∣∂u0

∂x

∣∣∣∣
m

dx.

This implies that|Aj(x, ∂u0
∂x
)| ∈ L m

m−1
(�). Hence from the weak convergence ofws

to zero inW 1
m(�,N), we obtain thatI (s)31 converges to zero ass → ∞. Further by

inequality (5) and Hölder’s inequality, we have

I
(s)
32 � C

{∫
�

[
1+

∣∣∣∣∂u0

∂x

∣∣∣∣ +
∣∣∣∣∂R(4)

s

∂x

∣∣∣∣
]m

dx

}m−2
m

{∫
�

∣∣∣∣∂ws

∂x

∣∣∣∣
m

dx

} 1
m
{∑
i∈I ′′

s

∫
D
(s)

i

∣∣∣∣∂u0

∂x

∣∣∣∣
m

dx

} 1
m

.

In view of (39) and the absolute continuity of integrals, the last integral converges to
zero ass → ∞; the two previous are bounded. ThusI (s)32 converges to zero. Hence we
obtain

lim
s→∞ I

(s)
3 = 0. (52)

Now we proceed to the estimation ofI (s)4 . It is technically the most complicated
part of the proof of the theorem. But firstly, let us introduce a new test function. Let
λ ∈ (0, θ3) and let us consider the functionsχ(s)

i ∈ C∞
o (�) such that 0� χ

(s)
i (x) � 1,
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χ
(s)
i (x)= 1 inB(x(s)i , λρ

(s)
i ), χ(s)

i (x)= 0 outsideB(x(s)i , θ3ρ
(s)
i ) and| ∂χ(s)i

∂x
| � C

ρ
(s)
i

. Using

these functions, we rewriteI (s)4 as follows

I
(s)
4 = I

(s)
41 + I

(s)
42 , (53)

where

I
(s)
41 = ∑

i∈I ′′
s

∫
D
(s)

i

N∑
j=1

Aj

(
x,

∂v
(s)
i

∂x

)
∂[wsjχ

(s)
i ]

∂x
dx

and

I
(s)
42 = ∑

i∈I ′′
s

∫
D
(s)
i

N∑
j=1

Aj

(
x,

∂[ϕ(s)i v
(s)
i ]

∂x

)
∂[wsj (1− χ

(s)
i )]

∂x
dx.

Let s be sufficiently large so thatθ3ρ
(s)
i < 1. ThenI (s)41 = 0 by the definition of the

functionsv(s)i (x, f
(s)
i − u

(s)
i ). For simplicity let us denote the ballB(x(s)i , λρ

(s)
i ) byG(s)

i .
Appealing to Hölder’s and Young’s inequalities and using inequality (5) we get

I
(s)
42 �C

∑
i∈I ′′

s

{ ∫
D
(s)

i

∣∣∣∣∂[wsj (1− χ
(s)
i )]

∂x

∣∣∣∣
m

dx

} 1
m

×
{[
ρ
(s)
i

]n +
∫

D
(s)

i
\G(s)

i

∣∣∣∣∂[ϕ
(s)
i v

(s)
i ]

∂x

∣∣∣∣
m

dx

}
. (54)

Letm(s)
i = max

x∈D(s)
i

\G(s)
i

|v(s)i (x)|. By Theorem 5 (inequality (29)), we have

m
(s)
i � C

[
d
(s)
i

ρ
(s)
i

] n−m
m−1

.

Thus using the properties of the functionsϕ(s)i and the inequality (28) in Theorem 5, we
get

∫
D
(s)
i

\G(s)
i

∣∣∣∣∂[ϕ
(s)
i v

(s)
i ]

∂x

∣∣∣∣
m

dx �C

{ ∫
E
m
(s)
i

∣∣∣∣∂v
(s)
i

∂x

∣∣∣∣
m

dx +
∫

D
(s)
i

\G(s)
i

∣∣v(s)i (x)
∣∣m∣∣∣∣∂ϕ

(s)
i

∂x

∣∣∣∣
m

dx

}

�C
{
m

(s)
i

[
d
(s)
i

]n−m + [
m

(s)
i

]m[
ρ
(s)
i

]n−m}
�C

[ [d(s)i ]m
ρ
(s)
i

] n−m
m−1

. (55)

For the estimation of the first factor in the last inequality in (54), we need the following
Poincare’s inequality from [17, Lemma 1.4, Chap. 8]. Let 1< p < n, then for any
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function u ∈ W 1
p(B(0, r)) and any numbersρ1 andρ2 such that 0� ρ1 < ρ2 � r

2, the
inequality

∫
K(ρ1,ρ2)

∣∣u(x)∣∣p dx � C

{(
ρ
p
2 − ρ

p
1

) ∫
K(ρ1,r)

∣∣∣∣∂u∂x
∣∣∣∣
p

dx + ρn2 − ρn1

rn

∫
K( r2 ,r)

∣∣u(x)∣∣p dx}
, (56)

holds with the constantC depending only onn andp; K(a, b)= {x: a < |x|< b}.
We have

∫
D
(s)

i

∣∣∣∣∂[wsj (1− χ
(s)
i )]

∂x

∣∣∣∣
m

dx �C

{ ∫
D
(s)

i

∣∣∣∣∂wsj

∂x

∣∣∣∣
m

dx + [
ρ
(s)
i

]−m
∫

D
(s)

i

|wsj |m dx
}
.

Let r̄ (s)i = d
(s)
i + r

(s)
i

2 . ThusD(s)
i ⊂ B(x

(s)
i , r̄

(s)
i ) ⊂ B(x

(s)
i ,2r̄ (s)i ). By inequality (56) it

follows that∫
D
(s)

i

∣∣wsj (x)
∣∣m dx �C

{[
θ2ρ

(s)
i

]m ∫
B(x

(s)

i
,r̄
(s)

i
)

∣∣∣∣∂wsj

∂x

∣∣∣∣
m

dx
[θ2ρ

(s)
i ]n

[r(s)i + 2d(s)i ]n

×
∫

B(x
(s)
i
,r̄
(s)
i
)

∣∣wsj (x)
∣∣m dx}

.

Thus we obtain∫
D
(s)
i

∣∣∣∣∂[wsj (1− χ
(s)
i )]

∂x

∣∣∣∣
m

dx

� C

{ ∫
B(x

(s)
i
,r̄
(s)
i
)

∣∣∣∣∂wsj

∂x

∣∣∣∣
m

dx + [ρ(s)i ]n−m
[r(s)i ]n

∫
B(x

(s)
i
,r̄
(s)
i
)

∣∣wsj (x)
∣∣m dx}

.

From this inequality and (54)–(55), we get

I
(s)
42 �C1

{∑
i∈I ′′

s

[ [d(s)i ]m
ρ
(s)
i

] n−m
m−1 + ∑

i∈I ′′
s

[
ρ
(s)
i

]n}m−1
m

{∫
�

∣∣∣∣∂ws

∂x

∣∣∣∣
m

dx

} 1
m

+C2

{∑
i∈I ′′

s

[ [d(s)i ]m(n−m)
[r(s)i ]n

] 1
m−1

+ ∑
i∈I ′′

s

[
ρ
(s)
i

]n[ [ρ(s)i ]n−m
[r(s)i ]n

] 1
m−1

}m−1
m

×
{∫
�

∣∣wsj (x)
∣∣m dx}

. (57)

By the definition of the setI ′′
s , we get

As = ∑
i∈I ′′

s

[ [d(s)i ]m
ρsi

] n−m
m−1

�C max
1�i�I (s)

1

ln2n−m
m−1 r

(s)
i

∑
i∈I ′′

s

[ [d(s)i ]m(n−m)
[r(s)i ]n

] 1
m−1

.
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Passing to the limit in this inequality we get from the conditions B1 and B2 thatAs

converges to zero ass → ∞. Thus in view of (37), we obtain that the first term in the
right-hand side of (57) converges to zero ass → ∞.

Further, we have

Es = ∑
i∈I ′′

s

[
ρ
(s)
i

]n[ [ρ(s)i ]n−m
[r(s)i ]n

] 1
m−1

� max
1�i�I (s)

{[
r
(s)
i

] nm
n−m [

ln r(s)i

]2[n+ n−m
m−1 ]} ∑

1�i�I (s)

[
r
(s)
i

]n
.

The first factor in the right-hand side of this inequality converges to zero ass → ∞ while
the second factor is bounded by (38). Thus by condition B2 and the strong convergence
of ws to zero inLm(�,N) it follows that the second term in (57) converges to zero as
s → ∞. Hence we obtain that lims→∞ I

(s)
42 = 0 and this shows that

lim
s→∞ I

(s)
4 = 0, (58)

sinceI (s)42 = 0. Relations (48), (49), (50), (52) and (58) imply thatws strongly converges
to zero inW 1

m(�,N). The theorem is proved.✷
The results of this section establish the first claim in the main Theorem 3. The

remaining of our work is devoted to the proof of the second claim of the theorem. We
deal with this question in the next section.

5. Derivation of the limit problem

In this section we shall prove that the vector-functionu0, the weak limit of the
sequence of solutions of problem (1)–(2) is a solution of problem (24)–(25). Letg be an
arbitrary vector-function inC∞

o (�,N). We consider the sequence of functions

gs(x)= g(x)+
3∑

k=1

ρ(k)s (x), (59)

where

ρ(1)s (x)=
I (s)∑
i=1

[
g
(s)
i − g(x)

]
ψ

(s)
i (x),

ρ(2)s (x)= −
N∑
α=1

∑
i∈I ′

sα

w
(s)
iα (x)g

(s)
iα ϕ

(s)
i (x),

ρ(3)s (x)= −
N∑
α=1

∑
i∈I ′′

sα

v
(s)
iα (x,1)g

(s)
iα ϕ

(s)
i (x),

where

w
(s)
iα (x)=




1
(f

(s)
i

−u(s)
i
)α
v
(s)
iα (x, f

(s)
i − u

(s)
i ), if (f (s)

i − u
(s)
i )α �= 0,

0, if (f (s)
i − u

(s)
i )α = 0;
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(·)α denotes theαth component of the vector·, g(s)i is the mean of the vector-function
g over the ballB(x(s)i , θ2ρ

(s)
i ), v(s)iα (x, f

(s)
i − u

(s)
i ) is a solution of problem (21)–(22)

with k = |(f (s)
i − u

(s)
i )α| and �e the N -dimensional vector whoseαth component is

(f
(s)
i − u

(s)
i )α/|(f (s)

i − u
(s)
i )α| and the remaining components are zero,v

(s)
iα (x,1) is a

solution of problem (21)–(22) withk = 1 and the vector�e has itsαth component equal
to 1 and the remaining components zero,ψ

(s)
i andϕ(s)i are the test functions defined in

the previous section. By the symbolsI ′
sα andI ′′

sα we mean the sets

I ′
sα = {

i = 1, . . . , I (s):
∣∣(f (s)

i − u
(s)
i

)
α

∣∣ � d
(s)
i

}
,

I ′′
sα = {

i = 1, . . . , I (s):
∣∣(f (s)

i − u
(s)
i

)
α

∣∣< d
(s)
i

}
.

Using the same arguments as in the proof of Theorem 7, we can show that the
sequencesρ(s)1 andρ(s)3 strongly converge to zero inW 1

m(�,N), i.e.,

lim
s→∞

{∥∥ρ(s)1

∥∥
W1
m(�,N)

+ ∥∥ρ(s)3

∥∥
W1
m(�,N)

} = 0. (60)

We also get that ∥∥ρ(s)2

∥∥
W1
m(�,N)

<∞, (61)

and

lim
s→∞

∥∥ρ(s)2

∥∥
W1
p(�,N)

= 0, (62)

for all p ∈ (1,m).

A simple verification shows thatgs ∈
◦
W 1

m(�
(s),N). Hence we can substituteϕ(x) =

gs(x) in the integral identity (6). By doing so, we get

J
(s)
1 + J

(s)
2 + J

(s)
3 + J

(s)
4 = 0, (63)

where

J
(s)
1 =

N∑
j=1

n∑
l=1

∫
�

A
j
l

(
x,

∂us

∂x

)
∂gj

∂xl
dx,

J
(s)
2 =

N∑
j=1

n∑
l=1

∫
�

A
j
l

(
x,

∂us

∂x

)(
∂ρ

(1)
sj

∂xl
+ ∂ρ

(3)
sj

∂xl

)
dx,

J
(s)
3 =

N∑
j=1

n∑
l=1

∫
�

A
j
l

(
x,

∂us

∂x

)
∂ρ

(2)
sj

∂xl
dx.

We investigate the behavior of eachJ (s)
k (k = 1,2,3) ass → ∞.

We have

J
(s)
1 =

N∑
j=1

n∑
l=1

∫
�

A
j
l

(
x,

∂u0

∂x

)
∂gj

∂xl
dx + J

(s)
11 ,



M. SANGO / Ann. I. H. Poincaré – AN 20 (2003) 183–212 205

where

J
(s)
11 =

N∑
j=1

n∑
l=1

∫
�

[
A
j
l

(
x,

∂us

∂x

)
−A

j
l

(
x,

∂u0

∂x

)]
∂gj

∂xl
dx.

From condition 2) and Hölder’s inequality we have

J
(s)
11 �C ′

{∫
�

[∣∣∣∣∂u0

∂x

∣∣∣∣
m

+
∣∣∣∣∂us∂x

∣∣∣∣
m]

dx

} m−2
m

{∫
�

∣∣∣∣∂(us − u0)

∂x

∣∣∣∣
m−1

dx

} 1
m−1

+C ′′
{∫
�

∣∣∣∣∂(us − u0)

∂x

∣∣∣∣
m−ε

dx

} 1
m−ε

, (64)

with ε ∈ (0,1). Sinceus strongly converges tou0 in W 1
p(�,N) for anyp ∈ (1,m), and

the first factor in the second inequality in (64) is bounded, we see thatJ
(s)
11 converges to

zero ass → ∞. Thus

lim
s→∞J

(s)
1 =

N∑
j=1

n∑
l=1

∫
�

A
j
l

(
x,

∂u0

∂x

)
∂gj

∂xl
dx. (65)

Sinceρ(1)s andρ(3)s strongly converge to zero inW 1
m(�,N) then by condition 2) and

Hölder’s inequality, it follows that

lim
s→∞J

(s)
2 = 0. (66)

Using expansion (41), let us rewriteJ (s)
3 as follows

J
(s)
3 = J

(s)
31 + J

(s)
32 ≡

N∑
j=1

n∑
l=1

∫
�

[
A
j
l

(
x,

∂us

∂x

)
−A

j
l

(
x,

∂R(4)
s

∂x

)]
∂ρ

(2)
sj

∂xl
dx

+
N∑
j=1

n∑
l=1

∫
�

A
j
l

(
x,

∂R(4)
s

∂x

)
∂ρ

(2)
sj

∂xl
dx.

The inequality (5) from condition 2) applied toJ (s)
31 yields

J
(s)
31 �C

{
J
(s)1
31 + J

(s)2
32

} ≡C

{∫
�

∣∣∣∣∂ρ(2)s

∂x

∣∣∣∣
( 3∑

k=1

∣∣∣∣∂R(k)
s

∂x

∣∣∣∣ +
∣∣∣∣∂ws

∂x

∣∣∣∣
)

×
(

1+
[∣∣∣∣∂us∂x

∣∣∣∣ +
∣∣∣∣∂R(4)

s

∂x

∣∣∣∣
]m−2)

dx

+
∫
�

∣∣∣∣∂ρ(2)s

∂x

∣∣∣∣
∣∣∣∣∂u0

∂x

∣∣∣∣
[
1+

∣∣∣∣∂R(4)
s

∂x

∣∣∣∣
m−2]

dx

}
. (67)

By Hölder’s inequality, we have
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J
(s)1
31 �

{∫
�

∣∣∣∣∂ρ(2)s

∂x

∣∣∣∣
m

dx

} 1
m
{∫

�

( 3∑
k=1

∣∣∣∣∂R(k)
s

∂x

∣∣∣∣ +
∣∣∣∣∂ws

∂x

∣∣∣∣
)m

dx

} 1
m

×
{∫

�

(
1+

∣∣∣∣∂us∂x

∣∣∣∣ +
∣∣∣∣∂R(4)

s

∂x

∣∣∣∣
)m

dx

} m−2
m

.

The second factor in the right-hand side of this inequality converges to zero by Theorem
8, while the other factors are bounded. Thus

lim
s→∞J

(s)1
31 = 0. (68)

By Hölder’s inequality, we have

J
(s)2
31 �

{∫
�

[
1+

∣∣∣∣∂us∂x

∣∣∣∣ +
∣∣∣∣∂R(4)

s

∂x

∣∣∣∣
]m

dx

}m−2
m

{∫
�

[∣∣∣∣∂ρ(2)s

∂x

∣∣∣∣
∣∣∣∣∂u0

∂x

∣∣∣∣
]m

2

dx

} 2
m

. (69)

Let us show that the second factor (that we denote byH
(s)
1 ) in this inequality converges

to zero. Indeed applying Hölder’s inequality, taking account of the properties of the
functionsv(s)iα andϕ(s)i , and appealing to the estimate (27) in Theorem 5, we get

H
(s)
1 =

∫
�

[∣∣∣∣∂ρ(2)s

∂x

∣∣∣∣
∣∣∣∣∂u0

∂x

∣∣∣∣
]m

2

dx

�C

{∑
i∈I ′

s

[
d
(s)
i

]n−m} 1
2
{∫

�

∣∣∣∣∂u0

∂x

∣∣∣∣
m

dx

} 1
2

+C

{ ∑
i∈I ′′

s

[
d
(s)
i

]n−m} 1
2
{ ∑

i∈I ′′
s

∫
D
(s)
i

∣∣∣∣∂u0

∂x

∣∣∣∣
m

dx

} 1
2

.

The first term in the right-hand side of this inequality converges to zero by (36),
the second term also converges to zero by (39), (40) and the absolute continuity
of an integral. HenceH(s)

1 converges to zero ass → ∞. Thus from (69), we get
lims→∞ J

(s)2
31 = 0. This together with (68) and (67) shows that lims→∞ J

(s)
31 = 0.

Now we are left with the investigation ofJ (s)
32 . Using the definition ofR(4)

s , we rewrite
J
(s)
32 as follows.

J
(s)
32 = −

N∑
j=1

n∑
l=1

I (s)∑
i=1

g
(s)
iα

∫
�

A
j
l

(
x,

∂v
(s)
i

∂x

)
∂w

(s)
iα,j

∂xl
dx + J

(s)1
32 + J

(s)2
32 , (70)

where

J
(s)1
32 =

N∑
α,j=1

n∑
l=1

∑
i /∈I ′′

s ∩I ′
sα

g
(s)
iα

∫
�

A
j
l

(
x,

∂v
(s)
i

∂x

)
∂w

(s)
iα,j

∂x
dx,
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J
(s)2
32 =

N∑
α,j=1

n∑
l=1

∑
i∈I ′′

s ∩I ′
sα

g
(s)
iα

∫
�

{
A
j
l

(
x,

∂[v(s)i ϕ
(s)
i ]

∂x

)
∂[ϕ(s)i w

(s)
iα,j ]

∂xl

−A
j
l

(
x,

∂v
(s)
i

∂x

)
∂w

(s)
iα,j

∂xl

}
dx,

wherew(s)
iα,j is thej th component ofw(s)

iα . By condition 2) and Hölder’s inequality, we
have

J
(s)1
32 �C

{
H

(s)
31 ×H

(s)
32

}
,

where

H
(s)
31 = ∑

i /∈I ′′
s ∩I ′

sα

{ ∫
D
(s)

i

(
1+

∣∣∣∣∂v
(s)
i

∂x

∣∣∣∣
)m

dx

}m−2
m

{ ∫
D
(s)

i

∣∣∣∣∂v
(s)
i

∂x

∣∣∣∣
m

dx

} 1
m

,

and

H
(s)
32 =

N∑
α=1

∑
i /∈I ′′

s ∩I ′
sα

{ ∫
D
(s)
i

∣∣∣∣∂w
(s)
iα

∂x

∣∣∣∣
m} 1

m

.

Noticing that{i: i = 1, . . . , I (s)}\[I ′′
s ∩ I ′

sα] = I ′
s ∪ [I ′′

s ∩ I ′′
sα], by Theorem 5, we get

H
(s)
31 �C

N∑
α=1

∑
i /∈I ′′

s ∩I ′
sα

[
d
(s)
i

]n−m∣∣(f (s)
i − u

(s)
i

)
α

∣∣m

�C

{∑
i∈I ′

s

[
d
(s)
i

]n−m + ∑
i∈I ′′

s ∩I ′′
sα

[
ρ
(s)
i

]n}
.

Here we have used the definition of the setsI ′′
s and I ′′

sα. By (36) and (37), we
conclude from this inequality that lims→∞H

(s)
31 = 0. Analogous arguments show that

lims→∞H
(s)
32 = 0. Thus

lim
s→∞J

(s)1
32 = 0. (71)

Next, we write

J
(s)2
32 = L

(s)
1 +L

(s)
2 +L

(s)
3 , (72)

where

L
(s)
1 = −

N∑
α,j=1

n∑
l=1

∑
i∈I ′′

s ∩I ′
sα

g
(s)
iα

∫
�

{
A
j
l

(
x,

∂[v(s)i ϕ
(s)
i ]

∂x

)
∂[ϕ(s)i w

(s)
iα,j ]

∂xl

−A
j
l

(
x,

∂v
(s)
i

∂x

)
ϕ
(s)
i

∂w
(s)
iα,j

∂xl

}
dx,

L
(s)
2 =

N∑
α,j=1

n∑
l=1

∑
i∈I ′′

s ∩I ′
sα

g
(s)
iα

∫
�

(
1− ϕ

(s)
i

)
A
j
l

(
x,

∂v
(s)
i

∂x

)
∂w

(s)
iα,j

∂xl
dx,
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L
(s)
3 = −

N∑
α,j=1

n∑
l=1

∑
i∈I ′′

s ∩I ′
sα

g
(s)
iα

∫
�

w
(s)
iα,jA

j
l

(
x,

∂[v(s)i ϕ
(s)
i ]

∂x

)
∂ϕ

(s)
i

∂xl
dx.

From condition 2), we have

L
(s)
1 � C

{
L
(s)
11 +L

(s)
12

}
, (73)

where

L
(s)
11 =

N∑
α=1

∑
i∈I ′′

s ∩I ′
sα

∣∣g(s)iα

∣∣ ∫
�

[∣∣∣∣∂[ϕ
(s)
i v

(s)
i ]

∂x

∣∣∣∣ +
∣∣∣∣∂v

(s)
i

∂x

∣∣∣∣
]m−2

×
∣∣∣∣∂[(1− ϕ

(s)
i )v

(s)
i ]

∂x

∣∣∣∣
∣∣∣∣∂w

(s)
iα

∂x

∣∣∣∣dx
and

L
(s)
12 =

N∑
α=1

∑
i∈I ′′

s ∩I ′
sα

∣∣g(s)iα

∣∣ ∫
�

∣∣∣∣∂[(1− ϕ
(s)
i )v

(s)
i ]

∂x

∣∣∣∣
∣∣∣∣∂w

(s)
iα

∂x

∣∣∣∣dx.
Let us estimateL(s)

11 . DenoteB(x(s)i , θ3ρ
(s)
i ) by E

(s)
i . From the definition ofϕ(s)i and

Young’s inequality, we have

L
(s)
11 � C

N∑
α=1

∑
i∈I ′′

s ∩I ′
sα

∫
D
(s)

i
\E(s)

i

{∣∣∣∣∂v
(s)
i

∂x

∣∣∣∣
m

+ ∣∣v(s)i

∣∣m∣∣∣∣∂ϕ
(s)
i

∂x

∣∣∣∣
m

+
∣∣∣∣∂w

(s)
iα

∂x

∣∣∣∣
m}

dx.

Let

m
(s)
i = max

x∈D(s)

i
\E(s)

i

∣∣v(s)i

(
x,f

(s)
i − u

(s)
i

)∣∣, m
(s)
iα = max

x∈D(s)

i
\E(s)

i

∣∣v(s)iα

(
x,f

(s)
i − u

(s)
i

)∣∣,
E
m
(s)
i

= {
x ∈D

(s)
i :

∣∣v(s)i

∣∣ �m
(s)
i

}
, E

m
(s)
iα

= {
x ∈D

(s)
i :

∣∣v(s)iα

∣∣ �m
(s)
iα

}
.

By Theorem 5 and the definition of the setI ′′
s , we get

L
(s)
11 �C

N∑
α=1

∑
i∈I ′′

s ∩I ′
sα

{[
m

(s)
i

]m[
ρ
(s)
i

]n−m +
∫

E
m
(s)
i

∣∣∣∣∂v
(s)
i

∂x

∣∣∣∣
m

dx +
∫

E
m
(s)
iα

∣∣∣∣∂v
(s)
iα

∂x

∣∣∣∣
m

dx

}

�C max
1�i�I (s)

1

ln2n−m
m−1 r

(s)
i

I (s)∑
i=1

[ [d(s)i ]m(n−m)
[r(s)i ]n

] 1
m−1

.

A passage to the limit in this inequality and condition B2 yield that

lim
s→∞L

(s)
11 = 0. (74)
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For the estimation ofL(s)
12 we use Hölder’s and Young’s inequalities to get

L
(s)
12 �C

{ N∑
α=1

∑
i∈I ′′

s ∩I ′
sα

∫
D
(s)
i

\E(s)
i

(∣∣∣∣∂[(1− ϕ
(s)
i )v

(s)
i ]

∂x

∣∣∣∣
m

+
∣∣∣∣∂w

(s)
iα

∂x

∣∣∣∣
m)

dx

} 2
m

.

Arguing as in the estimation ofL(s)
11 , we see that lims→∞ L

(s)
12 = 0. This fact together

with (74) and (73) imply that

lim
s→∞L

(s)
1 = 0.

The convergence ofL(s)
2 andL(s)

3 to zero ass → ∞ is established analogously. Hence
we have shown that

lim
s→∞J

(s)2
32 = 0. (75)

We still have to investigate the first term in the right-hand side of (70). In particular
we shall show that

lim
s→∞

N∑
α,j=1

n∑
l=1

I (s)∑
i=1

g
(s)
iα

∫
�

A
j
l

(
x,

∂v
(s)
i

∂x

)
∂w

(s)
iα,j

∂xl
dx

=
N∑

α,j=1

∫
�

gα(x)C
(j)(x, f − u0)δ

j
α dx, (76)

whereδjα = 1 if α = j , andδjα = 0 if α �= j ; the functionC(j)(x, f − u0) is defined as
in (23).

Since u0 ∈ W 1
m(�,N), there exists a uniformly bounded sequence of infinitely

differentiable functionsuk(x), k = 1,2, . . . , which converges tou0 in W 1
m(�,N) as

s → ∞. For a givenk let there be defined a numberd = d(k) > 0 such that for any set
E ⊂� with its diameter less than 2d,

max
x,y

{∣∣uk(x)− uk(y)
∣∣ + ∣∣f (x)− f (y)

∣∣ + ∣∣g(x)− g(y)
∣∣}< k−(m−1). (77)

Let us represent̄�= ⋃
t �t , t = 1, . . . , T (k), �t ∩�t ′ = ∅ for t �= t ′, where the�t are

some sets with piecewise smooth boundaries such that their diameters is less thand

for all t . Let s1 = s1(k) be such that fors � s1(k) and i = 1, . . . , I (s), the inequality
d
(s)
i + r

(s)
i < d holds. LetIs(�t)= {i ∈ {1, . . . , I (s)}: x(s)i ∈�t}. We have the following

representation

N∑
α,j=1

n∑
l=1

I (s)∑
i=1

g
(s)
iα

∫
�

A
j
l

(
x,

∂v
(s)
i

∂x

)
∂w

(s)
iα,j

∂xl
dx

=
T∑
t=1

N∑
α,j=1

n∑
l=1

∑
i∈Is (�t )

g
(s)
iα

∫
�t

A
j
l

(
x,

∂v
(s)
i

∂x

)
∂w

(s)
iα,j

∂xl
dx

=M
(s)
1 +M

(s)
2 +M

(s)
3 , (78)
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where

M
(s)
1 =

T∑
t=1

N∑
α,j=1

∑
i∈Is(�t )

g
(s)
iα

{ n∑
l=1

∫
�t

A
j
l

(
x,

∂v
(s)
i

∂x

)
∂w

(s)
iα,j

∂xl
dx

− g
(s)
iα

∫
�t

C(j)
(
x,f

(s)
i − u

(s)
i

)
δjα dx

}
,

M
(s)
2 =

T∑
t=1

N∑
α,j=1

∑
i∈Is(�t )

{
g
(s)
iα

∫
�t

C(j)
(
x,f

(s)
i − u

(s)
i

)
δjα dx

−
∫
�t

gα(x)C
(j)(x, f − u0)δ

j
α dx

}
,

M
(s)
3 =

N∑
j,α=1

∫
�

gα(x)C
(j)

(
x,f

(s)
i − u

(s)
i

)
δjα dx.

From the assumption C, we see that for any�t in the partition of� ands sufficiently
large

N∑
j=1

∑
i∈Is(�t )

[∫
�t

A
j
l

(
x,

∂v
(s)
i

∂x

)
∂w

(s)
iα,j

∂x
dx −

∫
�t

C(α)
(
x,f

(s)
i − u

(s)
i

)
dx

]
� α1s,

with lims→∞ α1s = 0. This implies that

lim
s→∞M

(s)
11 = 0. (79)

From the definition ofC(j)(x, ·) and Theorem 6, we have for̄k = (k1, . . . , kN) and
k̂ = (k̂1, . . . , k̂N),

∣∣C(j)(x, k̄)−C(j)(x, k̂)
∣∣ � C|k̄ − k̂| 1

m−1
[
d
(s)
i

]n−m
,

for |k̄|, |k̂|<∞. This inequality together with (77) and Theorem 5 imply

M
(s)
2 =

T∑
t=1

N∑
α,j=1

∑
i∈Is(�t )

{∫
�t

(
g
(s)
iα − gα(x)

)
C(j)

(
x,f

(s)
i − u

(s)
i

)
δjα dx

−
∫
�t

gα(x)
(
C(j)

(
x,f

(s)
i − u

(s)
i

) −C(j)(x, f − u0)
)
δjα dx

}

�C

T∑
t=1

N∑
α,j=1

∑
i∈Is (�t )

{∣∣g(s)iα − gα(x)
∣∣ + ∣∣f (s)

i − f (x)
∣∣ 1
m−1

+ ∣∣u(s)i − u0(x)
∣∣ 1
m−1

} × [
d
(s)
i

]n−m
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� C

k

I(s)∑
i=1

[
d
(s)
i

]n−m = αk. (80)

By (40), it is clear that limk→∞ αk = 0.
Recapitulating all that has been done so far in this section, we conclude that

N∑
j,α=1

∫
�

{
n∑
l=1

A
j
l

(
x,

∂u0

∂x

)
∂gj

∂xl
+ gα(x)C

(j)
(
x,f (x)− u0(x)

)
δjα

}
dx = βs + αk, (81)

whereαk is from (80) andβs → 0, ass → ∞. Since the left-hand side in this equation
is independent ofk ands, then we can makeαk andβs as small as we wish fork ands,
respectively large. This implies thatu0 satisfies the integral identity

N∑
j,α=1

∫
�

{
n∑
l=1

A
j
l

(
x,

∂u0

∂x

)
∂gj

∂xl
+ gα(x)C

(j)
(
x,f (x)− u0(x)

)
δjα

}
dx = 0,

for all g ∈ C∞
o (�,N). This completes the proof of Theorem 3.
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